|
Medusa
1.1
Coordinate Free Mehless Method implementation
|
|
Go to the documentation of this file. 1 #ifndef MEDUSA_BITS_DOMAINS_CAD_HELPERS_FWD_HPP_
2 #define MEDUSA_BITS_DOMAINS_CAD_HELPERS_FWD_HPP_
18 namespace cad_helpers {
33 template <
typename scalar_t,
int dim>
35 const Range<Vec<scalar_t, dim>>& control_points,
const Range<scalar_t>& knots,
int k);
42 template <
typename scalar_t,
int dim>
44 const Range<Vec<scalar_t, dim>>& control_points,
const Range<scalar_t>& knots,
58 template <
typename scalar_t,
int dim>
60 const Range<scalar_t>& knots, Range<Vec<scalar_t, dim>>& der_control_points,
61 Range<scalar_t>& der_knots);
73 template <
typename scalar_t,
int dim>
75 const Range<Vec<scalar_t, dim>>& control_points,
const Range<scalar_t>& knots,
76 Range<Vec<scalar_t, dim>>& der_control_points);
85 template <
typename scalar_t>
87 Range<scalar_t>& der_knots);
92 #endif // MEDUSA_BITS_DOMAINS_CAD_HELPERS_FWD_HPP_
Root namespace for the whole library.
Scalar scalar_t
Type of the elements, alias of Scalar.
void generate_b_spline_derivative_control_points(int p, const Range< Vec< scalar_t, dim >> &control_points, const Range< scalar_t > &knots, Range< Vec< scalar_t, dim >> &der_control_points)
Generate control points of a B-spline that is the first derivative of the inputed B-spline.
void generate_b_spline_derivative(int p, const Range< Vec< scalar_t, dim >> &control_points, const Range< scalar_t > &knots, Range< Vec< scalar_t, dim >> &der_control_points, Range< scalar_t > &der_knots)
Generate control points and knot vector of a B-spline that is the first derivative of the inputed B-s...
void generate_b_spline_derivative_knots(const Range< scalar_t > &knots, Range< scalar_t > &der_knots)
Generate knots of a B-spline that is the first derivative of the inputed B-spline.
Vec< scalar_t, dim > evaluate_b_spline(scalar_t t, int p, const Range< Vec< scalar_t, dim >> &control_points, const Range< scalar_t > &knots, int k)
Evaluate B-spline in one point using De Boor's algorithm - , where is the number of dimensions.