Medusa  1.1
Coordinate Free Mehless Method implementation
AdamsBashforth_fwd.hpp File Reference

Detailed Description

Adams-Bashforth integrator declarations.

Definition in file AdamsBashforth_fwd.hpp.

#include <medusa/Config.hpp>
#include <Eigen/Core>
#include <medusa/bits/utils/numutils.hpp>
#include "RKExplicit_fwd.hpp"
#include <medusa/bits/utils/assert.hpp>
+ Include dependency graph for AdamsBashforth_fwd.hpp:
+ This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  mm::AdamsBashforth< Scalar, num_steps >
 Class representing an AdamsBashforth method, an explicit linear multistep method. More...
 
class  mm::AdamsBashforth< Scalar, num_steps >::Integrator< func_t, initial_method_t >
 Integrator class for AB methods. More...
 
class  mm::AdamsBashforth< Scalar, num_steps >::Integrator< func_t, initial_method_t >::IterationStep
 Class representing a step in the integration process. More...
 

Namespaces

 mm
 Root namespace for the whole library.
 
 mm::integrators
 Namespace containing most known methods for integrating ODEs.
 
 mm::integrators::ExplicitMultistep
 Namespace containing factory functions for explicit linear multistep integrators.
 

Functions

template<class scalar_t = double>
static AdamsBashforth< scalar_t, 1 > mm::integrators::ExplicitMultistep::AB1 ()
 Standard Euler's method. More...
 
template<class scalar_t = double>
static AdamsBashforth< scalar_t, 2 > mm::integrators::ExplicitMultistep::AB2 ()
 Two step AB method. More...
 
template<class scalar_t = double>
static AdamsBashforth< scalar_t, 3 > mm::integrators::ExplicitMultistep::AB3 ()
 Three step AB method. More...
 
template<class scalar_t = double>
static AdamsBashforth< scalar_t, 4 > mm::integrators::ExplicitMultistep::AB4 ()
 Four step AB method. More...
 
template<class scalar_t = double>
static AdamsBashforth< scalar_t, 5 > mm::integrators::ExplicitMultistep::AB5 ()
 Five step AB method. More...
 
template<int order, class scalar_t = double>
static AdamsBashforth< scalar_t, order > mm::integrators::ExplicitMultistep::of_order ()
 Returns Adams-Bashforth explicit method of requested order with given floating point type. More...