|
Medusa
1.1
Coordinate Free Mehless Method implementation
|
|
Go to the documentation of this file.
10 const Range<Vec<double, 3>>& control_points,
const Range<double>& knots,
int k);
12 const Range<Vec<double, 2>>& control_points,
const Range<double>& knots,
int k);
15 const Range<Vec<double, 2>>& control_points,
const Range<double>& knots,
16 Range<Vec<double, 2>>& der_control_points, Range<double>& der_knots);
18 const Range<Vec<double, 3>>& control_points,
const Range<double>& knots,
19 Range<Vec<double, 3>>& der_control_points, Range<double>& der_knots);
22 const Range<Vec<double, 2>>& control_points,
const Range<double>& knots,
23 Range<Vec<double, 2>>& der_control_points);
25 const Range<Vec<double, 3>>& control_points,
const Range<double>& knots,
26 Range<Vec<double, 3>>& der_control_points);
29 Range<double>& der_knots);
Eigen::Matrix< scalar_t, dim, 1, Eigen::ColMajor|Eigen::AutoAlign, dim, 1 > Vec
Fixed size vector type, representing a mathematical 1d/2d/3d vector.
void generate_b_spline_derivative_control_points(int p, const Range< Vec< scalar_t, dim >> &control_points, const Range< scalar_t > &knots, Range< Vec< scalar_t, dim >> &der_control_points)
Generate control points of a B-spline that is the first derivative of the inputed B-spline.
void generate_b_spline_derivative(int p, const Range< Vec< scalar_t, dim >> &control_points, const Range< scalar_t > &knots, Range< Vec< scalar_t, dim >> &der_control_points, Range< scalar_t > &der_knots)
Generate control points and knot vector of a B-spline that is the first derivative of the inputed B-s...
void generate_b_spline_derivative_knots(const Range< scalar_t > &knots, Range< scalar_t > &der_knots)
Generate knots of a B-spline that is the first derivative of the inputed B-spline.
Vec< scalar_t, dim > evaluate_b_spline(scalar_t t, int p, const Range< Vec< scalar_t, dim >> &control_points, const Range< scalar_t > &knots, int k)
Evaluate B-spline in one point using De Boor's algorithm - , where is the number of dimensions.