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Prelace

The finite difference method (FDM) has been used to solve differential
equation systems for centuries. The FDM works well for problems of simple
geometry and was widely used before the invention of the much more
efficient, robust finite element method (FEM). FEM is now widely used in
handling problems with complex geometry. Currently, we are using and
developing even more powerful numerical techniques aiming to obtain more
accurate approximate solutions in a more convenient manner for even more
complex systems. The meshfree or meshless method is one such
phenomenal development in the past decade, and is the subject of this book.

There are many MFree methods proposed so far for different applications.
Currently, three monographs on MFree methods have been published.

o Mesh Free Methods, Moving Beyond the Finite Element Method by
GR Liu (2002) provides a systematic discussion on basic theories,
fundamentals for MFree methods, especially on MFree weak-form
methods. It provides a comprehensive record of well-known MFree
methods and the wide coverage of applications of MFree methods to
problems of solids mechanics (solids, beams, plates, shells, etc.) as
well as fluid mechanics.

o The Meshless Local Petrov-Galerkin (MLPG) Method by Atluri and
Shen (2002) provides detailed discussions of the meshfree local
Petrov-Galerkin (MLPG) method and its variations. Formulations
and applications of MLPG are well addressed in their book.

o Smooth Particle Hydrodynamics; A Meshfree Particle Method by GR
Liu and Liu (2003) provides detailed discussions of MFree particle
methods, specifically smoothed particle hydrodynamics (SPH) and
some of its variations. Applications of the SPH method in fluid
mechanics, penetration, and explosion have also been addressed in
this book, and a general computer source code of SPH for fluid
mechanics is provided.

Readers may naturally question the purpose of this book and the
difference between this book and others, especially that by GR Liu (2002).

Xiii
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The second and the third books are related to specific MFree methods,
which have clearly different scopes from this book. The book by GR Liu
(2002) is the first book published with a comprehensive coverage on many
major MFree methods. It covers all the relatively more mature meshfree
methods based on weak-form formulations with systematic description and
broad applications to solids, beams, plates, shell, fluids, etc. However, the
starting point in that book is relatively high. It requires a relatively strong
background on mechanics as well as numerical simulations. In addition,
some expressions in this book were not given in detail, and no computer
source code was provided, because of space limitation.

After the publication of the first book, the first author received many
constructive comments, including requests for source codes and for more
detailed descriptions on fundamental issues. This book is therefore intended
to complement the first book and provide the reader with more details of the
fundamentals of meshfree methods accompanied with detailed explanation
on the implementation and coding issues together with the source codes.
This book covers only the very basics of meshfree weak-form methods, but
provides intensive details on meshfree methods based on the strong-form
and weak-strong-form formulations. The relationship of this book and the
book by GR Liu (2002) is detailed in Table 0.1. This shows that there is
very little duplication of materials between the two; they are complementary.
The authors hope that this monograph will help beginning researchers,
engineers and students have a smooth start in their study and further
exploration of meshfree techniques.

The purpose of this book is, hence, to provide the fundamentals of MFree
methods in as much detail as possible. Some typical MFree methods, such
as EFG, MLPG, RPIM, and LRPIM, are discussed in great detail. The
detailed numerical implementations and programming for these methods are
also provided. In addition, the MFree collocation (strong-form) methods are
also detailed. Many well-tested computer source codes for MFree methods
are provided. The application and the performance of the codes provided
can be checked using the examples attached. Input and output files are
provided in table form for easy verification of the codes. All computer codes
are developed by the authors based on existing numerical techniques for
FEM and the standard numerical analysis. These codes consist of most of
the basic MFree techniques, and can be easily extended to other variations of
more complex procedures of MFree methods.

Releasing this set of source codes is to suit the needs of readers for an
easy comprehension, understanding, quick implementation, practical
applications of the existing MFree methods, and further improvement and
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XV

Table 0.1. The relationship between this book and the meshfree method book by

GR Liu (2002)
Book by GR Liu (2002) This book
Topics Content Source Content Source
code code
Weighted residual Briefed NA Detailed explicitly NA
methods with 1D examples
Weak-forms Detailed NA Briefed NA
MFTree shape Detailed with No Detailed for MLS, Provided
functions emphasizes on MLS, PIM WLS, RPIM,
PIM and RPIM and Hermite-type
MFree global weak- Detailed for EFG, PIM No Detailed for EFG Provided
form methods and RPIM and RPIM
MFree local Petrov- Detailed for MLPG, No Detailed for MLPG Provided
Galerkin weak-form LPIM and LRPIM and LRPIM
methods
MFree collocation No No Detailed for various | No
methods techniques
MFree weak-strong No No Detailed for MWS- Provided
form methods LS and MWS-
RPIM
Boundary-type MFree | Detailed for BPIM and No No NA
methods BRPIM
Coupled methods Detailed for EFG/BEM, | No No NA
MLPG/FEM/BEM
SPH Detailed for fluid No No NA
mechanics problems
Applications to solids 1D and 2D solids No 1D, 2D and 3D Partially
solids provided
Applications to beam, | Yes No No NA
plate and shell
structures
Applications to fluid Detailed for SPH, No Detailed using No
mechanics problems MLPG and LRPIM MWS
Material non-linear Yes No No NA
problems
Geometric non-linear No NA Provided examples No
problems of RPIM
Convection- No No Detailed for 1D and | No
dominated problems 2D problems using
MFree strong-form
methods
MFree2D® Detailed for usage and No No NA

techniques used

NA: not applicable.
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development of their own MFree methods. All source codes provided in this
book are developed and tested based on the MS Windows and MS Developer
Studio 97 (Visual FORTRAN Professional Edition 5.0.A) on a personal
computer. After slight revisions, these programs can also be executed in other
platforms and systems, such as the UNIX system on workstations. In our
research group these codes are frequently ported between the Windows and
UNIX systems, and there has been no technical problem.

QOutline of this book

Chapter 1: The weighted residual methods are introduced and
discussed. Various numerical approaches derived from the
weighted residual method are introduced and examined
using 1D examples. The fundamental and theories of solid
mechanics and weak-forms are also provided.

Chapter 2:  An overview of MFree methods is provided, including the
background, classifications, and basic procedures in MFree
methods.

Chapter 3: Fundamental and theories of MFree interpolation
/approximation schemes for shape function construction,
especially, MLS, PIM, WLS, and RPIM, and Hermite-type
shape functions, are systemically introduced. Source codes
of two standard subroutines of computing MLS and RPIM
shape functions are provided.

Chapter 4:  Formulations of the MFree global weak-form methods,
EFG and RPIM, are presented in detail. A standard source
code of RPIM and EFG is provided.

Chapter 5: Formulations of the MFree local weak-form methods,
MLPG and LRPIM, are presented in great detail. A
standard source code of LRPIM is provided.

Chapter 6: Fundamentals and procedures of the MFree collocation
methods are systemically discussed. The issues related to
the stability and accuracy in the strong-form methods are
discussed in detail. In particular, the effects of the presence
of the derivative boundary conditions are examined in great
detail.

Chapter 7: The MFree methods based on combination of local weak
form and collocation are derived and discussed in detail. A
standard source code is provided.
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The book is written for senior university students, graduate students,
researchers, professionals in engineering and science. Readers of this book
can be any one from a beginner student to a professional researcher as well
as engineers who are interested in learning and applying MFree methods to
solve their problems. Knowledge of the finite element method is not
required but it would help in the understanding and comprehension of many
concepts and procedures of MFree methods. Basic knowledge of solids
mechanics would also be helpful. The codes provided for practise might be
the most effective way to learn the basics of MFree methods.
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Chapter 1
FUNDAMENTALS

This chapter provides the fundamentals of mechanics for solids, as this
type of problems will be frequently dealt with in this book. Several widely
used numerical approximation methods are outlined in a concise manner using
one dimensional (1D) problems to address fundamental issues in numerical
methods. Readers with experience in mechanics and numerical methods may
skip this chapter, but this chapter introduces the terms used in the book.

1.1 NUMERICAL SIMULATION

Phenomena in nature, whether mechanical, geological, electrical,
chemical, electronic, or biological, can often be described by means of
algebraic, differential, or integral equations. One would like to obtain exact
solutions analytically for these equations. Unfortunately, we can only obtain
exact solutions for small parts of practical problems because most of these
problems are complex; we must use numerical procedures to obtain
approximate solutions. Nowadays, engineers and scientists have to be
conversant with numerical techniques for different types of problems.
Because of the rapid development of computer technology, numerical
simulation techniques using computers (or computational simulation) have
increasingly become an important approach for solving complex and
practical problems in engineering and science.
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The main idea of numerical simulation is to transform a complex
practical problem into a simple discrete form of mathematical description,
recreate and solve the problem on a computer, and finally reveal the
phenomena virtually according to the requirements of the analysts. It is
often possible to find a numerical or approximate solution for a complex
problem efficiently, as long as a proper numerical method is used.

Numerical simulations follow a similar procedure to serve a practical
purpose. There are necessary steps in the procedure, as shown in Figure 1.1.

‘ Physical phenomena J
Simplification

Governing equations
and BC, IC, etc
——

‘ Mathematical model F——

Numerical algorithms
and implementation

\ Computer Code

~ I

Numerical techniques

Numerical simulation ——1 Computer systems

Visualization and other
Results .
analysis tools

Figure 1.1. Procedure of conducting a numerical simulation. This book deals with
topics related to the items in the shaded frames.

Step 1: Identity and isolate the physical phenomenon;

Step 2: Establish mathematical models for this phenomenon with some
possible simplifications and acceptable assumptions. These mathematical
models are generally expressed in terms of field variables in governing
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equations with proper boundary conditions (BCs) and/or initial conditions
(ICs). The governing equations are usually a set of ordinary differential
equations (ODEs), partial differential equations (PDEs), or integral equations.
Boundary and/or initial conditions are needed to complement the governing
equations for determining the field variables in space and/or time. This step
is the base for a numerical simulation.

Step 3: Describe the mathematical model in a proper numerical
procedure and algorithm. The major aim of this step is to produce computer
code performing the numerical simulation. For different numerical
techniques, the numerical algorithm and implementation are different, and
hence the computer codes are also different.

Step 4: Numerically simulate the problem. Te computer systems and the
computer codes obtained in Step 3 are used to simulate the practical problem.

Step 5: Observe and analyze the simulation results that are obtained in
Step 4. Visualization software packages are often very useful tools for
presenting the data produced by computers as they are usually complex in
nature and large in volume.

In this procedure, we find that a numerical technique determines the
algorithm and codes used in the numerical simulation. In order to obtain a
successful simulation result representing the true physics, we need a reliable
and efficient numerical technique. Many researchers have been developing
the numerical techniques or numerical approximation methods. Several
efficient approximation methods have been proposed and developed so far,
such as the finite difference method (FDM), the finite element method
(FEM), the boundary element method (BEM), and the meshless or meshfiree
methods (shortened as MFree methods in this book) " to be discussed in this
book.

1.2 BASICS OF MECHANICS FOR SOLIDS

In this book, MFree formulations are presented mainly for mechanics
problems of solids and fluid flows. In this section, the basic equations of
solids are briefly introduced for future reference.

" A detailed definition of MFree methods will be presented in Chapter 2.



4 Chapter 1

1.2.1 Equations for three-dimensional solids
1.2.1.1 Stress components

Consider a continuum of three-dimensional (3D) elastic solids with a
volume Q and a surface boundary I', as shown in Figure 1.2. The solid is
supported at various locations and is subjected to external forces that may be
distributed over the volume or/and on the boundary. When the solid is
stressed, it will deform resulting in a displacement field. The field variables
of interest are the displacements. The displacements and the stress level can
be different from point to point in the solid depending on the configuration
of solid, loading, and boundary conditions.

Figure 1.2. A continuum of solids.
Q): the problem domain considered; I': the global boundary of the problem domain; I';: the
traction boundary (or force, derivative, natural boundary); I' ,: the displacement boundary (or
Dirichlet, essential boundary); n={n, ,n,, n_,}T: the outward normal vector on the boundary.

At any point in the solid, there are, in general, six components of stress to
describe the state stressed, as indicated on the surface of a small cubic “cell”
shown in Figure 1.3. On each surface, there will be one component of
normal stress, and two components of shear stress. The sign convention for
the subscript is that the first letter represents the surface on which the stress
is acting, and the second letter represents the direction of the stress. Note
that there are also stresses acting on the other three hidden surfaces. As the
normal to these surfaces are in the directions opposite to the corresponding
coordinates, positive directions of the stresses should also be in the directions
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opposite to the coordinates. There are a total of nine stress components shown
on the cubic cell. These nine components are the components of the stress
tensor. By taking moments of forces about the central axes of the cubic cell at
the state of equilibrium, it is easy to confirm that

0,=0,,0,=0,,0,,=0, (1.1)

Xy X Xz zx zy

Therefore, there are six independent stress components in total at a
particular point in a solid. The stresses are often written in the vector form

¢ ={o, o, 0. 0. 0. 0.} (1.2)

GZX e
/

EC'?l
<
@Q
ECa\
v =

..
X

Figure 1.3. Stress components on a small cubic cell in a stressed three-dimensional
solid.

1.2.1.2 Strain-displacement equations

The strain-displacement equation gives the relationship between
displacements and strains. There are six strain components at a point in
solids corresponding to the six stress components, which can also be written
in a similar vector form of

g'= {g

XX

gyy gzz gyz gxz gxy } ( l * 3)

A strain is a rate of displacement per unit length. The components of
strain can be obtained by derivatives of the displacements for small
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deformation in solids. The strain-displacement relation can be written in the
following matrix form.

¢=Lu (1.4)

where u is the displacement vector having the form of

u=<v (1.5)

where u, v and w are displacement components in x, y and z directions,

respectively.
In Equation (1.4), L is a matrix differential operator given by

[9/ox 0 0 |

0 9y O
L 0 0 J/ez (1.6)
0 0/oz ofoy '
ofoz 0 &fox
| 0foy ofox 0 |

1.2.1.3 Constitutive equations

The constitutive equation gives the relationship between the stress and
the strain for a given material. It is often called a generalized Hooke’s law.
The generalized Hooke’s law for general anisotropic elastic materials can be
given in the following matrix form.

c=D¢ (1.7)

where D is a matrix of material constants, which have to be obtained through
experiments. The constitutive equation can be written explicitly as

O Dy Dy, D5 Dy Ds Dg||én
Oy Dy, D,y Dy D,s Dy ||,
6= O, L Dy; Dy Dy Dy || & —De (1.8)
0, Dy Dys Dy ||y
Oy Sy. Dss Dsg || €
(o i D66_ €y
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Note that D;=D;. There are a total of 21 possible independent material
constants D;. For different types of anisotropic materials, there will be
fewer independent material constants (see, e.g., GR Liu and Xi, 2001). For
isotropic material, which is the simplest type of material, D can be gradually
reduced to

D, D, D, 0 0 0
D, D, 0 0 0
Dy, 0 0 0
D =
(D, —Dy,)/2 0 0 (1.9)
sy. (D, —-Dy,)/2 0
L (D11_D12)/2_
where
E(d-v Ev D.—-D
) S Gl 12 ;— 2=G (1.10)

T -2n4v) P T d— i) 2

in which £, v and G are Young’s modulus, Poisson’s ratio, and shear

modulus of the material, respectively. There are only two independent

constants among these three constants:
_E

2(1+v)

(1.11)

1.2.1.4 Equilibrium equations

The equilibrium equation gives the relationship between the stress and
the external force. Using equilibrium conditions of forces in a small block in
a solid, we can obtain the following equilibrium equations in a concise
matrix form for three-dimensional elastodynamics.

L'c+b=pii+cu (1.12)
. . . . . . Ou .
where p is the mass density, ¢ is the damping coefficient, u =a—2 is the
t
. . Ou . . .
acceleration vector, u =5 is the velocity vector, and b is the vector of

external body forces in x, y, and z directions:
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b=1b (1.13)

Using Equations (1.4) and (1.7), we can write the dynamic equilibrium
Equation (1.12) in terms of displacements:

L'DLu +b = pii + cu (1.14)

This is the general form of the dynamic equilibrium equation for three-
dimensional elasticity. If the loads applied on the solid are static, then the
concern is only on the static status of the solid, and the static equilibrium
equation can be obtained simply by dropping the dynamic terms in Equation
(1.14), which yields

L'DLu+b=0 (1.15)

Equation (1.12) can also be written in the following form using the tensor
notation.

oy +b, = pi; +cu (1.16)

where 7, j=(1, 2, 3) representing, respectively, x, y and z directions.

Equation (1.12) or Equation (1.16) is the equilibrium equation of three-
dimensional elastodynamics. The equilibrium equation is often called the
governing equation for solids; it is a partial differential equation (PDE) with
the displacement vector as the unknown function of field variables.

1.2.1.5 Boundary conditions and initial conditions

The governing Equation (1.12) or Equation (1.16) must be complemented
with boundary conditions and initial conditions.

Traction boundary condition: oun; = A on I, (1.17)
Displacement boundary condition: ¢ =i, on I, (1.18)
Displacement initial condition: u(x,z)) =u,(x) xeQ (1.19)
Velocity initial condition: u(x,7,)=v,(x) xeQ) (1.20)

where ,, ,, uy and v, denote the prescribed displacements, tractions, initial

displacements and velocities, respectively, and n; is a component of the
vector of the unit outward normal on the boundary of the domain Q (see



1. Fundamentals 9

Figure 1.2). The traction boundary condition is, in general, a type of
derivative boundary condition or natural boundary condition (in the weak-
form context). The displacement boundary conditions are often called the
Dirichlet or essential boundary conditions in the weak-form context.

In summary, the governing equation (Equation (1.12) or Equation (1.16)),
the constitutive equation (Equation (1.7)) and the strain-displacement
equation (1.4) together with boundary conditions and initial conditions
(Equations (1.17)~(1.20)) form a boundary value problem (BVP) and the
initial value problem (IVP) for three-dimensional solids. The entire set of
equations is called system equations.

Note that equations obtained in this section are applicable to 3D elastic
solids. Theoretically, these equations for 3D solids can be applied to all
other types of structures such as trusses, beams, plates and shells, because
they are all made of 3D solids. However, treating all the structural
components as 3D solid makes computation very expensive, and practically
impossible. Therefore, theories for making good use of the geometrical
advantage of different types of solids and structural components have been
developed. Application of these theories in a proper manner can reduce
analytical and computational effort drastically.

1.2.2 Equations for two-dimensional solids
1.2.2.1 Stress components

For two-dimensional (2D) solids as shown in Figure 1.4, it is assumed
that the geometry of the domain is independent of z-axis, and all the external
loads and supports are independent of the z coordinate, and applied only in
the x-y plane. This assumption reduces the 3D equations to 2D equations.
There are two types of typical states of 2D solids. One is plane stress, and
another is plane strain. Plane stress solids are solids whose thickness in the
z direction is very small compared with dimensions in the x and y directions.
As external forces are applied only in the x-y plane, and stresses in z
direction (0., Oy, 0;.) are all zero. There are only three in-plane stresses,
(G, Ty Ty).

Plane strain solids are solids whose thickness in the z direction is very
large compared with dimensions in the x and y directions. External forces
are applied uniformly along the z-axis, and the movement in the z direction
at any point is constrained. The strain components in z direction (&, &, &)
are all zero, there are only three in-plane strains, (&, &y, &) to deal with.

The system equations for 2D solids can be obtained by simply omitting
the terms related to the z direction in the system equations for 3D solids.
Equations for isotropic materials are given as follows.
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VoA

| /)
/% N v

7

Ny

Figure 1.4. A two-dimensional continuum of solids.
Q: the problem domain considered; I': the global boundary of the problem domain; I';: the
traction boundary (or force boundary); ', the displacement boundary; n={n, ,n,}: the
outward normal vector on the boundary. '

The stress components are

=40, (1.21)

where the shear stress component, Os 1s often denoted T, -

There are three corresponding strain components at any point in 2D
solids, which can also be written in a similar vector form

e=1e (1.22)

1.2.2.2  Strain-displacement equation

The strain-displacement relation can also be written in the following
matrix form.
€=Lu (1.23)

where the displacement vector is
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u= (1.24)
\%
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2
ox
5,
L=0 — (1.25)
cy
K
|0y Ox |

1.2.2.3 Constitutive equations

Hooke’s law for 2D elastic solids has the following matrix form:
c=Dg (1.26)

where D is a matrix of material constants, which have to be obtained through
experiments. For isotropic materials in the plane stress state, we have

I v 0
E
D—1 =|v 1 0 (Plane stress) (1.27)
1o 0 (1-v)/2

For solids in the plane strain state, the matrix of material constants D can be
obtained by simply replacing E and v, respectively, with E/(1-v) and
V/(1- v), which leads to

[— 0
I-v
__ Ed=v) Y 1 0 (Plane strain) (1.28)
(1+v)(1-2v)| 1-v
0 1-2v
i 2(1-v) |
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1.2.2.4 Equilibrium equations

The equilibrium equations for 2D elastic solids can be easily obtained by
removing the terms and omitting the differential operations related to the z
coordinate from Equation (1.12), i.e.,

LG +b = pii + cit (1.29)

where b is the external force vector given by

j— bx
b= b (1.30)

Equation (1.29) has exactly the same form as Equation (1.12). For static
problems, the equilibrium equations can be written as

L'c+b=0 (1.31)

Equation (1.29) or (1.31) is much easier to solve then their counterpart
equations for 3D solids. Equation (1.29) can be also written in the following
form using tensor notations:

o, +b, = pii, +cii (132)

where i, j=(1, 2) represent, respectively, x and y directions, p is the mass
2

density, c is the damping coefficient, u; is the displacement, #; = p > 18 the
t

. . Ou, . . ) .
acceleration, u, :a—’ is the velocity, oy is the stress, b; is the body force,
t

and (), denotes di .
ox;

1.2.2.5 Boundary conditions and initial conditions
The boundary conditions and initial conditions can be written as
Traction boundary condition: oun; =1t on T, (1.33)

Displacement boundary condition: u; = on I, (1.34)

Displacement initial condition: ux,z,)=u,(x) xeQ (1.35)
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Velocity initial condition: u(x,f,)=v,(x) xeQ (1.36)

in which u,, fi, u, and v, denote the prescribed displacements, tractions,

initial displacements and velocities, respectively, and #n; is the component of
the unit outward normal vector on the boundary (see Figure 1.4).

In summary, the governing equation, the constitutive equation, and the
strain-displacement equation together with the boundary conditions and
initial conditions form a set of system equations defining the boundary value
problem (BVP) and the initial value problem (IVP) for two-dimensional
solids.

1.3 STRONG-FORMS AND WEAK-FORMS

Partial differential equations (PDEs) developed in Section 1.2 are strong-
forms of system equations. Obtaining the exact solution for a strong-form of
system equation is ideal, but unfortunately it is very difficult for practical
engineering problems that are usually complex in nature. One example of a
strong-form numerical method is the widely used finite difference method
(FDM). FDM uses the finite differential representation (Taylor series) of a
function in a local domain and solves system equations of strong-form to
obtain an approximate solution. However, FDM requires a regular mesh of
grids, and can usually work only for problems with simple and regular
geometry and boundary conditions. In a strong-form formulation, it is
assumed that the approximate unknown function (u, v, w in this case) should
have sufficient degree of consistency, so that it is differentiable up to the
order of the PDEs.

The weak-form, in contrast to the strong-form, requires a weaker
consistency on the approximate function. This is achieved by introducing an
integral operation to the system equation based on a mathematical or
physical principle. The weak-form provides a variety of ways to formulate
methods for approximate solutions for complex systems. Formulation based
on weak-forms can usually produce a very stable set of discretized system
equations that produces much more accurate results.

This book will use weak-form formulations to form discretized system
equations of MFree weak-form methods® for mechanics problems of solids

" A detailed discussion of the categories for mesh-free methods will be discussed in
Chapter 2.
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and fluids (see Chapters 4 and 5). The strong-form formulation based on the
collocation approach will also be used to formulate the so-called MFree
strong-form methods (or MFree collocation method, see Chapter 6). In
addition, both of them will be combined to formulate the MFree weak-strong
(MWS) form method (see Chapter 7), where the local weak-form is utilized
on and near the natural boundary to obtain stabilized solution.

The consistency requirement on the approximate functions for field
variables in the weak-form formulation is quite different from that for the
strong form. For a 2kth order differential governing system equation, the
strong-form formulation assumes the field variable possesses a continuity of
2kth order. The weak-form formulation, however, requires usually a
continuity of only kth order.

There are two major categories of principles used for constructing weak-
forms: variational and weighted residual methods. The Galerkin weak-form
and the Petrov-Galerkin weak-form may be the most widely used approaches
for establishing system equations; they are applicable for deriving MFree
formulations. =~ Hamilton’s principle is often employed to produce
approximated system equations for dynamic problems, and is also applicable
to MFree methods. The minimum total potential energy principle has been a
convenient tool for deriving discrete system equations for FEM and many
other types of approximation methods. The weighted residual method is a
more general and powerful mathematical tool that can be used for creating
discretized system equations for many types of engineering problems. It has
been and will still be used for developing new MFree methods. All these
approaches will be adapted in this book for creating discretized system
equations for various types of MFree methods.

1.4 WEIGHTED RESIDUAL METHOD

The weighted residual method is a general and extremely powerful
method for obtaining approximate solutions for ordinary differential
equations (ODESs) or partial differential equations (PDEs). Many numerical
methods can be based on the general weighted residual method. Hence, this
section discusses some of those numerical methods using a simple example
problem. This section is written in reference to the text books by Finlayson
(1972), Brebbia (1978), Wang and Shao (1996), and Zienkiewicz and Taylor
(2000). The materials are chosen, organized and presented for easy
reference in describing MFree methods in later chapters.
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As discussed in Section 1.2, many problems in engineering and physics
are governed by ODEs or PDEs with a set of boundary conditions. Consider
the following (partial) differential equation.

Fw)+b=0 in problem domain Q (1.37)

where F is a differential (partial) operator that is defined as a process when
applied to the scalar function u produces a function —b. The boundary
condition is given as

G(u)=g onthe boundary I (1.38)

where G is a differential (partial) operator for the boundary condition.

Most engineering problems which are expressed in ODEs or PDEs can
only be solved in an approximate manner, by which the function u is first
approximated by

' (x)= Y a,B,(x)=Ba (1.39)

where B;(x) is the ith term basis function or trial function, o, is the

unknown coefficient for the ith term basis function, and 7 is the number of
basis functions used. These basis functions are usually chosen so as to
satisfy certain given conditions, called admissibility conditions, relating to
the essential boundary conditions and the requirement of continuity.

In practice, the number of basis functions used in Equation (1.39), n, is
small, hence the governing Equation (1.37) and the boundary conditions,
Equation (1.38), cannot usually be satisfied exactly. Substituting Equation
(1.39) into Equations (1.37) and (1.38), we generally should have

Fu")+b#0 (1.40)
Gu")-g+#0 (1.41)

Hence, we can obtain the following residual functions R and R, ,
respectively, for the system equations defined in the problem domain and the

boundary conditions defined on the boundaries.
R =F(u")+b (1.42)
R,=G(u")-g (1.43)

If Equation (1.39) is the exact solution of the governing Equation (1.37) and
the boundary conditions Equation (1.38), residuals R and R, will be zero.
However, the exact solution is usually unavailable for many practical
problems, and R, and R, are, in general, not zero. Note that R and R,
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change with the approximate functions chosen. We can use some techniques
to properly obtain an approximate function so as to make the residual as
“small” as possible; we force the residual to zero in an average sense by
setting weighted integrals of residuals to zero. For example, we impose

[WR,dQ+ [V.R,dT =0 (1.44)
Q r

where =1, 2, ..., n, W and V are a set of given weight functions for the
residuals R and R, , respectively.

Note that the approximate solution, Equation (1.39), can be chosen to
satisfy the boundary conditions. In such cases, R, is zero, and Equation
(1.44) becomes

[wRd02=0 (1.45)
Q

This is the formulation of the weighted residual method that is often used in
establishing numerical procedures (e.g., the FEM etc.).

Note also that in Equation (1.44), it is possible to use the same weight
functions for both W and V' .

Substituting Equations (1.42) and (1.43) into Equation (1.44), we can
obtain

jvff,.[F(u”)m]dQ 76w -g]dr=0 (1.46)
Q r
Using Equation (1.39), we have
jw[F(Ba)+b ]dQ+ [V, [G(Ba)-g]dr =0 (1.47)
T
Equation (1.47) can be re-written more explicitly for i=1, 2, ..., n as

follows.

[P [F(Ba)+b]dQ+ [V, [G(Ba) - g]dl =0

[, [F(Ba)+b]dQ+ [V,[G(Ba)-g]dT =0
a ; (1.48)

_[W [F(Ba)+b]dQ+ [17 [G(Ba)—g]dT' =0

Q

From Equation (1.48), we can obtain n equations for n unknowns ¢;
(~=1,2, ..., n). Solving these equations, we can obtain &, and then obtain the
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approximate solution, which makes residuals, R and R, , vanish in an

average sense. When 1) the weight functions 1, , V; and the basis functions

B.(x) are linearly independent; 2) the basis functions B;(x) are continuous

of a certain order; 3) the weight functions and the basis function have certain
degree of overlapping; 4) and when n— oo , the approximate solution
Equation (1.39) will converge to the exact solution of the problem, if the
solution of the problem is unique and continuous.

This is the general form of the weighted residual method. 1t should be
noted that Equation (1.48) is a set of integral equations that is obtained from
the original ODEs or PDEs. Therefore, the weighted residual method
provides a way to transform an ODE or PDE to an integral form.

This integral equation helps to “smear” out the possible error induced by
the function approximations, so as to stabilize the solution and improve the
accuracy. The integral operation can also reduce the requirement for the
order of continuity on the approximate function via integrals by parts to
reduce the order of the differential operators. It is termed a weak-form,
meaning that it weakens the requirement for continuity on the approximate
function.

In the weighted residual method, the selection of weight functions will
affect its performance. Different numerical approximation methods can be
obtained by selecting different weight functions. In the following sub-
sections, several such methods are discussed.

1.4.1 Collocation method

Instead of trying to satisfy the ODE or PDE in an average form, we can
try to satisfy them at only a set of chosen points that are distributed in the
domain. This is the so-called collocation method that seems to be first used
by Slater (1934) for problems of electronic energy bounds in metals. Early
development and applications of the collocation method include the works
by Barta (1937), Frazer et al. (1937), Lanczos (1938), etc. The Lanczos’
method, known as the orthogonal collocation method, uses Chebyshev
polynomials and their roots as collocation points.

The standard formulation of the collocation method can be easily
obtained by using Dirac delta functions 6(x—x;) as the weight functions in

Equation (1.44), i.e.,

{W,- =5(x-x,) (1.49)

I7i :5(x_xi)

where i=1,2, ..., n, and the Dirac delta function, d(x —x;), has the following
property:
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o(x—x,)=0, X#X,
X;+c

I o(x—x)dx=1, ¢—>0

(1.50)

Thus we derive the collocation method from the weighted residual
formulation by substituting Equation (1.49) into Equation (1.44):

[6(0x—x)RdQ+ [5(x—x)R,dT
Q r

(1.51)
= [5(x—x)[F(Bo)+b]dQ+ [5(x—x)[G(Ba)—g]dI =0
which becomes:
[o(r—x)RAQ+ [5(x—x)R,dT = R,(x,)+ R,(x,) =0 (1.52)
or
[F(B(x,))e) +b]+[G(B(x,)a) — g] =0 (1.53)

Equation (1.52) is applicable to n points chosen in the problem domain,
which means that the collocation method forces the residuals to zero at the
points x; (i=1,2, ..., n) chosen in the domain.

1.4.2 Subdomain method

The subdomain method is similar to the collocation method. The
difference is that instead of requiring the residual function to be zero at
certain points, we make the integral of the residual function over n regions
(or subdomains), €; (i=1,2, ..., n), to be zero. This method was first
developed by Biezeno and Koch (1923), Biezeno (1923), Biezeno and
Grammel (1955). In the subdomain method, we use the weight function that
has the following form

~ 1, within €, |54
i 0, outside Q, (1.54)
where i=1,2, ..., n. Hence, Equation (1.44) becomes
[FRdQ+ [VR,dr = [W.RdQ+ [VR,dT =
Q r Q, T,
(1.55)

j[F(Ba) +b]dQ2+ I[G(Bu) ~g]dr=0

QI
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where T, is the boundary of the intersection between the subdomain Q; and

the global problem boundary T".

Equation (1.55) means that the subdomain method enforces the residuals
to zero in a weighted average sense in n subdomains chosen in the problem
domain.

1.4.3 Least squares method

The least squares method (LSM) was originated by Gauss in 1795 and
Legendre in 1806 (see, e.g., Hall, 1970; Finlayson 1972). Picone (1928)
applied the LSM to solve differential equations. In the LSM, we first define
the following functional

J(a,)= [R,-R.dQ (1.56)

and then seek for the minimum value of the functional J, which requires that

o _ Ia(Rx'Rx)dgzzj—a(Rs)qugzo (1.57)
80![ Q aa,‘ [e) 8&,- A
or
AR
CE)R A0 =0
J S R (1.58)

This means, in the context of the weighted residual method, that the weight
function is chosen as the following form.

— OR. OF(u")
W == 7 1.5
" da, oa, (1.59)

We can similarly obtain

~ R, 8G@u")
V=—2t_""7
" oa, oaq, (1.60)

1

Hence, Equation (1.44) becomes

- ~ OR . ¢OR
[R 40+ [VR,dT = [~ R dO+ [—-R,d[ =0 (1.61)
Q A T Q aai l r aal
where i=1,2, ..., n, which gives n equations for n coefficients ¢; Solving

these n equations for ¢; leads to an approximate solution.
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1.4.4 Moment method

The weight functions can be chosen to be monomials of, 1, x, X, X
In this way, successive higher “moments” of the residuals are forced to be
zero. This technique, called the moment method, was invented by Yamada
(1947) and Fujita (1951).

The Moment method can be simply formulated as follows. Let

W.=V.=x", i=12,..,n (1.62)

1

Equation (1.44) becomes
J W R A+ j VRl = gfx;* RAQ+ J|x RdA =0 (1.63)

which gives n equations for n coefficients ¢;. Solving these n equations for
a; yields an approximate solution. Note that the results set of equations is
often ill-conditioned. An alterative is to use Chebyshev polynomials in stead
of monomials.

1.4.5 Galerkin method

The Galerkin method (Galerkin, 1915) can be viewed as a particular
weighted residual method, in which the trial functions used for the
approximation of the field function are also used as the weight functions.

V=B, (1.64)
171' =-B, '

Equation (1.44) now becomes
[BRAQ- [BR,dr =
Q r

[B.[F(Ba)+b]da- [B,[G(Ba)-g]dr =0 (1.65)

which gives n equations for n coefficients ¢;. Solving these n equations for
«; yields an approximate solution.

The Galerkin method has some advantages. First the system matrix
obtained by the Galerkin method is usually symmetric. In addition, in many
cases, the Galerkin method leads to the same formulations obtained by the
energy principles, and hence has certain physical foundations. Therefore,
the Galerkin method is regarded so far as the most effective version of the
weighted residual method, and is widely used in numerical methods, in
particular the finite element method (FEM). Note that to obtain the
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formulations of the FEM using the weighted residual method, Equation (1.45)
is often used, in which only the residual for the governing equation is
considered. The boundary conditions (BCs) are treated separately for the
essential BCs and the natural BCs. The former is handled after obtaining the
discretized system equations, and the latter is implemented after performing
integration by parts. This procedure will also be followed in forming the
MFree weak-form methods (Chapters 4 and 5).

1.4.6 Examples

In order to illustrate these approximation methods, consider a simple
example problem of a truss member. A truss member is a solid whose
dimension in one direction is much larger than those in the other two
directions, as shown in Figure 1.5. The force is applied only in the x
direction, and the axial displacement u is only a function of x. Therefore,
the axial displacement u in a truss member is governed by the following
equilibrium equations.

2

du
EA§+b(x):0 (1.66)

where E is the Young’s modulus, 4 is the cross-section area, and b(x) is a
distributed external axial force applied along the truss member.

We assume that the solution is constrained by the essential (displacement)
boundary conditions.

w0 =0
Ulx=0 (1.67)

where L is the length of the truss member.

Figure 1.5. A uniform truss member subjected to an axial loading distributed in the x
direction.
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For simplicity, E=1.0, 4=1.0, b(x)=12x", and L=1.0 are used in this
example. The following exact solution of the problem for the axial
displacement can be easily obtained by solving the differential Equation
(1.66) together with the boundary conditions Equation (1.67).

U™ (x)=—x*+x (1.68)

In seeking an approximate solution for the axial displacement, we assume
that the solution has the following form.

u"(x)=x(x— L)(Zn: ax'") (1.69)

where ¢; is the unknown coefficient to be determined, and B, = x(x — L)x""'

is ith trial function. Note that the basis function is deliberately chosen to
satisfy the displacement boundary conditions Equation (1.67).

As the assumed displacement satisfies the boundary conditions, there is
no residual on the boundary (i.e., R,=0). The approximate solution has
continuity of all orders throughout the problem domain. However, Equation
(1.69) may not exactly satisfy the equilibrium Equation (1.66), and the
following residual exists in the problem domain:

d’u"(x)

dx2

R(x)=

+b(x) (1.70)

In the approximate solution Equation (1.69), n can be taken as 1, 2, ...,.
Because the B; are linearly independent and complete*, Equation (1.69) will
converge to the exact solution when n — oo . For simplicity, we choose only
one and two terms (n=1 and 2) so that the solution is an approximation.

e  When n=1, the approximate solution can be written as
u" (x)=ax(x—L)=ax(x—1.0) (1.71)
and the corresponding residual is

R/(x)=20, +12x (1.72)

e  When n=2, the approximate solution can be written as
' ()=ax(x-L)+a,x’(x-L

()= x(x— L) 22( ) (1L73)

=gx(x-D+a,x (x-1)

and the corresponding residual is

* Meaning that there is no skip of orders: B, = x(x—L)x""' for all i=1, 2, ...n.
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Ry(x) =2, + a1, (6x — 2) + 12> (1.74)

1.4.6.1 Use of the collocation method

When one term is used in the approximate solution (n=1), the middle
. L . . .
point on the truss (or x =5 = 0.5) is chosen as the point for the collocation

method. Using the collocation form given in Equation (1.52) and the
residual formulation given in Equation (1.72), we can obtain «; and then the
following approximate solution using one term.

u"(x)=-1.5x(x—1.0) (1.75)
For two terms in approximate solutions (n=2), we choose two points on
L 2L . . . .
the truss (or x =§ and x =T) as the collocation points. With Equations

(1.52) and (1.74), we can obtain @), @, and the following approximate
solution.

u”(x):—%x(x—l)—zxz(x—l) (1.76)

1.4.6.2 Use of the subdomain method

If the whole domain is used as the integration domain of the subdomain
method, using Equation (1.55) and the unit weight functions, the formulation
of the subdomain method using one term in the approximate solution (n=1)
can be written as

1 1
[F )R (x)dx = [(2a, +12x7)dx = 4+20, =0 (1.77)
0 0

which gives o, =—2.0. Hence, the approximate solution using one term is
obtained as

u"(x) =-2.0x(x—1.0) (1.78)

For two terms in the approximate solution (#n=2), we use two subdomains
and two unit weight functions, i.e.,

Q: W, =10, 0<x<05 o
Q,: W,=1.0, 0.5<x<1.0 (1.79)

I
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Equation (1.55) and Equation (1.74) give two coefficients of ¢; and . The
approximate solution using two terms is

u"(x)=—-1.0x(x—1)—2.0x*(x 1) (1.80)

1.4.6.3 Use of the least squares method
In the least squares method, the weight function is chosen as

_ OR(x)
! oa.

1

)

(1.81)

For one term in the approximate solution (n=1), we use the following
weight function

R, (x)

oa,

W, = =2.0 (1.82)

With Equation (1.61) and Equation (1.82), we can obtain ¢, =—2.0. The
approximate solution becomes
u"(x)==2.0x(x—1.0) (1.83)

With two terms in the approximate solution (n=2), we use the following
two weight functions, i.e.

-~  OR (x
: — 2( ) _20

oa, (1.84)
j R

oa,

From Equation (1.61) and Equation (1.84), we can obtain o, =—1.0 and
a, =—2.0. The approximate solution using two terms is found as
u"(x)=—1.0x(x—1)—-2.0x* (x —1) (1.85)

It should be noted that the coefficient matrix for solving the unknown
coefficient ¢; is symmetric in the least squares method.

1.4.6.4 Use of the moment method

In the moment method, the weight function is chosen as

Wo=x" (1.86)

For one term in the approximate solution (n=1), we use the following
weight function:
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wo=x"=1 (1.87)

Using Equation (1.63) and Equation (1.87), we obtain ¢, =-2.0, and, hence,
the approximate solution

u"(x)=-2.0x(x—1.0) (1.88)

With two terms in the approximate solution (n=2), we use two weight
functions, i.e.

(1.89)

W, =x"" =10
Wz =x"P=x

From Equation (1.63) and Equation (1.89), we can obtain ¢, =-1.0 and
a, =—2.0. Finally, the approximate solution using two terms is

u"(x) =-1.0x(x—1) = 2.0x*(x — 1) (1.90)

1.4.6.5 Use of the Galerkin method

For one term in the approximate solution (n=1), we use the following
weight function:

W, =B, =x(x—1) (1.91)

Using Equation (1.65) and Equation (1.91), we can obtain ¢, =—1.8 and,
therefore, the approximate solution using one term is

u"(x)=-1.8x(x-1.0) (1.92)

With taking two terms in the approximate solution (n=2), we use the
following two weight functions:

{WsBl:x(x—l)

-5 - (x-1) (1.93)

Using Equation (1.65) and Equation (1.93), we can obtain the following set
of equations in the matrix form of

5 ¢ |y 3

1 2Jia2f:1g (1.94)

6 15 5

It can be seen that the coefficient matrix obtained using the Galerkin method
is symmetric.
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Solving these equations to yield &, =—0.8 and o, =-2.0, we find the
approximate solution as

u"(x)=—0.8x(x—1)—2.0x"(x 1) (1.95)

The approximate solutions obtained by the five approximation methods
are listed in Table 1.1, and plotted in Figure 1.6~Figure 1.9 for easy
comparison. Figure 1.6 and Figure 1.7 plot the weight functions and the
results of displacements obtained using the analytical solution and the one-
term approximate solution, respectively. Figure 1.8 and Figure 1.9 plot the
weight functions and the curves obtained using the analytical solution and
the two-term approximate solutions, respectively. These table and figures
show that the accuracy of the approximated results is different for different
approximation methods and for different terms used in the approximate
solutions. Usually, more terms used in the approximate solution lead to
higher accuracy. This can be easily observed from Figure 1.9. Note that the
Galerkin method leads to the best results for this example problem. It
provides the solution with best balanced over- and under-estimation of the
exact solution over the entire problem domain, as clearly shown in Figure
1.8 and Figure 1.9. The solutions of other methods are one-side biased.

1.4.6.6 Use of more terms in the approximate solution

To study the convergence of the weighted residual methods, we discuss
results of the three-term approximate solution in this section. We omit
details and present only the results. Readers are also encouraged to obtain
the solution using more than 3 terms.

When three terms (n=3) are used, the approximate solution, Equation
(1.69), can be written as

ul (x) = oy x(x =)+ a,x* (x =) + a,x’ (x—1) (1.96)
and the corresponding residual is
R,(x)=2a, +a,(6x—2)+a,(12x* —6x) +12x (1.97)

The five versions of weighted residual methods all give the same coefficients,
a,, a, and a,:

a, =-1
a,=-1 (1.98)
o, =-1

So that, the approximate solution using three terms is
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u"(x)=—1.0x(x—1) = 1.0x* (x = 1) = 1.0’ (x — 1)
(1.99)

=—x'+x
The approximate solution is the same as the exact solution that is given in
Equation (1.68). This means that all these five weighted residual methods
give the exact solution when three terms are used in the approximate solution
given in Equation (1.69). The same conclusion can be drawn when more
than 3 terms are used. For quantitative analysis, the following norm is
defined as the error indicator.

1
e_NZ:

u (xl )num —u (_X/ )CXaCt

exact
‘u(x ;)

(1.100)

num exact

where u(x,)™ and u(x;) are, respectively, displacements at point x;

(7=1,2, ..., N) obtained using the numerical methods and the analytical
method, N is the number of uniform points used to study the error, and N=21
is used here.

Figure 1.10 plots the convergence curves of different weighted residual
methods using different terms in the approximate solution. When 3 or more
terms are used, all these five weighted residual methods converge to the
exact solution.

This example shows that if the exact solution is included in the basis (or
trial) functions, the different versions of weighted residual methods will
reproduce the exact solution. This reproducibility property makes the
method fundamentally credible, and is essential to any numerical method.

1.5 GLOBAL WEAK-FORM FOR SOLIDS

The Galerkin weak-form can be derived directly from the energy
principles for problems of solid mechanics. One of these is the minimum
total potential energy principle. This principle states that for a structural
system that is at an equilibrium state, the total potential energy in the system
is stationary for a given set of admissible displacements. This principle can
be used in a straightforward manner in the following three simple steps:
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W, : the subdomain method, and the moment method

»

X

W, : the collocation method

»
|

X

W, : the least squares method

Y=Y

W, : the Galerkin method

Figure 1.6. Weight functions used in different weight residual methods when the
approximate solution is u",(x) = e,x(x— L) with o being a coefficient.

Subdomain method,
0.5F pm—— i
Least squares method, L ~

Moment method d
4

Exact

&

Collocation method

Galerkin method

Figure 1.7. Displacement results for the truss member obtained using the analytical
method and five different weighted residual methods; the approximate solution is

u' (x)=ax(x-L).
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W, : the collocation method

-

Vf/z : the collocation method
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Vf/l : the subdomain method
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[

-

Vfﬁ : the least squares method

X

»
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WI : the moment method

»

Wz : the subdomain method

X

—

W, : the least squares method

| ]

Wz : the moment method

»

X

Vf/l : the Galerkin method

P

X

Vf/z : the Galerkin method

Chapter 1

Figure 1.8. Weight functions used in different weight residual methods when the
approximate solution is u",(x) = er,x(x — L)+ a,x’ (x — L) with ¢ and o5 being

0.7

coefficients.

0.6
Subdomain method,

05l Moment method

0.4F

Least squares method,

Collocation method

Galerkin method

0.5 0.6 0.7 0.8 0.9

Figure 1.9. Displacement results for the truss member obtained using the analytical
method and five different versions of weighted residual methods; the approximate

solution is u",(x) = x(x — L)+ e,x’(x — L) .
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35
30 4 —6— Collocation method
—A— Methods of sub-domain,
25 least square, and moment
q
—>— Galerkin method
:\o‘ 20
S
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5 [
0 &
1 2 3 4

Number of terms

Figure 1.10. Convergence of the results of the axial displacements obtained using different
weighted residual methods with different terms in the approximate solution.

1) Approximate the field function (displacement) in terms of the nodal
variables using the trial or shape functions; let d be the vector
consisting of all the nodal displacements in the problem domain.

2) Express the total potential energy, I1, in terms of the nodal variables d.
For solids and structures of elastic materials, the total potential energy
can be expressed as

TI=T1,-; (1.101)

where I1; is the strain energy, and the W is the work done by the
external forces.

3) Use the stationary conditions to create a set of discretized system

equations.
o
ad,
o | oIl
- = r=0 (1.102)

od |od,
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The number of equations created is equal to the number of the total
numbers of the nodal variables. The solution of this problem can be
obtained by solving Equation (1.102).

For solids and structures of elastic materials, the strain energy of the
system can be expressed as

1
M =—| &'cdQ
) 2(! (1.103)

The work done by the external forces is

_ T T
W_,._qu bdQ+rI u"tdr (1.104)

where Q is the problem domain, I", stands for the boundary of the solids on

which traction forces are prescribed.
Hence, the total potential energy can be expressed as

1 ( [ oTT
nzaj g'0dQ— | u'bdQ - | u'tdr (1.105)

Q Q T

t

The variation of the potential energy can be written as

5H=5(% [ e'od~ [ u'bdQ- [ u"tdr) (1.106)
Q Q T

Moving the variation operation into the integral operations, we obtain
_ 1 T o T Ny
oll =3 I5(8 c)dQ - IOu bdQ — IOu tdI" (1.107)
Q Q r,

because the changing of the order does not affect the results, as they operates
on different arguments (variation is on the coefficients of the functions and
the integration is on the coordinates). The integrand in the first integral term
can be written as follows using the chain rule of variation.

o('o)=c'c+e'oo (1.108)
We note that
g'oo=(¢'d0) =0c'¢ (1.109)

Using the constitutive equation of solids and the symmetry of the matrix of
material constants D, we have

So'e=oDe) e=%'D'e=%"De=%"c (1.110)
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Therefore, Equation (1.108) becomes
o(e'o)=2%"c (1.111)

and Equation (1.107) now becomes

— T _isnT A saTT
A= 58" 5d0— [su"bd~ [su"tdr (1112)
Q Q r,
The minimum total potential energy principle requires 6I1=0. Hence, the
following Galerkin weak-form can be obtained:

T fo T f e T
J&e ch—é|§u bdQ—rJrFu tdl" = 0 (L113)

Equation (1.113) can also be viewed as the principle of virtual work,
which states that if a solid body is in its equilibrium states, the total virtual
work performed by all the stresses in the body and all the external forces
applied on the body vanishes, when the body is subjected to a virtual
displacement. The virtual work can be viewed as an alternative statement of
equilibrium equation. In our situation given in Equation (1.113), we can
suppose that the solid is subjected to a virtual displacement of du. The first
term in Equation (1.113) is the virtual work done by the internal stress in the
problem domain, Q; the 2nd term is the virtual work done by the external
body force; the 3rd term is the virtual work done by the external tractions on
the boundaries, I',, Therefore, using the principle of virtual work, we can
actually write out Equation (1.113) directly without going through the above
procedure.

For static linear elastic problems, using the stress-strain relation, and then
the strain-displacement relation, we can express Equation (1.113) as follows
in terms of the displacement vector u.

[6(Lu)" D(Lu)dQ - [su"bdQ— [u"tdl =0 (1.114)
Q Q r,

This is the Galerkin weak-form written in terms of displacements, and it is
convenient because the displacement is to be approximated in FEM or
MFree methods. Equation (1.114) can also be derived from Equation (1.45)
by performing integration by parts.

It should be noted that in the weak-form of Equation (1.114) the traction
boundary conditions (see Equations (1.17) and (1.33)) have been imposed
naturally in the same system equation. Hence, the traction (derivative)
boundary conditions in solids, Equations (1.17) and (1.33), are often called
natural boundary conditions in numerical methods based on the weak-forms.
However, in the weak-form of Equation (1.114), the displacement boundary
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conditions, Equations (1.18) and (1.34), are not considered. To obtain
solutions for weak-forms, it is essential to satisfy the displacement boundary
conditions through other proper means. Therefore, the displacement
boundary conditions are often called essential boundary conditions in
numerical methods based on the weak-forms. One simple technique to
satisfy the essential boundary conditions is to have the approximate solution
satisfy these boundary conditions, as presented in Sub-section 1.4.6.
Techniques used to satisfy the essential boundary conditions will be
discussed in the following chapters for MFree methods.

The above equation of Galerkin weak-form is very handy in application
to problems of solid mechanics, because one does not need to perform
integration by parts any more. The discretized system equation can be
derived very easily using approximated displacements that satisfy the
admissible conditions. This Galerkin procedure will be applied repeatedly in
the following chapters for many MFree methods.

Note that in using the above-mentioned Galerkin procedure one does not
have to know the strong-form of the governing equation.

1.6 LOCAL WEAK-FORM FOR SOLIDS

In deriving local weak-forms, the Petrov-Galerkin procedure has to be
used. The Petrov-Galerkin procedure is often used in the FEM formulation
for convection dominated systems to obtain a stabilized solution
(Zienkiewicz and Taylor, 2000).

The local Petrov-Galerkin weak-forms have been used to formulate the
meshless Petrov-Galerkin (MLPG) method (Atluri et al., 1999b). The local
weak-form can be obtained from the subdomain weighted residual method
discussed in Section 1.4. In this section, the local weak-forms for solids are
presented.

In a problem domain Q, the governing Equation (1.31) of two-
dimensional solids at a point x; is approximately satisfied by a subdomain
weighted residual method. A local weak-form of the partial differential
Equation (1.31), over a subdomain (a local quadrature domain) Q, bounded
by I', can be obtained using the weighted residual method locally

g.J]

[W, (@, +B)d=0 (L115)
Q‘I
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where W, is the weight function or the test function centered at the point x;.

The first term on the left hand side of Equation (1.115) can be integrated
by parts to obtain

IWUU]dQ jWn, o,dl - IWI,%dQ (1.116)

q

where 7, is the jth component of the unit outward normal vector (see Figure

1.4) on the boundary. Substituting Equation (1.116) into Equation (1.115),
we can obtain the following local weak-form:

rfW Al f Ja=0 (1.117)
Equation (1.117) is the local Petrov-Galerkin weak-form for two-
dimensional solids.

Equation (1.117) suggests that instead of solving the strong-form of the
system equation given in Equation (1.31), we employ a relaxed weak-form
with integration over a small local quadrature domain. This integration
operation can “smear” out the numerical error, and therefore make the
discrete equation system much more accurate compared to the numerical
procedures that operate directly on the strong-forms of system equations. In
other words, using Equation (1.117) for any node at x;, we transform a global
boundary value problem into a localized boundary value problem over a
local quadrature domain. In the present formulation, the equilibrium
equation and boundary conditions are satisfied in all local quadrature
domains Q, and on their boundary I',. Although the quadrature domains
affect the solution, the equilibrium equation and the boundary conditions
will be approximately satisfied in the global domain Q2 and on its boundary I
as long as the union of all the local quadrature domains covers the global
domain, Q, and the global boundary, I", well.

Because the local weak-form is obtained by the weighted residual method,
the test (weight) function plays an important role. Theoretically, any test
function is acceptable as long as the condition of continuity is satisfied, and
all the weight functions defined for all the nodes in the problem domain are
linearly independent. For example, in the MLPG method (Atluri et al.,
1999b), the locally supported bell-shaped weight functions can be used so
that the integrations are performed locally and no global integration is
required. Detailed discussions of the weight functions will be presented in
Chapter 3 and Chapter 5.

The main disadvantage of the local Petrov-Galerkin method is that the
system matrix is usually not symmetric. The detailed properties of the local
weak-form will be discussed in Chapter 5 and Chapter 7.
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1.7 DISCUSSIONS AND REMARKS

The basic equations of the solid mechanics were presented. Different
versions of the weighted residual methods were introduced and demonstrated
using a simple example.

The weighted residual methods will possess the convergence property,
meaning that the approximate solution of the weighted residual methods will
approach the exact solution when the number of the basis functions used
increases, as long as

1) The weight functions W, , ¥V, and the basis functions B,(x) are
linearly independent.

2) The basis functions B;(x) have a certain order of continuity.

3) The weight functions and the basis functions have a certain degree of
overlapping.

The simple example solved using these five different methods
(collocation, subdomain, moment, least squares and Galerkin) confirmed the
convergence property. This example showed that the weighted residual
methods possess the reproducibility property, meaning that they are capable
of producing the exact solution as long as the independent basis functions
contain the components of the exact solution. The convergence and
reproducibility properties make the weighted residual methods as reliable
ways of obtaining approximate solutions. However, the stability and
accuracy of the solution depend on the quality of basis functions; the choices
of weight functions; and “matchablility” of the weight and trial (basis)
functions. The Galerkin method that uses the same functions for the weight
and trial functions often performs the best.

For problems with complicated domains, choosing an independent set of
trial (basis) functions for the entire problem domain is often very difficult.
Therefore, we usually use /ocal shape functions in a piecewise manner as the
trial functions. The details of creating local MFree shape functions will be
given in Chapter 3. The choice of different weight functions leads to
different formulation procedures for meshfree methods, such as the
collocation scheme, Galerkin weak-form formulation, Petrov-Galerkin weak
form formulation, etc. Various MFree methods will be formulated in
Chapters 4~7 for problems in mechanics of solids and fluids.
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OVERVIEW OF MESHFREE METHODS

2.1 WHY MESHFREE METHODS

One of the most important advances in the field of numerical methods
was the development of the finite element method (FEM) in the 1950s. In
the FEM, a continuum with a complicated shape is divided into elements,
finite elements. The individual elements are connected together by a
topological map called a mesh. The FEM is a robust and thoroughly
developed method, and hence it is widely used in engineering fields due to
its versatility for complex geometry and flexibility for many types of linear
and non-linear problems. Most practical engineering problems related to
solids and structures are currently solved using well developed FEM
packages that are commercially available.

However, the FEM has the inherent shortcomings of numerical methods
that rely on meshes or elements that are connected together by nodes in a
properly predefined manner. The following limitations of FEM are
becoming increasingly evident:

1) High cost in creating an FEM mesh

The creation of a mesh for a problem domain is a prerequisite in using
any FEM code and package. Usually the analyst has to spend most of the
time in such a mesh creation, and it becomes the major component of the
cost of a computer aided design (CAD) project. Since operator costs now
outweigh the cost of CPU (central processing unit) time of the computer, it is

37
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desirable that the meshing process can be fully performed by the computer
without human intervention.  This is not always possible without
compromising the quality of the mesh for the FEM analysis, especially for
problems of complex three-dimensional domains.

2) Low accuracy of stress

Many FEM packages do not accurately predict stress. The stresses
obtained in FEM are often discontinuous at the interfaces of the elements
due to the piecewise (or element-wise) continuous nature of the displacement
field assumed in the FEM formulation. Special techniques (such as the use
of the so-called super-convergence points or patches) are required in the
post-processing stage to recover accurate stresses.

3) Difficulty in adaptive analysis

One of the current new demands on FEM analysis is to ensure the
accuracy of the solution; we require a solution with a desired accuracy. To
achieve this purpose, a so-called adaptive analysis must be performed.

In an adaptive analysis using FEM, re-meshing (re-zoning) is required to
ensure proper connectivity. For this re-meshing purpose, complex, robust
and adaptive mesh generation processors have to be developed. These
processors are limited to two-dimensional problems. Technical difficulties
have precluded the automatic creation of hexahedron meshes for arbitrary
three-dimensional domains. In addition, for three-dimensional problems, the
computational cost of re-meshing at each step is very expensive, even if an
adaptive scheme were available. Moreover, an adaptive analysis requires
“mappings” of field variables between meshes in successive stages of the
analysis. This mapping process can often lead to additional computation as
well as a degradation of accuracy in the solution.

4) Limitation in the analyses of some problems

e Under large deformations, considerable loss in accuracy in FEM
results can arise from the element distortions.

e [t is difficult to simulate crack growth with arbitrary and complex
paths which do not coincide with the original element interfaces.

e [t is very difficult to simulate the breakage of material with large
number of fragments; the FEM is based on continuum mechanics, in
which the elements cannot be broken; an element must either stay as
a whole, or disappear completely. This usually leads to a
misrepresentation of the breakage path. Serious error can occur
because the problem is non-linear and the results path-dependent.

The root of these problems is the use of elements or mesh in the
formulation stage. The idea of getting rid of the elements and meshes in the
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process of numerical treatments has naturally evolved, and the concepts of
meshfree or meshless methods have been shaped up. For convenience, these
methods are shortened as MFree methods in this book.

2.2 DEFINITION OF MESHFREE METHODS

The definition of an MFree method (GR Liu, 2002) is:

An MFree method is a method used to establish system algebraic
equations for the whole problem domain without the use of a predefined
mesh for the domain discretization.

MFree methods use a set of nodes scattered within the problem domain
as well as sets of nodes scattered on the boundaries of the domain to
represent (not discretize) the problem domain and its boundaries. These sets
of scattered nodes are called field nodes, and they do not form a mesh,
meaning it does not require any a priori information on the relationship
between the nodes for the interpolation or approximation’ of the unknown
functions of field variables.

What is the requirement for an MFree method?

The minimum requirement for an MFree method is
e A predefined mesh is not required in the field variable interpolation
or approximation.

The ideal requirement for an MFree method is
e No mesh is required at throughout the process of formulating and
solving the problem of a given arbitrary geometry governed by partial
differential system equations subject to boundary conditions.

Many MFree methods have found good applications, and shown very
good potential to become powerful numerical tools. However, the MFree
methods are still in their developing stage, and there are technical problems
that need to be resolved before the methods can become efficient and useful
tools for complex engineering problems.

T We distinguish interpolation and approximation. Interpolation refers to an approximation
procedure that reproduces the exact values of the approximated function at the nodes. All
the other approximation procedures that do not return nodal function values are called
approximation. Both interpolation and approximation are used in MFree methods; the
standard FEM uses interpolation based on elements.



40 Chapter 2

2.3 SOLUTION PROCEDURE OF MFREE METHODS

In this section, the solution procedure of MFree methods will be outlined.
It will be introduced based on the comparisons with the familiar finite
element method (FEM).

Figure 2.1 shows two procedures of FEM and the MFree method. This
tells us:

Geometry creation

FEM /\ MFree

Mesh generation Node Generation
Shape functions based Shape functions based
on a pre-defined on nodes in a local

element support domain

\/

Discretized system equations

v

Solution for field variables

l

Post-processing

Figure 2.1. Flowcharts for FEM and MFree method.

1) The methods depart at the stage of mesh creation.

2) The constructions of the shape functions in these two methods are
different. In the finite element method, the shape functions are
constructed using predefined elements, and the shape functions are
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the same for the entire element.

41

In MFree methods, however, the

shape functions constructed are usually only for a particular point of
interest based on selected local nodes; the shape functions can
change when the point of interest changes.

3) The methods follow the similar procedure once the global discretized
system equation is established.
developed for the FEM can be used in MFree methods.

Therefore, many techniques

Comparisons between the finite element method and the MFree method

are listed in Table 2.1.

Table 2.1. Differences between FEM and MFree method

Items FEM MFree method
Mesh Yes No
Shape function Based on pre-defined Based on local support
creation elements domains

Discretized system
stiffness matrix

Banded, symmetric

Banded, may or may not
be symmetric depending
on the method used.

Imposition of
essential boundary
condition

Easy and standard

Special treatments may be
required, depending on the
method used

Computation speed

Fast

Slower compared to the
FEM depending on the
method used.

Accuracy

Accurate compared to
FDM

More accurate than FEM

adaptive analysis

Difficult for 3D cases

Easier

Stage of Well developed Infant, with many
development challenging problems
Commercial

software packages Many Few

availability

We now list the steps in an MFree method with discussions on major
differences with the finite element method.

Step 1: Domain representation

In the MFree method, the problem domain and its boundary are first
modelled and represented by using sets of nodes scattered in the problem
domain and on its boundary. Since these nodes carry the values of the field
variables in an MFree formulation, they are often called field nodes. The
density of the nodes depends on the accuracy required and resources
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available. The nodal distribution is usually not uniform. Since adaptive
algorithms can be used in MFree methods, the density is eventually
controlled automatically and adaptively in the code; the initial nodal
distribution becomes not important. An MFree method should be able to
work for an arbitrary nodal distribution.

In the finite element method, this step is different: meshing needs to be
performed to discretize the geometry and create the elements. The domain
has to be meshed properly into elements of specific shapes such as triangles
and quadrilaterals. No overlapping or gaps are allowed. Information, such
as the element connectivity, has also to be created during the meshing for
later creation of system equations. Mesh generation is a very important part
of the pre-process of the finite element method. It is ideal to have an
entirely automated mesh generator; unfortunately, it is not practically
available for general situations.

Figure 2.2 shows the differences of the domain representation in the
MFree method and the FEM.

FEM elements
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D
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"‘ﬁ‘ﬁmwﬁkmmﬂﬁ 4 _
A ARSI AR S

A AV AT AW AW AYL e O T
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(a) FEM
Field nodes

(b) MFree

Figure 2.2. Domain representation in FEM and MFree method.
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Step 2: Function interpolation/approximation

Since there is no mesh of elements in an MFree method, the field variable
(e.g., a component of the displacement) u at any point at x=(x, y, z) within
the problem domain is interpolated using function values at field nodes
within a small local support domain of the point at x, i.e.,

u® =Y $xu =o' @V, @.1)

where 7 is the number of the nodes that are included in the local support
domain of the point at x, u; is the nodal field variable at the ith node, Uy is
the vector that collects all the field variables at these n nodes, and ¢,(x) is

the shape function of the ith node determined using these nodes included in
the support domain of x. As the shape functions will not be used regarded as
zero outside the local support domain in an MFree method, we often say that
the shape functions is locally support.

A local support domain of a point x determines the number of nodes to be
used to support or approximate the function value at x. The support domain
can have different shapes and its dimension and shape can be different for
different points of interest x, as shown in Figure 2.3; they are usually circular
or rectangular.

In the finite element method, the shape functions are constructed using
pre-defined elements. In fact, if the so-called natural coordinate systems are
used, the shape functions in the natural coordinates are the same for all the
elements of the same type. These shape functions are usually pre-
determined for different types of elements before the finite element analysis
starts.

Local support
domain

x: point of interest  o: field node

Figure 2.3. Local support domains used in the MFree method to construct shape
functions.
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Step 3: Formation of system equations

The discrete equations of an MFree method can be formulated using the
shape functions and strong or weak form system equation given in Chapter 1.
These equations are often written in nodal matrix form and are assembled
into the global system matrices for the entire problem domain. The
discretized system equations of MFree methods are similar to those of FEM
in terms of bandness and sparseness, but they can be asymmetric depending
on the method used.

Step 4: Solve the global MFree equations

This is similar to that for FEM, except solvers for asymmetric matrix
systems may be needed.

2.4 CATEGORIES OF MESHFREE METHODS'

The development of some of the MFree methods can be traced back more
than seventy years to the collocation methods (Slater, 1934; Barta, 1937;
Frazer et al., 1937; Lanczos, 1938, etc). Some of the early MFree methods
were the vortex method (Chorin, 1973; Bernard, 1995), finite difference
method (FDM) with arbitrary grids, or the general FDM (GFDM) (Girault,
1974; Pavlin and Perrone, 1975; Snell et al, 1981; Liszka and Orkisz, 1977,
1980; Krok and Orkisz, 1989). Another well-known MFree method is the
Smoothed Particle Hydrodynamics (SPH) that was initially used for
modelling astrophysical phenomena such as exploding stars and dust clouds
that had no boundaries. Most of the earlier research work on SPH is
reflected in the publications of Lucy (1977), and Monaghan and his co-
workers (Gingold and Monaghan, 1977; Monaghan and Lattanzio, 1985;
Monaghan, 1992). Detailed discussions on some of the recent developments
for SPH can be found in the book by GR Liu and Liu (2003). Overall, there
has been less research devoted to MFree strong-form methods. This may be
partly because the MFree strong-form method was less robust than the
method based on the weak-form, and partly because research was
concentrated on the finite element method (FEM) which used weak-forms; it
was then a natural step to MFree weak-form methods.

" MFree methods and techniques presented in this section will be discussed in detail
in the following chapters.
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From the early 1990s, there has been an increase in research devoted to
MFree weak-form methods, and a group of MFree methods has been greatly
proposed. Examples of these methods are the diffuse element method (DEM)
(Nayroles et al., 1992), the element free Galerkin (EFG) method (Belytschko
et al, 1994a), the reproducing kernel particle method (RKPM) (Liu et al,
1995), the point interpolation methods (GR Liu and Gu, 2001c; Wang and
GR Liu, 2000), the meshless local Petrov-Galerkin method (MLPG) (Atluri
1998a), the boundary node method (BNM) (Mukherjee and Mukherjee,
1997), the boundary point interpolation method (BPIM) (Gu and GR Liu,
2001e,2002a,2003b), the meshfree weak-strong (MWS) form method (GR
Liu and Gu, 2002d; 2004), etc. These methods do not require a mesh at least
for the field variable interpolations. The approximation functions are
constructed by using a set of arbitrary nodes, and no element or connectivity
of the nodes is needed for the function approximation. Adaptive analyses
and simulations using MFree methods become very efficient and much
easier to implement, even for problems which pose difficulties for the
traditional FEM.

Many MFree methods have been proposed and achieved remarkable
progress over the past years: we now classify them in different ways for easy
understanding and later referencing.

2.4.1 Classification according to the formulation procedures

According to the formulation procedures, MFree methods fall into three
categories:

2.4.1.1 Meshfree methods based on weak-forms

These are called MFree weak-form methods in this book. In MFree weak-
form methods, the governing partial differential equations (PDEs) with
derivative boundary conditions are first transformed to a set of so-called weak-
form integral equations using different techniques discussed in Chapter 1. The
weak-forms are then used to derive a set of algebraic system equations through
a numerical integration process using sets of background cells that may be
constructed globally or locally in the problem domain.

MFree weak-form methods were relatively under developed before 1990,
but there has been a substantial increase in research effort since then.
Several important papers have been published. The first was by Nayroles et
al. (1992); they applied the moving least squares (MLS) approximation
proposed by Lancaster and Salkauskas (1981) to the Galerkin weak-form to
formulate the diffuse element method (DEM). Belytschko et al. (1994a)
published another important paper on the element free Galerkin (EFG)
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method based on the DEM. He and co-workers have also made significant
contribution in further developing, improving and popularizing EFG for
many mechanics problems. The MFree weak-form methods have been
developed at a very fast pace since 1994; there are now many different
versions of MFree weak-form methods.

MFree weak-form methods based on the global weak-forms are called
MFree global weak-form methods, and those based on local weak-forms are
called MFree local weak-form methods.

MFree global weak-form methods are based on the global Galerkin
weak-form for equations of problems and the MFree shape functions. Two
typical MFree global weak-form methods: the element-free Galerkin (EFG)
method (Belytschko et al., 1994a) and the radial point interpolation method
(RPIM) (GR Liu and Gu, 2001c; Wang and GR Liu, 2000; 2002a), will be
discussed in Chapter 4. Another typical MFree global weak-form method is
the reproducing kernel particle method (RKPM) proposed by Liu and co-
workers in 1995 (Liu et al., 1995). The main idea of RKPM is to improve
the SPH approximation to satisfy consistency requirements using a
correction function. RKPM has been used in nonlinear and large
deformation problems (Chen et al., 1996; Chen et al., 1998; Liu and Jun,
1998), inelastic structures (Chen et al., 1997), structural acoustics (Uras et al.,
1997), fluid dynamics (Liu and Jun et al., 1997), and so on.

MFree local weak-form methods were developed by Atluri and
coworkers based on the local Petrov-Galerkin weak-form, and the MFree
shape functions. The detailed discussions of the meshless local Petrov-
Galerkin (MLPG) method (Atluri and Zhu, 1998a, 1998b, 2000a, 2000b;
Atluri and Shen, 2002) and the local radial point interpolation method
(LRPIM) (GR Liu and Gu, 2001c; GR Liu and Yan et al., 2002) will be
presented in Chapter 5.

Some other MFree weak-form methods have also been developed, such
as the Ap-cloud method (Armando and Oden, 1995), the partition of unity
finite element method (PUFEM) (Melenk and Babuska, 1996; Babuska and
Melenk, 1997), the finite spheres method (De and Bathe, 2000), the free
mesh method (Yagawa and Yamada, 1996), and so on.

2.4.1.2 Meshfree methods based on collocation techniques

These MFree methods are called MFree collocation methods or MFree
strong-form methods in this book. In these methods, the strong-forms of
governing equations and equations for boundary conditions are directly
discretized at the field nodes using simple collocation techniques to obtain a
set of discretized system equations. MFree strong-form methods have a long
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history. The finite difference method with arbitrary grids or the general finite
difference method (GFDM) (Girault, 1974; Pavlin and Perrone, 1975; Snell et
al, 1981; Liszka and Orkisz, 1977; 1980; Krok and Orkisz, 1989), MFree
collocation methods (see, e.g. Kansa, 1990; Wu, 1992; Zhang and Song et al.,
2000; Liu X et al., 2002; 2003a-e; etc.), and the finite point method (FPM)
(Onate et al., 1996; 1998; 2001; etc.) are all typical MFree strong-form methods.

MFree strong-form methods have some attractive advantages: a simple
algorithm, computational efficiency, and #ruly meshfree. However, MFree
strong-form methods are often unstable, not robust, and inaccurate,
especially for problems with derivative boundary conditions. Several
strategies may be used to impose the derivative boundary conditions in the
strong-form methods, such as the use of fictitious nodes, the use of the
Hermite-type MFree shape functions, the use of a regular grid on the
derivative boundary, etc. Detailed discussions appear in Chapter 6.

2.4.1.3 Meshfree methods based on the combination of weak-form and
collocation techniques

These MFree methods are called MFree weak-strong (MWS) form
methods in this book. The MWS method was developed by GR Liu and Gu
(2002d, 2003b). The key idea of the MWS method is that in establishing the
discretized system equations, both the strong-form and the local weak-form
are used for the same problem, but for different groups of nodes that carries
different types of equations/conditions. The local weak-form is used for all
the nodes that are on or near boundaries with derivative boundary conditions.
The strong-form is used for all the other nodes (called collocatable nodes to
be defined in Chapter 7). The MWS method uses least background cells for
the integration, and it is currently the a/most ideal MFree method that can
provide stable and accurate solutions for mechanics problems.

There are also MFree methods based on the integral representation
method for function approximations, such as the Smooth Particle
Hydrodynamics (SPH) methods (Lucy, 1977; Gingold and Monaghan, 1977;
GR Liu and Liu, 2003, etc.). In the standard SPH method, the function
approximation is performed in a weak (integral) form, but strong-form
equations are directly discretized at the particles.

2.4.2 Classification according to the function approximation
schemes

The method of function interpolation/approximation based on arbitrary
nodes is one of the most important issues in an MFree method. Without
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robust interpolation/approximation tools being developed, MFree methods
would not exist. Hence, MFree methods may be classified according to the
MFree interpolation/approximation methods used.

2.4.2.1 Meshfree methods based on the moving least squares
approximation

The moving least squares (MLS) approximation was originated by
mathematicians working on data fitting and surface construction (Lancaster
and Salkauskas, 1981). The detailed discussions of MLS will be presented
in Chapter 3. The invention of the MLS approximation was the key to the
development of many MFree weak-form methods, because the MLS can
provide a continuous approximation for a field function over the entire
problem domain. It is now widely used in many types of MFree methods
for constructing MFree shape functions. Nayroles et al. (1992) used the
MLS approximation for the first time to develop the so-called diffuse
element method (DEM). Many MFree methods have been since developed
based on the MLS approximation, such as the element-free Galerkin (EFG)
method (Belytschko et al., 1994a) and the meshless local Petrov-Galerkin
(MLPG) method (Atluri and Zhu, 1998a). EFG and MLPG will be
described in Chapters 4 and 5, respectively.

2.4.2.2 Meshfree methods based on the integral representation method
for the function approximation

These MFree methods use integral forms of function approximations.
The widely used smooth particle hydrodynamic (SPH) method (Lucy, 1977,
Gingold and Monaghan, 1977; GR Liu and Liu, 2003) and the reproducing
kernel particle method (RKPM) (Liu et al., 1995) can belong to this category.

Smooth Particle Hydrodynamic (SPH) was first invented to solve
astrophysical problems in three-dimensional open space, in particular
polytropes (Lucky, 1977; Gingold and Monaghan, 1977). The basic idea of
SPH is that the state of a system can be represented by arbitrarily distributed
particles, and then the SPH approximation is used to discretize the strong-
form of the PDEs of the problem. The applications of SPH include
astrophysical problems and related fluid dynamics procedure, such as the
simulation of binary stars and stellar collisions (Benz, 1988; Monaghan,
1992), incompressible flows (e.g., Liu MB and GR Liu et al., 2001), elastic
flow (Swegle et al., 1992), gravity currents (Monaghan, 1995), heat transfer
(Cleary, 1998), and so on. Recently, the SPH method has been applied for
the simulations of high (or hyper) velocity impact (HVI) problems. Libersky
and his co-workers have made substantial contributions in the application of
SPH to impact problems (Libersky and Petscheck, 1991; Libersky et al.,
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1995; Randles and Libersky, 1996). GR Liu and his co-workers have used
SPH to simulate explosion and penetration (GR Liu and Liu et al., 2001a,b;
Liu MB and GR Liu et al., 2003a, 2003c-f). A so-called discontinuous SPH
has also been formulated for simulating the discontinuity at the front of
shock waves (Lam et al., 2003¢).

The major shortcomings of the SPH method include tensile instability,
lack of consistency in field variable approximation, and difficulty in
enforcing boundary conditions. Some improvements and modifications of
the SPH method have been achieved (Monaghan and Lattanzio, 1985;
Swegle et al., 1995; Morris, 1996; GR Liu and Liu et al., 2002; Liu MB and
GR Liu, 2003Db).

2.4.2.3 Meshfree methods based on the point interpolation method

The point interpolation method (PIM) is an MFree interpolation
technique that was used by GR Liu and his colleagues (GR Liu and Gu,
2001a) to construct shape functions using nodes distributed locally to
formulate MFree weak-form methods. Different from the MLS
approximation, PIM uses interpolations to construct shape functions that
possess Kronecker delta function property. Two different types of PIM
formulations using the polynomial basis (GR Liu and Gu, 2001c) and the
radial function basis (RBF) (Wang and GR Liu, 2000) have been developed.
MFree methods using PIM shape functions will be discussed in Chapters 4, 5,
6, and 7.

2.4.2.4 Meshfree methods based on the other meshfree interpolation
schemes

These methods include MFree methods based on the /4p-cloud method
(Durarte and Odenm 1995), the partition of unity (PU) (Melenk and Babuska,
1996; Babuska and Melenk, 1997) method, etc. This book will not cover
these methods.

Note that all these interpolation/approximation methods can be applied
in strong-form methods. More details on this can be found in Chapter 6.

2.4.3 Classification according to the domain representation

Similar to the classification of finite element method (FEM) and
boundary element method (BEM), MFree methods may also be largely
categorized into the following two categories:
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2.43.1 Domain-type meshfree methods.

In these methods, both the problem domain and the boundaries are
represented by field nodes. The discretized system equations are obtained
using the weak-form or strong-form or both for the whole domain.

2.4.3.2 Boundary-type meshfree methods.

MFree ideas have also been extended to the Boundary Integral Equation
(BIE) to formulate boundary-type MFree methods. In these MFree
methods, only the boundaries of the problem domain are represented by a set
of nodes. No node is needed within the problem domain. The boundary
integral equation (BIE) is first established using the Green’s functions. The
discretized system equations are then obtained from boundary nodes using
MFree shape functions.

Mukherjee and co-workers proposed the boundary node method (BNM)
(Mukherjee and Mukherjee, 1997; Kothnur et al., 1999). In BNM, the
boundary of the problem domain is represented by a set of properly
scattered nodes. BIEs of problems considered are discretized using the
MLS approximation based only on a group of arbitrarily distributed
boundary nodes. BNM has been applied to three-dimensional problems of
potential theory and elasto-statics (Chati and Mukherjee, 2000; Chati et al.,
1999, 2001). Very good results were reported. However, because the
MLS shape functions lack the delta function property, it is difficult to
satisfy the boundary conditions accurately in BNM. This problem
becomes even more serious in BNM because many boundary conditions
need to be satisfied. The method used in BNM to impose boundary
conditions doubles the number of system equations compared with the
conventional BEM. This makes BNM computationally much more
expensive than the BEM.

Another boundary-type MFree method is the local boundary integral
equation (LBIE) method (Zhu et al., 1998a, 1998b; Sladek et al., 2002). In
LBIE, the domain and the boundary of the problem are represented by
distributed nodes. For each field node, BIE is used in a regular local domain
to construct system equations. The LBIE has been successfully used to
solve linear and non-linear boundary value problems (Zhu et al., 1998a,
1998b; Zhu et al., 1999; Atluri et al., 2000).

Gu and GR Liu used the PIM and RPIM shape functions in BIEs of PDEs
to formulate two boundary-type MFree methods (GR Liu and Gu, 2004a):
the boundary point interpolation method (BPIM) (Gu and GR Liu, 2002a)
and the boundary radial point interpolation method (BRPIM) (Gu and GR
Liu, 2001a,e, 2003b). In BPIM and BRPIM, since the shape functions have
the Kronecker delta function property, the boundary conditions can be
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enforced as easily as in the conventional BEM. Hence, the BPIM and
BRPIM are much more efficient than the methods using MLS shape
functions.

In the late eighties, alternative boundary element formulations were
developed based on generalized variational principles. DeFigueiredo and
Brebbia (1991) proposed a hybrid boundary integral equation (HBIE). The
HBIE leads to a symmetric stiffness matrix, which makes HBIE easy and
accurate to combine with other numerical methods that produce symmetric
system matrices. A hybrid boundary point interpolation method (HBPIM)
and a hybrid boundary radial point interpolation method (HBRPIM) (Gu and
GR Liu, 2002b, 2003a) were also formulated for solving boundary value
problems. HBPIM and HBRPIM are formulated using the PIM and RPIM
shape functions in HBIE. In HBPIM and HBRPIM, the stiffness matrices
obtained are symmetric. This property of symmetry can be an added
advantage in coupling HBPIM and HBRPIM with other established MFree
methods that produce symmetric system matrices.

Some of the MFree methods are summarized in Table 2.2 based on the
above-classifications.

2.5 FUTURE DEVELOPMENT

Table 2.3 lists a matrix of different possible ways to formulate an MFree
method. It is clearly shown again from this matrix that MFree methods are
proposed based on different combinations of interpolation /approximation
techniques and formulation procedures. It should be noted that there are still
some empty entries in the matrix. These empty entries may not be possible to
be filled, or may not result in a good method a class of problems, but provide a
window of possibilities for future development of ideal MFree methods.

The authors believe that the development of MFree methods has not only
led to a group of useful numerical methods that are useful for a different
classes of engineering problems, but also frees the minds of researchers from
conventional ideas of numerical methods for further exploration of new
numerical methods. The following four areas could be the future possible
direction to develop ideal MFree methods.

e Development of new method for MFree function approximation;

e Development of new formulation procedures;
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e Development of MFree methods based on different combinations of
function approximations and formulation procedures;

e Development of MFree methods based on combinations of methods of
function interpolation/approximations or formulation procedures for
different parts of the problem domain or for different types of
equations.

Table 2.2. Three categories of MFree methods

Classification Categories Example MFree
methods’
MFree methods based on strong-forms of MFTree collocation
governing equations methods, FPM etc.
Based on MFree methods based on weak-forms of EFG, RPIM, MLPG,
formulation governing equations LRPIM , etc.
procedure
MFree methods based on the combination MWS, etc.
of weak-form and strong-form
MFree methods using MLS EFG, MLPG, etc.
MFree methods using integral SPH, etc.
Based on. representation method for function
interpolation approximations
/approximation
method MFree methods using PIM RPIM, LRPIM, etc.

MFree methods using other meshfree
interpolation schemes.

PUFEM, Ap-cloud, etc.

Based on domain
representation

Domain-type MFree methods

Boundary-type MFree methods

SPH, EFG, RPIM,
MLPG, LRPIM, etc.

BNM, LBIE, BPIM,
BRPIM, HBRPIM, etc.

T See Chapters 4-7 for more details on these methods.



53

2. Overview of MFree methods

‘apgrssod ag 101 ARTT I 0 SIOUINE 2T 0 wamoTEun 1o padojasap aq ol jak g

L i i i i i
pnoja-cfy
; i i i WaAnd praya-dy nd
Z H H i Hdy MY ‘Hds (W HAS
uonewmrzosdde;
modd morjepodiagm
L L i MY ‘I i Fodd addy-aquray
MIdyd i PIIdY-5 T I1dYT MIdy Modd WI1d4
W1dd A i MId1 1 Wodd MiId
pouia U0TIE 0703
i i i i ULRED SAW (JeqoElidy
HWd49
i i i i i o I070 5TA
Mg i ST -5 AT 4T 044 Mdd 5T
uonenhy
_..m‘Hm m_..EH saretnhs C.Com G.E_um -udw =1 G.E_um-uﬂm =1 nﬂ_uﬂm“uoﬂ_uuu_
Lrepunog 1sea] -EuOnE-HEAs,  WHIEAED-A0Nad utHIaED uroy-Buong

SPOTA 225 ] SYBIULI0} 0 &M Aqissod Ui J0 MEW £ AL



Chapter 3

MESHFREE SHAPE FUNCTION
CONSTRUCTION

3.1 INTRODUCTION

As we have seen in Chapter 2, in seeking for an approximate solution to a
problem governed by PDEs and boundary conditions, one first needs to
approximate the unknown field function using trial (shape) functions, before
any formulation procedure can be applied to establish the discretized system
equations. This chapter discusses various techniques for MFree shape
function constructions. These shape functions are locally supported, because
only a set of field nodes in a small local domain are used in the construction
and the shape function is not used or regarded as zero outside the local
domain. Such a local domain is termed the support domain or influence
domain or smoothing domain’.

In the finite element method (FEM), the shape functions are created using
interpolation techniques based on elements formed by a set of fixed nodes.
This type of interpolation is termed stationary element based interpolation.
In MFree methods, the problem domain is usually represented by field nodes
that are, in general, arbitrarily distributed. The field variables at an arbitrary
point in the problem domain are approximated using a group of field nodes
in a local support domain. Hence, a moving domain based interpolation/

T The difference between the support domain and the influence domain will be presented in
Chapter 4.

54
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approximation technique is necessary to construct the MFree shape function
for the approximation of the field variables using a set of arbitrarily
distributed nodes. In the development of an MFree method, the construction
of efficient MFree shape functions is the foremost issue needed to be settled.

3.1.1 Meshfree interpolation/approximation techniques

A good method for creating MFree shape functions should satisfy some
basic requirements.

1) It should be sufficiently robust for reasonably arbitrarily distributed
nodes (arbitrary nodal distribution).

2) It should be numerically stable (stability).
3) It should satisfy up to a certain order of consistency (consistency).

4) It should be compactly supported (compact), i.e., it should be
regarded as zero outside a bounded region, the support domain.

5) The approximated unknown function using the shape function should
be compatible®™ (compatibility) throughout the problem domain when
a global weak-form is used, or should be compatible within the local
quadrature domain when a local weak-form is used.

6) It is ideal if the shape function possesses the Kronecker delta
function property (Delta function property), i.e. the shape function is
unit at the node and zero at other nodes in the support domain.

7) It should be computationally efficient (efficiency).

The requirement of arbitrary nodal distribution is essential for
developing a robust MFree method for practical engineering problems.

The stability condition concerns two issues. The first is the interpolation
stability, meaning that the shape functions constructed should be stable with
respect to small perturbations of node locations in the support domain. This
requires the moment matrix created using the arbitrarily distributed nodes to
be well-conditioned. The interpolation stability will be briefly addressed in
Sections 3.2 and 3.3. The second issue is the solution stability, meaning that
the numerical solution using the shape functions together with a formulation
procedure should not have the so-called numerical or unphysical oscillations
that have been observed from, for example, convection dominated problems
(see Chapter 6). For the second instability, even if the local interpolation is

" In an MFree method (or even FEM), the shape functions are constructed in a
piecewise manner based on local support domains. Therefore, the field function
approximated using these shape functions may not be continous when the support
domain moves in the global problem domain. If the approximation is continous,
we say it is compatiable, otherwise incompotable.
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stable, the solution could be unstable due to the mismatch of the
interpolation scheme (or formulation procedure) with the physical nature of
the problem. Changing the interpolation schemes is a possible way to solve
this problem. The formulation procedure can also play a very important role
in producing a set of discretized system equation that produces a stable
solution. This requires a properly designed formulation procedure based on
the nature of the problem to have the dominant terms properly reflected in
the formulation. This aspect of numerical treatment is addressed to certain
degree of satisfaction in the finite difference method (FDM) by changing the
interpolation scheme using so-called upwind grids (Courant et al., 1953;
Runchall and Wolfstein, 1969; Spalding 1972; Barrett, 1974; etc.). It has
also been well studied by Guymon et al., (1970), Adey and Brebbia (1974),
Zienkiewicz et al. (1975), Christie et al. (1976), Morton (1985), Donea et al,
(1985), Hughes et al. (1988), Onate (1998), and many others for the FEM.
More detailed discussions on this issue can be found in the book by
Zienkiewicz and Taylor (2000) and the references provided there.

Unfortunately, the instability in MFree methods for convection
dominated problems has not been properly addressed, and the issue is far
from conclusive. Hence, this book will not provide concrete discussions on
this topic, but will discuss some of the techniques in Chapter 6 for
convection dominated problems.

Another type of solution instability often encountered is the well-known
tensile instability that arises in applying the SPH approximation to
hydrodynamics with material strength. Some discussions and measures have
been developed (Swegle et al., 1995; Balsara; 1995; Dyka and Ingel, 1995;
Morris 1996; Dyka et al., 1997; Monaghan, 2000; Randles and Libersky,
2000; Gray et al. 2001; GR Liu and Liu, 2003).

The consistence is important for an accurate function approximation and
convergence of the MFree method.

The compact support is required to produce a set of sparse discretized
system equations that can be solved effectively. This is extremely important
for large systems.

When a global weak form is used, the global compatibility of the shape
function, meaning that it has to be compatable in the entire (global) problem
domain, is required. When local weighted residual methods of collocation
methods are used for establishing the discretized system equations, only
local compatibility in the local weighted domain is required.

The Kronecker delta function property is not rigid because one can use
special measures to impose essential boundary conditions if the MFree shape
function does not have this property (see Chapters 4~5).
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The development of effective construction methods for MFree shape
functions has been one of the hottest areas in the research of MFree methods.
Several MFree approximation formulations have been proposed. GR Liu
(2002) classified these formulations into three large categories based on the
types of theories of function approximation/representation, i.e., the integral
representation, the series representation, and the differential representation.
Table 3.1 lists some of the techniques under these categories.

Table 3.1. Categories of MFree interpolation techniques

Categories MFree approximation techniques
Integral Smoothed Particle Hydrodynamics (SPH)
representation

Reproducing Kernel Particle Method (RKPM)

Series Moving Least Squares (MLS)
representation Point Interpolation Methods (PIM, RPIM)
Partition of Unity (PU) methods

Differential

. General Finite difference method (GFDM)
representation

e In the integral representation method, the function is represented using
its information in a local domain (smoothing domain or influence
domain) via a weighted integral operation. The consistency is achieved
by properly choosing the weight function. It is often used in the so-
called smoothed particle hydrodynamics (SPH).

e The series representation methods have a long history. They are well
developed in FEM and are now used in MFree methods based on
arbitrary distributed nodes. The consistency is ensured by the
completeness of the basis functions. The moving least square (MLS)
approximation is the most widely used method. The point interpolation
method (PIM) using radial basis function (or RPIM) is also often used.
Both MLS and RPIM will be discussed in this chapter in detail.

e The differential representation method has also been developed and used
for a long time in the finite difference method (FDM). The finite
difference approximation is not globally compatible (see, e.g.,
Zienkiewicz and Tayler, 2000), and the consistency is ensured by the
theory of Taylor series. Differential representation methods are usually
used for establishing system equations based on strong-form formulations,
such as FDM and the general finite difference method (GFDM).
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In the following sections, we will discuss the point interpolation method
(PIM) and the moving least squares (MLS) approximation in detail. There
are other methods of constructing MFree shape functions, such as the SPH
approximation, the sp-clouds method, and partitions of unity finite element
method, and so on. Readers can refer to the related references for more
details and more precise descriptions.

Before introducing the MFree interpolants, the concept of support
domain that is often used in the MFree interpolation operations is introduced.

3.1.2 Support domain

The accuracy of interpolation for the point of interest depends on the
nodes in the support domain as shown in Figure 3.1. Therefore, a suitable
support domain should be chosen to ensure an efficient and accurate
approximation. For a point of interest at X, the dimension of the support
domain d; is determined by

d=a,d, 3.1)

where «; is the dimensionless size of the support domain, and d. is the nodal
spacing near the point at xo. If the nodes are uniformly distributed, d. is
simply the distance between two neighboring nodes. When nodes are non-
uniformly distributed, d. can be defined as an average nodal spacing in the
support domain of xo.

The dimensionless size of the support domain ¢, controls the actual
dimension of the support domain. For example, =2.1 means a support
domain whose radius is 2.1 times the average nodal spacing. The actual
number of nodes, n, can be determined by counting all the nodes included in
the support domain. Note that ¢, should be pre-determined by the analyst
before analysis, and it is usually determined by carrying out numerical
experiments for a class of benchmark problems for which we already have
solutions. Generally, an ,=2.0~3.0 leads to good results for many problems
that we have studied.

Note that the support domain is usually centered by a point of interest at
Xo. Biased support domains can also be used for special problems such as
convection dominated problems (see, Section 6.4).

3.1.3 Determination of the average nodal spacing

For one-dimensional cases, the simplest method of defining an average
nodal spacing could be

d-—L (3.2)

“ (np, 1)
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where D; is an estimated d; (in Equation (3.1)) that does not have to be very
accurate but should be known and is a reasonably good estimate of d;, and 7,
is the number of nodes covered by the domain with the dimension of Dj.

\
_$
//

(b)

Figure 3.1. Support domains of points of interest at x, in MFree models.
(a) circular support domains (r,: the dimension of the support domain);
(b) rectangular support domains (7, and r,: dimensions of the support domain in x and y
directions). The support domain is centred by x.
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For two-dimensional cases, the simplest method of defining an average
nodal spacing could be

d _ AS
N (3.3)

where A; is the area of the estimated support domain. The estimate does not
have to be accurate, but should be known and should be a reasonably good
estimate; ny, is the number of nodes covered by the estimated domain with
the area of A4,.

Similarly, for three-dimensional cases, the simplest method of defining
an average nodal spacing could be

3V
d, == (3.4)
Jn, —1

where V; is the volume of the estimated support domain, and ny; is the
number of nodes covered by the estimated domain with the volume of V.

After determining d., using Equation (3.1), we can easily determine the
dimension of the support domain d, for a point at X, in a domain with non-
uniformly distributed nodes. The procedure is

1. Estimate d, for the point at xy, which gives D, or 4 or V;
2. Count nodes that are covered by D,or 4 or V, which yields n p.> M >
and ny, ;

3. Use Equation (3.2) or (3.3) or(3.4) to calculate d_;

4. Calculate d; using Equation (3.1), for a given (desired) dimensionless
size of support domain.

3.2 POINT INTERPOLATION METHODS

The point interpolation method (PIM) is one of the series representation
methods for the function approximation, and is useful for creating MFree
shape functions. Consider a scalar function u(x) defined in the problem
domain Q that is represented by a set of scattered nodes. The PIM
approximates u(x) at a point of interest x in the form of

u(x)= iB[ (X)aq, (3.5)
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where the B,(x) are the basis function defined in the space Cartesian
coordinates X' =[x, y], m is the number of basis functions, and the a; are the
coefficient.

For function approximation, a local support domain is first formed for the
point of interest at x which includes a total of »n field nodes. For the
conventional point interpolation method (PIM), n=m is used that results in
the conventional PIM shape functions that pass through the function values
at each scattered node within the defined support domain. For the weighted
least square (WLS) approximation or the moving least squares (MLS)
approximation, » is always larger than m.

There are two types of PIM shape functions have been developed so far
using different forms of basis functions. Polynomial basis functions (GR
Liu and Gu, 1999; 2001a) and radial basis functions (RBF) (Wang and GR
Liu, 2000; GR Liu, 2002) have often been used in MFree methods. These
two-types of PIMs will be discussed in the following sections.

3.2.1 Polynomial PIM shape functions

3.2.1.1 Conventional polynomial PIM

Using polynomials as basis functions in the interpolation is one of the
earliest interpolation schemes. It has been widely used in establishing
numerical methods, such as the FEM. Consider a continuous function u(x)
defined in a domain €, which is represented by a set of field nodes. The
u(x) at a point of interest x is approximated in the form of

a
u(x)=Y p (g, ={p(x) p,(x) - p,(O}1 i =p'a (3.6)
i=1

T
P am
—_—

where p,(x) is a given monomial in the polynomial basis function in the
space coordinates X =[x, y], m is the number of monomials, and g; is the
coefficient for p(x) which is yet to be determined. The p/(x) in Equation
(3.6) is built using Pascal's triangles (see Figure 3.2), and a complete basis is
usually (but not always) preferred. For one-dimensional (1-D) and two-
dimensional (2-D) space, the linear basis functions are given by

prx={ «x m=2, p=1 (1-D) (3.7

pP'={ x y m=3, p=1 (2-D) (3.8)

and the quadratic basis functions are

prx)={ x x*) m=3, p=2 (1-D) (3.9)
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px)={ x y ¥ xy »} m=6, p=2 (2-D) (3.10)

Figure 3.2. Pascal triangle of monomials for two-dimensional domains.

The complete polynomial basis of order p can be written in the following
general form.

prx)={ x x* - x'' x} (1-D)  (3.11)

pr={l x y X xp )y - x y} (2D (312

In order to determine the coefficients @;, a support domain is formed for
the point of interest at x, with a total of # field nodes included in the support
domain. Note that in the conventional PIM, the number of nodes in the
local support domain, n, always equals the number of basis functions of, m,
i.e., n=m. The coefficients a; in Equation (3.6) can then be determined by
enforcing u(x) in Equation (3.6) to pass through the nodal values at these n
nodes. This yields # equations with each for one node, i.e.,

m
u = Zaip(xl) =, +aX, + ayy, +-+a,p, (X))

i=1

u, :Zazp(xz) =a, + a,x, +a;y, +-+a,p, (X,) 3.13)
i=1 .

m
Z’ln = Zaip(xn) =a1 + aZXH + a3yn teeet ampm(xn)
i=1

which can be written in the following matrix form.

U =P,a (3.14)
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where
U, ={u, u uy .. u)} (3.15)

is the vector of nodal function values, and

a={q a, a, .. a) (3.16)
is the vector of unknown coefficients, and
1 X 8N e P (X1)_
L x, vy %0, e P (X5)
P,=11 x5 »3 xy; ... Pn(X3) (3.17)
_1 X, YV, XV, e p.(X, )_

is the so-called moment matrix. Because of n=m in PIM, P,, is hence a
square matrix with the dimension of (nxn or mxm).
Solving Equation (3.14) for a, we obtain

a=P 'U, (3.18)
In obtaining the foregoing equations, we have assumed P’ exists, and left

the issue regarding non-existence of P_' to be addressed later.

It is noted that coefficients a are constants even if the point of interest at x
changes, as long as the same set of n nodes are used in the interpolation,
because P, is a matrix of constants for this given set of nodes.

Substituting Equation (3.18) back into Equation (3.6) and considering
n=m yield

N

u(x)=p" (OP,'U, = du, =®" (U, (3.19)
i=1

where ®(x) is a vector of shape functions defined by

O (x)=p"(MP,' ={g(x) $(x) - 4] (3.20)

The derivatives of the shape functions can be easily obtained because the
PIM shape function is of polynomial form. The /th derivatives of PIM shape
functions can be written as

3" (x)

) 1T
o (x) =% ¥ :_512 ) pr (3.21)
: X

8 (x)



64 Chapter 3

The properties of PIM shape functions (GR Liu, 2002) can be
summarized as follows.

1) Consistency

The consistency of the polynomial PIM shape function depends on the
highest complete order of the monomial p(x) used in Equation (3.6). If the
complete order of monomial is p, the shape function will possess C”
consistency. This is because the PIM shape functions can reproduce the
monomials that are included in the basis used to construct the shape
functions. To demonstrate, we consider a field given by

k
S(0=2p,(00b;, k<m (3.22)

where p;(x) are monomials that are included in Equation (3.6). Such a given
field can always be written in the form of Equation (3.6).

bl

m b
S(9=2p;,(®)a;=p" (a=p"(x) 0 (3.23)

0

Using n (here n=m) nodes in the support domain of x, we can obtain the
vector of nodal function values U, as

f(x) 1 x A2 XNV e (X)) i b

f(x,) 1 x Y Yo Vo o e Pn(Xy) b,

U =9 f(x) =1 x Vs X Ve e p,(X,) b,
S (o) U X Ve %V e Pu(Xe) | | O (3.24)

f(x,) |1 x, , X, Y, e p,(X,) 0

=P,a
Substitute Equation (3.24) into Equation (3.19), we have
k

u(x)=®x)U, =p' (MP,'Pa=p' ()a=) p,(x)b (3.25)

J=1
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This proves that any polynomial field function given by Equation (3.6) will
be exactly reproduced by PIM interpolation, as long as the basis functions of
the field function are included in the basis functions of the PIM shape
functions. This can always be done as long as the moment matrix P, is
invertible so as to ensure the uniqueness of the solution for the coefficient a.

2) Reproducibility

On the extension of proving the consistency of the polynomial PIM shape
functions, we can conclude that PIM shape functions can reproduce any
functions (not necessarily a polynomial) that are included in the basis
functions.

3) Linear independence

PIM shape functions are linearly independent in the support domain.
This is because basis functions are linear independent, and P, is assumed to
be invertible.

4) Delta function property
Shape functions have the Kronecker delta function property, that is

{1 i=j, j=12,,n

(x=x )= 3.26
hlx=x,) 0 i#j, i,j=12-n (3.26)

This is because the PIM shape functions are created to pass thorough
nodal values.

5) Partitions of unity

If the constant is included in the basis, the ¢, (X) is form a partition of

unity, i.e.,
> 4(x)=1 (3.27)
i=1

This can be proven easily from the reproducibility feature of the polynomial

PIM shape functions. For a given constant field u(x)=c, we have
Uy =Uy=--=U,=C (3.28)

n

Because the constant field can be reproduced using PIM shape functions, we
obtain

u(x)=c= Zn:géiui = ciﬁ (3.29)

which leads to
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Zn:;zﬁ,. -1 (3.30)

This shows that the polynomial PIM shape functions possess the partitions of
unity.

6) Linear reproducibility

PIM shape functions have the linear reproducibility, i.e.,
D 4(x)x, =x (3.31)
i=1

if the complete 1st order monomials are included in the basis. This can also
be proven easily from the reproducibility of the PIM shape functions.

7) Polynomial form
PIM shape functions and their derivatives have polynomial forms.
8) Compact support

The PIM shape function is constructed using nodes in a compact support
domain, and its’ value at any point outside the support domain is regarded as
zero when it is used in MFree method.

9) Compatibility

In using PIM shape functions, the compatibility in the global domain is
not ensured when the local support domain is used, and the field function
approximated could be discontinuous when nodes enter or leave the moving
support domain. Because no bell shape weight function is used in PIM, the
nodes in the support domain are updated suddenly, meaning that when the
nodes are entering or leaving the support domain, they are actually
“jumping” into or out of the support domain (GR Liu and Gu, 2004c). Care
must be taken when a global weak-form is used together with PIM shape
functions with compact supports. The global compatibility is not an issue
when the strong-forms or the local weak-forms are used.

Note that our discussion is based on the assumption that P, exists. This

condition cannot always be satisfied depending on the locations of the nodes
in the support domain and the terms of monomials used in the basis. If an
inappropriate polynomial basis is chosen for a given set of nodes, it may
yield in a badly conditioned or even singular moment matrix. There are a
number of ways to solve the singularity problem. The most practical method
is the use of the matrix triangularization algorithm (MTA) (GR Liu and Gu,
2001d, 2003a) and the use of the radial basis functions (RBFs) in place of
the polynomial basis (Sub-section 3.2.2). In addition, the weighted least
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square (WLS) method can also be used to overcome the singularity problem
in the polynomial PIM. The WLS approximation will be discussed in the
following section.

3.2.1.2 Weighted least square (WLS) approximation

The weighted least square (WLS) approximation is a widely used
technique for data fitting. In the WLS, the number of basis, m, is usually
pre-determined according to the requirements on the consistency for shape
functions. Using Equation (3.5), we can write a two-dimensional field
function u(x) approximated using the polynomial basis as follows.

W' ()= pi(0a, =a, +ax+a,y+--+a,p,(x)
i=1

a

] ; (3.32)
={l x y = p,™}y i =pa
PT am
[S——
where a; (i=1, 2, ..., m) are the coefficients to be determined, and p is the

vector of basis functions.

To determine coefficients a in Equation (3.32), n nodes are selected in
the local support domain for the approximation. Note that in the WLS, n>m
is used. Using Equation (3.32) for all these » nodes, we can obtain the
similar equations of Equations (3.14)~(3.17), i.e.,

Us = (Pm )(nxm)a(mxl) (333)
The moment matrix, P, is
1 XV Y e P, (X, )_
1 X2 y2 X2y2 """ pm(XZ)
P =1 x5 y; X . 2, (x3) (3.34)
_1 Xo Vu XpVpo e Pu (X”)_(nxm)

Note that P, is not a square matrix because n>m.

Equation (3.33) is a set of overdetermined system of equations due to
n>m meaning that the number of equations is more than the number of
unknowns. We can solve Equation (3.33) for a using the standard weighted
least squares (WLS) method by minimizing the following weighted discrete
L, norm:
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J=> Wi (x;)—u(x,) (3.35)
i=1
where I/f/l (==1, 2, ..., n) is the weight coefficient associated with the

function value at the ith node in the support domain, and u; becomes the

“nodal parameter” of u at x=x; . The stationary condition for .J is
oJ
“ oo (3.36)
oa

which leads to the following linear relation between a and U
P'WP a=P ' WU, (3.37)

where W is the diagonal matrix constructed from the weight constants, i.e.,
W(nxn) :er/] WZ Vi/nJ (338)

Note that the weights used here are considered as constants (not functions of
x) that define the different influences of the nodes in the approximation. The
further nodes should have smaller influences while closer nodes have bigger

influences, W, can be computed from any weight function with the bell
shape that will be provided in Section 3.3.2. For example, the following
formulations of %, can be used.

& by
. . e ¢ —e €

W=Wkx)=—° (3.39)

l-e ¢

F=J=x) + (=) (3.40)

where (x, y) is coordinate of the point of interest, 7, is the size of local
supported domain, and c is a constant to be determined by the analyst before
calculation.

We now let

A=P'WP, (3.41)

B=P!W (3.42)

Solving Equation (3.37) for a yields
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a=(P WP ) (PTW)U, (3.43)

or
a=A"'BU, (3.44)
Substituting Equation (3.44) back into Equation (3.32), we have

u"(x)=p'a=p'A"'BU, =®"U, (3.45)
where the vector of shape functions @ is
o' = pTAilB = {¢| $ ¢n} (3.46)

where ¢; (=1, 2, ..., n) is the shape function corresponding to the ith node in
the support domain.

Equation (3.45) is the approximation equation for the WLS. Because the
weighted least squares method is used, the shape functions so constructed do
not have the Kronecker delta function property, which can cause difficulties
in imposing essential boundary conditions, if it is used in MFree methods
based on global weak-from such as the Galerkin weak-form (Chapter 4).
However, it is not a big issue in the MFree methods based on local weak-
forms (Chapter 5) or the MFree collocation methods (Chapter 6), because the
direct interpolation method can be used to enforce the essential boundary
conditions. Note also that the WLS shape functions are compatible only in
the local support domain rather than in the global domain. This is not a
problem when the WLS shape functions are used in the local weak-form
methods or collocation methods, but care needs to be taken when it is used
for global weak-form formulation, for which the moving least squares
(MLS) to be discussed in Section 3.3 is a better choice.

3.2.1.3 Weighted least square approximation of Hermite-type

In some problems, the normal derivatives of field functions at some
nodes are important and need to be considered as independent variables. For
example, in order to impose the stress (derivative) boundary conditions in
the analysis of solid mechanics problems using the MFree strong-form
methods (see, Chapter 6), the normal derivatives of displacements at the
nodes on the derivative boundaries (called DB-nodes) are often considered
as independent variables in the function approximation. This is the so-called
Hermite-type approximation. In this section, the Hermit-type WLS is
discussed, which is an extension of the WLS and will be used in Chapter 6.
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Support
domain

Problem
domain Q

Derivative
boundary
Dirichlet
boundary

O Interior nodes and nodes on the Dirichlet boundary
® Collocation node
© Nodes on Derivative boundary (DB-nodes)

Figure 3.3 Hermite-type interpolation with normal derivatives as additional degrees of
freedom.

To determine coefficients a in Equation (3.32), n nodes are selected in
the local support domain for the approximation. The normal derivatives of
the function at the DB-nodes shown in Figure 3.3 are considered as variables
in addition to the variables of the nodal function values. Applying Equation
(3.32) to all these n nodes, we have

u =a +ax +ay +--+a,p, (X))

Uy =a,+ax, +a;y, +--+a,p,(x,) (3.47)

u,=a,+a,x, +a,y, +-+a,p,(x,)
or
U,=P,a (3.48)
where the moment matrix P, is given in Equation (3.34), and

U ={u, u, uy .. u) (3.49)
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Now applying Equation (3.32) to these npg DB-nodes, we have

oux”) _, aux)  ou(x”)

on T o oy

(3.50)

and n is the vector of unit outwards normal, and /; and /,; are the direction

cosines for the outward normal at the DB-node at (x”*, y”?), which are
defined by

{lxi = cos(n,x?)

(3.51)
_ DB
lyi - COS(]’I,_)/Z- )
Using Equation (3.50) for all DB-nodes, we can obtain
DB
% =0a; + ayl , + a3l +a, O + x1DBl,.,~1) +--
du(x?
% =0a) + ayl 5 +azl 5 + a, (¥, 1, + xzDBlyz) - (3.52)
ou(x?®
% N Oal * a2l~‘-’-’-’as + a3l/‘"-’?as ta, (y?ﬁi Z-WDB nDDi Yipg ) to
Equation (3.52) can be written as the matrix form of
U =Ppa (3.53)

where U is the vector that collects all the normal derivatives of function
values at the DB-nodes

U,T_{au(xPB) ) au(XZi)}

3.54
on on on ( )
and the moment matrix Pp is
B ﬁ DB) ')7 ( DB
O le lyl lx] pm(gX] - + l’yl p‘n”” \X] )
X Oy
_ x2 y2 x2 A y2
P, = ox Oy (3.55)
) L me) el
i Xpp Yipp XNpp ax Yipp ay |
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The dimension of Pp is (npgxm).

Combining Equations (3.48) and (3.53) gives
D Pm
U, =Pa= a (3.56)

where U” is the vector that collects all the nodal values of the function at n

nodes and all nodal normal derivatives of the function at the npz DB-nodes,
ie.,

(3.57)

Bu(x") au(x™))'
on on

in which x;, x,~x, are coordinates for the n nodes in the support domain,

DB _DB DB : : :
X, ,X, ~X, are coordinates of the DB-nodes whose normal derivatives

n,

are considered as independent variables.
In Equation (3.56), P is the moment matrix that can be written as

P _|: (Pm)nxm j| (3 58)
= P .
( D )nDme ((n+npg )xn)

Equation (3.56) is a set of overdetermined system of equations due to
n+npg>m meaning that the number of equations is larger than the number of
unknowns. We can obtain the solution for Equation (3.56) using the
standard weighted least squares method by minimizing the following
weighted discrete L, norm of

noo mon o ou"(x)  Au(xPP)
J: W uri X ) —u(x. 2+ WDB A _ J 2
Z[ ) -l + 21— =T (359)
o . | Au(x™®)
where W, and Wj are weight coefficients, and u; and P J are the
n

nodal parameters of u at x=x; and the normal derivatives of u at x= XJDB.
The stationary condition of J requires
oJ

—=0 3.60
oa (3.60)

which leads to the following linear relation between a and U”

P"WPa =P WU” (3.61)



3. Meshfree shape function construction

73

where W is the diagonal matrix constructed using a weight function, i.e.,

=

=)
Il

77 DB

npp

1o

(n+npg X(n+npg )

(3.62)

0
W,

In which W, (i=1,2, ..., n) is the weight coefficient associated with the

function value for the ith node in the support domain, and WJDB =1, 2, ..,

npg) is the weight coefficient associated with the jth DB-node. The weight
function W, can be obtained using any function such as the one given in

Equation (3.39), and ijB can be given independently in the similar manner.

The weight function Wj.D % can also be obtained using Vf/j . For example, we

may define

J

WP = %W(x - xfB)
where fis the constant to be determined before analysis.

Considering the fact that W isa diagonal matrix, we now let

A= (PTWP) = (B, W,P,) + (P W,P)

B=(P'W)=(P,W,)+(PW,)
Solving Equation (3.61) for a yields
a=(P"WP)'(PTW)U?
or
a=A"'BU’
Substituting Equation (3.67) back into Equation (3.32), we have
u"(x)=p'a=p"A'BU” =®"U?
The vector of shape functions can be expressed as follows

(I)T:pTA—lBZ{¢1 g g, S - ¢,1-1 ¢ZB}

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)
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where ¢, (i=1,2, ..., n) is the shape function corresponding to the ith node in
the support domain, and ¢jH (7=1,2, ..., npp) is the shape function

corresponding to the jth DB-node.

Similar to the WLS shape functions, these Hermite-type WLS shape
functions do not have the Kronecker delta function property. Special
treatments are needed to enforce the essential boundary conditions.

3.2.2 Radial point interpolation shape functions
3.2.2.1 Conventional RPIM

In order to avoid the singularity problem in the polynomial PIM, the
radial basis function (RBF) is used to develop the radial point interpolation
method (RPIM) shape functions for MFree weak-form methods (GR Liu and
Gu, 2001c; Wang and Liu, 2000; 2002a,c). The RPIM shape functions will
be used frequently in this book for both MFree weak-form and strong-form
methods. The RPIM interpolation augmented with polynomials can be
written as

u(x)= Y R(x)a,+ Y p, ()b, =R"(®a+p" ()b (3.70)
i=1 j=1

where R;(x) is a radial basis function (RBF), n is the number of RBFs, p/(x)
is monomial in the space coordinates x'=[x, y], and m is the number of
polynomial basis functions. When m=0, pure RBFs are used. Otherwise, the
RBF is augmented with m polynomial basis functions. Coefficients a; and b,
are constants yet to be determined.

In the radial basis function R,(x), the variable is only the distance between
the point of interest x and a node at x;,

r=y(c=x)? +(y—)" for 2-D problems (3.71)

There are a number of types of radial basis functions (RBF), and the
characteristics of RBFs have been widely investigated (Kansa,1990; Sharan
et al.,1997; Franke and Schaback, 1997; etc.). Four often used RBFs, the
multi-quadrics (MQ) function, the Gaussian (Exp) function, the thin plate
spline (TPS) function, and the Logarithmic radial basis function, are listed in
Table 3.2. In utilizing RBFs, several shape parameters need be determined
for good performance. In general, these parameters can be determined by
numerical examinations for given types of problems (see, e.g., Wang and GR
Liu, 2000; 2002¢). For example, in the MQ-RBF, there are two shape
parameters: «.and g, to be determined by the analyst. When ¢ =+0.5, it is

the standard MQ-RBF. Wang and GR Liu (2001a, 2002c) left the parameter
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g open to any real variable, and found that g=0.98 or 1.03 led to good results
in the analysis of two-dimensional solid and fluid mechanics problems. This
will be investigated further in Chapter 4 and Chapter 5.

Table 3.2 Typical radial basis functions with dimensionless shape parameters

Name tExpression Shape Parameters
] ?ﬁlg;_quadms R(x,y)= (7 +(a.d.)") @.20,q
v.
2 Gaussian (EXP) R (x,y) =exp[-a. (d_l)z] a.
Thin Plate Spline o
3 (TPS) R (x,y)=r; n
4  Logarithmic R (x,y)=1"logr, n

f Note: d, is a characteristic length that relates to the nodal spacing in the local
support domain of the point of interest x, and it is usually the average nodal
spacing for all the nodes in the local support domain as discussed in Section 3.1.

Table 3.3. Formulations of the compactly supported radial basis function (CSRBF)

CSRBF Formulation Ref.

R(x,v)=(1-2)8+40=
e 5 5
Wu-C2 > 34 Wu(1995)

r r r
+48—+ 256_3+55_4)

—q=1ye r
R(x,y)=(l 5) (6+365

Wu-C4 2 3 -4 /5 Wu(1995)
+82—+T72—+30—+5—
) 1) ) o)
.4 r
2 Ray)=0-2'1+4-) Wendland
Wendland-C2 5 5 (1995)
2
_ 7\6 r r Wendland
- R(x,y)=(1-—)"3+18—+35—
Wendland-C4 (v, »)=( 5) ( 5 52) (1995)
2 3
_ 7\8 r r r Wendland
- R(x,y)=(1-—)*(1+8—=+25—+32—
Wendland-C6 (v, »)=( é) ( 5 pe 53) (1995)

0. the size of the local support
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In addition, the so-called compactly supported radial basis functions
(CSRBFs) have also been developed (Wu, 1995; Wendland, 1995). Several
CSRBEFs are listed in Table 3.3. In contrast to the CSRBF, RBFs listed in
Table 3.2 can be called the classical RBFs. These CSRBFs are strictly
positive definite for all » less than or equal to some fixed value, and can be
constructed to have desired amount of smoothness of 2k. In a CSRBF, there
is a shape parameter, &, that determines the dimension of the local support
for the CSRBF. When r >, their values is regarded as zero. Studies by
authors’ group (GR Liu and Gu, et al., 2004) failed to find clear advantages
of CSRBFs over the classic RBFs for their surface fitting and mechanics
problems.

The polynomial term in Equation (3.70) is not always necessary. Studies
have found the following conclusions.

1) The RPIM shape functions with pure RBFs usually cannot pass the
standard patch tests, meaning that they fail to reconstruct exactly a
linear polynomial field. Adding polynomial terms up to the linear
order can ensure the C' consistency that is needed to pass the standard
patch test.

2) In general, adding polynomials can always improve the accuracy of the
results, at least no bad effect has been observed for MFree weak-form
methods.

3) Adding polynomial reduces the sensitivity of the shape parameters,
and will provide us much more freedom and a wider range in choosing
shape parameters. This is true at least for MFree weak-form methods.

4) Adding polynomial can improve the interpolation stability for some
RBFs. To ensure an invertible moment matrix of RBF, the polynomial
augmented into RBF cannot be arbitrary (Schaback and Wendland,
2000). A low degree polynomial is often used to augment RBF to
guarantee the non-singularity of the matrix (Cheng et al., 2003). For
example, for an MQ-RBF, the linear polynomial can ensure an
invertible moment matrix of RBF (Schaback and Wendland, 2000).

In order to determine a; and b; in Equation (3.70), a support domain is
formed for the point of interest at x, and » field nodes are included in the
support domain. Coefficients a; and b; in Equation (3.70) can be determined
by enforcing Equation (3.70) to be satisfied at these » nodes surrounding the
point of interest x. This leads to n linear equations, one for each node. The
matrix form of these equations can be expressed as

U, =Ra+P,b (3.72)

where the vector of function values Uy is
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U ={u wu, - u} (3.73)

the moment matrix of RBFs is

Rl(rl) RZ(’I) Rn(rl)
R () R,(r,) -+ R(n)
Ro=l 0 0 L (3.74)
R(r) R(7) - R,
the polynomial moment matrix is
! 1 1]
X, X, X,
P =| 1y Y, v, (3.75)
_pm (Xl) pm (XZ) pl?l (X")_(mxn)

the vector of coefficients for RBFs is
a'={a, a .. a) (3.76)
the vector of coefficients for polynomial is
b'={ b, .. b} (3.77)
In Equation (3.74), r, in Ri(r;) is defined as
=0y =) + (=) (3.78)

However, there are 1+ m variables in Equation (3.72). The additional m
equations can be added using the following m constraint conditions.

D p(x)a=Pja=0, =12, .., m (3.79)

i=1

Combing Equations (3.72) and (3.79) yields the following set of equations in

the matrix form
ﬁ_UX_RO P, a_G
o l7le™ o Nbl" a, (3.80)
m

G
where

a, ={a, a, -~ a, b b, - b} (3.81)

m
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U ={U1 u, - u, 0 0 - 0} (3.82)

S n

Because the matrix Ry is symmetric, the matrix G will also be symmetric.
Solving Equation (3.80), we obtain

a e
a,=3 =G U (3.83)
b
Equation (3.70) can be re-written as

u(x)=R"'(x)a+p ' (x)b={R"(x) p' (x)} {2} (3.84)

Using Equation (3.83) we can obtain
u(x)={R'x) p'0}G'U =0' (), (3.85)

where the RPIM shape functions can be expressed as

o' (x)={R"(x) p'x)}G™'

3.86
h® H® - BE® ha® o w00

Finally, the RPIM shape functions corresponding to the nodal displacements
vector @(x) are obtained as

') ={4(x) 4Hx) - ¢, (3.87)

Equation (3.85) can be re-written as
u(x)=®" (x\)U, =) gu, (3.88)
i=1

The derivatives of u(x) are easily obtained as
u,(x) =@} (x)U, (3.89)

where / denotes either the coordinates x or . A comma designates a partial
differentiation with respect to the indicated spatial coordinate that follows.
Note that R;' usually exists for arbitrarily scattered nodes (Powell, 1992;
Schaback, 1994; Wendland, 1998). In addition, the order of polynomial
used in Equation (3.70) is relatively low. Therefore, in general, there is no

singularity problem in the RPIM as a small number of nodes (typically
10~40 for 2D problems) are used in the local support domain.
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Note that the moment matrix Ry can be badly conditioned when the
number of nodes increases. This is observed in MFree global collocation
methods that use all the nodes in the entire problem domain in the
formulation. One of the features of the global collocation methods is that a
symmetric formulation is possible (Wu, 1992). This book, however, will not
discuss these methods.

There are several advantages of using RBFs as a basis in constructing
PIM shape functions that use local compact support domains.

e Using RBFs can effectively solve the singularity problem of the
polynomial PIM.

e RPIM shape functions are stable’ and hence flexible for arbitrary and
irregular nodal distributions.

e RPIM shape functions can be easily created for three-dimensional
domains, because the only variable is the distance » in a RBF. For
three-dimensional interpolation, we simply change the distance
expression to

Feye-x) () +(z-2) (3.90)

e RPIM shape functions are better suited than MLS functions for fluid
dynamics problems (see, Chapter 7).

However, RPIM also has some shortcomings, such as

e RPIM shape functions usually give less accurate solutions for solid
problems compared to MLS and the polynomial PIM shape functions.

e Some shape parameters must be determined carefully, because they
can affect the accuracy and the performance of the RPIM shape
functions used in MFree methods.

e RPIM shape functions are usually computationally more expensive
than the polynomial PIM because more nodes are required in the local
support domain.

The properties of RPIM shape functions (GR Liu, 2002) are listed in this
section.
1) Delta function property

RPIM shape functions have the Kronecker delta function property.

" Small changes in nodes locations or number of nodes in the support domain will
not give rise to a big change in the RPIM shape functions created.
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2) Partitions of unity

RPIM shape functions have the property of partitions of unity, i.e.,

i@ =1 (3.91)

if the linear polynomial terms are added in the basis (m=3 in Equation
(3.70)), and hence there is a constant term in the basis functions. The
property of partitions of unity can be easily proven using the properties of
reproduction of the RPIM shape functions.

If the pure RBF is used (m=0 in Equation, (3.70)), the property of
partitions of unity can be easily proven for CSRBFs, as there are clearly
constant terms in CSRBFs (see, Table 3.3). However, there is no constant
term explicitly shown in some RBFs, such as the MQ-RBF. Additional
treatment is needed for these RBFs to explicitly reveal the constant term.

An arbitrary function that has continous derivatives of all orders can be
expressed by an infinite Taylor series expansion. For example, for the MQ-
RBEF, the Taylor series expansion in the vicinity of 7=0 is

b(r)=b(0)+b'(0)r + mrz 4
2! (3.92)

h”
=C* +b'(0)r+\/2ﬁr2 4oee

We clearly see that there is a constant term in Equation (3.92) because
C#0 in MQ-RBF. The presence of this constant basis facilitates the
reproduction of a constant field following the reproducibility property of the
RPIM shape functions. Note that the condition for the reproduction of a
constant field in the local domain is that all RBFs used in the RPIM have to
be evaluated exactly, meaning that the expansion in Equation (3.92) needs to
have infinite terms. This will be confirmed in the example presented in Sub-
section 3.2.3.3. Therefore, Equation (3.91) may not be satisfied “exactly”
but “approximately” in the numerical tests, because that there are always
numerical truncation errors in the computation of a RBF caused by the use of
finite terms in the Taylor series expansion.

Note here that TPS-RBF and Logarithmic-RBF do not satisfy the
condition of #(0)= 0. Hence, the polynomial terms are needed in TPS-RBF

and Logarithmic-RBF to ensure the property of partitions of unity for the
RPIM shape functions.
3) Compact support

RPIM shape functions are compactly supported, as they are constructed
using nodes in a compact support domain, and they are not used or are
regarded as zero outside the support domain.
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4) Continuity

The RPIM shape functions usually possess higher continuity because of
the high continuity of the radial basis functions.

5) Reproducibility

The RPIM with at least polynomial terms can ensure an exact
reproduction of linear polynomials.

Note that some RBFs will not have linear reproducibility meaning the
RPIM cannot reproduce a linear field function without being augmented with
linear polynomial terms. For example, in the case of the MQ-RBF, there
exist no linear terms in its Taylor expansion form of Equation (3.92) due to
b'(0)=0 . This could be one of the major reasons for the poor #-

convergence in using MQ-RBFs. Hence, the linear polynomial terms are
sometimes added in the RPIM to improve the performance in this regard.

6) Compatibility

In using RPIM shape functions, the compatibility in the global domain is
not ensured when the local support domain is used, and the field function
approximated could be discontinuous when nodes enter or leave the moving
support domain.

3.2.2.2 Hermite-type RPIM

As shown in Figure 3.3, if there are DB-nodes within the support domain
of a point of interest, their normal derivatives are considered as the
additional unknowns. This implies that the DB-nodes not only have function
values but also normal derivatives as variables. This is achieved by adopting
the following Hermite-type interpolation using RBFs. The formulation
procedure is similar to those given in Sub-section 3.2.2.1, except that it takes
into consideration the additional normal derivative degrees of freedom
(DOFs ) for DB-nodes, which is again similar to the Hermite—type WLS
discussed in section 3.2.1.3.

The approximation of a field function u(x) can be written in a linear
combination of RBFs at all the n nodes within the local support domain and
the normal derivatives at the DB-nodes, i.e.,

" (x) = ZR(x)a+f ()b +ﬁpk(x>ck (3.93)

where a;, b; and ¢, are coefficients to be determined, n is the number of
nodes in the local support domain (including the DB-nodes), npg is the
number of the DB-nodes in the local support domain, m is the number of
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polynomial terms for augmentation, p; is a monomial, and n is the vector of
the unit outward normal on the boundary at the DB-node.

In Equation (3.93), R.(x) and R»?B (x) are RBFs that have been
discussed in Sub-section 3.2.2.1. We have
R(x) = R(|x—x,|)
RFB (x)= R(Hx - x]j)B H)
SR"(x)  OR(x) . OR"(x)
=1 +1,
on v ox Yooy

(3.94)

where x;is the coordinate for the ith node in the local support domain, X?B

is the coordinate for the jth DB-node, and /;=cos(n,x;) and

Y

[, =cos(n,y;) are direction cosines.

Note that because the derivatives of the field function at the DB-nodes
are treated as unknowns, we use the derivatives of the same radial basis
functions as the basis in Equation (3.93) for the DB-nodes. One may choose
to use any other type of basis functions for these DB-nodes, as long as they
are independent of the other basis used in Equation (3.93).

Equation (3.93) can be re-written in the following matrix form

u"(x)=B"a, (3.95)
where the vector of basis function B has the form of
ORPP OR,”
BT = R - R, aln a;l;m 1 x y - p,(X (3.96)

and the vector of coefficients a, is given by

ay=la, a, .. a, b .. b ¢ . ¢ (3.97)

npR

The coefficients a;, b; and ¢, in Equation (3.93) are determined by making
the interpolations pass through all #» nodal function values within the support
domain and equal the derivatives values of the function at the DB-nodes.

e For all the n nodes in the local support domain (including the DB-
nodes), we have

= (x,) = ZR(x,)a +f ’)b +Zpk(x1)ck (3.98)

where I=1,2, ..., n
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e For all the DB-nodes, we have

ORGP RTRTOT) G
i J

on on : < on "

3.99
— k (3.99)

i1 =
where /=1, 2, ..., npg.
e To obtain a unique solution, we impose the following constraints.

pp

D pe(x)a;+ > p(x )b, =0, k1,2, ..,m (3.100)
=1 =)

Arranging Equations (3.98)~(3.100) together leads to the following set of
equations in matrix form.

Jags l {RO o el
U, =12 Rl R Py, (b =Gay (3.101)

vl e o e

G %

where G is the generalized moment matrix that consists of:

the polynomial moment matrix evaluated at n nodes,

! 1 1]
X, X, X,
P =| Vv, e W (3.102)
_pm(xl) pm(xz) pm(xn)_(mxn)

and the moment matrix of the 1st derivatives of polynomials evaluated at npg
DB-nodes,

ap, (x*) |

0 lDBxl lDByl e 8nl
0, (x3")

P - 0 ZDsz lDByZ 2
bB = on (3.103)

op, (x,)

0 lDan lDByn e a

L n (npgxm)

the moment matrix of RBFs evaluated at n nodes,
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R] (Xl) R2 (Xl) o Rn (Xl)
Ro _ Rl (Xz) Rz (Xz) Rn (Xz) (3‘104)
Rl (Xn) RZ (Xn) o Rn (Xn)

(nxn)

the moment matrix of 1st normal derivatives of RBFs evaluated at the DB-
nodes,

OR(x") R, (x™) R, (x") |
on on on
OR (x)")  OR,(x3") R, (x3")
Ri,=| on on on (3.105)
OR/(X™")  OR,(x") OR,(x™)
L On on on 1,

and the moment matrix of 2nd normal derivatives of RBFs evaluated at DB-
nodes,

2 ORGP B ARG 6 R,
on on on on on on
2 ORO B RO 8 R, ()
R, =| 6n on on on on on (3.106)
o ARG 8 RO o 3R, (),
- an an an an an an ~(#pp*fipR)

In Equation (3.101), the extended vector of nodal variables is

ou(x" ou(x2® )

L | MUY ) (3.107)

~

Ul =|u(x) - u(x,)
on on

the vector of nodal function variables is
U ={u, u, uy . u) (3.108)

and the vector of nodal normal derivative variables is
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ou AuPP AuPP 6uDR !
i e (3.109)

on on on on

It is clear that G in Equation (3.101) is symmetrical. For the same
reasons mentioned in Sub-section 3.2.2.1, G is also, in general, invertible.
Hence, we can solve Equation (3.101) for a, to obtain

a,=G'U, (3.110)
Substituting Equation (3.110) back to Equation (3.93) yields
u"(x)=B"a, =B'G 'U, =@"U, (3.111)

where @ is a vector of the shape functions given by
®" =B'G"

B B (3.112)
=[¢| T N T L'

p ]
" (n+npg+m)x1

Finally, the approximated function and its derivatives can be obtained
using Equation (3.111).

pp

u"(x) = Z¢lul z¢

wn ) ou™

ou"(x) ~~0g,
ox _;ax " jz o on

nos A4H A DB
au (X) Z Za¢J auj
oy i — 8y On

(3.113)

Because of the existence of G ' for arbitrarily scattered nodes, there is

no singularity problem in the process of computing the Hermite-type RPIM
shape functions. In addition, the Hermite-type RPIM shape functions are
stable and very flexible for arbitrary nodal distributions. They will be used
in the MFree collocation methods discussed in Chapter 6.
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3.2.3 Source code for the conventional RPIM shape
functions

In this section, a standard subroutine, RPIM_ ShapeFunc 2D.f90, for
computing the conventional RPIM shape functions for two-dimensional
problems is provided. This subroutine is written in FORTRAN 90.

Note that all programs provided in this book are developed and tested
based on the MS Windows and MS Developer Studio 97 (Visual FORTRAN
Professional Edition 5.0.A) in a personal computer. After slight revisions,
these programs can also be executed in other platforms and systems, such as
the UNIX system on workstations. In our research group these codes are
frequently ported between Windows and UNIX systems, and there has been
no technical problem.

3.2.3.1 Implementation issues

1) Determination of the support domain

For a two-dimensional domain, O, the support domain for a point of
interest can be of various shapes. Circular and rectangular support domains
are often used, and shown in Figure 3.1(a) and Figure 3.1(b), respectively.
The rectangular support domain is simple to construct and easy to
implement. Hence, in this section and following sections, the rectangular
support domains are used.

Using the rectangular support domain, the dimension of the support
domain is determined by d,, and d, in x and y directions, respectively, i.e.,

d.VX = aSX d(,‘)(
dsy =a_d

sy ey

(3.114)

where o, and o, are the dimensionless sizes of the support domain in x and
v directions. For simplicity, one often uses o,=a,, and d., and d., are the
nodal spacings in x and y directions in the vicinity of the interpolation point
at Xp. (see, Figure 3.1). If the nodes are uniformly distributed, d,, is simply
the distance in x direction between two neighboring nodes, and d,, is simply
the distance in y direction between two neighboring nodes. When the nodes
are non-uniformly distributed, d. and d., can be defined as an average nodal
spacing in the support domain of X, using the simple procedure discussed in
Sub-section 3.1.3.

2) Shape parameters in radial basis functions

In the present subroutine of computing RPIM shape functions, the Multi-
quadrics (MQ)-RBF, Gaussian (EXP)-RBF, and Thin Plate Spline (TPS)-
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RBF, are coded. As shown in Table 3.2, the shape parameters in RBFs have
to be pre-determined.

e For the MQ-RBF, there are two shape parameters: . and g. In the
standard RBF, ¢ =10.5 is often used. ©Wang and GR Liu (2001a,

2002c) have left ¢ open to any real number and found ¢=0.98 or 1.03
good for solid and fluid mechanics. Both ¢ and @, are now
dimensionless constants, and will be investigated later in this chapter
for surface fitting and in Chapters 4, 5, 6 for mechanics problems. The
nodal spacing d, is calculated using

. 2 2
d,=d, +d, (3.115)

where d,. and d., are nodal spacings in the x and y directions efined in
Equation (3.114).

e For the EXP-RBF, there is only one shape parameter, «; it is usually
a positive number smaller than 1.0.

e For the TPS-RBF, the only shape parameter is 7.

Shape parameters affect the performance of RBFs. Generally, there are
no theoretically best values. They have been determined by intensive
numerical investigations for classes of problems for weak-from formulations
(GR Liu, 2002; Wang and GR Liu, 2002¢). This issue will be further studied
in Chapters 4 and 5 for MFree weak-form methods, in Chapter 6 for MFree
strong-form methods, and in Chapter 7 for MFree weak-strong form
methods.

3) Calculation of RPIM shape function

Equation (3.86) is used to compute RPIM shape functions. Direct
inversion of G is avoided using a linear equation solver. Equation (3.86) can
be re-written as

@' (x)G={R"(x),p'x)}G'G

={R"(®),p" (®)} (119
Hence, we have
(@' (x)G)" ={R"(x),p" (x)} (3.117)
or
GTd(x) = {R(X)} (3.118)
p(x)
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Solving Equation (3.118) using a standard linear equation solver, we can
obtain RPIM shape functions directly without computing G '

Derivatives of the RPIM shape functions can be obtained using Equation
(3.118).

OR(x)

8 T3 _i R(X) _ ox
&(G cp(x))_ax{p(x)l_ () (3.119)
Ox

or
OR(x)
Gt oD (x) _ ox
Ox op(x)
Ox

(3.120)

The 2nd derivative is

/*R(x

o’ P( E :
GT X) _J ox

x' | a’p(x)

ox?

(3.121)

Therefore, the derivatives of the RPIM shape functions can also be obtained
by solving Equations (3.120) and (3.121) using the standard linear equation
solver.

4) Flowchart of the subroutine

The flowchart of the subroutine RPIM_ShapeFunc 2D.f90 is shown in
Figure 3.4.

3.2.3.2 Program and data structure

The main subroutine RPIM_ShapeFunc 2D calls two subroutines that are
shown in Figure 3.4 and Appendix 3.1.

1) Main Subroutine RPIM_ShapeFunc_2D

This subroutine is used to compute RPIM shape functions and their
derivatives for a two-dimensional domain. In the current program, up to
second order derivatives of shape functions are given. The user can modify
this subroutine to compute higher-order derivatives of shape functions
without too much difficulty. In addition, the polynomial terms added in the
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radial basis are up to linear (mbasis=3). If mbasis=0 is used, the program
produces pure RPIM shape functions without polynomial augmentation.
The user can add more polynomial terms by changing the subroutine slightly.

The dummy arguments used in the subroutine RPIM_ShapeFunc 2D are
listed in Appendix 3.2. The source code of the subroutine
RPIM_ShapeFunc 2D is listed in Program 3.1.

Input data

. Call Subroutine
Compute the basis Compute_RadialBasis

}

Compute matrixG

v

Compute shape function Call Subroutine
and its derivatives Gauss EqSolver_Sym

Figure 3.4. Flowchart of the program of RPIM_ShapeFunc 2D.f90 for computing RPIM
shape functions.

2) Subroutine Compute RadialBasis

Source code location: Program 3.2.

Dummy arguments: Appendix 3.3.

Function: to compute RBF R(r) and its derivatives. In the current
program, MQ-RBF, EXP-RBF and TPS-RBF are included.
The user can change this subroutine slightly to include any
other RBF (e.g., CSRBF).

3) Subroutine GaussEqSolver Sym

Source code location: Program 3.3.

Dummy arguments: Appendix 3.4.

Function: it is a standard equation solver using the Gauss elimination
method. To use this solver, the coefficient matrix must be
symmetric.
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3.2.3.3 Examples of RPIM shape functions

An example is presented to illustrate the properties of the conventional
RPIM shape function and its derivative created using 25 nodes in the support
domain. These 25 (5x5) nodes, as show in Figure 3.5, are regularly and
evenly distributed in a rectangular domain: x, €[-1, 1] and y, €[-1, 1].
The coordinates of these 25 nodes are listed in Table 3.4. The RPIM shape
functions created can be evaluated at any point in the domain, and plotted in
x-y space. In this study, a total of 61x61 points is used to evaluate and plot
the shape functions.

A simple main program is listed in Program 3.4. In this program, the
influence domain is used as an alternative to the support domain. The
detailed discussions of comparisons between the support domain and the
influence domain are presented in Chapter 4. The size of the influence
domain for different field nodes is adjusted to ensure all 25 field nodes are
included in the interpolation for each evaluation point.

1) The RPIM shape functions and their derivatives

Three typical radial basis functions, MQ-RBF, Exp-RBF and TPS-RBF,
are used, and RPIM-MQ, RPIM-EXP and RPIM-TPS will be used in the
following to denote RPIM shape functions using MQ, EXP and TPS radial
basis functions, respectively.

Figure 3.6~Figure 3.8 show the RPIM-MQ shape functions and their
derivatives. The shape parameters, a.=2.0, d.=0.5, and ¢=0.5 are used with
mbasis=0 (no polynomial augmentation). Figure 3.9 shows the RPIM-EXP
shape functions. The shape parameters are a,=0.03, d.=0.5, and mbasis=0.
Figure 3.10 shows the RPIM-TPS shape functions. The shape parameters
are 7=4.001 and mbasis=0.

Appendix 3.5 lists a sample output of RPIM-MQ result from this
program for the sampling point at x' =[0.2, 0.4]. From this appendix, we can
observe that RPIM shape function satisfy the partitions of unity. As
discussed in Sub-section 3.2.2.1, however, Equation (3.91) may not be
satisfied exactly because there are always numerical truncation errors in the
computation of complex RBFs. The summation of shape functions is not
exact but approximate 1.0, as shown in Appendix 3.5.

Appendix 3.6 lists a sample output of RPIM-MQ for this same program
for the sampling point at x'=[0, 0]. This appendix shows that the RPIM
shape functions have the Kronecker delta function property. For example, in
Appendix 3.6, at point x'=[0, 0] where node 13 is located, we have

i=13 (x=Xx3)

1
- 3.122
%) {o i#13 (X#£X,;) ( )
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This confirms numerically that that RPIM shape function possesses the
Kronecker delta function property.

The distribution of ¢ and Z—¢ for the central node 13 along the line y=0

X

is plotted in Figure 3.11 and Figure 3.12.

Table 3.4. Coordinates of 25 field nodes shown in Figure 3.5

Node X; Vi Node Xy i
1 -1 1 14 0 -0.5
2 -1 0.5 15 0 -1
3 -1 0 16 0.5 1
4 -1 -0.5 17 0.5 0.5
5 -1 -1 18 0.5 0
6 -0.5 1 19 0.5 -0.5
7 -0.5 0.5 20 0.5 -1
8 -0.5 0 21 1 1
9 -0.5 -0.5 22 1 0.5
10 -0.5 -1 23 1 0
11 0 24 1 -0.5
12 0 0.5 25 1 -1
13 0 0

A
y
o 1 6 D 11 ° 16 ° 21
0, 1)
o 2 7 P12 ° 17 ° 22
3 8 13 18 23 .
(-1,0) 1, 0) x
o 4 9 b 14 o 19 o 24
o5 10 b 15 © 20 o 25
(0$ _1)

Figure 3.5. A total of 25 regularly distributed field nodes used to compute MFree shape

functions.
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2) The effect of shape parameters

The effects of shape parameters of RBFs are examined by plotting the
shape function ¢ for the central node 13 along the line of y=0.

Figure 3.13 shows the RPIM-MQ shape functions for different
parameters of g=—0.5, g=0.5 and ¢=1.03. It is found that there is a little
difference in the shapes of the shape functions for different ¢ values.

Figure 3.14 shows the RPIM-EXP shape functions for different
parameters of o, =0.03, & =0.1 and . =0.3. It is found that a small ¢. leads
to a large negative value for the shape functions.

Figure 3.15 shows the RPIM-TPS shape functions for different
parameters of 7 =4.001, 7=5.001 and 7 =6.001. It is found that there is a
little difference in shape functions for different 7 values.

The RPIM shape functions with different terms polynomial augmentation
of mbasis=0 and 3 are also obtained. It is found that the effect of mbasis on
the shape of shape functions is insignificant. Therefore, figures of different
mbasis are not plotted here.

Figure 3.6. RPIM shape function for node 13 at point x'=[0, 0] obtained using 25 nodes
shown in Figure 3.5 (MQ-RBF is used with shape parameters of ¢ =0.5, «, =2.0,

d,=0.5,and mbasis =0.).
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Figure 3.7. The first-order derivative of the RPIM shape function for node 13 at x'=[0, 0]
obtained using 25 nodes shown in Figure 3.5 in the support domain (MQ-RBF is used with

shape parameters of ¢=0.5, . =2.0, d.=0.5, and mbasis =0 ).

Figure 3.8. The second-order derivative of the RPIM shape function for node 13 at x'=[0, 0]
obtained using 25 nodes shown in Figure 3.5 in the support domain (MQ-RBEF is used with

shape parameters of ¢ =0.5, ., =2.0, d,=0.5, and mbasis=0.).
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A X

Figure 3.9. RPIM shape function for node 13 at x'=[0, 0] obtained using 25 nodes shown in
Figure 3.5 (EXP-RBEF is used with shape parameters of «, =0.03, d.=0.5 and

mbasis =0 .).

Figure 3.10. RPIM shape functions for x'=[0, 0] obtained using 25 nodes shown in Figure
3.5 (TPS-RBF is used with shape parameters of 7, =4.001, and mbasis =0 ).
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]
0.8}
0.6[
0.4f
TPS
0.2f /
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-0.2;\_\ N /{/.
-0_4»\‘\' '/' MQ T\ ‘/' 1
-0.6 - ‘ -

-1 -08 -06 04 02 0 02 04 06 08 1 <X

Figure 3.11. RPIM shape functions for the node 13 at x'=[0,0] along the line of y=0 obtained
using different RBFs.

-1 08 -06 -04 02 0 02 04 06 08 1 ~*

(b)

Figure 3.12. The 1st derivatives of RPIM shape functions for the node 13 at x'=[0,0] along
the line of y=0 obtained using different RBFs.
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0.8

0.6

0.4

0.2

-0.2

Nrs

04 I 1 I I I 1 I 1
-1 -08 06 -04 02 0 02 04 06 08 1

Figure 3.13. RPIM-MQ shape function for node 13 at x'=[0,0] along the line of
=0 obtained using different ¢
(in MQ-RBF, shape parameters. «, =2.0, d, =0.5, and mbasis =0).

1 T

0.8

0.6

0.4

_0'6—1 -08 06 -04 02 0O 02 04 06 08 1 X

Figure 3.14. RPIM-EXP shape function for node 13 at x'=[0,0] along the line of
y=0 obtained using different «
(EXP-RBF with d. =0.5, mbasis=0).
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0.8

0.6

0.4

17=6.001

_0'4 L L L I L L L
-1 -08 06 04 02 0 02 04 06 08 1

X

Figure 3.15. RPIM-TPS shape function for node 13 at x"=[0,0] along the line of y=0
obtained using different 77 (TPS-RBF with mbasis =0 ).

3.3 MOVING LEAST SQUARES SHAPE FUNCTIONS

The moving least squares (MLS) approximation was devised by
mathematicians in data fitting and surface construction (Lancaster and
Salkausdas 1981; Cleveland 1993). It can be categorized as a method of
series representation of functions. An excellent description of the MLS
method can be found in a paper by Lancaster and Salkausdas (1981). The
MLS approximation is now widely used in MFree methods for constructing
MFree shape functions.

3.3.1 Formulation of MLS shape functions

Consider an unknown scalar function of a field variable u(x) in the
domain, Q. The MLS approximation of u(x) is defined at x as
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W' ()= p,(a,(x) =p" (¥)a(x) (3.123)

J=1

where p(x) is the basis function of the spatial coordinates, x'=[x, y] for two-
dimensional problem, and m is the number of the basis functions. The basis
function p(x) is often built using monomials from the Pascal triangle to
ensure minimum completeness. In some special problems, enhancement
functions can, however, be added to the basis to improve the performance of
the MLS approximation. We use only pure polynomial bases in this book.

In Equation (3.123), a(x) is a vector of coefficients given by

a' (N)={ag,(x) a(x) - a,x)} (3.124)

Note that the coefficient vector a(x) in Equation (3.123) is a function of
x. The coefficients a can be obtained by minimizing the following weighted
discrete L, norm.

J=Y Wx=x)p" (x)a(®) -] (3.125)
i=1
where n is the number of nodes in the support domain of x for which the

weight function W(X—Xi) #0, and u; is the nodal parameter of u at x=x,.

Equation (3.125) is a functional, a weighted residual, that is constructed
using the approximated values and the nodal parameters of the unknown
field function. Because the number of nodes, n, used in the MLS
approximation is usually much larger than the number of unknown
coefficients, m, the approximated function, u”, does not pass through the
nodal values, as shown in Figure 3.16.

The stationarity of J with respect to a(x) gives
oJ/oa=0 (3.126)
which leads to the following set of linear relations.
A(x)a(x)=B(x)U; (3.127)

where U, is the vector that collects the nodal parameters of field function
for all the nodes in the support domain.

U ={u, u, .. un}T (3.128)
and A(x) is called the weighted moment matrix defined by
A(x) =D W,x)px,)p' (x,) (3.129)
i=1

where
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W (x)= W(x—x,) (3.130)
Au
[ ]
T ° ° o
e e oA o ©
/o/ | °
° o | A
i u'(x)
u; :
Y
|
!
v iv .
0 X,

Figure 3.16. The approximate function 1"(x) and the nodal parameters u, in the MLS
approximation.

For a two-dimensional problem and using the linear basis (m=3) defined in
Equation (3.8), A is a symmetric 3x3 matrix that can be explicitly written as

Aus (0= 217, (0p(x )P (x,)

[1 X [1 XM
=Wx-x)x, x x|+ E-x)x, X x|+
tyl Xy ‘j’z %y, ¥
1 X, VY,

---+VI7(X—X”) X, XX,

n
2

yn xnyn y"l
S,

i=1

’le- v,
i=1

iny,-
i=1

L (3x3)

(3.131)

=
=
Y
=
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M=
=
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=,
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N
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The matrix B in Equation (3.127) is defined as

B)=[W, (x)p(x1)) W, (X)p(x2) .. W, (X)p(x,)] (3.132)
which is a 3xn matrix, and can be expressed explicitly as
[1] 1] 1

B3 (X)=| W(x—x )! X, | W(x—x )! X, W(x—xn)% X,

| |
I B

- ~ ~ (3.133)
i w,
ylm .y2VV2 ynVI/n (3<n)
Solving Equation (3.127) for a(x), we have
a(x)=A"'(x)B(x)U, (3.134)

Substituting the above equation back into Equation (3.123), we obtain

W)=Y (0, =@ (WU, (3.135)

i=l1

where ®@ (x) is the vector of MLS shape functions corresponding 7 nodes in
the support domain of the point x, and can be written as,

O (x)= {¢1 x) Hx) - 94, (X)}(lxn) =P ' (X).A_l (X)]i(i), (3.136)

1x3 3x3

The shape function ¢@4(x) for the ith node is defined by

6= p,(x)(A" (®OB(X),; =p' (X)(A™'B), (3.137)
j=1

Note that the WLS formulation mentioned in Sub-section 3.2.1.2 is very
similar to the MLS formulation. In the MLS, the coefficient a is the function
of x which makes the approximation of weighted least squares move
continuously. Therefore, the MLS shape function will be continuous in the
entire global domain, as long as the weight functions are chosen properly.
This global continuity feature is preferred in the MFree global weak-form
methods (Chapter 4). In WLS, however, because the coefficient a in
Equation (3.32) is the constant, the WLS shape functions are piecewise
continuous, as discussed in Section 3.2.1.2. The WLS approximation can be
viewed as a special form of the MLS approximation.



3. Meshfree shape function construction 101

For the convenience in obtaining the partial derivatives of the shape
functions, Equation (3.136) is re-written as (Belytschko et al. 1996b)

@' (x)=7" (x)B(x) (3.138)
where
Y =p'A”’ (3.139)
Since A is symmetric, y(x) can be obtained from Equation (3.139)
Ay=p (3.140)

The partial derivatives of y can then be obtained by solving the following
equations.

Ay, =p,— Ay (3.141)

Ay, =p,; —(Ay,;+A ¥, +A,Y) (3.142)

AY,i/k =P — (A,iY,jk + A,,/Y,ik + A,kY,(j + A,(/V,k

(3.143)
+ A,iky,j + A,jk'Y,i + A,i/'kY)

where i, j and k denote coordinates x and y, and a comma designates a partial
derivative with respect to the indicated spatial coordinate that follows. The
partial derivatives of the shape function @ can be obtained using the
following expressions.

@ =y'B+y'B, (3.144)

T _ L TRyT T T 3.145
@ =yIB+y B, +y B, +y'B, ( )
(I):l;jk = YI’,-/(B + YI/B,I( + ’Y:l;kB,_j + 'Y,T/kB,i

. T N T (3.146)
+y, B +y Byu+v,B,;+7 B,

In the MLS approximation, a support domain, defined in Equation (3.1),
can be formed for any point of interest. Field nodes included in this support
domain are used to perform the MLS approximation for the unknown function
at this point. The number of nodes, #, chosen in the support domain, should be
sufficient to ensure that the matrix A in Equation (3.134) is invertible, so as to
provide the interpolation stability (Condition 2 in Sub-section 3.1.1). The
choice of n depends on the nodal distribution and the number of basis

functions, m. In order to ensure the existence of A~ and a well-conditioned
A, we usually let n>>m . Unfortunately, there is no theoretical best value of
n, and it has to be determined by numerical experiments.
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3.3.2 Choice of the weight function

Equation (3.137) shows that the continuity of the MLS shape function ®
is governed by the continuity of the basis function p as well as the
smoothness of the matrices A and B. The latter is governed by the
smoothness of the weight function. Therefore, the weight function plays an
important role in the performance of the MLS approximation. In the

reported studies so far, W(X—Xi) is always chosen to have the following
properties.

o W(x-— x;) >0 within the support domain
o W(x-— x;) =0 outside the support domain

o W(x-— x;) monotonically decreases from the point of (3.147)
interest at x

o W(x— x,) is sufficient smooth, especially on the
boundary of Q)
The last condition in Equation (3.147) is to ensure a smooth inclusion and

exclusion of nodes when the support domain moves, so as to guarantee the
compatibility of the MLS shape function in the entire problem domain.

The choice of the weight function is more or less arbitrary as long as the
requirements in Equation (3.147) are met. The exponential function and
spline functions are often used in practice. Among them, the most
commonly used weight functions are listed below.

e The cubic spline function (W1) has the following form of

J2/3—4ﬁz+4ﬁ3 7 <05
W(x)=414/3-47 +47° -4/37° 05<7 <I (3.148)
{0 ro>1

which has 2nd order continuity (see, e.g., GR Liu and Liu, 2003).
¢ The quartic spline function (W2) is given by

1-67" +87° - 37"

W, (%) ={ i (3.149)
0 7

which has 3rd order continuity (see, e.g., GR Liu and Liu, 2003).

e The exponential function (W3) is expressed as
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_ o ila) 7 <l
W,(x) = (3.150)
0 o >1
Where « is a constant of shape parameter, and
_ d; |x —X,
fh=—t=— (3.151)
rW rw

in which d=|x—x,| is the distance from node x; to the sampling point x,
and r,, is the size of the support domain for the weight function.

As the derivatives of all orders of W3 are continuous within the support
domain, it is continuous at all orders within the interior of the support
domain. However, all the derivatives even the functions itself are not
exactly zero on the boundary of the support domain.  Therefore,
theoretically, W3 cannot provide compatibility of any order. Fortunately,
these non-zero values of the function and its derivatives are very small on
the boundary of the support domain. In practical numerical analyses, W3
provides very high order compatibility with a very small numerical error,
provided the support domain is sufficiently large.

Figure 3.17 plots all these three weight functions and their first
derivatives.

Note that it is easy to construct a weight function with a desired order of
continuity using the following common formulation (see, e.g., GR Liu and
Liu, 2003) of spline weight function.

W.(x)=472 ' (3.152)

where / is the order of the spline function, and b; are the coefficients that can
be determined by the required conditions.

For example, a 4th order spline function can be written in the general
form of

by + b7 + b7 +by7 +bt 0<7 <1
W.(x)= (3.153)
0 7>1

v
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Figure 3.17. Weight functions and their first order derivatives. W1: cubic spline; W2:
quartic spline; W3: exponential function (¢=0.3).
(a) weight functions; (b) the first order derivatives.

We now require the weight function to satisfy the following conditions.

e Unity condition states that the weight function is one at the centre of
the support domain where 7, =0:
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W =1 (3.154)

0

e Compact support condition states that 1sz and 2nd derivatives of the
weight function are all zero at the boundary of the support domain
where 7 =1. This compact support condition leads to the following

set of equations.

il =0
=1
oW,
— =0 (3.155)
6r 7 =1
-
0 Vlzfl 0
67 7 =1

e The condition of symmetry states that the 1sz derivative of the weight
function is zero at the centre of the support domain where 7z =0. The

condition of symmetry gives the following equation.

-0
p= (3.156)

70

Using Equations (3.154), (3.155) and (3.156), we can obtain the following
set of equations.

w| =1
7=0
Ml _,
6(7_.7:0 by =1
_ b =0
W) =0
=l or b, +b +b,+b,+b,=0 (3.157)
ow, o by +2b, +3b, +4b, =0
o, 2b, +6b, +12b, =0
-
anz/l. o
ar 7=l

Solving the above set of equations for b; yields
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by =1
b, =0

b, =-6 (3.158)
b, =8

b,=-3

Substituting these coefficients back into Equation (3.153), we obtain the
following weight function.

W (x) = 1-67" +87" 37" 0<7 <1
0 7>l (3.159)

This is the quartic spline weight function (W2) given by Equation (3.149).

Similarly, any other spline weight function (with required order of
continuity and shape profile) can be constructed. Atluri et al. (1999b) also
mentioned a similar method for constructing the weight function. More
details on systematic ways to construct weight (smoothed) functions can be
found in GR Liu and Liu (2003) including the construction of piecewise
weight functions.

3.3.3 Properties of MLS shape functions

1) Consistency

By the definition, the consistency of the MFree shape functions is the
ability of the shape functions to reproduce the complete order of polynomial.
The consistency of the MLS approximation depends on the complete order
of the monomial employed in the polynomial basis. If the complete order of
monomial is , the shape function will possess C* consistency. This can be
easily demonstrated (Krongauz and Belytschko, 1996; GR Liu, 2002) as
follows.

Consider a field given by
k
u(x) = 2p,(x)a;(x), ksm (3.160)
j=1
Such a given field can always be written in the form of

u(®)=Y. p, (0, (0 + Y (00 (3.161)

I=k+1

If we let a(x) =o(x), j=1,2, ..., k, J in Equation (3.125) will vanish and it
will necessarily be a minimum, which leads to
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(x) - ipmx)a_,-(x)w(x) G.162)

This proves that any monomial included in the basis of MLS will be exactly
reproduced by the MLS approximation.

2) Reproduction

In the MFree method, the concept of reproduction is separated from that
of the consistency (GR Liu, 2002). This is because different types of basis
functions can be used in constructing MFree shape functions. Reproduction
is the ability of the shape function to reproduce functions that are in the basis
function used to construct the shape functions. The function may not be a
polynomial, such as the radial basis function (RBF) in the radial point
interpolation method (RPIM). However, consistency emphasizes the
reproducibility of complete order of polynomials. This is the main
difference between consistency and reproduction.

Similar to the demonstration of consistency, it can be proven that the
MLS approximation can reproduce exactly any function that appears in the
basis. This property will be very useful in the practical application. For
example, we know that there is a singular stress field near the tip of a crack.
If only the normal polynomial basis is used, the computational error will be
certainly very large. If we can enrich the basis by including a singular
functions into the basis, the reproduction property of MLS will ensure the
reproduction of the singular field. As results, the solution accuracy can be
significantly improved without too much additional cost (see, e.g.,
Belytschko et al., 1995a,b). Of course, one has to ensure that the weighted
moment matrix computed using Equation (3.129) is still invertible and well-
conditioned when these enriched basis functions are included, which can
otherwise be a problem sometimes.

3) Partitions of unity

If the constant is included in the basis, the MLS shape function ¢, (x) is
of the partition of unity, i.e.,

Y h=1 (3.163)

This can be proven easily from the reproducibility feature of the MLS
approximation. Detailed discussions can be found in Sub-section 3.2.1.1.

4) Lack of Kronecker delta function property

The MLS approximation is obtained by a special least squares method.
As shown in Figure 3.16, the function obtained by the MLS approximation is
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a smooth curve (or surface) and it does not pass through the nodal values.
Therefore, the MLS shape functions given in Equation (3.137) do not, in
general, satisfy the Kronecker delta condition. Thus,

(3.164)

TR
: Tl0 Q%

This property will be demonstrated later in the numerical examples.

3.3.4 Source code for the MLS shape function

3.3.4.1 Implementation issues

1) Determination of the support domain

As for the RPIM subroutine discussed in Sub-section 3.2.3, the
rectangular support domains are used. The dimension of the support domain
is determined by d,. and d,, in the x and y directions, respectively, which are
given by Equation (3.114).

2) Determination of weight functions

As discussed above, the weight function plays an important role in the
performance of the MLS approximation. All weight functions discussed in
Section 3.3.2 can be used. In the program given here, the weight functions
of the cubic spline function (W1, Equation (3.148)) and the quartic spline
function (W2, Equation (3.149)), are included. Because the rectangular
support domains are used, the weight functions need to be slightly modified.
We define now

W (x) =W, (x)- W, (x) =W (1) W(r,) (3.165)

where W,-x and Vf/” are any of the standard 1D weight functions in x and y

directions, respectively, given in Sub-section 3.3.2 with

- (3.166)

y=J)
=

sy

(3.167)

When cubic spline weight function (W1) is used, we have
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2/3—4r] +4r; . <0.5
W(r,)=44/3—4r +4r> —4/3r) 05<r <1 (3.168)
0 r, >1
2/3—41;.; +4ri)3, r, <05
W(r,)=44/3=4r +4r7 -4/3r) 05<r <1 (3.169)
0 By >1

When the quartic spline weight function (W2) is used, we have

— _ '2.(\.3_4.4 OST Sl

W ()= O B3 i (3.170)
7>l

7 1-6r7 +8 =3t 0<7, <1

W(’?)-)Z{ L (3.171)
r, >1

3) Calculation of MLS shape function

The MLS shape function is given by Equation (3.137). If we use this
equation to calculate the MLS shape function, A~ has to be computed,
which is not efficient. In addition, the computation of derivatives of the
MLS shape function is quite complex. Hence, the recurrence formulation
presented in Equations (3.140)~(3.146) is often preferred and used in the
program.

First, Equation (3.140) is solved by a standard linear equation solver to
obtain y.

Second, Equations (3.141)~(3.143) are solved to obtain derivatives of 7.

Third, Equations (3.138) and (3.144) ~ (3.146) are used to calculate the
MLS shape function and its derivatives.

This procedure avoids direct inversion A™'; it is efficient to obtain
arbitrary order derivatives of the MLS shape function.

4) Flowchart of the subroutine

The flowchart of the subroutine of the MLS approximation is shown in
Figure 3.18.
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Input data

!

Compute the basis

}

Compute matrices
A, B

!

Compute y and its
derivatives

!

Compute shape function

and its derivatives

Chapter 3

Figure 3.18. Flowchart of the program of MLS ShapeFunc 2D.f90 for computing the MLS

MLS ShapeFunc 2D

shape functions.

Calculate Basis

Calculate AB

Weight W1

A4

( Return

GaussEqSolver Sym

Figure 3.19. Macro flowchart for subroutine MLS_ShapeFunc 2D.
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3.3.4.2 Program and data structure

The main subroutine MLS ShapeFunc 2D calls several sub-subroutines.
The macro chart for the MLS ShapeFunc 2D can be seen in Figure 3.19.
The functions of these sub-subroutines are listed in Appendix 3.7. The
subroutine GaussEqSolver Sym of a standard equation solver has been
given in Sub-section 3.2.3.2.

1) Subroutines Weight W1 and Weight W2

Source code location: Program 3.5 and Program 3.6.

Dummy arguments: Appendix 3.8.

Function: to compute the cubic spline function (W1) and the quartic
spline function (W2) given in Equations (3.165)~(3.171).

2) Subroutine Compute_Basis

Source code location: Program 3.7.

Dummy arguments: Appendix 3.9.

Function: to compute the basis function and its derivatives. In the current
program, the basis of Equation (3.12) is used. In fact, the user
can easily change the number of basis functions through the
control constant, mm, that is the number of monomials used in
the basis functions (i.e., mm is the m used in Equation (3.123)).

3) Subroutine Compute AB

Source code location: Program 3.8.

Dummy arguments: Appendix 3.10.

Function: to compute matrices A and B those are given in Equations
(3.129) and (3.132).

4) Main Subroutine MLS_ShapeFunc_2D

Source code location: Program 3.9.

Dummy arguments: Appendix 3.11.

Function: to compute MLS shape functions and their derivatives for a two-
dimensional domain.

3.3.4.3 Examples of MLS shape functions

An example is presented to illustrate the properties of the MLS shape
function, and its derivative are computed using 25(5x5) nodes. These 25
nodes are regularly distributed in a rectangular domain: x, €[-1, 1] and
y; €[-1, 1], as shown in Figure 3.5. Coordinates of these 25 nodes are

listed in Table 3.4. To evaluate and plot the shape function and its
derivatives, a resolution of 61x61 points is used.
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The main program listed in Program 3.10, is used to evaluate MLS shape
functions. In the listed source code, the number of monomials used in the
basis function, m, is 3. The user can easily change m to 6.

1) MLS shape functions and their derivatives

The program obtains the MLS shape functions and their derivatives at
these 61x61 points first using m=3 and the weight function W1. The MLS
shape functions ¢ and their derivatives d¢/0x and O0¢/dy for the central

node 13 (see Figure 3.5) are plotted in Figure 3.20~Figure 3.22. The ¢ and
0¢/ Ox for the central node 13 along the line y=0 are plotted in Figure 3.23.

Appendix 3.12 lists a sample output for shape functions at the evaluation
point x'=[0, 0]. Appendix 3.12 confirms that MLS shape functions have the
following properties.

First, by adding up the values of ¢; at all the 25 nodes, we can confirm the
fact that the MLS shape function is of a partition of unity, i.e.

Zn:@(x):l (3.172)

015

Figure 3.20. MLS shape function for node 13 at x"=[0, 0] obtained using 25
nodes shown in Figure 3.5.
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03

0z

Figure 3.21. The first-order derivative of the MLS shape function for node 13 at x"=[0,
0] obtained using 25 nodes shown in Figure 3.5.

1 ' X

Figure 3.22. The second-order derivative of the MLS shape function for node 13 at x'=[0,
0] obtained using 25 nodes shown in Figure 3.5.
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Second, in Appendix 3.12, the point x'=[0, 0] is located at the field node
13. However, ¢5(x)=0.1467#1.0. The MLS shape functions do not satisfy
the Kronecker delta condition.

Third, although only the low order basis is used, the MLS shape functions
have high order continuity due to the use of the weight function. In this
example, although only the linear basis function (m=3) is used, the shape
function has higher order continuity. This fact is evident from the values of
O0¢./Ox that are not constants but very smoothly, as also shown in Figure

3.21. Note that even the 2nd derivatives 0°¢,/0x” of the shape functions are
also smooth as shown in Figure 3.22.

2) Effect of weight functions

Weight functions W1 and W2 are used to construct the shape functions.
Results of ¢ and 0¢/0x for the central field node 13 along a line y=0 are

plotted in Figure 3.23. This figure shows that the weight function will affect
the MLS shape function. When the order of basis is the same, the shape
function will inherit the continuity of the weight functions. Because these
two weight functions (W1 and W2) have different shapes and order of
continuities, the MLS shape functions of different weight functions shown in
Figure 3.23 are clearly different.

3) Effect of the order of basis functions

MLS shape functions and their derivatives using linear basis function
(m=3) and the quadric basis function (m=6) are computed. Results for the
central node 13 along the line y=0 and different m are plotted in Figure 3.24.
The basis function affects the MLS shape function. When m becomes larger,
the ¢3(x=0) increases. If m=n=25, the ¢;(x=0)=1. In this case, the MLS
approximation will become an interpolation of passing nodal values, and the
MLS shape function will become the PIM shape function that possesses the
Kronecker delta property if the moment matrix A is invertible. Of course,
when m>n, the MLS approximation will fail because A ' will not exist.

3.4 INTERPOLATION ERROR USING MESHFREE
SHAPE FUNCTIONS

The MFree methods firstly depend upon the quality of MFree shape
functions. Hence, the interpolation errors using MFree shape functions are
examined through surface fitting operations for given functions.
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Figure 3.23. Effects of weight functions on the MLS shape function of node 13 and its
derivative. The results are plotted along the line of y=0 using different weight functions. (a)
the shape function; (b) the first-order derivative of the shape function.
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Figure 3.24. MLS shape functions of node 13 obtained using different numbers of basis
functions m=3 and m=6. The results are plotted along the line of y=0. (a) the shape function;
(b) the first-order derivative of the shape function.
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The MLS and RPIM shape functions are studied here as they will be used
to develop MFree methods in the following chapters. A domain of (x,
»)€[0,10]x[0,10] is considered for the surface fitting. The domain is
represented by 11x11 uniformly distributed field nodes with a constant nodal
distance d~=1.0. A total of 100 points of (x, y)€[0.4, 9.4]x[0.4, 9.4] with
distance 4#=1.0 are considered as interpolation points; they are intentionally
chosen not to coincide with the field nodes to obtain a fair assessment of the
fitting accuracy. In order to perform the interpolation for an interpolation
point, a rectangular local support domain is used. The dimension of the local
support domain is defined in Equation (3.114), in which the nodal spacing
d.. and d,, in the x and y directions, respectively, are all set to 1.0.

The RPIM-MQ augmented with linear polynomials and the MLS
approximation using the linear basis and the cubic spline weight (W1)
function are investigated. The approximated value of the field function f{x)
for each interpolation point x can be interpolated using the nodes in the
support domain and the shape functions. Let the approximated function be

denoted by /; (x), we then have
Jx)=00F, =34, (3.173)

where ¢ is the MLS or RPIM shape function, and 7 is the number of field
nodes used in the support domain. The F; is the vector that collects the true
nodal function values (calculated analytically using the given function) for
these n field nodes, and f; is the function value for the ith field node.

The derivatives of f{x) at an interpolation point x can also be
approximated using shape functions, i.e.,

() _o0(x) - _ 3 o9,

A :
Ox, ox, T Ox,

fi (3.174)

The following norms are used as error indicators. The average fitting
errors of function values over the entire domain are defined as

R
el_N,Z. y;

where N is the total number of interpolation points in the entire domain, f; is

(3.175)

the exact values of function, and f is the approximated values of function.

1

In this example, N=100 is used.

The average fitting error of the 1st derivative of the approximated (fitted)
function at the interpolation point 7 is defined as
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1 N
€;ZNZ

i=1

(3.176)

_]7,',_ ]pl/‘
f

where f is the exact value of the st derivative of the function, and fi' is
values of the 1st derivative of the approximated function.

3.4.1 Fitting of a planar surface

A two-dimensional plane is considered first. i.e.,
SHxy)=x+y+1.0 (3.177)

It can be observed that both RPIM-MQ and MLS can exactly fit the plane to

the machine accuracy (107'°). This confirms the linear reproduction
property of these shape functions. It should be mentioned here that the

surface fitting for the plane will have errors (107 ~107") if the linear
polynomial term is not included in the RPIM-MQ. This is because the
RPIM-MQ without the augment of a linear polynomial term cannot exactly
reproduce linear polynomials, only a good approximation.

3.4.2 Fitting of a complicated surface

The following non-polynomial surface is fitted using the RPIM-MQ and
MLS shape functions.

. 2z 2
fr(x,y) =sin(x 'E) cos(y 'E) +1.5 (3.178)

1) Shape parameters of the RPIM-MQ

The effects of two shape parameters, ¢ and ¢, in the MQ-RBF are first
studied. In the studies of shape parameters, «=3.5 is used for the support
domain.

In the study of ¢, «=1.0 is fixed. The average fitting errors e, are
obtained for different ¢ and plotted in Figure 3.25. It can be found that the
interpolation quality changes with ¢q. The fitting error decreases when g is in
the vicinity of 1.0, 2.0 and 3.0. However, if g=1.0, 2.0, and 3.0, the RPIM-
MQ will fail due to the singularity of the moment matrix. When ¢>3.0, the
error is also very large due to the badly conditioned moment matrix.

In addition, the condition number of interpolation matrix of RPIM
becomes larger as g approaches 1.0 or 2.0 or 3.0. The preferred value of
parameter ¢ is ¢ =1.0 or 2.0 (but not equal 1.0 or 2.0, say, 0.98 or 1.03 or

1.99). This confirms the feature of the RPIM shape functions that more
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accurate fitting results are obtained when the moment matrix approaches (but
is not yet) singular. However, when ¢ is too close to 1.0 or 2.0 where the
moment matrix is nearly singular, the results are not stable due to the badly
conditioned moment matrix. Therefore, in using RPIM shape functions, one
needs to keep a balance between accuracy and stability. Hence, ¢g=0.98 or
1.03 is recommended for many problems (GR Liu, 2002).

The fitting errors using different ¢, are plotted in Figure 3.26. In the
studies of a,, ¢=0.5 is fixed. It can be found that a smaller &, leads to a
larger interpolation error. The effect of a. is less than that of g.

0.01
0.009 |
0.008 |-
0.007 -

0.006 |-
q=1.0, q=2.0, q=3.0,

0.005 1 singular singular singular

Error

0.004

0.003 |-

0.002

0.001 -

Figure 3.25. Error e, of surface fitting using RPIM-MQ shape functions with
different g. (MQ-RBF is used with shape parameters: o, =1.0, d,, = dy,=1.0;

the size of support domain is o, =3.5,and m=0.).

2) Comparation studies of accuracy

The interpolation errors of MLS and RPIM-MQ are compared in Figure
3.27. From these two figures, the following conclusions can be drawn.

a) The accuracy in the fitted function itself is higher than that in the
derivatives. The higher the derivatives, the lower the accuracy.

b) Using the RPIM-MQ shape functions gives satisfactory accuracy in
the surface fitting. The fitting accuracy improves with the increase
of the size of the support domain. In addition, the shape parameters
of RBF chosen affect the fitting results. The fitting accuracy is
unstable sometimes when the moment matrix is too close to singular.
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¢) MLS with linear basis is less accurate in this example. The increase
in the size of the support domain cannot improve the fitting results.
Lower accuracy in surface fitting is because the MLS shape
functions do no pass through the nodal values.

3) Convergence studies

In the convergence study, regularly and evenly distributed 36 (6x6), 121
(11x11), 441 (21x21), 961 (31x31), 1296 (36x36), 1681 (41x41), and 6561
(81x81), nodes are used. The convergence curves are numerically obtained
are plotted in Figure 3.28. Note that in Figure 3.28 % is in fact the nodal
spacing d, defined in Sub-section 3.1.2. To coincide with the common
definition of A-convergence, / is used here and in the following chapters in
the studies of /-convergence. The following remarks can be made from
Figure 3.28.

e The accuracy of RPIM-MQ is higher than that of the MLS.
However, the convergent process of RPIM-MQ is not very stable
when finer nodes are used, although the accuracy is still much better
than that of MLS. Further tuning of the shape parameters are
necessary.

e The MLS has very steady convergence for the surface fitting.

0.012

0.01

0.008

0.006 -

Error

0.004 |-

0.002 |-

2%

Figure 3.26. Error e, of surface fitting using RPIM-MQ for different e, .
(MQ-RBEF is used with shape parameters: ¢=0.5, d., =d., =1.0; the

size of support domain of o, =3.5,and m=0.).
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Error

Error

21

(b) 1st derivative

Figure 3.27. Error e, in surface fitting using MLS and RPIM-MQ shape
functions created using different size of support domains.
In MQ-RBF, 4=1.03, a.=4, d.. =d, =10, and m =0 are used; In MLS,

the linear basis is used.
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Figure 3.28. Error e, in surface fitting using MLS and RPIM-MQ shape functions.
(In MQ-RBF, ¢=1.03, o, =4, d., =d, =10, a,=3.5, and mbasis=0 are

used; In MLS, the linear basis is used)

It should be mentioned here that the interpolation error is only one part
of total error in an MFree method in solving a problem of computational
mechanics. The studies of shape parameters presented in this section are
only for checking the interpolation quality and the producibility of MLS and
RPIM shape functions. The accuracy will be also studied in the following
chapters in the analysing actual problems of computational mechanics.

3.5 REMARKS

In MFree methods, the first and one of the most important problems that
we face is the MFree function approximation. In contrast to the FEM, there
is no pre-defined element in MFree models that can be used in the function
approximation. One of the challenges in MFree methods is how to construct
shape functions efficiently without using any pre-defined relations between
nodes.
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This chapter presents a number of ways to meet this challenge. These
MFTree shape functions possess the following important features.

e Reproducibility: they are capable of reproducing what is contained in
the basis; this is essential and crucial for any numerical method to
produce accurate solutions.

e Convergence: this allows the error of the approximation of a function
that is sufficiently smooth to approach zero when the nodal spacing is
sufficiently reduced.

None of these shape functions depends upon any fixed relation between
nodes. This brings freedom in the formulation of an MFree method. It is
also easy to construct an MFree shape function with high orders; this is
needed for the solution of high order PDEs. The MFree shape functions
reduce the effort spent in post-processing. Unfortunately, these freedoms
also lead to some challenging problems, for example, compatibility,
efficiency, and accuracy.
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APPENDIX

Chapter 3

Appendix 3.1. Subroutines used in the program of RPIM_ShapeFunc 2D.f90

Subroutines

Functions

RPIM ShapeFunc 2D

Compute RadialBasis

GaussEqSolver Sym

Compute the RPIM shape function and their
derivatives.

Compute the basis function vector and its
derivatives for a point.

Solve the linear symmetric equation using Gauss
elimination.

Appendix 3.2. Dummy arguments used in the subroutine RPIM_ShapeFunc 2D

Variable Type Usage Function

nx Integer Input Dimension of this problem; nx=2 for
2D problem

numnode  Integer Input Number of field nodes

ndex Integer Input Number of field nodes in the support
domain

mbasis Integer Input Number of monomials used in the
augmented RBF

nRBF Integer Input Types of RBF. nRBF=1: MQ;
nRBF=2: Exp; nRBF=3: TSP

alfe Long real Input Shape parameter of RBF

q Long real Input Shape parameter of RBF

dc Long real Input Nodal spacing

X(nx, Long real Input Coordinates x and y for all field

numnode) nodes. x(1,)=x; x(2,0)=y;

Gpos(nx) Long real Input Coordinates of the point of interest.

gpos(1)=x, gpos(2)=y
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Nv(ndex) Integer Input Field nodes in the local support
domain

Phi(10, Long real Output RPIM shape functions and their
derivatives. phi(1,i)~ phi(10, i):

e L s i)

ox oy o’ axdy oy
¢, ¢ g ¢,
ox’ oaxtoy axey: oy’

Appendix 3.3. Dummy arguments used in the subroutine Compute RadialBasis

Variable Type Usage Function

ndex Integer Input  Number of field nodes used in the support
domain

mbasis Integer Input  Number of monomials used in the augmented
RBF

nRBF Integer Input  Types of RBF. nRBF=1: MQ; nRBF=2: Exp;
nRBF=3: TSP

alfc Longreal Input  Shape parameter of RBF

q Longreal Input  Shape parameter of RBF

dc Longreal Input  Nodal spacing

X,y Longreal Input  Coordinates of the point considered.

Xv(ndex) Longreal Input  Coordinates x and y for field nodes in the
support domain.

RKk(10, Longreal Output RBF and its derivatives. rk(1,i)~ rk(10, i):
ndex) » Ok OR, o*R, 0°R. &°R

Is s

ax ay Ll 6x2 ’axay’ 6y2 5 s

Appendix 3.4. Dummy arguments used in the subroutine GaussEqSolver Sym

Variable Type Usage Function

n Integer Input Number of linear equations.

ma Integer Input Number of rows of matrix A.
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A(ma,n) Longreal Input Coefficient matrix of Ax=B.

B(n) Longreal Input Right-hand side vector of Ax=B
Output  when input. The solution when
output.
ep Longreal Input Required tolerance
kwji Integer Output  Control constant.

When there is a unique solution,
kwij=0; Else kwij=1

Appendix 3.5. An output sample of the shape function for node 13 evaluated at
point x" ={0.2,0.4} using the subroutine RPIM_ShapeFunc 2D and

25 field nodes shown in Figure 3.5 * ©

1

2 Hode -4 v Fhi dFhid= dPhidy dPhidxx dPhidyy
3

4 1 -1.000 -1.000 -0.00151 0.00227 n.ooi1zo 0.02160  -0.01028
5 2 -1.000 -0.500 -0.00393 -0.00624 0.03283 0.19871 0.05061
f 3 -1.000 0.000 0.00737 0.01075 -0.13463  -0.22282 0.10253
7 4 -1.000 0.500 0.04017 0.03350 0.10152  -1.8%485  -0.29777
B 5 -1.000 1.000 -0.00765 -0.00509 -0.00138 0.48947 0.12937
9 6 -0.500 -1.000 -0.00322 -0.00307 0.04331 0.10175 0.03833
10 7 =0.500 -0.500 0.01287 0.01082  -0.12416  -0.60414 0.03134
11 8 -0.500 0.000 -0.03362 -0.04869 0.41194 1.48867 -1.05243

12 3 -=0.500 0.%00 -0.1e227 -0.0328% -0.21122 6.42777 2.27300
13 10 -0.500 1.000 0.02342  -0.03011 -0.13106 -0.B6947 -1.43074

14 11 0.000 -1.000 0.01691  -0.04493 -0.15219 -0.18499 -0 30862
15 12 0.000 -0.500 -0.05798 0.17452 0.56904 0.54431 0.90340
16 13 0.000  0.000 0.18692  -0.46696  -1.98023 -1.79731 2.40048
17 14 0.000 0.500 0.67546 -2.02700 1.20211  -6.76875 -6.92754
14 15 0.000 1.000  -0.05197 0.25104 0.37398 0.59049 4.11842
19 16 0.500 -1.000 0.00714 0.04825  -0.09769 0.08985  -0.2443¢6
20 17 0.500 -0.500 -0.04112  -0.2080% 0.38631 0.12677 0.67096
21 18 0.500 0.000 0.10019 0.53426 -1.23158 0.24573 1.28296
22 19 0.500 0.500 0.39863 2.33843 0.76557 0.12128  -3.96495
21 200 0.500 1.000 -D.04728 -0.30139 0.18662 0.3z2000 2.38442
24 21 1.000 -1.000 -0D.00108 0.00051 0.04183  -0.03091 0.0513%
25 22 1.000 -0.500 0.00946 0.02808  -0.10457 -0.26924 0.04927
26 23 1.000 0.000  -0.00557 -0.01987 0.23208 0.26835 -0.74743
27 24 1.000 0.500  -0.08927 -0.33834 -0.10411 2.12881 1.51954
248 25 1.000  1.000 n.nzaz7 0.10102  -0.07641  -0.56253 -1.03623
29

D 4 =1.00029

~ 2 A
* Phi: ¢ dPhidx: 9%_; dPhidy: 09, ; dPhidxx: ©°%. ; dPhidyy: 9,
! Ox Cy ox? ayz

"MQ-RBF is used with ¢=0.5, «, =2.0, d. =0.5 and mbasis=0
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Appendix 3.6. An output sample of the shape function for node 13 evaluated at
point x" ={0.,0.} using the subroutine RPIM ShapeFunc 2D and

25 field nodes shown in Figure 3.5% *

1
2 Node x ¥ Phi dPhidx dPhidy  dPhidz=z  dPhidyy
3
4 1 -1.000 -1.000  0.00000 -0.02604 —0.02604  0.05957  0.05957
5 2 -1.000 -0.500  0.00000 -0.03106  0.02755  0.17930 —0.07751
& 3 -1.000 0.000  0.00000  0.39911  0.00000 -1.27964  0.06856
7 4 -1.000 D0.500  0.00000 -0.03106 -0.02755  0.17930 —0.07751
8 § -1.000 1.000  0.00000 -0.02604  0.02604  0.05957  0.05957
9 6 -0.500 -1.000  0.00000  0.02755 -0.03106 -0.07751  0.17930
10 7 -0.500 -0.500  0.00000  0.02556  0.02656  -0.33220 —0.33220
11 8§ -0.500 0.000  0.00000 -1.6613%  0.00000  7.737%6  0.37809
12 9 -0.500 0.500  0.00000  0.02556 -0.02856 -0.33220 -0.33220
13 10 -0.500 1.000  0.00000  0.02755  0.03106 -0.07751  0.17930
14 11 0,000 -1.000  0.00000  0.00000  0.39911  0.06856  —1.27964
15 12 0.000 -0.500  0.00000  0.00000 -1.6613%9  0.37809  7.73756
16 13 0.000 0.000  1.00000  0.00000  0.00000 -13.1177% -13.11775
17 14 0.000 0.500  0.00000  0.00000  1.66139  0.37809  7.73756
18 15 0.000 1.000  0.00000  0.00000 -0.39911  0.06856  —1.27964
19 16 0.500 -1.000  0.00000 -0.02755 -0.03106 —0.07751  0.17930
20 17 0.500 -0.500  0.00000 -0.02556  0.02556 -0.33220 -0.33220
21 18 0.500 0.000  0.00000  1.66139  0.00000  7.73756  0.37809
22 19 0,500 0.500  0.00000 -0.02556 -0.02556 -0.33220 -0.33220
23 20 0.500 1.000  0.00000 -0.02755  0.03106 -0.07751  0.17930
24 21 1.000 -1.000  0.00000  0.02604 -0.02604  0.05957  0.0G357
25 22 1.000 -0.500  0.00000  0.03106  0.02755  0.17930 -0.07751
26 23 1.000 0.000  0.00000 -0.39911  0.00000 -1.27964  0.06856
27 24 1.000 0.500  0.00000  0.03106 -0.02755  0.17930 -0.07751
28 25 1.000 1.000  0.00000  0.02604  0.02604  0.05957  0.05357
29
a0
D" ¢ =1.00000
i
% ppi v 09 dy: 08, idex: 09 idyy: 09
Phi: b dPhidx: % ; dPhidy: ©% ; dPhidxx: i 5 dPhidyy: i
ox Oy ox’ ey’

"MQ-RBF is used with ¢=0.5, «,=2.0, d, =0.5 and mbasis=0

Appendix 3.7. Subroutines used in the program of MLS ShapeFunc_2D.f90

Subroutines

Functions

MLS_ ShapeFunc 2D

Compute Basis

Compute AB

Weight Wl(or
Weight W2)

GaussEqSolver Sym

Compute the MLS shape function and their
derivatives

Compute the polynomial basis vector and its
derivatives at a given point

Compute A and B matrices in the MLS given in

Equations (3.131) and (3.133)

Compute the cubic spline function (W1) (or the
quartic spline function, W2) defined in Equations

(3.148) and (3.149), respectively

Solve the linear symmetric equation using the

Gauss elimination method




128 Chapter 3

Appendix 3.8. Dummy arguments used in the subroutines Weight W1 and

Weight W2

Variable Type Usage  Function

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

numnode Integer Input Number of field nodes

ndex Integer Input Number of field nodes used in the
support domain

Nv(ndex) Integer Input Field nodes in the support domain

Distances: dif (1) =[x —x,
dif 2,i) =|ly -y, |

Ds(nx, Long real Input The size of the support domain:
numnode) ds(1,i)=d,y;, ds(2,i)=d,y,

>

Dif(nx,ndex) Longreal Input

W(ndex,10) Longreal Output Weight function and its derivatives:
W(i\y=W, ;W (i,2) =W, /éx ;
W(i,3) = OW |8y ; W(i,4) = O*W | &
W (i,5) = &"W, | éxdy ; W (i,6) = O*W, | &y*

Appendix 3.9. Dummy arguments used in the subroutine Compute Basis

Variable Type Usage Function

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

mm Integer Input Number of monomials used in the basis

Gpos(nx) Longreal Input Coordinates of the point of interest:

gpos(l) = x, gpos(2) = y

Gp(mm, 10)  Longreal  Output Basis function and its derivatives:
gp(LD~(6,1)=p'={Lx, yxy.x’ v}
gp(1.2~(6.2)=(2Py71={0,1,0,5.2x,0};

Ox
gp(1,3)~(6,3)=(‘2_p 7={0,0,1,x,0,2y};
Y
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Appendix 3.10. Dummy arguments used in the subroutine Compute AB

Variable Type Usage  Function
nx Integer Input Dimension of this problem; nx=2 for
2D problem
numnode Integer Input Number of field nodes
ndex Integer Input Number of field nodes in the support
domain
mm Integer Input Number of monomials used in the
basis
X(nx, numnode) Long Input x and y coordinates for all field nodes:
real x(1, Dy=x; x(2, D)=y
Gpos(nx) Long Input Coordinates of the point of interest:
real gpos(l) = x,gpos(2)=y
Nv(ndex) Integer Input Field nodes wused in the support
domain
Ds(nx, numnode)  Long Input The dimension of the support domain:
real ds(1,0)=d,y;, ds(2,i)=d,y,
A(mm,mm,10) Long Output A matrix and its derivatives:
real A(i, j,1)~ A(i,j,10) are
OA. A O’A
Ay, (9A , (CA, e
! (ﬁx)” (('fy)” (6x2 )i
B(mm,mm,10) Long Output B matrix and its derivatives:
real B(i, j,1)~ B(i,j,10) are
B, OB, B OB .
’ (ax)ij (ﬁy)'j (6x2 v

Appendix 3.11. Dummy arguments used in the subroutine MLS ShapeFunc 2D

Variable  Type Usage Function

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

numnode  Integer Input Number of field nodes

ndex Integer Input Number of field nodes in the support

domain
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mm

x(nx,
numnode)

Gpos(nx)

Nv(ndex)

Ds(nx,
numnode)

Phi(10,
ndex)

Integer

Input

Long real Input

Long real Input

Integer

Input

Long real Input

Long real

Output

Chapter 3

Number of monomials used in the basis

x and y coordinates for all field nodes:
)C(l, i):xi; X(2 ni):yi

Coordinates of the point of interest:
gpos(1) = x, gpos(2) = y

Field nodes used in the support domain

The dimension of the support domain:
ds(1,i)y=ds, ds(2,i)=dy;

MLS

shape
derivatives.

functions

and their

Appendix 3.12. An output sample of the shape function for node 13 evaluated at
point x" = {0,0} using the subroutine MLS_ShapeFunc_2D, 25 field

nodes shown in Figure 3.5, and weight function W1 and mm=3*

1
2 Hode A y Fhi dPhid= dPhidy dPhidz=z dPhidyy
3
4 1 -1.000 -1.000 0.00917 -0.02488 -D.0Z438 0.03444 0.03444
5 2 -1.000 -0.500 0.02037 -0.0552%  -0.04598 0.07653 -0.02474
b 3 -1.000 0.000 0.03667 -0.09953 0.00000 0.13776  -0.01939
7 4 -1.000 0.500 0.02037  -0.05529 0.04598 007653 -0.02474
g 5 -1.000 1.000 0.00917 -0.02488 0.02488 0.03444 0.03444
q & -0.500 -1.000 0.02037 -0.04598 -0.05529  -0.02474 0.07653
10 7 -0.500 -0.500 0.04527 -0.10218 -0.10218 -0.05493  -0.0G498
11 g -0.500 0.000 0.08148 -0.18392 0.00000  -0.09897  -0.04310
12 3 -0.500 0.500 0.04527 -0.10218 0.10218 -0.05493  -0.0G498
13 10 -0.500 1.000 0.02037  -0.04598 0.05529  -0.02474 0.07653
14 11 0.000 -1.000 0.03667 g.00000  -0.09953  -0.0193% 0.1377¢6
15 12 0.000 -0.500 0.08148 p.ooooo -0.18392 -0.04310 -0.09897
16 13 0,000 0.000 0.146867 0.oo000 g.ooooo -0.07757  -0.07757
17 14 0.000 0.500 0.08148 0.oo000 0.18392 -0.04310  -0.098497
18 15 0.000  1.000 0 03667 n.oooon 0.09953 -0.01939 013776
19 16 0.500 -1.000 0.02037 0.04598 -0.05529 -0.02474 0.07653
200 17 0.500 -0.500 0.04527 0.10218 -0.10218 -0.05493 -0 05498
2l 18 0.500 0.000 0.08148 0.18392 0.00000  -0.09897  -0.04310
22 19 0.500 0.500 0.04527 0.10218 0.10218 -0.05493  -0.0G498
23 20 0.500 1.000 0.02037 0.04598 0.05529  -0.02474 0.07653
2421 1.000 -1.000 0.00917 0.02488 -D.02488 0.03444 0.03444
25 22 1.000 -0.500 0.02037 0.05529  -0.04598 0.07853 -0.02474
26 23 1.000 0.000 0. 03667 0.09953 0.00000 013776 -0.01939
27 24 1,000 0.500 0.02037 0.05529 0.04598 0.07653  -0.0247%4
28 25 1.000 1.000 0.00917 0.02438 0.02438 0.03444 0.03444
29
i

> ¢ =1.000000

o P "2¢ 2

* Phi: ¢; dPhidx: 94, . dPhidy: ¢ ; dPhidxx: ¢ i ; dPhidyy: 9°¢;
. . 2

oxX

ay

ox

oy
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COMPUTER PROGRAMS

Program 3.1. Source code of Subroutine RPIM_ShapeFunc 2D

SUBROUTINE RPIM ShapeFunc 2D (gpos, x,nv,phi, nx, numnode, ndex, &
alfc,dc,q,nRBF, mbasis)
Compute RPIM shape functions and their derivatives
Input--gpos, x,nv,ds,alfc,dc, g, nx, numnode, ndex, mm, nRBF, nbasis
nRBF=1: MQ; 2: EXP; 3: TSP
Output--phi
From 1 to 10 of the two dimension of phi denotes
phi, dphix, dphiy,dphixx, dphixy,dphiyy
dphidxxx,dphidxxy, dphidxyy, dphidyyy
implicit real*8 (a-h,o0-2z)
dimension gpos (nx),x (nx,numnode) ,nv (ndex) , rk (ndex+mbasis)
dimension phi (10,ndex), xv(nx,ndex),rr (10, ndex+mbasis)
dimension a(ndex+mbasis,ndex+mbasis), g0 (ndex+mbasis,ndex+mbasis)

if (nrbf.eq.1l) then
rc=alfc*dc ! For MQ;
endif
if (nrbf.eq.2) then
g=alfc/dc/dc | For EXP;
endif
ep=1.d-20
mg=ndex+mbasis
do i=1,mg
do j=1,mg
g0 (i,4)=0.
enddo
enddo
do i=1,ndex
nn=nv (1)
xv(1l,1)=x(1,nn)
xv(2,1)=x(2,nn)
enddo
KEKA I X AKX AK XA X K*x % Assemble the matrix of GO
do i=1,ndex
nn=nv (1)
call Compute RadialBasis(x(l,nn),x(2,nn),xv,rr,ndex,rc,q, nRBF, mbasis)
do j=1,ndex
g0(i,J)=rr(1,3)
enddo
if (mbasis.gt.0) then
g0 (i,ndex+1)=1.
g0 (i, ndex+2)=x(1,nn)
g0 (i, ndex+3)=x(2,nn)
g0 (ndex+1,1)=1.
g0 (ndex+2,1)=x(1,nn)
g0 (ndex+3,1)=x(2,nn)
endif
enddo

KhAxKkkKkkkkkkxkxkxkk Solve linear equation to obtain shape function
do i=1,mg
do j=1,mg
a(i,j)=g0(i,3)
enddo
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enddo
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call Compute RadialBasis(gpos(1l),gpos(2),xv,rr,ndex,rc,q, nRBF, mbasis)

do i=1,mg
rk(i)=rr(1,1)

enddo

call GaussEqgSolver Sym(mg,mg,a,rk,ep,kwji)

if(kwji.eqg.1l) then

write(*,*)'Fail...'

pause

endif

do i=1,ndex
phi(1,1i)=rk (1)

enddo

I kkkxkxk ko k kR xk ko Solve linear equation to obtain dphidx

do i=1,mg
do j=1,mg
a(i,3)=g90(i,3)
enddo
enddo

do i=1,mg
rk(i)=rr(2,1)
enddo
call GaussEgSolver Sym(mg,mg,a,rk,ep,kwji)
do i=1,ndex
phi(2,1i)=rk (i)
enddo

Iokkkdkoxok xRk kk kR xkk k- Solve linear equation to obtain dphidy

do i=1,mg
do j=1,mg
a(i,j)=90(i,3)
enddo
enddo
do i=1,mg
rk(i)=rr(3,1i)
enddo
call GaussEqgSolver Sym(mg,mg,a,rk,ep,kwji)
do i=1,ndex
phi (3,1)=rk (1)
enddo

I Akkkkxkxkkkkkkxkxkk Solve linear equation to obtain dphidxx

do i=1,mg
do j=1,mg
a(i,3)=g90(i,3)
enddo
enddo
do i=1,mg
rk(i)=rr(4,1)
enddo
call GaussEgSolver Sym(mg,mg,a,rk,ep,kwji)
do i=1,ndex
phi (4,1)=rk (1)
enddo

I kkkxkoxkx ok kkok ki k- Solve linear equation to obtain dphidxy

do i=1,mg
do j=1,mg
a(i,j)=g0(i,3)
enddo
enddo
do i=1,mg
rk(i)=rr(5,1)
enddo
call GaussEgSolver Sym(mg,mg,a,rk,ep, kwji)
do i=1,ndex
phi (5,1)=rk (1)
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enddo

KEXAK KA KA KR AKxA**K Golve linear equation to obtain dphidyy

do i=1,mg

do j=1,mg

a(i,3)=90(i,3)

enddo
enddo
do i=1,mg

rk(i)=rr(6,1)
enddo
call GaussEqgSolver Sym(mg,mg,a,rk,ep, kwji)
do i=1,ndex

phi (6,1)=rk (1)
enddo

return
END

Program 3.2. Source code of Subroutine Compute RadialBasis
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SUBROUTINE Compute RadialBasis(x,y,xv,rk,ndex,R,q, nRBF, mbasis)
Compute radial basis after added linear polynomial.
Input: x,y,xv[],ndex, r,q,nRBF,mbasis
nRBF: 1: MQ; 2: Exp; 3: TPS
Output--rk[10, ndex+mbasis]
From 1 to 10 denotes
r,drx,dry,drdxx,drdxy, drdyy
drdxxx,drdxxy, drdxyy, drdyyy

implicit real*8 (a-h,o-2z)
dimension xv(2,ndex),rk(10,ndex+mbasis)
do i=1,ndex+mbasis
do j=1,10
rk(j,1)=0
enddo
enddo

do 10 i=1,ndex
rr2=(x-xv(l,1))**2+(y-xv(2,1))**2
if (nRBF.eq.1) then ! MQ
rk(l 1)=(rr2+R**2) **q

k(2, l)—2 *q*(rr2+R**2)**(q 1.)* (x-xv(1,1))
k(3,1)= q (rr24R**2) ** (g-1.) * (y-xv(2,1))
k(4,1)= *(rr2+4R**2) ** (gq-1.)+4.* (g-1) *g* &
v (1,1))**2% (rr2+R**2) ** (g-2)
i)

+R*
) *

(
rk(5,1)=4. (q 1) *g* (x=xv (1, (y=xv(2,1))* &
(rr 2+R**2)**(q 2)
k(6,1)=2.*g* (rr2+R**2) ** (g-1.)+4.*g* (g-1) * &
(y RV (2,1))**2* (rr2+R**2) ** (gq-2)
endif
if (nRBF.eq.2) then ! EXP

rk(l i)*exp(fq*rrZ)
i)=-2.*g*exp (-q*rr2)

rk 3 i)=-2.*g*exp (-g*rr2)

)

k(2 (x-xv(1,1)
(

k(4,1)=-2*g*exp (-g* (rr2

(

(

(y=xv(2,1))

rk 5,1)=4.*g*g*exp (-g* (rr
rk(6,1)=-2*g*exp (-g* (rr2)
endif

) *F(y=xv(2,1))* (x-xv(1,1))

if (nRBF.eq.3) then ! TSP
rk(l,i)=(rr2)**(0.5*q)

*
*
) +4*qrg* (x-xv (1, 1)) **2*exp (~q*rr2)
2
)

+4*grg* (y-xv(2,1)) **2*exp (-g*rr2)
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rk(2,1)= x-xv(1l,1))*(rr2)**(0.5*g-1
rk(3,1)=g* (y-xv(2,1)) *(rr2)**(0.5*g-1)
rr2) **(0.5*%g-1)+2.*g* (0.5*g-1) * (x-xv (1,1)) **2* (rr2) &
)

rk(6,1)=g* (rr2)**(0.5*g-1)+2.*g* (0.5*g-1) * (y-xv (2,1)) **2* (rr2) &

endif
10 continue

if (mbasis.gt.0)
rk(1l,ndex+1)=
1,ndex+2)=
1,ndex+3)
2,ndex+2)
)

3,ndex+3

t
1
rk( >4
rk( =y
rk( =1
rk( =1
endif

return

END

Program 3.3. Source code of Subroutine GaussEqSolver_sym

Subroutine GaussEqgSolver Sym(n,ma,a,b,ep, kwji)

Solve sysmmetric linear equation ax=b by using Gauss elimination.
If kwji=1, no solution;if kwji=0,has solution
Input--n,ma,a(ma,n),b(n),ep,

Output--b, kwji

implicit real*8 (a-h,o-z)
dimension a(ma,n),b(n),m(n+l)
do 10 i=1,n

10 m(i)=1
do 120 k=1,n
p=0.0
do 20 i=k,n
do 20 j=k,n
if (dabs(a(i,j)) .gt.dabs(p)) then
p=a(i,J)
io=1i
jo=j
endif
20 continue
if (dabs (p) -ep) 30,30,35
30 kwji=1
return
35 continue

if(jo.eq.k) go to 45
do 40 i=1,n
t=a(i,jo)
a(i,jo)=al(i, k)
a(i, k)=t
40 continue
j=m (k)
m(k)=m(jo)
m(jo)=j
45 if(io.eq.k) go to 55
do 50 j=k,n
t=a(io,J)
a(io,j)=a(k,3)
a(k,j)=t
50 continue
t=b (io0)
b (io)=b (k)
b (k)=t
55 p=1./p
in=n-1
if(k.eqg.n) go to 65
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do 60 j=k,in
60 a(k,3+1l)=a(k,j+1) *p
65 b (k)=b (k) *p
if(k.eg.n) go to 120
do 80 i=k,in
do 70 j=k,in

70 a(i+l,j+l)=a(i+l,j+1)-a(i+l,k)*a(k,j+1)
80 b(i+l)=b(i+1l)-a(i+1, k) *b (k)
120 continue
do 130 il1=2,n
i=n+1-il
do 130 j=i,in
130 b(i)=b(i)-a(i,j+1)*b(j+1)
do 140 k=1,n
i=m (k)
140 a(l,1i)=b(k)
do 150 k=1,n
150 b(k)=a(l,k)
kwiji=0
return
END

Program 3.4. Source code of main program of using RPIM subroutine
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Main program for testing the RPIM shape function.

Call Subroutine RPIM ShapeFunc 2D( ).

25 field nodes (5X5) in domain [x,y]--[-1,1;-1,1].

61X61 sampling points are used to plot 2-D RPIM shape Func.

implicit real*8 (a-h,o0-2z)
parameter (nx=2, numnode=25)

dimension x (nx,numnode),nv (numnode), gpos (nx),phi (10, numnode)

open (2, file="phi.dat') ! Output file
write(2,50)
nRBF=1 ! Using MQ-RBF
g=0.5
alfc=2.0
de=0.5
mbasis=0 ! Number of basis
xlength=2.
ylength=2.
ndivx=4
ndivy=4
xstep=xlength/ndivx
ystep=ylength/ndivy
nn=0
do i=1,ndivx+1l
do j=1,ndivy+1l

nn=nn+1
x(1l,nn)=-1.+(i-1) *xstep !x coordinates of field nodes
x(2,nn)=-1.+(j-1) *ystep !y coordinates of field nodes
enddo
enddo
do i=1,numnode
nv(i)=1 ! Field nodes in support domain
enddo
ndex=25
nce=numnode/2+1 ! the node in the centre of 25 field nodes
nm=61

ste=2./(nm-1)
do ix=1,nm
do ill=1,numnode
do il2=1,10
phi(ill,112)=0
enddo
enddo
gpos (1)=-1.+ste* (ix-1)
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do j=1,nm
gpos (2)=-1.+ste* (§-1)
if ((abs(gpos(l)).le.l) .and. (abs(gpos(2)).le.1l)) then
call RPIM ShapeFunc_2D(gpos, x,nv,phi, nx, numnode, ndex, &
alfc,dc,q,nRBF, mbasis)
else
endif
I AxsxkxkxxsxOutput RPIM shape function
if ((abs(gpos(l)).le.1.d-8) .and. (abs(gpos(2)).1le.1.d-8)) then
do kk=1,ndex
nd=nv (kk)
write(2,100)nv (kk),x(1,nd),x(2,nd),phi(l,kk), &
phi (2, kk),phi (3, kk),phi (4, kk) ,phi (6, kk)
enddo
endif
enddo
enddo
write(2,150)
50 format(lx,'Node', 5x,'x', 7x,'y', 8x,'Phi', 6x,'dPhidx', &
5x, 'dPhidy', 4x, 'dPhidxx', 4x,'dPhidyy',/,80('-"))
100 format(lx,i4, 2£f8.3,5f11.5
150 format(80('-"))
END

Program 3.5. Source code of Subroutine Weight W1

SUBROUTINE Weight Wl (dif,nv,ds,w,nx,ndex, numnode)

Cubic spline weight function

input--dif, nv,ds, nx, ndex, numnode

output--w

from 1 to 10 column of w denotes w,dwdx,dwdy,dwdxx,dwdxy, dwdyy

implicit real*8 (a-h,o-2z)
dimension dif (nx,ndex),nv (numnode) ,ds (nx, numnode) , w(ndex, 10)
ep=1.0e-20
do 10 i=1,ndex
nn=nv (1)
difx=dif(1,1)
dify=dif(2,1)
if (dabs (difx) .le.ep) then

drdx=0.
else
drdx=(difx/dabs (difx)) /ds (1,nn)
end if
if (dabs(dify).le.ep) then
drdy=0.
else
drdy=(dify/dabs (dify)) /ds (2,nn)
end if
rx=dabs (dif (1,1))/ds(1,nn)
ry=dabs (dif (2,1))/ds (2,nn)
if(rx.gt.0.5) then
wx=(4./3.)-4.*rx+4.*rx*rx—(4./3.) *rx*rx*rx
dwxdx=(-4.+8.*rx-4.*rx*rx) *drdx

dwxdxx=(8.-8.*rx) *drdx*drdx

dwxdxxx=(-8.) *drdx*drdx*drdx
else if(rx.le.0.5) then

wx=(2./3.)-4.*rx*rx+4 . ¥*rx*rx*rx

dwxdx=(-8.*rx+12.*rx*rx) *drdx

dwxdxx=(-8.+24.*rx) *drdx*drdx

dwxdxxx=(24.) *drdx*drdx*drdx
end if
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if(ry.gt.0.5) then
wy=(4./3.)-4.*ry+d . *ry*ry-(4./3.) *ry*ry*ry
dwydy=(-4.+8.*ry-4.*ry*ry) *drdy
dwydyy=(8.-8.*ry) *drdy*drdy
dwydyyy=(-8.) *drdy*drdy*drdy

else if(ry.le.0.5) then
wy=(2./3.)-4.*ry*ry+4 . . *ry*ry*ry
dwydy=(-8.*ry+12.*ry*ry) *drdy
dwydyy=(-8.4+24.*ry) *drdy*drdy
dwydyyy=(24.) *drdy*drdy*drdy

end if
w(i,1l)=wx*wy
w(i,2)=wy*dwxdx
w(i,3)=wx*dwydy
w (i, 4)=wy*dwxdxx
w(i,5)=dwxdx*dwydy
w (i, 6)=wx*dwydyy
w(i,7)=wy*dwxdxxx
w(i,8)=dwxdxx*dwydy
w (i, 9)=dwxdx*dwydyy
w(i,10)=wx*dwydyyy
10 continue
return
end

Program 3.6. Source code of Subroutine Weight W2

SUBROUTINE Weight W2 (dif,nv,ds,w,nx,ndex,numnode)

Quartic spline weight function
input--dif, nv,ds, nx, ndex, numnode

output--w

from 1 to 10 column of w denotes w,dwdx,dwdy,dwdxx,dwdxy, dwdyy

implicit real*8 (a-h,o-z)
dimension dif (nx,ndex),nv (numnode) ,ds (nx,numnode) ,w(ndex, 10)
ep=1.0e-20
do 10 i=1,ndex
nn=nv (i)
difx=dif(1,1)
dify=dif(2,1)
if (dabs (difx) .le.ep) then
drdx=0.
else
drdx=(difx/dabs (difx)) /ds (1,nn)
end if
if (dabs(dify).le.ep) then
drdy=0.
else
drdy=(dify/dabs (dify)) /ds (2, nn)
end if
rx=dabs (dif (1,1))/ds(1,nn)
ry=dabs (dif (2,1)) /ds (2,nn)
wx=1.-6.%rx*rx+8 . rx*rx*rx-3.*rx*rx*rx*rx
dwxdx=(-12.*rx+24 . *rx*rx-12 . *rx*rx*rx) *drdx
dwxdxx=(-12.4+48.*rx-36.*rx*rx) / (ds(1,nn) *ds (1,nn))
dwxdxxx=(48.-72*rx) *drdx**3
wy=1l.-6.*ry*ry+8.*ry*ry*ry-3.*ry*ry*ry*ry
dwydy=(-12.*ry+24 . *ry*ry-12.*ry*ry*ry) *drdy
dwydyy=(-12.4+48.*ry-36.*ry*ry) / (ds(2,nn) *ds (2,nn))
dwydyyy=(48.-72*ry) *drdy**3
w(i,1l)=wx*wy
w(i,2)=wy*dwxdx
w(i,3)=wx*dwydy
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w(i,4)=wy*dwxdxx
w(i,5)=dwxdx*dwydy
w (i, 6)=wx*dwydyy
w(i,7)=wy*dwxdxxx
w(1i,8)=dwxdxx*dwydy
w(i,9)=dwxdx*dwydyy
w(i,10)=wx*dwydyyy
10 continue
return
end

Program 3.7. Source code of Subroutine Compute Basis

SUBROUTINE Compute Basis (gpos,gp,nx,mm)

Compute basis functions and their derivatives

Input-gpos, nx, mm

Output-gp

From 1 to 10 columns of gp: p,dpdx,dpdy,dpdxx,dpdxy,dpdyy,

dpdxxx, dpdxxy, dpdxyy, dpdyyy

implicit real*8 (a-h,o0-2z)
dimension gpos (nx),gp (10, mm)
do i=1,mm

do j=1,10
gp(i,3)=0.0
enddo
enddo
gp(l,1)=1.0
gp (1,2)=gpos (1)
gp (1,3)=gpos (2)
gp (1,4)=gpos (1) *gpos (1)
gp (1,5)=gpos (1) *gpos (2)
gp (1, 6)=gpos (2) *gpos (2)
gp(2,2)=1.0
gp(2,4)=2.0*gpos (1)
gp (2,5)=gpos (2)
gp(3,3)=1.0
gp (3,5)=gpos (1)
gp (3,6)=2.0*gpos (2)
gp(4,4)=2.0
gp(5,5)=1.0
gp(6,6)=2.0
return
end

Program 3.8. Source code of Subroutine Compute AB

SUBROUTINE Compute_ AB (gpos, x,nv,ds,a, b, nx,numnode, ndex, mm)
Compute A matrix and B matrix and their derivatives
input--gpos, x,nv,dm, nx, numnode, ndex, mm
output--a,b
From 1 to 10 of the third dimension of a denotes

a,dax,day,daxx,daxy,dayy, dadxxx,dadxxy,dadxyy,dadyyy
From 1 to 10 of the third dimension of b denotes
b, dbx, dby, dbxx, dbxy, dbyy, dbdxxx, dbdxxy, dbdxyy, dbdyyy
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dimension gpos (nx), x (nx,numnode) ,nv (numnode) ,ds (nx, numnode)
dimension a (mm,mm,10),b (mm,ndex,10)
dimension xv (nx,ndex),dif (nx,ndex),w(ndex,10),p (6,ndex),pp (mm, mm)

do i=1,ndex

nn=nv (1)
xv(1l,1)=x(1,nn)
xv(2,1)=x(2,nn)
p(l,1)=1.0
p(2,i)=xv(1,1)
p(3,1)=xv(2,1)
p(4,i)=xv(1l,1)*xv(1l,1)
p(5,1)=xv(l,1i)*xv(2,1)
p(6,1)=xv(2,1)*xv(2,1)
dif(1,1i)=gpos(1)-xv(l,1i)
dif(2,1i)=gpos (2)-xv(2,1)
enddo

call Weight Wl (dif,nv,ds,w,nx,ndex, numnode)
I Axkxkkokkoxkxkx Compute b and its derivatives
do 20 ii=1,mm
do 20 jj=1,ndex
do 20 kk=1,10
b(ii, 37, kk)=p (ii, §3) *w (33, kk)
20 continue
I Axkxkxokkxkxkx Compute a and its derivatives
do 25 ie=1,mm
do 25 je=1,mm
do 25 ke=1,10
a(ie,je, ke)=0.
25 continue
do 30 iii=1,ndex
do 40 ik=1,mm
do 40 jk=1,mm
pp (ik, Jk)=p(ik,iii) *p(jk,1ii)
40 continue
do 50 ikk=1,mm
do 50 jkk=1,mm
do 50 kkk=1,10
a (ikk, jkk, kkk)=a (i1kk, jkk, kkk) +w (iii, kkk) *pp (1kk, jkk)
50 continue
30 continue
return
end

Program 3.9. Source code of Subroutine MLS ShapeFunc 2D( )

SUBROUTINE MLS_ShapeFunc_2D (gpos, X, nv,ds, phi, nx, numnode, ndex, mm)

Compute MLS shape functions and their derivatives

Input--gpos, x,nv,ds, nx, numnode, ndex, mm

Output--phi

From 1 to 10 of the two dimension of phi denotes
phi,dphix,dphiy,dphixx,dphixy,dphiyy
dphidxxx,dphidxxy, dphidxyy, dphidyyy

implicit real*8 (a-h,o0-2z)
dimension gpos (nx), x (nx,numnnode) ,nv (numnode)
dimension ds (nx,numnode), xv (nx,ndex)
dimension gp (10, mm),gam(mm,10),a (mm,mm, 10)
dimension b (mm,ndex,10),c (mm),aa (mm,mm),phi (10, ndex)
do il=1,mm

do 31=1,10

gp(j1,11)=0.0
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enddo
enddo

call Compute Basis(gpos,gp,nx,mm)
call Compute AB(gpos,x,nv,ds,a,b,nx,numnode, ndex, mm)
ep=1.0e-20
do 10 in=1,mm
c(in)=gp(l,in)
10 continue
do 20 il=1,mm
do 20 jl=1,mm
aa(il,jl)=a(il,ji1,1
20 continue
do il=1,mm
do j1=1,10
gam(il,j1)=0.0
enddo
enddo

! Kk khkkhkkkkkkkk Compute gam
call GaussEgSolver Sym(mm,mm,aa,c,ep,kwji)
21 format (1x, ' gam kwji=',i2)
do 25 kl=1,mm
gam(kl,1)=c(kl)
25 continue
I xxxxxxxxxxxxx Compute dgamdx
do 30 in=1,mm
c(in)=0.
do 30 jn=1,mm
c(in)=c(in)+a(in, jn,2)*gam(jn, 1)
30 continue
do 35 kn=1,mm
c (kn)=gp (2, kn) -c (kn)
35 continue
do 40 il=1,mm
do 40 jl=1,mm
aa(il,jl)=a(il,j1,1)
40 continue
call GaussEqgSolver Sym(mm,mm,aa,c,ep,kwji)
do 45 kl=1,mm
gam(kl,2)=c (k1)
45 continue
I xxxxxxxxxxxxx Compute dgamdy
do 50 in=1,mm
c(in)=0.
do 50 jn=1,mm
c(in)=c(in)+a(in,jn, 3) *gam(jn, 1)
50 continue
do 55 kn=1,mm
c (kn)=gp (3, kn) -c (kn)
55 continue
do 60 il=1,mm
do 60 jl=1,mm
aa(il,jl)=a(il,j1,1)
60 continue
call GaussEqgSolver Sym(mm,mm,aa,c,ep,kwji)
do 65 kl=1,mm
gam (kl, 3)=c (k1)
65 continue
| kxkkxkkxkkxk %k Compute dgamdxx
do 70 in=1,mm
c(in)=0.
do 70 jn=1,mm
c(in)=c(in)+a(in,jn,4) *gam(jn,1)+2.0*a(in,jn,2) *gam(jn, 2)
70 continue
do 75 kn=1,mm
c (kn)=gp (4, kn) -c (kn)
75 continue
do 80 il=1,mm
do 80 jl=1,mm
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aa(il,jl)=a(il,j1,1)
80 continue
call GaussEgSolver Sym(mm,mm,aa,c,ep,kwji)
do 85 kl=1,mm
gam(kl,4)=c(kl)
85 continue
| Fkkxxkkkkxxx% Compute dgamdxy
do 90 in=1,mm
c(in)=0.
do 90 jn=1,mm
c(in)=c(in)+a(in,jn,5) *gam(jn,1)+a(in,jn,2) *gam(jn,3)+ &
a(in,jn,3)*gam(jn, 2)
90 continue
do 95 kn=1,mm
c (kn)=gp (5, kn) —c (kn)
95 continue
do 100 il=1,mm
do 100 j1=1,mm

aa(il,jl)=a(il,q1,1)
100 continue
call GaussEgSolver Sym(mm,mm,aa,c,ep,kwji)
do 105 kl=1,mm
gam (k1,5)=c (k1)
105 continue

| xxxxxxxxxxxx%x Compute dgamdyy

do 110 in=1,mm
c(in)=0.
do 110 jn=1,mm
c(in)=c(in)+a(in,jn, 6)*gam(jn,1l)+2.0*a(in, jn, 3) *gam(jn, 3)
110 continue
do 115 kn=1,mm
c (kn)=gp (6, kn) -c (kn)
115 continue
do 120 il=1,mm
do 120 jl1=1,mm
aa(il,jl)=a(il,31,1)
120 continue
call GaussEqgSolver Sym(mm,mm,aa,c,ep,kwji)
do 125 kl=1,mm
gam (k1,6)=c (k1)
125 continue

I Axkxkkkkxkxkx Compute dgamdxxx
do in=1,mm
c(in)=0.
do jn=1,mm
c(in)=c(in)+a(in,jn,7) *gam(jn,1l)+3*a(in,jn,4) *gam(jn,2)+ &
3*a(in,jn,2) *gam(jn, 4)
enddo
enddo

do kn=1,mm
c (kn)=gp (7, kn) -c (kn)
enddo

do 1il=1,mm
do jl1=1,mm
aa(il,jl)=a(il,j1,1)
enddo
enddo

call GaussEgSolver_ Sym(mm,mm,aa,c,ep,kwji)
do kl=1,mm

gam (k1,7)=c (k1)
enddo

I xxdkxkdkxdkxxdxx Compute dgamdxxy
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do in=1,mm
c(in)=0.
do jn=1,mm
c(in)=c(in)+a(in,jn,8)*gam(jn, 1)+ &

a(in,jn,4)*gam(jn,3)+2*a(in, jn,5) *gam(jn,2)+ &
2*a(in,jn,2)*gam(jn,5)+a(in, jn,3) *gam(jn

enddo
enddo

do kn=1,mm
c (kn)=gp (8, kn) -c (kn)
enddo

do il=1,mm
do jl=1,mm
aa(il,jl)=a(il,j1,1
enddo
enddo

call GaussEgSolver Sym(mm,mm,aa,c,ep,kwji)
do kl=1,mm

gam (kl,8)=c (k1)
enddo

| kkkxxxkkxxxx%k Compute dgamdxyy

do in=1,mm
c(in)=0.
do jn=1,mm
c(in)=c(in)+a(in,jn,9)*gam(jn, 1)+ &

a(in,jn, 6)*gam(jn,2)+2*a(in,Jn,5) *gam(jn

r4)

P34

2*a(in,jn, 3) *gam(jn, 5)+a(in,jn, 2) *gam(jn, 6)

enddo
enddo

do kn=1,mm
c(kn)=gp (9, kn) -c (kn)
enddo

do il=1,mm
do jl=1,mm
aa(il,jl)=a(il,j1,1)
enddo
enddo

call GaussEgSolver Sym(mm,mm,aa,c,ep,kwji)
do kl=1,mm

gam (kl, 9)=c (k1)
enddo

| dkxxxxkkxxxxk Compute dgamdyyy

do in=1,mm
c(in)=0.
do jn=1,mm
c(in)=c(in)+a(in,jn,10)*gam(jn, 1)+ &

3*a(in, jn, 6) *gam(jn, 3) +3*a (in, jn, 3) *gam(jn, 6)

enddo
enddo

do kn=1,mm
c (kn)=gp (10, kn) -c (kn)
enddo

do il=1,mm
do jl=1,mm
aa(il,jl)=a(il,3j1,1)
enddo
enddo

call GaussEgSolver_ Sym(mm,mm,aa,c,ep,kwji)
do kl=1,mm

gam(kl,10)=c(kl)
enddo

Chapter 3
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Il Fkxkakxkaksxx Compute Phi and their derivatives
do 130 iph=1,ndex
do iiii=1,10
phi (iiii, iph)=0.0
enddo
do 130 jph=1,mm
phi (1, iph)=phi (1, iph)+gam(jph, 1) *b (jph, iph, 1)
phi (2, iph) =phi (2, iph) +gam (jph, 2) *b (jph, iph, 1)+ &
gam (jph, 1) *b (jph, iph, 2)
phi (3, iph) =phi (3, iph) +gam (jph, 3) *b (jph, iph, 1)+ &
gam(jph, 1) *b (jph, iph, 3)
phi (4, iph)=phi (4, iph) +gam(jph, 4) *b (jph, iph, 1)+ &
2.0*gam(jph, 2) *b (jph, iph, 2) +gam(jph, 1) *b (jph, iph, 4)
phi (5,iph)=phi (5,iph) +gam (jph, 5) *b (jph, iph, 1)+ &
gam(jph, 2) *b (jph, iph, 3) +gam(jph, 3) *b (jph, iph,2) + &
gam(jph, 1) *b (jph, iph, 5)
phi (6, iph)=phi (6, iph) +gam(jph, 6) *b (jph, iph, 1)+ &
2.0*gam(jph, 3) *b (jph, iph, 3) +gam (jph, 1) *b (jph, iph, 6
phi (7, iph)=phi (7, iph) +gam(jph, 7) *b (jph, iph, 1) + &
3.0*gam(jph,4) *b (jph, iph, 2) +3*gam (jph, 2) *b (jph, iph, 4)+ &
gam (jph, 1) *b (jph, iph, 7)
phi (8, iph)=phi (8, iph) +gam(jph, 8) *b (jph, iph, 1) + &
2.0*gam(jph,5) *b (jph, iph, 2) +2*gam (jph, 2) *b (jph, iph, 5)+ &
gam (jph, 1) *b (jph, iph, 8) +gam(jph, 4) *b (jph, iph, 3) + &
gam (jph, 3) *b (jph, iph, 4
phi (9, iph)=phi (9, iph) +gam(jph, 9) *b (jph, iph, 1) + &
2.0*gam(jph,5) *b (jph, iph, 3) +2*gam (jph, 3) *b (jph, iph, 5)+ &
gam(jph, 1) *b (jph, iph, 9) +gam(jph, 6) *b (jph, iph, 2) + &
gam (jph, 2) *b (jph, iph, 6
phi (10, iph)=phi (10, iph) +gam (jph, 10) *b (jph, iph, 1) + &
3.0*gam (jph, 6) *b (jph, iph, 3) +3*gam (jph, 3) *b (jph, iph, 6) + &
gam (jph, 1) *b (jph, iph, 10)
130 continue
return
end

Program 3.10. Source code of main program of using MLS approximation

Main program for testing the MLS shape function.
Call Subroutine MLS ShapeFunc 2D( ).
25 field nodes (5X5) in domain [x,y]--[-1,1;-1,1].
61X61 interpolation points are used to plot 2-D MLS shape Func.
implicit real*8 (a-h,o0-2z)
parameter (nx=2, numnode=25)
dimension x (nx,numnode),nv (numnode), gpos (nx)
dimension phi (10, numnode) ,ds (nx, numnode)

open (2, file="phi.dat') ! Output file
write(2,50)
mm=3 ! Number of basis
xlength=2.
ylength=2.
ndivx=4
ndivy=4
xstep=xlength/ndivx
ystep=ylength/ndivy
nn=0
do i=1,ndivx+1l
do j=1,ndivy+l
nn=nn+1
x(1l,nn)=-1.+(i-1) *xstep !x coordinates of field nodes
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x(2,nn)=-1.+(J-1) *ystep !y coordinates of field nodes
enddo
enddo

do i=1,numnode
nv(i)=1i
ds(1,1)
ds(2,1)

enddo

ndex=25

=0.
=0

do j=1,numnode
xn=x(1,7)
yn=x(2,73)
rx0=abs (xn-1)
if(rx0.1lt.abs(xn+l)) rxO=abs (xn+l)
ryO=abs (yn-1)
if(ry0.lt.abs(yn+l)) ryO=abs (yn+l)
ds(1,7)=rx0 ! rw for weight function (support domain)
ds(2,3)=ry0
enddo

nce=numnode/2+1 ! the node in the centre of 25 field nodes
nm=61
ste=2./ (nm-1)
do ix=1,nm
do i1l11=1,numnode
do i12=1,10
phi(il11,112)=0
enddo
enddo
gpos (1)=-1.+ste* (ix-1)
do j=1,nm
gpos (2)=-1.+ste* (j-1)
if ((abs(gpos(l)).le.1l) .and. (abs(gpos(2)).le.1l)) then
call MLS ShapeFunc_ 2D (gpos, x,nv,ds,phi, nx, numnode, ndex, mm)
else
endif
I HxkxskxkxkxkQutput MLS shape function
if ((abs(gpos(l)).le.1.d-8) .and. (abs(gpos(2)).le.1.d-8)) then
do kk=1,ndex
nd=nv (kk)
write(2,100)nv(kk),x(1,nd),x(2,nd),phi(1l,kk), &
phi (2,kk),phi (3, kk) ,phi (4, kk),phi (6, kk)
enddo
endif
enddo
enddo
write(2,150)
50 format (lx,'Node', 5x,'x', 7x,'y', 8x,'Phi', 6x,'dPhidx', &
5x, 'dPhidy', 4x, 'dPhidxx', 4x,'dPhidyy',/,80('-"))
100 format(lx,1i4, 2£8.3,5f11.5)
150 format (80 ('-"))
end
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MESHFREE METHODS BASED ON GLOBAL
WEAK-FORMS

4.1 INTRODUCTION

MFree methods based on the global weak-form (or MFree global weak-
form methods) are usually based on the Galerkin weak-form defined over the
global problem domain, using locally supported MFree shape functions
discussed in Chapter 3.

The first MFree global weak-form method was the diffuse element
method (DEM) proposed by Nayroles et al.(1992). In DEM, the MLS
approximation proposed by Lancaster and Salkauskas (1981) for surface
fitting was used to create the shape functions. The Galerkin weak-form over
the global problem domain is employed to construct the discretized system
equations.

In 1994, Belytschko et al. (1994a) proposed the element free Galerkin
(EFG) method in their important paper, in which the MLS approximation
was used in the Galerkin weak-form to establish a set of algebraic equations.
In the EFG method, the problem domain is represented by a set of properly
distributed nodes. The MLS approximation is used to construct shape
functions based only on a group of arbitrarily distributed nodes in a local
domain. A set of background cells are required to evaluate the integrals
resulted from the use of the Galerkin weak-form.

Belytschko and his colleagues have reported that the EFG method is very
accurate (Belytschko, et al, 1994a; 1996a), and the rate of convergence of
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the EFG method obtained from numerical tests is higher than that of FEM
(Belytschko, et al, 1994a). In addition, the irregularity of nodes does not
affect the performance of the EFG method (Belytschko, et al, 1994a). The
EFG method has been successfully applied to a large variety of problems
including two-dimensional (2-D) and three-dimensional (3-D) linear and
nonlinear elastic problems (Belytschko, et al, 1994a; Lu et al., 1994;
Belytschko et al., 1997; Jun, 1996; Chen and Guo, 2001), fracture and crack
growth problems (Belytschko, et al, 1994b; Belytschko, et al, 1995a, 1995b,
1995¢c; Krysl and Belytschko 1999; Lu et al.,, 1995), plate and shell
structures (Krysl and Belytschko, 1995; 1996; GR Liu and Chen, 2000, 2001;
Liu L and GR Liu et al., 2001, 2002a,b; Chen and GR Liu et al., 2001,2003;),
electromagnetic field problems (Cingoski et al., 1998), piezoelectric
structures (GR Liu and Dai et al., 2004, 2003), and so on. In addition,
techniques of coupling EFG method with FEM (Belytschko and Organ, 1995;
Hegen, 1996) and with BEM (GR Liu and Gu, 2000c, 2000d; Gu and GR
Liu, 2001b; 2003a) have also been proposed. All these applications and
extensions indicate that the EFG method is gradually becoming a mature and
practical computational approach in the area of computational mechanics,
thanks to the use of the MLS approximation to achieve stability in function
approximation, and use of Galerkin procedure to provide stable and well-
behaved discretized global system equations.

In developing the EFG method, the following issues have been or still are
under intensive study.

1) EFG shape functions constructed using the MLS approximation lack
the Kronecker delta function property. Special techniques are,
therefore, needed in the implementation of essential boundary
conditions. Several techniques have been developed to enforce
essential boundary conditions in EFG and will be discussed in Section
4.3.

2) Global numerical integrations are needed for calculating the system
matrices. Hence, a global background cell structure has to be used for
these integrations, so that the method is not truly meshless. The
issues in the global numerical integration of the EFG method have
been studied by some researchers. Beissel and Belytschko (1996)
have proposed a stabilized nodal integration procedure to avoid the
use of background cells

3) The EFG method is computationally more expensive than FEM. This
is because a) a set of algebraic equations has to be solved for each
sampling point to construct the MLS shape functions; b) the node
searching has to be performed during the construction of the MLS
shape functions; c¢) the resultant system matrix has, in general, a
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larger bandwidth due to the fact that more nodes are used in the
construction of the MLS shape functions.

GR Liu and Gu (1999, 2001a) proposed the MFree point interpolation
methods (PIM) based on the Galerkin weak-form. In PIM, the problem
domain is represented by properly distributed nodes. The polynomial point
interpolation method (PIM) is used to construct shape functions based only
on a group of nodes arbitrarily distributed in a local domain. A global
background cell structure is required to evaluate the integrals in the Galerkin
weak-forms.

The main feature of PIM is that their shape functions possess Kronecker
delta function property. Essential boundary conditions can be easily
enforced as in FEM. However, in the polynomial PIM, the moment matrix
can be singular. Hence, a two-stage matrix triangularization algorithm
(MTA) is proposed to overcome this problem automatically excluding the
nodes and the terms of the polynomial basis used in the formation of the
moment matrix (Liu and Gu, 2003a). The MTA is a novel approach to solve
the problem of the singular moment matrix in the construction of PIM shape
functions. However, due to the incompatibile nature of the polynomial PIM
shape functions, the PIM based on the Galerkin weak-form is not robust for
irregular nodal distributions, especially when too many nodes are used in the
local support domain resulting in too high order of polynomials, which leads
to a too drastic variation in the PIM shape functions.

The radial point interpolation method (RPIM) (GR Liu and Gu, 2001c;
Wang and GR Liu, 2000; 2002a) that uses radial basis functions (RBF) is
also proposed to overcome the singularity issue. RPIM is stable and robust
for arbitrary nodal distributions. Therefore, RPIM is currently used more
widely than the polynomial PIM. RPIM has been successfully applied to 2D
and 3D solid mechanics (GR Liu and Gu, 2001c; GR Liu and Yan et al.,
2002; GR Liu and Zhang et al, 2003a), geometrically nonlinear problems
(GR Liu and Dai and Lim, 2003), problems of smart materials (GR Liu and
Dai et al., 2002, 2003), plate and shell structures (Liu L and GR Liu et al.,
2002a; Chen, 2003), material non-linear problems in civil engineering
(Wang et al., 2001b; 2002b), and so on.

Note that the shape parameters of the RBFs have to be properly selected
in RPIM. In addition, the RPIM shape functions do not possess global
compatibility (GR Liu, 2002; GR Liu and Gu, 2004b), which can have some
effects when it is used in a global energy principle such as the Galerkin
weak-form. Note that the global compatibility is not an issue when a local
weak-form or a collocation procedure is used.

In this chapter, two MFree global weak-form methods, the RPIM and the
EFG methods, will be presented and examined in detail. We choose to
discuss RPIM first because its formulation procedure is closer to the
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standard FEM procedure, and easier to comprehend. It should be noted that
historically the RPIM is based on the EFG method by replacing MLS shape
functions with the RPIM shape functions, and using the Galerkin weak-form.

4.2 MESHFREE RADIAL POINT INTERPOLATION
METHOD

4.2.1 RPIM formulation

Consider the following standard two-dimensional problem of linear
elasticity defined in the domain Q bounded by I'. The partial differential
equation and boundary conditions for a two-dimensional solid mechanics
problem have been given in Sub-section 1.2.2 and can be written in the form
of

Equilibrium equation: L'c+b=0 inQ 4.1

Natural boundary condition: on=t on T, 4.2)

Essential boundary condition: u=u on [, 4.3)
where

L: differential operator defined by Equation (1.25);
¢ = {an o, Z'xy} : the stress vector;

u' ={u v}: the displacement vector;
b' = {b, b,}: the body force vector;

t : the prescribed traction on the traction (natural) boundaries;

u : the prescribed displacement on the displacement (essential)
boundaries;

n: the vector of unit outward normal at a point on the natural boundary
(see Figure 1.4).

The standard variational (weak) form of Equation (4.1) is posed as
follows (see Section 1.4).

j (L&u)" (DLu)dQ - J'o“udeQ - J’o“uT?dr -0

Q Q T

(4.4)

t

where D is the matrix of elastic constants given in Equation (1.27) for the
plane stress and Equation (1.28) for the plane strain.
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Note that Equation (4.4) is a weak-form defined over the global problem
domain, Q. In order to evaluate the integrals in Equation (4.4), the global
problem domain is discretized into a set of the so-called background cells
that are not overlapping, as shown in Figure 4.1. To evaluate the integrals
along the natural boundary, a set of curve (for 2D problem) background cells
(no overlapping) is used.

Background cells
for quadrature

o: field node

Figure 4.1. Background cells used in MFree global weak-form methods. The problem
domain Q) is represented by field nodes. The background cell structure is used to evaluate the
integrations in the weak-form.

The problem domain is now represented by a set of field nodes for the
purpose of field variable (displacement) approximation. These nodes are
numbered sequentially from 1 to N for the entire problem domain. The
RPIM shape functions presented in Sub-section 3.2.2 are used to
approximate the displacements at any point of interest using a set of nodes in
a local support domain of the point.

u ¢1 O ot ¢l‘l 0 .
“élle) :{v}{o 4 0 ¢} D =P oan 2 4.5)
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where @ is the matrix of shape functions, n is the number of nodes in the
local support domain, and u is the vector of the displacements at the n field
nodes in the support domain. In Equation (4.5), the numbers in parentheses
of the subscript denote the dimensions of matrices or vectors. The same
convention is used throughout this book. Equation (4.5) can also be written
in the following form of nodal summation.

S 0w | <
“flle) ZZ{O ¢J{i}:z]:d’/“/ (4.6)

I

where ®; is the matrix of shape functions of node /, and u, is the nodal
displacements.

In Equation (4.6), u" is the approximated displacements of a point of
interest that can be a sampling point or a quadrature point.

From Equation (4.6), we can obtain

i n
UGy = PO () = Zml5“1 (4.7)
I

Using Equations (1.23) and (4.6), the strains can be obtained using the
approximated displacements.

=Lu" =L

€ 32 Pzam W 2m)
9 0 U
Ox v
_ a |:¢I O o ¢u 0:| :
Lo g 0 4]
0 0 "
& 2 v
| Oy Ox |
R [ @)
ox ox v
? !
= 0 ‘arl 0 %ﬁ :>:B(3><2n)u(2n><l)
Y 4 u,
oy ox oy Ox |2
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where B is the strain matrix and By is the strain matrix for node /. Similarly,
L5u - L(3><2)q)(2><2n)" **(2nx1) = B(BxZn)éu(ble) = Z(BI )(3><2) (5u1)(2><1) (49)
7

We can now obtain the stress vector using the constitutive equations for
the material at the point in the problem domain.

6= DS_D(3X3)B(3X2H) (2nx1) ZDGX})(BI)(3x2)(u/)(2xl) (4-10)
I

Substituting Equations (4.8) and (4.9) into the first term of Equation (4.4),
we have

j(Lo“u)T(DLu)dgz I(Zn:Bldu,)T(Zn:DBJuJ)dQ
Q o I J

- | Zn:iéuf[B,TDB_,]quQ
o [ J

Note that until this stage, / and .J are based on the local numbering system
for the nodes in the local support domain. We can now change the
numbering system from the local one to the global one that records all the
field nodes in the entire domain in a unique manner from 1 to A, the total
number of nodes in the problem domain’. Therefore, both / and J in
Equation (4.11) can now vary from 1 to N. When node / and node J are not
in the same local support domain, the integrand vanishes and hence the
integral. With this operation, Equation (4.11) can be expressed as

(4.11)

N N
j (LSu)" (DLu)dQ = j > 5u[BIDB, Ju,dO 4.12)
) Q I J
We now move the integration inside the summations to arrive at

J’ (LSu)" (DLu)dQ = ﬁ:ib‘u}( J[ B'DB,dQ)u,
I J

Q

(4.13)

N e ——
K %

where K, which is a 2x 2 matrix, is called the nodal stiffness matrix and is
defined as

" This can be done using an index matrix that gives the relationship between the
local node number and the global node number similar to that is done in the
conventional finite element method.
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K, = J.(B? )23 D35 (B )5, dQ (4.14)
Q

Note that when node / and node .J are not in the same support domain of the
same quadrature point of integration, K;; vanishes.
Equation (4.13) can be now expressed as

J.(L Su)" (DLu)dQ = ﬁﬁé‘uIKUuJ (4.15)
o 1 J

Note that the summation in the right-hand-side of this equation is in fact an
assembly process. To view this, we perform the following operation.

N N
ZZé‘u,TKUuJ = é‘uITK“ul +5lllTKlzll2 +m+5u1TK1NuN
I J

o d

T o T . T
+ou, K, u, +ou, K,,u, +---+ou, K, u,

(4.16)
+oul K, u, +ouj K, u, ++du K, u,
=oU'KU
Finally, Equation (4.13) becomes
j (LSu)" (DLu)dQ = SU'KU @.17)
Q
where K is the global stiffness matrix in the form of
Kn Klz KIN
K . K, K, - K2N
@van) = D : (4.18)
K, K, - K,

The dimension of the matrix K should be (2N)x(2N), because nodal stiffness
matrix Kj; is of 2x2, and the total number of nodes in the problem domain is V.

In Equation (4.17), the vector U is the global displacement vector that
collects the nodal displacements of all the nodes in the entire problem
domain, which has the form of

U

u,
Vi

u

2 .

Uiy =4 2 b=1 4.19)

Uy

uy
Yy
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The length of vector U should be (2N).

Substituting Equation (4.6) into the second term of Equation (4.4), and
using the same arguments in deriving the stiffness matrix, we have

T

jaudenz j{a‘i«p,u,J bdQ (4.20)
Q Q !

Using the same arguments given below Equation (4.11), Equation (4.20)
can be expressed as

[ou'bd= j{a‘ﬁ«p,u, JT bdQ (4.21)
I I

Q

We now move the integration inside the summations to arrive at

N
[subd0 =" su] [@]hd
Q

- (4.22)
%f_/
F/
where F,(b) is the nodal body force vector that is defined as
F/ = [@]bd0 (4.23)
Q

where b is the body force vector.

The last summation in Equation (4.22) can be expanded and then grouped
to produce of matrices as follows.

iau} foibda= iau}F,b
I o) I

%/_/
F/

=5uF + Su)F) +---+ 6uFy,

- (4.24)
-1
={ou] - ouy :

}(1sz)
b

F N J (2Nx1)
=5U'F’
where F”) is the global body force vector assembled using the nodal body

force vectors for all nodes in the entire problem domain, and F'’ is defined

as
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| 2%
FP =4 (4.25)

b
FN (2Nx1)

The length of vector F”’ should be 2N.

The treatment for the last term in Equation (4.4) is exactly the same as
that for the second term of Equations (4.20)~(4.25), except that the body
force vector is replaced by the traction vector and the integrations are
replaced by the boundary integrations. Hence, we can obtained

[ouTtar - Zn:é‘uf [@]tar
T, ! T,

F"

v (4.26)
=5U" )" | @/ tdr =6U"F"

1 T,

F"
where F\" is the nodal traction force vector
(7) - T
(F)' )ty = J.(I)I tdl’ (4.27)

I

t

In Equation (4.26), F\) is the global traction force vector assembled using

the nodal traction force vectors. The length of vector F*) should be 2N.

Substituting Equations (4.17), (4.24) and (4.26) into Equation (4.4), we
have

SUTKU-SU'F? —sUF" =0 (4.28)
or
SU'IKU-F” -F“1=0 (4.29)
Because SU is arbitrary, the above equation can be satisfied only if
KU-F?” -F" =0 (4.30)

or

KU=F" +F" (4.31)
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It can be re-written as
KU=F (4.32)
where F is the global force vector given by
F=F" +F" (4.33)

Equation (4.32) is the final discretized system equations for the MFree
RPIM. The nodal displacements can be obtained by solving Equation (4.32)
after enforcing the displacement boundary conditions that will be introduced
in the following section.

After obtaining nodal displacements, the strain and stress components
can be retrieved using Equations (4.8) and (4.10), respectively.

4.2.2 Numerical implementation
4.2.2.1 Numerical integration

In the above discussion, all integrations are over the global problem
domain Q and the global traction boundary I',. In order to evaluate these
global integrals, the problem domain is discretized into a set of background
cells (see Figure 4.1). Hence, a global integration can be expressed as a
summation of integrals over these cells:

deQ - Z j GdOQ (4.34)

kQA

where n, is the number of background cells, G represents the integrand, and
Q; is the domain of the kth background cell.

The Gauss quadrature scheme that is commonly used in the FEM is
employed to perform the integrations numerically over these cells. When n,
Gauss points are used in each background cell, Equation (4.34) becomes

e

[Gaa= Z [Ga=3" WG (xg)|97
Q k i=1

Q, ki

(4.35)

where w; is the Gauss weighting factor for the ith Gauss point at xy;, and

J fi is the Jacobian matrix for the area integration of the background cell £ ,
at which the Gauss point xy, located.

Similarly, we can obtain the formulation of the curve Gauss quadrature as
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fear=3" | GdQ:iiWiG(in)'Jg | (4.36)
T, ! r, I i=1

where w, is the Gauss weighting factor for the ith Gauss point x¢;, J i’f is the
Jacobian matrix for the curve integration of the sub-boundary (a 1D curve
for a 2D problem domain) / for the Gauss point at Xy, 1., is the number of
the curve cells that are used to discretize boundary I';, and ng is number of
Gauss points used in a sub-curve.

In order to obtain numerically the nodal stiffness matrix K, the
formulation of the numerical quadrature for Equation (4.14) can be written
as

n., ng n, Mg
~ T D e
K, = ZZWiB1 (xy; DBJ(XQi)“!ik‘ = ZZ(KZIJ )2x2) (4.37)
& i=l k=l
KY)

where K% is defined as
K =B} (xo DB, (x,,)[7| (438)

and the dimension of K® is 2x2 .

Note that Equation (4.37) means that the nodal matrix K,, is obtained

numerically by the summation of contributions from all the quadrature
points whose local support domains include both the /th and the Jth nodes.
If node 7 and node J are not in the local support domain for the quadrature

point at X¢; , K vanishes.
Similarly, we can obtained the nodal body force vector F,(b) given in
Equation (4.23)

® _ N\ S T bl S k()
F, ;Z; W@, (XQi)b(XQi)|Jik\ = ;ZIE (4.39)
= Flll(h) =

where F/*®) is defined as
F O = 5,®] (x5)b, (x,)|97] (4.40)
and the lengeth of F*®)is2 .

The nodal traction force vector F,(f ) given in Equation (4.27)
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Te

F = Zi W] (xg) E(xg) |3 ﬂ - ii'ﬁﬂ(’) (4.41)

[ i=1 1 i=1
F;‘I(/)

where F' is defined as
F/O =] (x5)- € (x| (4.42)

and the lengeth of F/'") is 2 .

In the RPIM method, the matrices are assembled based on the quadrature
points. Note that different quadrature points use different support domains.
This means that the shape function matrix ®@ and the strain matrix B may be
different for different quadrature points. This is different from FEM where
all Gauss points in one element use the same nodes (of the same element) to
perform the interpolation.

The numerical integration in an MFree global weak-form method is one
of the most important numerical issues, and has been studied by many
researchers (Dolbow and Belytschko, 1999; GR Liu and Yan, 1999; GR Liu,
2002). Two conclusions may be drawn from their studies.

1) The total number of quadrature points ny should be at least 2/3 of the
total number of the unfixed field nodes, N , in the problems domain, i.e.,

. 2 -
3ny>N,~2N or ny> EN for 2D problems (4.43)

Note that this rule is a necessary, not a sufficient requirement.

2) Other aspects (e.g., accuracy and convergence) should also be considered
to select a proper number of quadrature points. We have studied this
issue using benchmark problems. It has been found that the sufficient
requirement on the total number of quadrature points is (GR Liu, 2002)

ny=(3~9)N for 2D problems (4.44)

Note that these studies were performed for the EFG method, but the
conclusions are largely applicable to RPIM.

4.2.2.2 Properties of the stiffness matrix

Since D is sysmmetric, we can get
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[B;DB,]" =[B'D'B,] (4.45)
Hence, we have
K,]' =K, (4.46)
which means that the global stiffness matrix K is symmetric.

The global stiffness matrix K is assembled using the corresponding nodal
matrices, and K, #0 only when the nodes / and J are covered by the

support domain of at least one quadrature point. If nodes / and J are far
apart and they do not share the same support domain of any quadrature point,
K, vanishes. Therefore, as long the support domain is compact and does not
cover too widely the problem domain, many K;, will be zero, and the global
stiffness matrix K will be sparse. If the nodes are properly numbered, K
will be also banded.

In summary, the global stiffness matrix K in the MFree RPIM method is
banded, symmetric and sparse.

4.2.2.3 Enforcement of essential boundary conditions

This RPIM formulation, the traction boundary conditions (see Equation
(4.2)) has been naturally formulated into the discretized system equation
using the Galerkin weak-form. Therefore, the traction boundary condition is
often called the natural boundary condition. However, the displacement
boundary conditions (see Equation (4.3)) are not treated in the formulation
process. It is, therefore, essential to impose them separately before or after
Equation (4.32) is established. Hence, the displacement boundary condition
is termed as the essential boundary condition. Because RPIM shape
functions possess the Kronecker delta function property, the essential
boundary conditions can be easily enforced as in the FEM (see, e.g., GR Liu
and Quek, 2003). The following two methods that are widely used in FEM
to enforce essential boundary conditions can be used in RPIM.

a) Direct method

The ith displacement component is prescribed by setting

u, =1, (4.47)

1

Such an essential boundary condition can then be enforced directly into the
system Equation (4.32) through the following modifications to the stiffness
matrix and the global force vector.

The global stiffness matrix, K, is changed to
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K11 Kl(i—l) 0 Kl(i+1) K](ZN)
K(i—l)l o K(i—l)(i—l) 0 K(i—l)(iﬂ) e K(i—l)(ZN)
K=|0 0 1 0 0 (4.48)
K(i+1)1 K(m)(m) 0 K(i+1)(i+1) K(i+1)(2,’\/)
_K(2N)l K(ZN)([—I) 0 K(ZN)([+1) K(2N)(2N)_

The components in the global force vector are changed to

F { i = (4.49)
;= — . .
/ F,—Ku, i#]

Solving Equation (4.32) using the modified stiffness matrix and the force
vector, we can obtain all the displacement components, and Equation (4.47)
is satisfied exactly.

The direct method can exactly enforce essential boundary conditions, but
changing matrices and vectors needs additional computational operations. In
addition, the algorithm of the direct method is also complicated.

b) Penalty method

The penalty method is a convenient alternative for enforcing the essential
boundary conditions, in which the diagonal entry, K;;, in the stiffness matrix,
is changed to

K,=aK, (4.50)

where « is the penalty coefficient that is the much larger number than the
components of the stiffness matrix K. The stiffness matrix, K, is then
changed to

Ku Kl(i—l) Kli Kl(i+1) KI(ZN)
K(i—l)l o K(.-'—l)(i—l) K(;‘—l)i K(i—l)(i+1) T K(/—l)(ZN)
K= K(i)l : Ki(i—l) ak; Ki(i+l) Ki(ZN) (4.51)
K(i+l)1 o K(Hl)(i—l) K(i+1)i K(i+1)(i+1) o K(i+l)(2N)
_K(ZN)I e K(ZN)([—I) K(zN)f K(ZN)(i+l) e K(2N)(2N) |

In the global force vector F, only the component F; is changed as follows
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F = aKiiﬁi i=j 450
g F i# (4.52)

J

We now solve Equation (4.32) using the modified stiffness matrix and
the force vector, all the displacement components can be obtained, and
Equation (4.47) is satisfied approximately.

The penalty method has some advantages: there are only two changes of
matrices, and the algorithm is very simple. However, the penalty method
can only approximately satisfy the essential boundary conditions. In
addition, the accuracy is affected by selection of the penalty coefficient; it
can be difficult to select a proper penalty coefficient. Ways of choosing the
penalty coefficient will be presented in Section 4.4.

4.2.2.4 Conformability of RPIM

The compatibility requirement is common to all the methods based on the
global energy principles, because a possible gap or overlap (incompatibility)
may affect the energy in the system and destroy the balance of the equation
of the energy principle. The remedy is to use the constrained form of energy
principles that takes into account the energy caused by incompatibility.
Because the RPIM interpolation is not always compatible in the global
domain (GR Liu and Gu, 2004a), the enforcement of the compatibility is
needed on the incompatible curve I', in the problem domain Q to produce
the conforming RPIM (CRPIM). The constrained variational (weak) form of
CRPIM for two-dimension elasto-static problems is posed as follows using
the penalty method to ensure the compatibility.

j (LSu)" (DLu)dQ — jaudeQ - j Su"tdr
Q Q r,

(4.53)
+[5@" —u)a(" —u)dr=0

where a is the matrix of the penalty constants, and u’" and u are the
displacements on the two sides of the incompatible interface, I',. Hence,

the compatibility on the interfaces I'_ of the neighboring integration cells is

enforced by the penalty term. If the last term in the left-hand-side of
Equation (4.53) is excluded, the formulation leads to the conventional non-
conforming RPIM (NRPIM).

The so-called CRPIM was proposed by GR Liu and Gu (2004b), and
further studies of CRPIM and NRPIM have concluded that CRPIM leads to
slightly more accurate results than the NRPIM. However, the NRPIM has
also been found to be convergent and lead to satisfactory results. The
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NRPIM is simpler than the CRPIM. Hence, only the conventional RPIM or
NRPIM has been discussed in detail in this book.

4.3 ELEMENT FREE GALERKIN METHOD
4.3.1 EFG formulation

Consider a two-dimensional problem of solid mechanics in a domain Q
bounded by I'. The strong-form of system equation is given by Equations
(4.1)~(4.3). The element-free Galerkin (EFG) method uses the moving least
squares (MLS) shape functions (see Section 3.3). Because the MLS
approximation lacks the Kronecker delta function property, the constrained
Galerkin weak-form should be posed as follows.

[s(Lu) D(Lu)dQ - [5u"bdQ — [5u"Tdl-
Q Q T,

1 . B (4.54)
5'[5(u—u) a(u—u) dl’ =0

rll

where a = |_a1 a, @, | is a diagonal matrix of penalty factors, where

k=2 for 2D, and /=3 for 3D. The penalty factors ¢; (i=1, 2,...,k) can be a
function of coordinates and can be different from each other, but must be
given. In practice, we often assign them the same constant of large positive
number.

Note that in using EFG, the global compatibility of the shape function is
ensured by the weight functions appropriately chosen in the MLS
approximation. Hence, the constrained term to ensure compatibility is not
required in the weak-form of Equation (4.54).

Using the MLS shape functions constructed using #n nodes in the local
support domain (see Section 3.3), we have

! ul |4 0 4 O],
e T { } ) { 0 0 1= PaanUem) (4.55)
v ¢1 ¢n u

where @ is a matrix of the MLS shape functions arranged in the form of
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|4 0 9 0
CD—[O s 0 A (4.56)

In Equation (4.55), u; and v, are the parameters of displacements (not the
nodal displacement, see Figure 3.16) for the /th node, because the MLS
shape functions do not have the Kronecker delta function property. It is
different from RPIM, in which u; and v, are the nodal displacements because
RPIM shape functions have the Kronecker delta function property.

Substituting the foregoing expression for all the displacement
components of u into the weak-form Equation (4.54), and following the
exact procedure detailed in Subsection 4.2 yield the following global
discretized system equations of the EFG method.

| K+K“] U=F+F" (4.57)

where U is the vector of nodal parameters of displacements for all nodes in
the entire problem domain, K is the global stiffness matrix assembled using
the nodal stiffness matrices, and F is the global external force vector
assembled using the nodal force vectors, Equations (4.23) and (4.27). The

additional matrix K” is the global penalty stiffness matrix assembled in the

same manner as for assembling K using the nodal penalty stiffness matrix
defined by

K} = [@]a®,dr 4.58)
rll

Note that K, isa 2x2 matrix.

In Equation (4.57), the additional force vector F“ is caused by the
essential boundary conditions; it is formed in the same way as F, but using
the nodal penalty force vector F, defined by

F{ = [®]oudr (4.59)
l—‘ll

The length of F; is 2.

Similar to Equations (4.37) and (4.41), the integrations in the penalty
stiffness matrix and the penalty force vector can also be obtained using the
standard Gauss quadrature. Note that, in Equations (4.58) and (4.59),
integrations are curve integrations for 2D problems. The integration is
performed along the essential boundary, and hence matrix K will have
entries only for the nodes near the essential boundaries I',, which are
covered by the support domains of the Gauss quadrature points on [,
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Equation (4.57) is the final discretized system equation for the EFG
method with the penalty method to enforce essential boundary conditions.

The Galerkin procedure makes the stiffness matrices K and K* symmetric.
If the problem domain is sufficiently supported without rigid body
movement, [K+ K“ ] will be positive definite; a standard linear algebra

equation solver can be used to solve Equation (4.57) for the nodal
displacement parameters.

In order to obtain the integrals in the EFG method, a global background
mesh of cells is required, as in RPIM. The background mesh of cells can be
independent of the field nodes that are used for the field wvariable
approximation. In each cell, Gauss quadrature can be employed, and the
number of quadrature points depends largely on the nodal density, as
discussed in Sub-section 4.2.2.1.

In the present EFG formulation, the penalty method is used to enforce
essential boundary conditions. The advantage of using the penalty method is
that the dimension, symmetry and positive definite properties of the stiffness
matrix are achieved, as long as the penalty factors chosen are positive. In
addition, the symmetry and the bandness of the system matrix are preserved.

However, the penalty method has the following shortcomings.

e Essential boundary conditions are imposed only approximately,
depending on the magnitude of the penalty coefficients. Theoretically,
the larger the penalty coefficients, the more accurate the enforcement
of the essential boundary conditions.

e [t is difficult to choose a set of penalty factors that are universally
applicable for all kinds of problems. One hopes to use large possible
penalty factors, but too large penalty factors often give numerical
problems, as we experienced in the imposition of multi-point
boundary condition in the finite element methods. Trials may be
needed to choose a proper penalty factor.

e The results obtained are generally less accurate than those obtained
from the method of Lagrange multipliers (to be discussed in the
following sub-section).

Despite these disadvantages, the penalty method is widely used.

4.3.2 Lagrange multiplier method for essential boundary
conditions

The penalty method provides an efficient way to implement essential
boundary conditions, and is used by many researchers e.g., Zhu and Atluri
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(1998). Several other strategies have also been developed for alleviating its
defects, such as, the Lagrange multiplier method (Belytschko et al., 1994a),
the method using the modified variational principle (Lu et al., 1994), the
method coupling with the finite elements (Krongauz and Belytschko,1996),
the orthogonal transform technique (Atluri et al., 1999b), the constrained
MLS method (Yang, 1999), and so on. The Lagrange multiplier method is
introduced in this section.

The Lagrange multiplier method was used to enforce the essential
boundary condition in the EFG method by Belytschko et al. (1994a). The
functional related to the essential boundary condition, Equation (4.3), is
written in an integral form using the Lagrange multiplier A:

T —
[+ @-mar (4.60)
rll
The weak-form Equation (4.54) can then be re-written as
T o T { suTT
I(Léu) (DLu)dQ - J5u bdQ) - J ou tdl'
Q Q T,
(4.61)

- [T (u-w)dr - [su"ndr=o

ru 1-14

The last two terms in Equation (4.61) are produced by the method of
Lagrange multipliers for handling essential boundary conditions for cases
when u—u # 0 that violates the condition of Equation (4.3). The Lagrange
multipliers A can be viewed as smart forces that force u—u=0.

In order to obtain the discretized formulation, the Lagrange multipliers A
in Equation (4.61), which are unknown functions of the coordinates, need to
be interpolated using their nodal values and shape functions for nodes on the
essential boundaries.

c_ (AL [N e N, 0]
Mgl om0 o ] TN @eetas (462)

v

where 7, is the number of nodes used for this interpolation, N; is the shape
function for the /th node on the essential boundary, s is the arc-length along
the essential boundary, A is the vector of the nodal Lagrange multipliers of
field nodes on the essential boundary. Equation (4.62) can also be written in
the following nodal matrix form.
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n [N 0 A n
Moy = ! }“’: N, 4.63
A e
where N; 1is the matrix of shape functions for node / on the essential
boundary.

In Equations (4.62) and (4.63), the shape function N/s) can be the
Lagrange interpolants used in the conventional FEM. The Lagrange
interpolant of order n can be given in the general form of

(s =5 )(s=5)-(s=5, Ns=5,.,)(s—5,)

N (s)=
(5, = $)(8, =)+ (8 =5, )8, —8p,0) (5, —,)

(4.64)

If we choose to use the first order Lagrange interpolant (the linear
interpolation), we have n=1 and the Lagrange interpolants at point s=s, and
s=s; becomes

(=) (5o =)
(s() _Sl) (Sl _So)

In a simple case, the essential boundaries are discretized using line segments.
The Lagrange multiplier at s is interpolated using two nodes at the two ends of
this line segments.

Equation (4.62) gives the variation of the Lagrange multiplier as

A" =N (4.66)
Hence, Equations (4.55) and (4.66) give the fourth term in Equation (4.61):
[or" (w—w)dr
rll

Ny(s)=

(4.65)

- [o [IZN A ) X ﬁ[a[iwjﬁ

r, J a=
IZ ;&T j @, dl'u, —2&} [Njmdr (4.67)
= =R

-G, -q;

- Y ATGh, +y&]q,

I1=1 J=l1

T T
:5/\ (_G (2nll><2AV)Us(2n}d><]) +Q(2n)_[><]))

where A is a vector that collects the nodal Lagrange multipliers for all field
nodes on essential boundaries, 7n; is the total number of nodes on the
essential boundary, and the nodal matrix G, is defined as
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G, == [Nj@,dr (4.68)
rll

which has the dimension 2x2. In Equation (4.67), q; is a vector defined as,

q, =~ [Njadr (4.69)
rll

In Equation (4.67), G is the global matrix formed by assembling G,

defined in Equation (4.68), and Q is the global vector formed by assembling

q; defined in Equation (4.69).

Similarly, the last term in Equation (4.61) becomes

rj(dmu)T AdT = rj(i@,&ule (”;‘Njkj}ir

n, n

=>" > ou} [@/N,dra,
r,

== (4.70)
7GI./

ny; N
= _Z Z 5“7(}11)'1

=1 J=1

=-0U!GA

As in Equations (4.37) and (4.41), the integrations in the nodal matrix G,
and the nodal vector q; can also be obtained using the standard Gauss
quadrature scheme.

Substituting Equations (4.67) and (4.70) into Equation (4.61), we obtain
SU'[KU-F]+6A"(G'U -Q)+5sU'GA=0 4.71)

or
SU'[KU+GA-F]+5A"(G'U-Q)=0 (4.72)

where K is the global stiffness matrix and F is the global force vector, both
of which have been discussed in Sub-section 4.3.1.

Because both 06U and SA are arbitrary, this equation can be satisfied
only if

KU+GA-F=0
{ (4.73)

G'U-Q=0

The above two equations can be written in the following matrix form of
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[K Gj| {U} {F}
r = (4.74)
G 0 (2N+2n,, )x(2N+2n,,) A (2N+2n,,)x1 Q (2N+2m;, )1

Equation (4.74) is the final discretized system equations for the EFG
method using the Lagrange multiplier method. Solving Equation (4.74)
gives the results of nodal parameters of the displacements for this problem,
and the displacements at any point including at the field nodes in the
problem domain can be obtained from Equation (4.55).

The Lagrange multiplier method is accurate in imposing the essential
boundary conditions. However, it will increase the number of variables by
A and the dimension of the system matrix. Depending on the number of the
nodes on the essential boundaries, the solution efficiency can be drastically
reduced. It also leads to an un-banded and non-positive definite stiffness
matrix, which reduces the efficiency significantly in solving the discretized
equations. Note that the enlarged system matrix is still symmetric.

4.4 SOURCE CODE

In this section, a computer source code, MFree Global.f90, of these two
MFree global weak-form methods, RPIM and EFG, is provided. This code
is developed in FORTRAN 90 for easy comprehension. Combined with
subroutines RPIM_ShapeFunc 2D and MLS  ShapeFunc 2D given in
Chapter 3, this source code performs computations with either the RPIM or
the EFG method.

4.4.1 Implementation issues
4.4.1.1 Support domain and the influence domain

In the construction of meshfree shape functions, one of the most
important issues is to determine the local support domain mentioned in Sub-
section 3.1.2. The concept of the influence domain is also used in the MFree
methods to construct the shape functions.

The influence domain is defined as a domain for a field node that it has
an influence upon. The centre of the influence domain is the field node. In
contrary, the support domain is the area chosen for the meshfree
interpolation for a point of interest at x (which is often a quadrature point xy).
The centre of the support domain is usually a quadrature point that can also



168 Chapter 4

be a field node. Figure 4.2(a) clearly shows the difference between an
influence domain and a support domain.

The influence domain, as shown in Figure 4.2(b), is used in the following
manner for selecting nodes for interpolation. To construct the MFree shape
function for a point of interest, a field node will be involved in the shape
function construction for this point when this point is in the influence
domain of this field node. In other words, if the influence domain of a field
node covers the point of interest, this field node will take part in the
construction of shape functions for this point. Using the influence domain to
replace the support domain has several advantages.

e The influence domain works well for domains with irregularly
distributed nodes.

e The influence domain is defined for every field node in the problem
domain, and it can be different from node to node to represent the area
of influence of the node. Since the dimension of the influence domain
can be different from node to node, some nodes can have more
influence than others, and to prevent unbalanced nodal distribution for
constructing shape functions.

e Because the number of field nodes is usually much less than the
number of quadrature points, there are fewer influence domains than
support domains. This makes the procedure computationally more
efficient.

For these reasons, the influence domain is used in this book in the
development of computer code.

The influence domain for a field node can be arbitrary in shape, and its
dimensions of the influence domain can be determined using a similar
procedure described in Chapter 3. For a two-dimensional domain and when
a rectangular influence domain is used, the size of the influence domain is
determined by d,, and d,, in the x and y directions, respectively, i.e.

dix = aixdcx
dl.y =qa, dcy

iy

(4.75)

where d. and d,, are, respectively, the nodal spacing in the x and y directions,
have been defined in Sub-section 3.1.2, and &, and «, are the dimensionless
sizes of the influence domain in x and y directions, respectively. They
control the actual sizes of the influence domain in relation to the nodal
spacing. If ¢;,=2.5, for example, the size of the influence domain in the x-
direction is 2.5 times the nodal spacing.

Note that selecting nodes for the interpolation/approximation can be time
consuming for large scale problems, and hence special algorithm, such as the
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bucket algorithm (GR Liu, 2002) and the tree algorithm (see, e.g., GR Liu
and Liu, 2003) should be used.

4.4.1.2 Background cells

To perform the numerical integrations in the MFree global weak-form
method, the global background cells, as shown in Figure 4.1 and Figure 4.2,
are needed.

The background cells can be rectangular or triangular for a two-
dimensional domain. Triangular background cells are well suited to
problems with complex geometry.  For simplicity, the rectangular
background cells are, however, used in the book.

4.4.1.3 Method to enforce essential boundary conditions

The methods to enforce essential boundary conditions in the EFG method
have been discussed in Sub-sections 4.3.1 and 4.3.2. The penalty method is
used for the EFG method in the attached code.

Because the RPIM shape functions possess the Kronecker delta function
property, the essential boundary conditions can be enforced directly and
accurately without any additional treatment. For uniformity, the penalty
method that has been presented in Sub-section 4.2.2.3 is used in the RPIM to
enforce the special nodal displacements.

One major issue in using the penalty method is how to properly choose
the penalty coefficient. Based on the practice in FEM, the penalty
coefficient & can be determined by

a=10*"~10°x(K,) (4.76)

max

where (K;)
matrix.

max 18 the maximum diagonal element of the global stiffness

4.4.1.4 Shape parameters used in RBFs

In the RPIM method, the radial basis functions are used to construct
MFree shape functions. In the subroutine of RPIM_ShapeFunc 2D, the
Multi-quadrics (MQ) RBF, Gaussian (EXP) RBF, and Thin Plate Spline
(TPS) RBF are used. For simplicity, only results of MQ-RBF are discussed
here. Results for other RBFs can be obtained similarly.

In the MQ-RBF, there are two shape parameters: «, and ¢ (see Sub-
section 3.2.2). Choices of these two shape parameters will affect the
performance of the RPIM. The parameters are studied by numerical
examinations because there are still no successful rigorous methods to
determine theoretically their best values.
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Figure 4.2. The background cells, the support domain, and influence domains used in the

MFree global weak-form methods.
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4.4.2 Program description and data structures

The flowchart of the source code, MFree_Global.f90 is shown in Figure
4.3. The procedure of an analysis using MFree methods is as follows.

e The geometry of the problem domain is created and a set of field
nodes is generated to represent the problem domain.

The global background cells are used for numerical integrations.

e The system matrices are assembled through two loops. The outer
loop is for all the cells of the background mesh, and the inner loop is
for all the Gauss quadrature points in a cell.

e The boundary conditions are enforced.

e The system equation is solved using the standard Gaussian
elimination equation solvers.

e The post-processing is performed to analyze the final results
(displacements and stresses) of the problem considered.

The procedure is similar to that in the conventional FEM. The head files
and main program of MFree Global.f90 are listed in Program 4.1~Program
4.3, respectively.

The main program of the MFree Global.f90 calls several subroutines.
The macro flowchart for the program is presented in Figure 4.4. The
functions performed by these subroutines are listed in Appendix 4.1.

1) Programs for the RPIM and EFG

The attached programs call the subroutine RPIM_ShapeFunc 2D for the
construction of RPIM shape functions. It can be easily changed to the
program of the EFG method by calling the subroutine MLS ShapeFunc 2D
instead. Both subroutines, RPIM_ShapeFunc 2D and MLS ShapeFunc 2D,
have been given in Chapter 3. It should be noted that RPIM_ShapeFunc 2D
is not only called in the main program of MFree Global.f90 but also in some
other subroutines. Hence, to perform the computation using the EFG, all the
calls for RPIM_ShapeFunc_ 2D should be replaced.

2) Major variables

There are some major variables used in the main program and
subroutines. These variables are listed in Appendix 4.2; they can be largely
classified as follows:

e Variables for describing the problem, for example, the material
constants, coordinates of field nodes, boundary conditions,
background cells, and so on;

e Variables for computing system matrices, for example, the Gauss
points, influence domains, shape parameters, penalty coefficients,
shape functions and its derivatives, and so on;
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Loop over
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Loop over
quadrature points
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Search all influence domains to determine nodes involved in the
interpolation

!

Compute the MFree shape functions for the quadrature point

\4

Compute the stiffness matrix at the quadrature point

A\ 4

Assemble the global stiffness matrix

}

End of the loop for the quadrature points

|

Compute and assemble the distributed forces

l

End of the loop for the background cells

!

Enforce boundary conditions

}

Solve the system equation for displacements and
then retrieve the stresses

End

Figure 4.3. Flowchart of the program of MFree Global.f90
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Figure 4.4. Macro flowchart of MFree Global.f90

e Variables for system matrices and vectors, for example, the global
stiffness matrix, the global force vector, and so on;

e Variables related to the solutions, for example, nodal displacements,
nodal stresses, error in the energy norm, and son on.

As these global variables will be used in main program and subroutines,
they will not be explained again in the descriptions for the following
subroutines.

3) Subroutine Input

Source code location: Program 4.4.
Function: This subroutine is to input data from external file. In this
subroutine, the stress-strain matrix, D, is also computed.

4) Subroutine GaussCoefficient

Source code location: Program 4.5.
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S)

6)

7)

8)

9

Dummy arguments: Appendix 4.3.
Function: This subroutine is to set all coefficients of standard Gauss
quadrature.

Subroutines CellGaussPoints

Source code location: Program 4.6.

Dummy arguments: Appendix 4.4.

Function: This subroutine is to set the Gauss points in a background cell
and to calculate the Jacobian values at the Gauss points. In the
present program, quadrilateral background cells are used. The
background cells for other shapes (e.g. triangular and circular)
can also be used. Readers can modify this subroutine slightly
for other shapes of background cells.

Subroutine SupportDomain

Source code location: Program 4.7.

Dummy arguments: Appendix 4.5.

Function: This subroutine is to determine the support domain for an
interpolation point for the construction of MFree shape
functions. The influence domains are used in this book(Sub-
section 4.4.1.1). In the beginning of the computation (in the
main program), an influence domain is assigned to each field
node. The nodes involved in the interpolation are then found
through checking all influence domains for all field nodes. If
the interpolation point is located in the influence domain of a
field node, the field node will be recorded and used in the
interpolation for the construction of shape functions. Note that
rectangular influence domains are used in this code.

Subroutine PointStiffnessMatrix

Source code location: Program 4.8.

Dummy arguments: Appendix 4.6.

Function: This subroutine is to compute the stiffness matrix of a
quadrature point using Equation (4.37).

Subroutine Essential BC

Source code location: Program 4.9.

Dummy arguments: Appendix 4.7.

Function: This subroutine is to enforce essential boundary conditions. In
the present program, the penalty method, which has been
discussed in Sub-sections 4.2.2.3 and 4.3.1, is used.

Subroutines NaturalBC concentrated and NaturalBC_distributed

Source code location: Program 4.10 and Program 4.11.
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Dummy arguments: Appendix 4.8 and Appendix 4.9.

Function: These two subroutines are used, respectively, to implement
concentrated and distributed natural boundary conditions.
Readers can easily modify it for other types of natural
boundary conditions. In the subroutine NaturalBC_distributed,
the distributed natural boundary conditions used in Section 4.5
(Equation (4.84)) are used to compute the nodal force vector
using Equations (4.23) and (4.27). The global force vector is
obtained by assembling all nodal vectors.

10) Subroutine SolverBand

Source code location: Program 4.12.

Dummy arguments: Appendix 4.10.

Function: This subroutine is to solve the linear algebraic system
equation with an asymmetric banded matrix (e.g., Xu, 1995).
In fact, the stiffness matrix in an MFree global weak-form
method is symmetric (see Sub-section 4.2.2). However, an
asymmetric banded stiffness matrix has to be used in the
Chapter 5. To avoid listing too many standard routines that
are available in standard libraries, only the equation solver
for an asymmetric banded matrix is presented in this book.
Readers can replace this solver by simply calling other more
effective solvers in the computer system for symmetric
matrices.

Note that for easy comprehension of the program, the one-dimensional
storage technique that is also commonly available is not used in the present
program. The global stiffness matrix stored in a 2D array is formed in
exactly the same way as shown in the formulation, and the 2D stiffness
matrix is fed into the subroutine of the equation solver. In this subroutine,
the 1D stored banded matrix is first obtained from the original matrix. The
standard equation solver using the Gaussian elimination is used to obtain the
results. Readers can replace this solver with other more powerful solvers,
once the procedure is understood.

11) Subroutine GetDisplacement

Source code location: Program 4.13.

Dummy arguments: Appendix 4.11.

Function: This subroutine is to compute the actual displacements for any
point (including field nodes) of interest.

If only the field nodes are considered, this subroutine is useful only in the
EFG method. As discussed in Chapter 3, the MLS approximation does not
pass through the nodal function values. Hence, U that solved from Equation
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(4.57) are only the nodal parameters for displacements. In order to get the
actual displacements at any point (including the field nodes) in the problem
domain, we need to use the MLS approximation again, i.e.

U
4 0 ¢ o]

u(x)= ué’zXl)(x) = {v} = { 0 4 - (;’ 4 } : 4.77)
'

where u(x) is the displacement vector of a point x, ¢ is the MLS shape
functions, u; is the nodal parameters obtained from Equation (4.57). The

presented subroutine computes the final nodal displacements for all the field
nodes.

This subroutine is unnecessary for the RPIM method to compute the
displacements for field nodes. Because the RPIM shape functions have the
Kronecker delta function property, U obtained from Equation (4.32) gives
already the actual nodal displacements. However, this subroutine is
necessary to obtain the displacements at a point that is not a field node.

12) Subroutine GetStress

Source code location: Program 4.14.

Dummy arguments: Appendix 4.12.

Function: This subroutine is to compute stress components for the point
of interest using Equation (4.10).

For the error analysis, we define the following energy norm as an error
indicator, as the accuracy in strains or stresses is much more critical than that
in the displacements.

ee — \/% .[(SNum _SExact )TD(SNum _SExact )dQ (478)
Q

Exact

where """ and £™** are strain vectors obtained by the numerical method and
the analytical method, respectively. In the presented subroutine, stress
components at all Gauss points and field nodes are computed.

In the subroutine GetStress, a subroutine to perform the inversion of a
matrix is used. The subroutine Getlnvasy is presented in Program 4.15. In
this subroutine, the Gauss-Jordan method is adopted.
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4.5 EXAMPLE FOR TWO-DIMENSIONAL SOLIDS - A
CANTILEVER BEAM

Numerical studies are conducted for a cantilever beam that is often used
for benchmarking numerical methods because the analytic solution for this
problem is known. The studies for this example have following purposes:

a) To demonstrate the standard analysis procedure using MFree global

weak-form methods;

b) To show the usage of the present programs of RPIM and EFG;

c) To study the effects of shape parameters of RPIM,;

d) To investigate the effects of the size of support (influence) domain;

e) To examine the numerically the convergence of RPIM and EFG;

f) To study the efficiency of RPIM and EFG;

To provide a quantitative analysis, a cantilever beam subjected to a
parabolic traction at the free end as shown in Figure 4.5 is considered. The
beam has a unit thickness (#=1.0) and a plane stress problem is considered.
The exact solution of this problem is available and listed as follows
(Timoshenko and Goodier, 1970).

A,

/
L~
g o] |
g g
L~
/N ‘ P
/| L (parabolically
-t B distributed)

Figure 4.5. Cantilever beam subjected to a parabolic traction at the free end.

e The displacement in the x direction is given by:

= Pyr6L 3 2o -2
u(x,y)——6E[L( =3x)x+( +V)Ly _TJ (4.79)

where the moment of inertia / , for a beam with rectangular cross-section and
unit thickness is given by
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D}
I= o (4.80)
e The displacement in the y direction:
v(x,v)= il_31/ vA(L—x)+(4+5v) D’x + (3L —x)x* (4.81)
7 6El L ’ -
e The normal stress on the cross-section of the beam
O (X, )= —@ (4.82)
e The normal stress in the y direction
o,=0 (4.83)
o The shear stress on the cross-section of the beam
Txy(x,.v)=%{DTz—y2} (4.84)

In this book, the units used are the standard international (SI) units unless
specially mentioned. In this example, the parameters for this cantilever
beam are

Loading (integration of the distributed traction): P =-1000

Young’s modulus: E =3x10’
Poisson’s ratio: v=0.3

The height of the beam: D =12
The length of the beam: L = 48
The thickness of the beam: unit.

On the right boundary (x=L), the applied external traction force is
computed from the analytical formula Equation (4.84). The force is
distributed in the form of a parabola on the cross-section at the right end of
the beam

Xy

pPlD
X-L_21L4 y} (4.85)

At the left boundary (x=0), the essential boundary conditions are given using
the analytic formulae Equations (4.79) and (4.81). i.e.,

=———y

_P+v)| , D*
ul_, oET | 7 } (4.86)



4. Meshfree methods based on global weak-forms 179

PvL ,
== 4.87
x=0 2E] y ( )

4.5.1 Using MFree Global.f90

In order to illustrate the present code, MFree Global.f90, the above
mentioned two-dimensional beam is analyzed following the steps given
below:

Step 1: Preparation of the input data

The problem considered should be modelled in this step, which includes:

(1) Defining the geometry of the problem domain;

(2) Creating field nodes to represent the problem domain;

(3) Creating background cells for the numerical integration;

(4) Setting essential boundary conditions;

(5) Determining parameters, such as the number of Gauss points, the size
of influence domains, shape parameters of RPIM, penalty coefficients,
and so on.

This step prepares the input data file. For the cantilever beam problem,
the problem domain is simple. Hence, the geometry data file can be easily
obtained. For a complex practical problem, a pre-processor may be needed
to generate the input data file (e.g. field nodes, background cells, and so on).
MFree2D® (introduced in Section 4.8) has a convenient pre-processor:
MFreePro that can be used for a generating the geometry data for complex
2D domain.

An example of the input data file is shown in Appendix 4.13. The
domain of the beam is represented by regularly distributed 175 (25x 7) field
nodes as plotted in Figure 4.6. A total of 40 (10x4) regularly rectangular
background cells are used for the numerical integrations. Note that the
background cells are independent of the field nodes.

This data file contains largely three parts.

e The parameters of problem description.

e Data related field nodes and background cells.
e Definition of the boundary conditions.

For this beam problem, the exact boundary conditions are the essential
boundary conditions on the left end obtained using Equations (4.86) and
(4.87), and the natural boundary conditions on the right end of this beam
obtained using Equation (4.85). There is no concentrated nodal force in this
example.
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Figure 4.6. Nodal arrangement and the background cells for the cantilever beam. A total of
175 (25x 7 ) regular field nodes and 40 (10 x 4 ) background cells are used.

Step 2: Execution of the program.

The output results of RPIM and EFG are listed in Appendix 4.14~
Appendix 4.17. The error in the energy norm given in Equation (4.78) is
also presented.

Step 3: Analysis of the output data.

This step can be performed using a post-processor like MFree Post (GR
Liu, 2002). Since this example problem is simple, and the output date file is
small, any other commercial program, such as Matlab, MS-Excel, etc., can
be used to produce the drawing of the results.

Results obtained using the RPIM method are plotted in Figure 4.7~Figure
4.9. The deflection of the beam is plotted in Figure 4.7 and Figure 4.8. For
comparison, the analytical results of displacements computed using
Equations (4.79) and (4.81) are also plotted in the same figure. There is
good agreement between the RPIM method results and the analytical results.

The results of stress, o, and shear stress, T, ,are plotted in Figure 4.9.

Compared with the analytical results, the RPIM method produces very good
results even for stresses.

Results of the EFG method are plotted in Figure 4.10 and Figure 4.11.
The deflection of the beam is plotted in Figure 4.10. For comparison, the
analytical results of displacements given by Equation (4.79) and (4.81) are
also plotted in the same figure. The results of stress, o, and shear stress,

xx 2

7, are plotted in Figure 4.11. Compared with the analytical results, the

xy 2
EFG method has also produced very accurate stresses.
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Two models with nodal distributions of 189 regular nodes and 189
irregular nodes shown in Figure 4.12 are used to test the present code.
Stresses oy, and 7, are first obtained using the RPIM method and plotted in
Figure 4.13. Stresses oy, and 7, are also obtained using the EFG method
and plotted in Figure 4.14; the nodal irregularity has little effect on the
results, and this is true for both the RPIM method and the EFG method.

For comparison, the conventional FEM results using bi-linear elements
are computed and results are plotted in Figure 4.15 and Figure 4.16. For the
regular nodal distribution of 189 nodes (160 bi-linear FEM elements), FEM
obtains less accurate but still acceptable results. However, for the irregular
nodal distribution of 189 nodes, the FEM results are very bad. This example
clearly demonstrates the advantage of MFree methods over the conventional
FEM on the robustness of using irregular field nodes in computing the
stresses.

Note that, in the conventional FEM, stresses at the field nodes are
obtained by simply averaging the nodal stresses of the surrounding elements.
Better stress results can, of course, be obtained by interpolation of the
stresses at the Gauss points or the so-called super-convergent points.

Note also that the performance of an MFree method is usually affected by
the parameters. In the following sections, the effects of some important
parameters used in both RPIM and EFG methods are studied using the
present code.

DS N N

O  Analytical solutions /A RPIM solutions

Figure 4.7. Deflection of the beam obtained using RPIM and 175 field nodes. The
MQ-RBF is used in RPIM and the parameters used are ,=1.0, g=1.03 and o; =3.0.

The linear polynomial terms are added in the RPIM-MQ. Note that the
displacements plotted are magnified by 500 times.
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Figure 4.8. Deflections v along the central axis at y =0 of the beam obtained using
RPIM-MQ and 175 field nodes.
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Figure 4.9. Shear stress distributions on the cross-section of the beam at x=L/2

obtained using RPIM and 175 field nodes. The MQ-RBF is used in the RPIM and

the parameters used are o, =1.0, ¢=1.03, and @; =3.0. The linear polynomial
terms are added in RPIM-MQ.
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Figure 4.10. Deflections v along the central axis at y =0 of the beam obtained using
EFG and 175 field nodes. The parameter used is ¢; =3.0. The linear polynomial basis
is used in MLS.
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Figure 4.11. Shear stress distributions on the cross-section of the beam at x=1/2
obtained using EFG and 175 field nodes. The parameter is «; =3.0. The linear
polynomial basis is used in MLS.
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Figure 4.12. Nodal arrangements used to model the cantilever beam. (a) 189 regular
nodes; (b) 189 irregular nodes.
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Figure 4.13. Shear stress distributions on the cross-section of the beam at x=1/2
obtained using RPIM and 189 field nodes. The MQ RBF is used in RPIM and the
parameters used are «, =1.0, ¢=1.03, and ¢; =3.0. The linear polynomial terms

are added in RPIM-MQ.
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Figure 4.14. Shear stress distributions on the cross-section of the beam at x=L/2
obtained using EFG and 189 field nodes. The parameter used is «; =3.0. The linear
polynomial basis is used in MLS.
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Figure 4.15. Shear stress distributions on the cross-section of the beam at x = L/2
obtained using different methods and 189 regular field nodes (bi-linear elements
for FEM, «;=3.5 for RPIM and EFG).
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Figure 4.16. Shear stress distributions on the cross-section of the beam at x=L/2
obtained using different methods and 189 irregular field nodes. The mesh distortion
effects on the FEM solution (using bi-linear elements) are obvious.

4.5.2 Effects of parameters

In the following studies, we consider the same cantilever beam problem
because we know the analytical solution. The problem domain is
represented by 189 (21x9) regularly distributed nodes, and 160 (20x8)
rectangular background cells are used for numerical integrations. In each
background cell, 4x4 Gauss points are employed. As the number of Gauss
points used satisfies the sufficient requirement given in Equation (4.44), we
considered the numerical integration to be sufficiently accurate. For
quantitative and accurate analysis, the exact essential boundary conditions
and exact natural boundary conditions are also used. In the exact natural
boundary conditions, the distributed traction is employed at the right end of
the beam. Hence, the curve integration is required on the boundary of the
right end of the beam.  The error in the energy norm defined by Equation
(4.78) is used as an error indicator. In the RPIM method, the linear
polynomial terms are added in the RPIM-MQ. In the EFG method, the
linear basis and the cubic spline weight function (W1) are employed in the
MLS approximation.
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4.5.2.1 Parameter effects on RPIM method
a) Shape parameters used in RPIM

Only MQ-RBF is studied in this sub-section. More detailed discussions
on the parameters of other RBF are presented in the paper by Wang and GR
Liu (2002c). In the MQ-RBF, there are two shape parameters (see Table 3.2)
to be investigated. The nodal spacing is a constant of d. =L/20=2.4.

GR Liu (2002) and co-workers have found that parameter g has great
influence on the performance of RPIM than that of parameter ¢,. Therefore,
q is investigated first with ¢, fixed at 1.0, 2.0 and 4.0. Errors in the energy
norm defined by Equation (4.78) for five different values of ¢ (¢ =-0.5, 0.5,

0.98, 1.03 and 1.2) are computed and plotted in Figure 4.17. When ¢ =-0.5

and 0.5, they are the classical MQ-RBFs. Wang and Liu (2002c) have
discovered that when ¢=0.98 and 1.03 the RPIM-MQ performs the best.
From Figure 4.17, it can be confirmed that ¢g=0.98 and 1.03 give good
results. GR Liu (2002) also found that the RPIM results become better when
q is near the integers (e.g. 1.0) and the condition number of the RPIM
moment matrix is large. However, when ¢ equals an integer (e.g., g=1), the
moment matrix is singular and the computation fails. We state without
showing the data that when ¢ is too large the error will significantly increase
because of the too large condition number of the moment matrix.

Error in energy norm

Figure 4.17. Influence of g on the RPIM-MQ, in which «, =1.0, 2.0 and 4.0 are used. It
can be found that ¢g=0.98 and 1.03 give accurate results.
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Error energy norm

(22

Figure 4.18. Influence of a, on the RPIM-MQ in which ¢g=0.98 and 1.03 are used. It can be

found that the results for a, =3.0~7.0 are more accurate.

GR Liu (2002) has found that ¢, should be in the range of 1.0~6.0. In
this study, ¢, is further studied for a wider range of 0.5~7.0. Errors in the
energy norm for different values of «, are plotted in Figure 4.18. It is found
that all ¢, in the range studied can lead to satisfactory results, «.=3.0~7.0
are preferred.

Hence, g=1.03 and &, =4.0 are used in the following studies.

b) Dimension of the influence domain

The dimension of influence domains is defined in Equation (4.75), where
d.. and d,, are nodal spacing in x and y directions near the field node i. In
this study, d.. =L/20=24 and d. . =D/8=1.5 are used. The actual

dimension of influence domains will be determined by changing ¢, and ¢,
which are dimensionless sizes in x and y directions. For simplicity,
a=a,=a; 1s used in this study.

Errors in the energy norm computed using different o; are plotted in
Figure 4.19. The shape parameters of MQ-RBF are ¢ =1.03 and o, =4.0.
It can be found that the error changes with ¢;, and the results of «; =2.0, 3.0
and 4.0 are all very accurate. The error for ; <1.5 and «; =2.5, 3.5 or 4.5
are relative large. The reason of bad results of &, <1.5 is that the influence
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domain is too small, and there are not enough field nodes included for
interpolation. Although the influence domains of «; =2.5, 3.5 or 4.5 are big

enough, the accuracy is also not very good. We suspect the reason is that
a;=2.5, 3.5 or 4.5 cannot match well with shape parameters. A more

detailed study is needed.

Errors in the energy norm obtained using the RPIM with the parameters
of 4=1.03 and &, =1.0 are plotted in Figure 4.20. It can be found that the
error e, is more stable for this set of shape parameters and results of «; >23.0

are very good. The aim of these studies is to show that some parameters
must be carefully selected in RPIM-MQ to obtain good results. It is
fortunate that the range of parameters is usually quite wide.

From the results of Figure 4.19 and Figure 4.20, ¢, =3.0 are used in the
following studies. In addition, considering the results presented in Figure
4.17~Figure 4.20 and the conclusions obtained by GR Liu (2002), ¢=1.03
together with «, =4.0 is generally stable and accurate for many problems

considered. Hence, g=1.03 and o, =4.0 are used in the following studies.
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Figure 4.19. The effects of the dimension of influence (support) domain ¢; on the
RPIM-MQ (¢=1.03, o, =4.0).
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Figure 4.20. The effects of the dimension of influence (support) domain ¢; on the
RPIM-MQ (&, =1.0 and ¢=1.03).

¢) Convergence

The convergence of RPIM is numerically studied using regularly
distributed 18 (3x6), 55(5x11), 112(7x16), 189(9x21), 403(13x31) and 697
(17x41) field nodes. The convergence curves are shown in Figure 4.21. For
comparison, the convergence curve for FEM that uses the bi-linear elements
is also plotted in the same figure. In this figure, /4 is in fact the nodal
spacing, d,, and it is equivalent to the element size (in x direction) in the
FEM analysis in this case. The convergence rates, R, computed by linear
regression are given in Figure 4.21. Note that the method of calculating the
convergence rate can affect very much the values of the convergence rate
due to the nature of the convergence process. In the early stage, the error
reduces much faster than in a later stage, where the results are very close to
the exact solution that is in polynomial form. For example, if only the right-
most two points are used to calculate the convergence rate, the R value can
be much higher. This is probably one of the reasons why different
convergence rates are reported in different references.

Figure 4.21 shows the following conclusions:

e The accuracy of the RPIM method is much higher than that of FEM.
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e The convergence rates of the RPIM are much higher than that of the
Galerkin FEM, which is 1.0 for bi-linear elements.

Note again that the shape parameters chosen in the MQ-RBF will affect
the convergence rate and the accuracy of the RPIM method.

Energy error

Figure 4.21. Numerical convergence of RPIM-MQ in error e, in energy norm. The
parameters used are o, =4.0, and o; =3.0. Linear polynomial terms are added in RPIM-

MQ. R is the convergence rate computed by linear regression using all points in the figure.

4.5.2.2 Parameter effects on EFG method

1) Dimension of the influence domain

The size of influence domains is defined in Equation (4.75) where
d.=L/20=2.4 and d = D/8=1.5 for this problem. Errors of the energy

norm for different ¢; are plotted in Figure 4.22. It can be found that the error
changes with ¢; and the results for 2.0<¢; <4.0 are very good. When the
influence domain is too small (¢&; <2.0) or too big (¢; >4.0), the error of
EFG results increases.

When the influence domain is too small (¢; <2.0), there are not enough

nodes used to perform the function approximation for the field variables.
The smoothness of MLS shape functions reduces. When the influence
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domain is too large (¢; >4.0), the MLS shape functions become too smooth
to represent the local properties of the field variables. In addition, large
influence domains will also increase the computational cost. Hence, a
proper influence domain should be used in the EFG method, and «; =2.5 is

found by this and other studies to be very good for many problems, and will
be used in the following studies of the EFG method.
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Figure 4.22. Effects of the dimension of influence (support) domain ¢; on EFG.

2) Convergence

The convergence of EFG is numerically studied using regularly
distributed 18 (3x6), 55(5x11), 112(7x16), 189(9x21), 403(13x31) and 697
(17x41) nodes, and the convergence curves are plotted in Figure 4.23. The
convergence rate, R, is computed via linear regression. From Figure 4.23, it
is observed that convergence rates of the EFG method is about 1.45 and is
higher than that of the Galerkin bi-linear FEM. It should be mentioned here
that only the linear basis is used in MLS to obtain the EFG results of Figure
4.23. The higher convergence rate of EFG is due to the fact that the MLS
shape functions possess higher order smoothness inherited from the weight
function used. Note also that the accuracy of the EFG method is much
higher than that of the FEM.
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Figure 4.23. Numerical convergence of EFG results. The parameter used is «; =2.5 . The

linear polynomial basis is used in the MLS approximation. R is the convergence rate
computed by linear regression using all the points in the figure.

4.5.3 Comparison of convergence

For comparison, the numerically obtained convergence curves of RPIM,
EFG and FEM are computed and plotted in Figure 4.24. From this figure,
the following remarks can be made:

a) Both the convergence rates and the accuracies of RPIM and EFG are
better than those of the bi-linear FEM. This is because the MFree shape
functions have higher interpolation accuracy than the bi-linear FEM
shape functiond, due to the use of more nodes in the construction of
MFree shape functions.

b) The convergence rate and accuracy of the RPIM method are slightly
better than those of the EFG method.

It should be mentioned here that the convergence is studied numerically
based on regularly distributed nodes. If the irregularly distributed nodes are
used, the convergence and accuracy of RPIM method and the EFG method
will be much better than those of FEM, as shown, for example, in Figure
4.24.
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Energy error

Figure 4.24. Comparison of numerical convergences of RPIM, EFG and linear FEM in

error e, of energy norm. R is the convergence rate.

4.5.4 Comparison of efficiency

The computational cost vs. the accuracy is a fair indicator to evaluate
numerical methods. A successful numerical method should obtain high
accuracy at a low computational cost. Regularly distributed 18, 55, 189 and
403 nodes are used to calculate the curves of error against the CPU time of
RPIM, EFG and FEM. These curves obtained and plotted in Figure 4.25,
where ¢; =3.0 and o; =2.5 are used in RPIM and EFG, respectively.

It should be noted that the computational cost of an MFree method
mainly comes from two parts:

1)

2)

The first part is the cost of the interpolation, which mainly comes
from computing the inverse of the moment matrix. Therefore, the
cost of the interpolation is mainly determined by the dimension of the
moment matrix. The dimensions of the moment matrices of RPIM
are nxn (n is the number of the field nodes in the support domain),
and the dimension of the moment matrix of EFG is mxm (m is the
number of basis, m =3 for the linear basis). Because of n >>m, the
interpolation cost of RPIM is usually much higher than that of EFG.

The second part is the cost to solve the final discretized system
equation, which depends on the maximum bandwidth of the global
stiffness matrix. The maximum bandwidth of the final stiffness



4. Meshfree methods based on global weak-forms 195

matrix increases with the number of nodes chosen in the support
domains, for a given numbering system. The support domains used
in RPIM is usually bigger than those used in EFG. The
computational cost of RPIM in solving the final system equation is
therefore higher.

The RPIM is first compared with the EFG method, in which the penalty
method is used to enforce the essential boundary conditions. From Figure
4.25, the following remarks can be observed:

a) For a desired accuracy (such as 107" error in the energy norm), the cost
of EFG (with penalty method) is the lower than that of RPIM.

b) For a given cost (say 20 s), the accuracy of EFG is better than that of
RPIM.

For this discussion, one can conclude that the efficiency of the EFG
method (using penalty method to enforce essential boundary conditions) is
better than that of the RPIM method.
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Figure 4.25. Comparison of the computational efficiencies of RPIM, EFG and FEM in
error e, in energy norm. In RPIM-MQ, the parameters are o, =4.0, ¢=1.03, «; =3.0,

and m=3. In EFG, the parameter is ¢; =2.5 , the weight function W1 and the linear
polynomial basis are used in the MLS approximation. In FEM, bi-linear elements are used.

If the Lagrange multiplier method is used, the dimension of the global
stiffness matrix will increase, and the stiffness matrix will become an
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unbanded matrix as shown in Equation (4.74). This will significantly
increase the computational cost of the EFG method especially for large
systems. To prove this point, the curves of error against the CPU time of the
EFG method using the Lagrange multiplier method is also plotted in Figure
4.25. It is found that the EFG method using the Lagrange multiplier method
is less efficient than RPIM.

For comparison, the curves of error against the CPU time of the
conventional FEM using bi-linear elements are also plotted in Figure 4.25.
It is found that FEM needs more CPU time to obtain the desire
computational accuracy than both RPIM and EFG; the conventional FEM is
less efficient than RPIM or EFG.

4.6 EXAMPLE FOR 3D SOLIDS

Because of the robustness and effectiveness of the MFree RPIM method,
the RPIM has successfully been applied to many types of problems (see, e.g.,
Chapter 2). In this section a simple example problem of a three-dimensional
(3D) solid is solved using the RPIM. The materials used in this section are
largely from the work by GR Liu and Zhang et al. (2003), where more
examples can be found.

The standard basic equations of 3D elastic solids were given in Sub-
section 1.2.1. The procedures used in Section 4.2 gives the discretized
system equations of the RPIM for 3D elastic solids. Detailed discussions are
omitted because it is largely similar to the 2D case. Readers may derive
these formulations following the procedures given in Section 4.2. Note that
the construction of RPIM shape functions for 3D domain is very similar to
the 2D RPIM shape functions, and the RBFs are distance functions; need
only change the formula for calculating the distance.

Consider a 3D cantilever beam (shown in Figure 4.26) with a circular
hole subjected to a uniformly distributed load of f=125. The left end of the
beam is fixed, and the right end of the beam is a half circle. The geometric
and material constants for the beam are: length (to the centre of the internal
circle): L=48; height: D=12; width: 7=8; radius of the outer half-circle: R=6;
radius of the internal circle: » =2; Young’s modulus: £=3x10", and
Poisson’s ratio: v=0.3.

The results of displacements and stresses are computed for all field nodes
using both RPIM and the FEM. For simplicity, only the results of the
vertical displacement at point A at (48, 4, 8) (see, Figure 4.26) are presented
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here. The FEM results, obtained using the commercial software package
ANSYS with a very fine mesh of 11109 elements (Solid92-type 10-node
tetrahedral element) shown in Figure 4.27, are taken as the reference solution
for the comparison study. The FEM reference solution is found as

Vi =—0.11211x1072.
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Figure 4.27. FEM mesh for the 3D cantilever beam.

The RPIM-MQ is used to solve this problem. In the MQ-RBF, the shape
parameters used are g=1.03 and ,=4.0. Irregularly distributed nodes shown
in Figure 4.28 are used. The tetrahedral background cells are used for the
numerical integrations. In each tetrahedral background cell, 4 Gauss points
are employed.

Figure 4.28. Irregular nodal arrangements for the 3D cantilever beam.
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Results of displacements obtained using RPIM are listed in Table 4.1.
The FEM results obtained using ANSYS (using 4-node elements) with the
same nodes as those used in RPIM are also listed. From this table, it can be
found that the RPIM gives much better results than that of the FEM.

Table 4.1. Vertical displacement at point A, v4, obtained using the RPIM and FEM
using exactly the same sets of nodes

Number of

nodes RPIM" RPIM? ANSYS
(number of vy Error vy Error vy Error
cells) (%) (%) (%)
(gg) -0.1109E-2  1.07 -0.1125E-2  0.40  -0.8307E-3  25.89
( iégg) -0.1133E-2  1.06 -0.1137E-2 146  -0.1046E-2  6.63
(ég?g’) -0.1125E-2  0.41 -0.1134E-2  1.16  -0.1060E-2  5.41
(32?) -0.1125E-2  0.38 -0.1137E-2 143 -0.1067E-2  4.78

(1): 70 nearest nodes are used to construct RPIM shape functions;
(2): 50 nearest nodes are used to construct RPIM shape functions.

3) Error:{vA —yRef /‘vief .

(4) Reference solution: vief =—0.11211x10"* obtained using ANSYS and very fine
mesh (11109 elemets).

4.7 EXAMPLES FOR GEOMETRICALLY NONLINEAR
PROBLEMS

The purpose of this section is to show some simple examples of the
applications of the RPIM to geometrically nonlinear solid mechanics
problems. The detailed description of this work can be found in a paper by
Dai et al. (2003). For applications to material non-linear problems, readers
may refer to the recent work by Dai et al. (2004).

The standard Newton-Raphson iteration procedure and the formulation in
material description are used in the study. The standard basic equations and
formulation procedures are largely the same as those used in the FEM (e.g.,
Zienkiewicz and Taylor, 2000). The difference is mainly in the creation of
the shape functions. Hence, detailed discussions are omitted here. Readers
are recommended to refer to the books on nonlinear FEM (see, e.g.,
Zienkiewicz and Taylor, 2000).
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In these examples, compressible hyperelastic neo-Hookean materials are
used with Lame constants of 1 =0.5x10*~N/cm* and A = (1/3)x10*N/cm?.
The plane strain state is considered in this section.

The RPIM-MQ shape functions are computed with ¢ = 1.03 and «.=1.0
augmented with six (2nd order) monomials. In the following studies,
o, =1.5 is used for the local support domains. Gauss quadrature using

4 x4 Gauss points is employed in each background cell.

4.7.1 Simulation of upsetting of a billet

A two-dimensional billet subjected to deep compression is studied using
RPIM. The initial dimensions of the billet are 4cm wide and 6¢cm high
shown in Figure 4.29. The domain is initially represented by 6x 6 uniform
nodes, and 5x5 rectangular background cells are used for the integration.
The billet is loaded via displacement control on the upper surface with the
bottom surface fully fixed. A Newton-Raphson iteration procedure is used
with increments of vertical displacement equal to 0.2c¢m. Figure 4.30 shows
the progression of deformation at different steps. It is seen that the billet is
compressed as much as 56% compared to its original height. The same
problem is also analyzed using the conventional non-linear FEM. It is found
that when the FEM is used (Zienkiewicz and Taylor, 2000), the convergence
stops at the amount of 50% of compression. An irregular node distribution
is also used in the RPIM for the simulation, and results are plotted in Figure

4.31.
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Figure 4.29. Schematical drawing of the initial and deformed billet subjected to deep
compression.
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Figure 4.30. Deformed profile of a compressed billet simulated using RPIM and 6x6 regular

nodes.
o
o
* *
L
o
* * *
* o * *
* * *
°
o o
1 °* 1
A\ * * 4
\ 1
\ /

Figure 4.31. The deformed profile of a compressed billet simulated using RPIM and
irregular nodes. Circles: initial positions of the nodes; Diamonds: positions of nodes in the
deformed billet.

4.7.2 Simulation of large deflection of a cantilever beam

In this example, a large deformation analysis is performed for a
cantilever beam subjected to a progressively increasing load at the middle
point on the cross-section at the free end with each load step of AF = 16.0 N.
The dimensions of the beam are (10cm x 2¢m ) and it is initially represented
using (11x3) regularly distributed nodes (see Figure 4.32). The analysis is
carried out using twenty load incremental steps (n = 20). The simulation
converges very fast, and less than 4 iterations are needed in each load
increment.
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Figure 4.33 illustrates different stages of deformation for the beam
obtained using RPIM. The tip deflections at different load steps are plotted
in Figure 4.33. It can be seen that, the nonlinear analysis reveals the stiffer
effect of the beam compared to the linear behavior.

4.7.3 Simulation of large deflection of a fixed-fixed beam

This example analyzes the large deformation of a beam with both left and
right sides fully fixed. The beam is subjected to a uniformly distributed and
progressively increasing load with each load step of Af' = 80.0 N/cm. After
twenty steps of loading, the final profile of the beam is shown in Figure 4.34.
The deflections at the mid-node at different load steps are plotted in Figure
4.35. Geometrically non-linear effects similar to the case of the cantilever
beam are observed.

F

Figure 4.32. Large deformations of a cantilever beam at different steps simulated using
RPIM.

4.8 MFREE2D®

MFree2D® is an adaptive stress analysis software package developed by
GR Liu and co-workers (GR Liu and Tu, et al., 2000) based on EFG and
RPIM. It was showcased in 1999 in the APCOM’99 conference.
MFree2D®is designed for 2D stress and strain analysis in solid mechanics
and structural mechanics subjected to static loadings. The software consists



202

of three major processors:

MFreePre,

Chapter 4

MFreeApp and MFreePost.

MFreePre is a preprocessor to formulate the input required by MFreeApp;
the latter performs computations and yields results which are then fed to

MFreePost for post processing.
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Figure 4.33. Deflections at point A at the middle of the cross-section at the free end of a
cantilever beam simulated using RPIM.

~,

A\

AR

o AJ R4 03
\, 7
AN \, 4 S
~ N Vi Vs
AN \, % ;
\ ° N, k4 °
N N, / J/
\, > d /
\ ~ e
'\ e -’ v
N ° Seae—" ° ’/
N 4
\ Vil
., 04 4

-~
-
-~
-

-
-
-

Figure 4.34. Initial and final profiles of a fixed-fixed beam subjected to a uniformly
distributed load. RPIM is used and the loading keeps vertical in the loading process.
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Figure 4.35. Deflections at point A at the middle of the central axis of the fixed-fixed beam
simulated using RPIM.

These three processors can work either in an integrated manner or
independently. One salient feature of MFree2D? is that it is designed to be
user-friendly and thus, has few input requirements from users. The main
features of MFree2D® include:

e The problem domain is discretized using scattered nodes and the
discretization is fully automatic.

e Adaptive refinement techniques are implemented to ensure the results
have a desired accuracy.

e User-friendly graphical-user-interface (GUI).

In the current version of MFree2D®, the RPIM method and the EFG
method are available, and Visual C++ is used as the programming language.
MFree2D® can be downloaded from the website
(http://www.nus.edu.sg/ACES).

The source codes provided in this book are largely consistent with the
MFree2D®. However, for easy understanding and comprehension, only
FORTRAN source codes are provided in this book for simple problems.
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4.9 REMARKS

MFree global Galerkin weak-form methods are discussed in this chapter.
The MFree RPIM method based on the radial point interpolation and the
EFG method based on the MLS approximation are detailed. A computer
code of RPIM and EFG for linear elasticity is provided. Numerical studies
are presented to show the implementation of the present code. The
performance and convergence of RPIM and EFG are studied numerically
and compared. It may be concluded that the accuracy, convergence, and
efficiency of RPIM and EFG are better than the conventional FEM.

From the studies in this chapter, we can make the following important
remarks:
a) The compatibility of the trial (shape) functions in the whole domain
is required in MFree global weak-form methods.
b) In RPIM, the recommended shape parameters for the MQ-RBF are
¢=1.03 and «=4.0.

¢) The accuracy of solutions changes with the sizes of the influence
domains ;. In RPIM, «; =3.0 is recommended. In EFG, we
recommend «;=2.5.

d) The convergence rates of both the RPIM and EFG methods are good.
The convergence rate of the RPIM is better than that of EFG.

e) The efficiency of the EFG method (using penalty method to enforce
essential boundary conditions) is better than that of RPIM.

f) The EFG method with the Lagrange multiplier method for enforcing
the essential boundary conditions is much less efficient than RPIM.

g) The bi-linear FEM is less efficient than RPIM or EFG.

Note that as the solution for the cantilever beam has polynomial form,
methods using MLS shape functions (with polynomial basis) perform better
than methods using RPIM shape functions (with RBF basis). For more
complex problems whose solutions are not in the polynomial form, the
situation can change, as observed in the surface fitting tests presented in
Chapter 3.
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APPENDIX

Appendix 4.1. Major subroutines used in MFree Global.f90 and their functions

Subroutines Functions

Input Input data from an external input file
GaussCoefficient Obtain coefficients of Gauss points
CellGaussPoints Set Gauss points for a cell

SupportDomain Determine the support domain for an

MLS_ShapeFunc 2D

(or RPIM_ShapeFunc 2D)

PointStiffnessMatrix

EssentialBC
NaturalBC
SolveBand

GetDisplacement

GetStress

interpolation point

Compute shape functions and their derivatives at
an interpolation point

Compute the stiffness matrix for a quadrature

point

Enforce essential boundary conditions

Implement natural boundary conditions

Solve system equation

Obtain the final displacements using the RPIM or
the MLS shape functions

Retrieve the strain, stress, and compute error in
the energy norm

Appendix 4.2. The major variables used in MFree Global.f90

Variable Type Usage Function

Young, anu Long real  Input Young’s modulus and Poisson ratio

Dmat (3,3) Longreal Compute The matrix of elastic constants

nx Integer Parameter  Dimension of this problem; nx=2 for
2D problem

ng Integer Parameter ~ Shape of the background cells, and
ng=4 is used for a rectangular cell

numnode Integer Input Number of field nodes
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x(nx,
numnode)

numq

xc(nx,
numnode)

numcell

noCell(ng,
numcell)

nquado

npEBCnum

npEBC,
pEBC

npNBCnum

npNBC,
pNBC

alfs
pAlf

Ds(nx,
numnode)

ndex

Ph(10, ndex)

Ak

Long real

Integer

Long real

Integer

Integer

Integer

Integer

Integer
long real

Integer

Integer
long real

Long real

Long real

Long real

Integer

Long real

Long real

Input

Input

Input

Input
Input

Input

Input

Input

Input

Input

Input

Input

Compute

Compute

Compute

Compute

Chapter 4

Coordinates x and y for all field nodes:
x(lsi):xi; x(zsi):yi

Number of background points to form
background cells

Coordinates x and y for background
points: xc(l,i)=x; xc(2,i)=y;

Number of background cells

Node ID for background cells

Number of Gauss points used in one
dimension in a background cell. For
rectangular background cell, the total
Gauss points used for a 2D cell is
nquadoxnquado.

Number of nodes with essential

boundary conditions

npEBC(1,i): ID of field nodes with
the essential boundary condition;

if npEBC(2,i)=1 then u, is prescribed
in pEBC(1,i); if pEBC(3,i)=1 then u,
is prescribed in pEBC(2,i)

Number of nodes with natural

boundary conditions

npNBC(1,i): ID of field nodes with
the natural boundary condition:

if npNBC(2,i)=1 then f, is prescribed
in pNBC(1,i); if pNBC(3,i)=1 then f,
is prescribed in pEBC(2,1)

Dimensionless  size  of
(influence) domain

support

Penalty coefficient
The size of the influence domain:
ds(1,i)=d,y;, ds(2,i)=dy,

Number of field nodes in the support
domain for an interpolation point

Meshfree shape functions and their
derivatives.

Global stiffness matrix
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Force Longreal Compute Global force vector
disp Longreal Compute Displacement vector,
disp(2*i-1)=u;; disp(2*i-1)=v;

Stress Long real Compute The array to store the stress
components for all field nodes

Appendix 4.3. The dummy arguments used in the subroutine GaussCoefficient

Variable Type Usage  Function

k Integer  Input Number of Gauss points in 1D
v(2,k) Long Output  The array for the coefficient of Gauss
real points,

v(1, i): coefficient for the coordinate of a
Gauss point; v(2, i): Gauss weight for this
Gauss point

Appendix 4.4. The dummy arguments used in the subroutine CellGaussPoints

Variable Type Usage Function

ibk Integer Input ID of the background cell considered
numgauss Integer Input Number of Gauss points in a cell

Gauss Long Input The array for the coefficients of Gauss
(nx,nquado) real points; Gauss(1, i): coefficient for the

coordinate of a Gauss point; Gauss (2, i):
Gauss weight for this Gauss point

gs(4,numg) Integer Output  Array storing information of Gauss points
for a cell:
2s(1, i): coordinate x for Gauss point i;
25(2, i): coordinate y for Gauss point ;
gs(3, i): Gauss weight for Gauss point i;
2s(4, i): Jacobian value for this cell
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Appendix 4.5. The dummy arguments used in the subroutine SupportDomain

Variable Type Usage Function
Gpos(nx) Longreal Input Coordinates of a point of interest
ndex Integer Output Number of field nodes used in the

support domain

nv(ndex) Integer Output Node ID of field nodes selected for the
construction of shape functions

Appendix 4.6. The dummy arguments used in the subroutine PointStiffnessMatrix

Variable Type Usage Function

ndex Integer Input Number of field nodes used in
the local domain for the
construction of shape functions

Weight Longreal Input Gauss weight for a Gauss point

ajac Long real Input Jacobian value for the cell

Ph(10, ndex) Long real Input Shape functions and their
derivatives.

GSPk(2*ndex,2*ndex) Longreal Output Stiffness matrix for the Gauss
point

Appendix 4.7. The dummy arguments used in the subroutine EssentialBC

Variable Type Usage Function

numnode Integer Input Total number of field nodes

pAlf Long real Input Penalty coefficient

alfs Longreal Input Dimensionless size for support
(influence) domain

Ds(nx, numnode) Long real Input The size of the influence
domain

npEBCnum Integer Input Number of nodes with essential

boundary conditions

npEBC(3,100), Integer, Input Essential boundary condition
pEBC(nx,100) long real
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AKQ2*numnode,

2*numnode)

Force(2*numnode)

Long real

Long real

Input and Global stiffness matrix

output

Input and Global force vector

output

Appendix 4.8. The dummy arguments used in subroutine NaturalBC concentrated

Variable Type Usage Function

numnode Integer Input Total number of field nodes

alfs Long real Input Dimensionless  size  for
support (influence) domain

Ds(nx, numnode) Long real Input The size of the influence
domain

npNBCnum Integer Input Number of nodes with
natural boundary conditions.

npNBC, Integer Input Natural boundary condition

pNBC long real

ep Long real Input Tolerance

Force(2*numnode) Long real

Input and Global force vector

output

Appendix 4.9. The dummy arguments used in subroutine NaturalBC _distributed

Variable Type Usage Function

numnode Integer Input Total number of field nodes

alfs Long real Input Dimensionless size for
support (influence) domain

Ds(nx, numnode) Long real Input The size of the influence
domain:
ds(1,i)=dw, ds(2,i)=d,;

X(nx, numnode) Long real Input Coordinates x and y for all
field nodes

numq Integer Input Number of  background
points to form background
cells

xc(nx, numnode) Long real Input Coordinates x and y for
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background points

nquado Integer Input Number of Gauss points
used in one dimension in a
background cell.
Gauss Long real Input The array for the
(nx,nquado) coefficients of Gauss points:
in, jn Integer Input Two ends of the sub-
boundary I,
Force(2*numnode) Long real Input and Global force vector
output

Appendix 4.10. The dummy arguments used in the subroutine SolverBand

Variable Type Usage Function

neq Integer Input Number of equations

nmat Integer Input Number of rows of the array Ak

AK(neq, neq) Longreal Input Coefficient matrix of the
equation

fp Longreal Input, output Input: the right hand side of the

equations;Output: the solution
of the equations

Appendix 4.11. The dummy arguments used in the subroutine GetDisplacement

Variable Type Usage Function

nx Integer Input nx=2 for 2D problem

numnode Integer Input Total number of field nodes

x(nx, numnode) Long real Input Coordinates x and y for
all field nodes

alfs Longreal  Input Dimensionless size for support
(influence) domain

Ds(nx, numnode) Long real Input The size of the influence
domain

u2(nx, numnode) Longreal  Input Nodal parameters of

displacements for field nodes

Disp(nx,numnode) ~ Long real Output Actual nodal displacements for
field nodes
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Appendix 4.12. The dummy arguments used in the subroutine GetStress

Variable Type Usage  Function

nx Integer Input nx=2 for 2D problem

numnode Integer Input Total number of field nodes

x(nx, numnode) Long real Input Coordinates x and y for all field nodes.
x(l’i):xi; x(zyi):yi

alfs Long real Input Dimensionless  size  of  support
(influence) domain

Ds(nx, numnode)  Longreal Input The size of the influence domain.
ds(1,i)=dw, ds(2,i)=d,y

Stress Longreal Output Array storing stress components of

(3,numnode)

field nodes
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Appendix 4.13. The iput data file: Input175 55.dat used in MFree Global.f90. As
shown in Figure 4.6, A total of 175 regular field nodes and 40
background cells are used

*L,H,E,v,P,

48.00000 12.00000 0.3000E+08
*numnode, unuse
175 0
*ndivx,ndivy
24 6
*numg, numcell
55 40
*ndivxqg, ndivyq
10 4
*nquado,alf
4 100000000.000000
*Influ. domain: ALfs
3.0
*Field nodes: xI[]
1 0.00000 6.00000 42
2 0.00000 4.00000 43
3 0.00000 2.00000 44
4 0.00000 0.00000 45
5 0.00000 =-2.00000 46
6 0.00000 =-4.00000 47
7 0.00000 =-6.00000 48
8 2.00000 6.00000 49
9 2.00000 4.00000 50
10 2.00000 2.00000 51
11 2.00000 0.00000 52
12 2.00000 -2.00000 53
13 2.00000 -4.00000 54
14 2.00000 =-6.00000 55
15 4.00000 6.00000 56
16 4.00000 4.00000 57
17 4.00000 2.00000 58
18 4.00000 0.00000 59
19 4.00000 =-2.00000 60
20 4.00000 =-4.00000 61
21 4.00000 -6.00000 62
22 6.00000 6.00000 63
23 6.00000 4.00000 64
24 6.00000 2.00000 65
25 6.00000 0.00000 66
26 6.00000 -2.00000 67
27 6.00000 -4.00000 68
28 6.00000 -6.00000 69
29 8.00000 6.00000 70
30 8.00000 4.00000 71
31 8.00000 2.00000 72
32 8.00000 0.00000 73
33 8.00000 =-2.00000 74
34 8.00000 -4.00000 75
35 8.00000 -6.00000 76
36 10.00000 6.00000 77
37 10.00000 4.00000 78
38 10.00000 2.00000 79
39 10.00000 0.00000 80
40 10.00000 =-2.00000 81
41 10.00000 -4.00000 82

10.
12.
12.
12.
12.
12.
12.
12.
14.
14.
14.
14.

14

14.
14.
16.
l6.
16.
l6.
16.
l6.
16.
18.
18.
18.
18.
18.
18.
18.
20.
20.
20.
20.
20.
20.
20.

22

22.
22.
22.
22.

0.30000
00000 -6
00000 6
00000 4
00000 2
00000 0
00000 -2
00000 -4
00000 -6
00000 6
00000 4
00000 2
00000 0
.00000 -2
00000 -4
00000 -6
00000 6
00000 4
00000 2
00000 0
00000 -2
00000 -4
00000 -6
00000 6
00000 4
00000 2
00000 0
00000 -2
00000 -4
00000 -6
00000 6
00000 4
00000 2
00000 0
00000 -2
00000 -4
00000 -6
.00000 6
00000 4
00000 2
00000 0
00000 -2

1000.00000

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
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83 22.00000 -4.00000
84 22.00000 -6.00000
85 24.00000 6.00000
86 24.00000 4.00000
87 24.00000 2.00000
88 24.00000 0.00000
89 24.00000 =-2.00000
90 24.00000 -4.00000
91 24.00000 -6.00000
92 26.00000 6.00000
93 26.00000 4.00000
94 26.00000 2.00000
95 26.00000 0.00000
96 26.00000 -2.00000
97 26.00000 -4.00000
98 26.00000 =-6.00000
99 28.00000 6.00000
100 28.00000 4.00000
101 28.00000 2.00000
102 28.00000 0.00000
103 28.00000 -2.00000
104 28.00000 -4.00000
105 28.00000 -6.00000
106 30.00000 6.00000
107 30.00000 4.00000
108 30.00000 2.00000
109 30.00000 0.00000
110 30.00000 -2.00000
111 30.00000 -4.00000
112 30.00000 -6.00000
113 32.00000 6.00000
114 32.00000 4.00000
115 32.00000 2.00000
116 32.00000 0.00000
117 32.00000 =-2.00000
118 32.00000 -4.00000
119 32.00000 =-6.00000
120 34.00000 6.00000
121 34.00000 4.00000
122 34.00000 2.00000
123 34.00000 0.00000
124 34.00000 -2.00000
125 34.00000 -4.00000
126 34.00000 -6.00000
127 36.00000 6.00000
128 36.00000 4.00000
129 36.00000 2.00000
*Points for BK cells:xc[]
1 0.00000 6.00000

2 0.00000 3.00000

3 0.00000 0.00000

4 0.00000 -3.00000

5 0.00000 -6.00000

6 4.80000 6.00000

7 4.80000 3.00000

8 4.80000 0.00000

9 4.80000 -3.00000
10 4.80000 -6.00000
11 9.60000 6.00000
12 9.60000 3.00000
13 9.60000 0.00000

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

29
30
31
32
33
34
35
36
37
38
39
40
41

36.
36.
36.
.00000
38.
38.
38.
38.
38.
38.
38.
40.
40.
40.
40.
40.
40.
40.
42.
42.
42.
42.
42.
42.
42.
44.
44,
.00000
44.
44.
44,
44 .
46.
46.
46.
46.
46.
46.
46.
48.
48.
48.
48.
48.
48.
48.

44

24.
24.
28.
28.
28.
28.
28.
33.
33.
33.
33.
33.
38.

00000
00000
00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
00000

00000
00000
80000
80000
80000
80000
80000
60000
60000
60000
60000
60000
40000

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
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14 9.60000 -3.00000 42 38.40000 3.00000
15 9.60000 -6.00000 43 38.40000 0.00000
16 14.40000 6.00000 44 38.40000 -3.00000
17 14.40000 3.00000 45 38.40000 -6.00000
18 14.40000 0.00000 46 43.20000 6.00000
19 14.40000 -3.00000 47 43.20000 3.00000
20 14.40000 -6.00000 48 43.20000 0.00000
21 19.20000 6.00000 49 43.20000 -3.00000
22 19.20000 3.00000 50 43.20000 6.00000
23 19.20000 0.00000 51 48.00000 6.00000
24 19.20000 -3.00000 52 48.00000 3.00000
25 19.20000 -6.00000 53 48.00000 0.00000
26 24.00000 6.00000 54 48.00000 -3.00000
27 24.00000 3.00000 55 48.00000 -6.00000
28 24.00000 0.00000
*Background cells: noCell[ ]
1 1 2 7 6 21 26 27 32 31
2 2 3 8 7 22 27 28 33 32
3 3 4 9 8 23 28 29 34 33
4 4 5 10 9 24 29 30 35 34
5 6 7 12 11 25 31 32 37 36
6 7 8 13 12 26 32 33 38 37
7 8 9 14 13 27 33 34 39 38
8 9 10 15 14 28 34 35 40 39
9 11 12 17 16 29 36 37 42 41
10 12 13 18 17 30 37 38 43 42
11 13 14 19 18 31 38 39 44 43
12 14 15 20 19 32 39 40 45 44
13 16 17 22 21 33 41 42 47 46
14 17 18 23 22 34 42 43 48 47
15 18 19 24 23 35 43 44 49 48
16 19 20 25 24 36 44 45 50 49
17 21 22 27 26 37 46 47 52 51
18 22 23 28 27 38 47 48 53 52
19 23 24 29 28 39 48 49 54 53
20 24 25 30 29 40 49 50 55 54
*Essential B.C.: numEBC
7
*Node, 1Ux, iUy, Ux, Uy
1 1 1 -0.00000E-25 -0.60000E-04
2 1 1 -0.70988E-05 -0.26667E-04
3 1 1 -0.56790E-05 -0.66667E-05
4 1 1 0.00000E-25 0.00000E-25
5 1 1 0.56790E-05 -0.66667E-05
6 1 1 0.70988E-05 -0.26667E-04
7 1 1 0.00000E-25 -0.60000E-04
*Concentrated Natural B.C.: numFBC
7

*Node,1Tx,iTy, Tx, Ty

169 1 1 0.00000 0.0
170 1 1 0.00000 0.0
171 1 1 0.00000 0.0
172 1 1 0.00000 0.0
173 1 1 0.00000 0.0
174 1 1 0.00000 0.0
175 1 1 0.00000 0.0

*RBF shape parameters: nRBF ALFc Dc and g
1 1.0 2.0 1.03

Number of basis

3

*End of input
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Appendix 4.14. A output sample for displacements obtained using RPIM-MQ
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No. of field nodes u v

1 -0.14420E-12 -0.60000E-04

2 -0.70988E-05 -0.26667E-04

3 -0.56790E-05 -0.66667E-05

4 0.27967E-25 0.23162E-13

5 0.56790E-05 -0.66667E-05

6 0.70988E-05 -0.26667E-04

7 0.14420E-12 -0.60000E-04

8 0.13062E-03 -0.94703E-04

9 0.80083E-04 -0.61811E-04
10 0.37954E-04 -0.42925E-04
11 -0.40548E-19 -0.36163E-04
12 -0.37954E-04 -0.42925E-04
13 -0.80083E-04 -0.61811E-04
14 -0.13062E-03 -0.94703E-04
15 0.25631E-03 -0.17293E-03
162 0.15929E-02 -0.83322E-02
163 0.10553E-02 -0.83308E-02
164 0.52603E-03 -0.83301E-02
165 0.15070E-16 -0.83298E-02
166 -0.52603E-03 -0.83301E-02
167 -0.10553E-02 -0.83308E-02
168 -0.15929E-02 -0.83322E-02
169 0.15958E-02 -0.88763E-02
170 0.10573E-02 -0.88767E-02
171 0.52704E-03 -0.88767E-02
172 0.14420E-16 -0.88772E-02
173 -0.52704E-03 -0.88767E-02
174 -0.10573E-02 -0.88767E-02
175 -0.15958E-02 -0.88763E-02

* The parameters used are ¢=1.03, a, =1.0, d, =2.0,and a; =3.0. The linear

polynomial terms are added in the RPIM-MQ.
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Appendix 4.15. A output sample for stress obtained using RPIM-MQ
No. of O JW TW
field nodes
71 0.10568E+04 -0.39596E+02 -0.29675E+02
72 0.75714E+03 -0.10557E+01 -0.63827E+02
73 0.37425E+03 -0.85657E+01 -0.10754E+03
74 -0.11539E-10 -0.25580E-10 -0.12147E+03
75 -0.37425E+03 0.85657E+01 -0.10754E+03
76 -0.75714E+03 0.10557E+01 -0.63827E+02
77 -0.10568E+04 0.39596E+02 -0.29675E+02
78 0.10975E+04 -0.12785E+02 -0.30017E+02
79 0.73249E+03 0.12724E+02 -0.62639E+02
80 0.37442E+03 0.34166E+01 -0.10795E+03
81 0.21032E-11 0.36380E-11 -0.12223E+03
82 -0.37442E+03 -0.34166E+01 -0.10795E+03
83 -0.73249E+03 -0.12724E+02 -0.62639E+02
84 -0.10975E+04 0.12785E+02 -0.30017E+02
85 0.10131E+04 -0.12238E+02 -0.31899E+02
86 0.66202E+03 0.13350E+02 -0.66944E+02
87 0.33873E+03 0.35527E+01 -0.11747E+03
88 -0.47578E-10 -0.72987E-10 -0.12724E+03
89 -0.33873E+03 -0.35527E+01 -0.11747E+03
90 -0.66202E+03 -0.13350E+02 -0.66944E+02
91 -0.10131E+04 0.12238E+02 -0.31899E+02
92 0.90478E+03 -0.17776E+02 -0.30125E+02
93 0.60570E+03 0.64940E+01 -0.69757E+02
94 0.30801E+03 0.16526E+01 -0.12693E+03
95 0.14495E-10 -0.11369E-11 -0.13219E+03
96 -0.30801E+03 -0.16526E+01 -0.12693E+03
97 -0.60570E+03 -0.64940E+01 -0.69757E+02
-0 0 -0

98

.90478E+03

.17776E+02

.30125E+02

Energy error:= 0.9082E-01

* The parameters used are ¢ =1.03, o, =1.0, d. =2.0and o, =3.0. The linear
polynomial terms are added in the RPIM-MQ.
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Appendix 4.16. A output sample for displacements obtained using EFG
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No. of field u v

nodes

1 -0.18141E-11 -0.60000E-04

2 -0.70988E-05 -0.26667E-04

3 -0.56790E-05 -0.66667E-05

4 -0.34940E-20 0.41393E-12

5 0.56790E-05 -0.66667E-05

6 0.70988E-05 -0.26667E-04

7 0.18141E-11 -0.60000E-04

8 0.12862E-03 -0.93474E-04

9 0.81176E-04 -0.61905E-04

10 0.36948E-04 -0.43004E-04

11 -0.71820E-14 -0.36360E-04

12 -0.36948E-04 -0.43004E-04

13 -0.81176E-04 -0.61905E-04

14 -0.12862E-03 -0.93474E-04

15 0.25717E-03 -0.17076E-03

162 0.15972E-02 -0.83525E-02

163 0.10576E-02 -0.83511E-02

164 0.52674E-03 -0.83503E-02

165 -0.13310E-13 -0.83500E-02

166 -0.52674E-03 -0.83503E-02

167 -0.10576E-02 -0.83511E-02

168 -0.15972E-02 -0.83525E-02

169 0.15999E-02 -0.88983E-02

170 0.10594E-02 -0.88983E-02

171 0.52766E-03 -0.88983E-02

172 -0.13175E-13 -0.88984E-02

173 -0.52766E-03 -0.88983E-02

174 -0.10594E-02 -0.88983E-02

175 -0.15999E-02 -0.88983E-02

* The parameter used is &, =3.0. The linear polynomial basis (mbasis =3 ) and

the cubic spline weight function are used in the MLS approximation.
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Appendix 4.17. A output sample for stress obtained using EFG
No. of
field nodes Oxx Oyy Ty

71 0.11587E+04 0.61486E+00 -0.46400E+01
72 0.78147E+03 -0.50179E+00 -0.69152E+02
73 0.39129E+03 -0.23088E+01 -0.11362E+03
74 -0.21668E-06 -0.14721E-06 -0.12400E+03
75 -0.39129E+03 0.23088E+01 -0.11362E+03
76 -0.78147E+03 0.50179E+00 -0.69152E+02
77 -0.11587E+04 -0.61486E+00 -0.46400E+01
78 0.10826E+04 0.32433E+01 -0.11241E+02
79 0.72576E+03 -0.70275E+00 -0.69979E+02
80 0.36205E+03 -0.10124E+00 -0.11343E+03
81 0.19471E-06 0.12793E-06 -0.12696E+03
82 -0.36205E+03 0.10124E+00 -0.11343E+03
83 -0.72576E+03 0.70275E+00 -0.69979E+02
84 -0.10826E+04 -0.32433E+01 -0.11241E+02
85 0.10055E+04 0.31019E+01 -0.40273E+01
86 0.65869E+03 0.27783E+01 -0.67951E+02
87 0.33011E+03 -0.18849E+01 -0.11189E+03
88 -0.15056E-06 -0.11161E-06 -0.12269E+03
89 -0.33011E+03 0.18849E+01 -0.11189E+03
90 -0.65869E+03 -0.27783E+01 -0.67951E+02
91 -0.10055E+04 -0.31019E+01 -0.40273E+01
92 0.92005E+03 0.33212E+01 -0.18044E+01
93 0.61740E+03 -0.44910E+00 -0.68726E+02
94 0.30798E+03 0.24173E+00 -0.11219E+03
95 0.11759E-06 0.90103E-07 -0.12345E+03
96 -0.30798E+03 -0.24173E+00 -0.11219E+03
97 -0.61740E+03 0.44910E+00 -0.68726E+02
98 -0.92005E+03 -0.33212E+401 -0.18044E+01

Energy error:= 0.3280E-01

* The parameter used is &, =3.0. The linear polynomial basis (mbasis =3) and

the cubic spline weight function are used in the MLS approximation.
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COMPUTER PROGRAMS

Program 4.1. Source code of Parameter.h

parameter (ninput=4, noutput=2, &
nx=2,ng=4, &
numd=1000, ncn=1000, numdg=1000, numc=1000, &
ngc=4, numg=ngc*ngc, &
ep=1.d-15)

Program 4.2. Source code of Variables.h

dimension pEBC(2,100),npEBC(3,100),npNBC(3,100),pNBC (2,100
dimension Dmat (3, 3)

dimension x (nx,numd),noCelll (ng,ncn),ds (nx,numd)
dimension xc (nx,numdqg),noCell (ng, numc)

dimension gauss (nx,ngc),gs (ng, numg)

dimension gpos (nx),nv (numd),ph (10, numd)
dimension ak (2*numd, 2*numd) , GSPk (4*numd*numd)
dimension ne (2*numd), force (2*numd)

dimension u2 (nx,numd) ,disp (2*numd)

dimension Stressnode (3, numd)
common/para/xlength, ylength, p, young, anu, aimo
common/rpim/ALFC, DC, Q, nRBF

common /basis/mbasis

Program 4.3. The source code of the main program of MFree Global.f90

! main program--2D FORTRAN 90 CODE-MFree global weak-form methods
! Using square support domain and square background cells

! input file -- input.dat
1
1

output file -- result.dat
include file -- parameter.h, variable.h

implicit real*8 (a-h,o-2z)
include 'parameter.h'
include 'variables.h'

open (ninput, file='Inputl75 55.dat")
open (noutput, file='result.dat',status="unknown"')
! * ok ok ok ok ok ok ok ok ok ok ok ok Input data
call input (x,numd, nx, numnode, ndivx,ndivy, ndivxqg, ndivyqg, &
nconn2,nquado, pAlf, Dmat,ALFs,numcell, numqg,noCell, ncn, xc, &
npEBCnum, npEBC, pEBC, npNBCnum, npNBC, pNBC)
numgauss=nquado*nquado !total number of Gauss points in a cell

| Fxkkxkkxkxxkx Determine sizes of influence domains -- uniform nodal spacing
xspace=xlength/ndivx
yspace=ylength/ndivy
do i=1,numnode
ds (1,1i)=alfs*xspace
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ds (2,i)=alfs*yspace
enddo
IoxkkxxkAkxxkkxx Coefficients of Gauss points,Weights and Jacobian for a cell
call GaussCoefficient (nquado,gauss)

do ik=1,ng
do jk=1,numgauss
gs(ik,jk)=0
enddo
enddo

do ik=1,2*numd
force (ik)=0.
do jk=1,2*numd
ak(ik,jk)=0.
enddo
enddo

I Axkxkxkkxdxkx Toop for background cells
do 10 ibk=1,numcell
write(*,*)'Cell No.=',ibk
I Akkxkxkkkkkkk Set Gauss points for this cell
call CellGaussPoints (ibk, numcell, nquado,numg, numgauss, &
xc,noCell, gauss, gs)
I Fxkxkkkkxkkkx T oop over Gauss points to assemble discrete equations
do 20 ie=1,numgauss

gpos (1)=gs (1, 1ie) Gauss point x

1
gpos (2)=gs (2,1ie) ! Gauss point y
weight=gs (3, ie) ! weight coefficent
ajac=gs (4, ie) ! Jacobian
I xRk xxkAkxxkAkxkx Determine the support domain of Gauss point
ndex=0

call SupportDomain (numnode,nx,gpos, x,ds,ndex,nv)
do ik=1,3*ndex

do jk=1,10

ph(jk,1k)=0.

enddo

enddo
I Axkxkxokkxkxdkx Construct RPIM shape functions for a Gauss point
call RPIM ShapeFunc 2D(gpos, x,nv,ph,nx, numnode, ndex, &
alfc,dc,q,nRBF, mbasis)

do ik=1,2*ndex
e (ik)=0
enddo
do ine=1,ndex
nl=2*ine-1
n2=2*ine
e(nl)=2*nv(ine) -1
e (n2)=2*nv (ine)
enddo
mbdb=4*ndex*ndex
do kbdb=1,mbdb
GSPk (kbdb) =0.
enddo
I Fxkxkxkkxkxkx Compute the stiffness matrix for a Gauss point
call PointStiffnessMatrix (ndex,weight,ajac,ph,Dmat,GSPk)
nb=2*ndex
do ikk=1,nb
do jkk=1,nb
ml=ne (ikk)
m2=ne (jkk)
nbdb=(jkk-1) *nb+ikk
ak (ml,m2)=ak (ml,m2)+GSPk (nbdb)

enddo
enddo
20 continue ! end of loop for Gauss points
I Axkxokkkkxdkxkx Tmplement natural BC
in=0
Jn=0

nn=noCell (3, ibk)
if (xc(1l,nn) .eqg.xlength) in=nn
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nn= noCell (4, ibk)
if (xc(1l,nn) .eq.xlength) jn=nn
if((in.ne.0) .and. (jn.ne.0)) then
call naturalBC distributed (numnode,numqg,in,jn, &
alfs,x,xc,ds,gauss,nquado, force)
endif
10 continue ! end of loop for cells

| xkkkkkkxkxkkk Boundary conditions: essential BC
write (*,*)' Boundary conditions...."'
nak=2*numd
call EssentialBC (numnode,pAlf,alfs, x,ds,ak, force, npEBCnum, npEBC, pEBC)

I xokxkkkkxkxkx k. Boundary conditions: concentrated natural BC
call NaturalBC_concentrated (x,nx,numnode, force,ds,alfs, npNBCnum, npNBC, pNBC)
nak=2*numd
b=1.d-10
| xkxokkdkxkxkxk Solve equation to get the solutions
write(*,*)' Solving....'
call SolverBand (ak, force, 2*numnode, 2*numd)
nnn=2*numd
do ik=1,nx
do jk=1,numnode
u2(ik,jk)=0.

enddo

enddo

do ik=1,numnode
Jjk=2*ik-1
u2(1l,1ik)=force (jk)
u2(2,ik)=force (jk+1)

enddo

| kkkkkkkxkxkxkx Get the final displacement
call GetDisplacement (x,ds,u2,disp,alfs, nx, numnode)

! * ok ok ok ok ok ok ok ok ok ok ok ok Get StreSS
call GetStress(x,noCell,ds,Dmat,u2,alfs,nx,numnode, numgauss, &
XCc,gauss, nquado, ng, numg, numcell, ENORM, Stressnode)
STOP
END

Program 4.4. Source code of Subroutine Input( )

SUBROUTINE Input (x,numd,nx,numnode,ndivx,ndivy, ndivxqg, ndivyq, &
nconn2,nquado, pAlf, Dmat,ALFs,numcell, numg, noCell, ncn, xc, &
npEBCnum, npEBC, pEBC, npNBCnum, npNBC, pNBC)

! Input data from outside
! Output—all variables are output

implicit real*8 (a-h,o0-2z)
common/para/xlength, ylength, p, young, anu, aimo
COMMON/rpim/ALFC, DC, Q, nRBF

common /basis/mbasis

CHARACTER*40 NAM

dimension npEBC(3,100),pEBC(2,100),npNBC(3,100),pNBC (2,100
dimension x (nx,numd),Dmat (3,3),noCell (4,ncn), xc (nx, numd)

read(4,10)nam

read(4,*) xlength,ylength, young, anu,p
read(4,10)nam

read (4, *) numnode, nconn2

read(4,10)nam

read(4,*) ndivx,ndivy

read (4, 10)nam



222 Chapter 4

read (4, *) numg, numcell
read(4,10)nam
read (4, *)ndivxqg, ndivyqg
read(4,10)nam
read (4, *)nquado, pAlf
read(4,10)nam
read (4, *)ALFs
numgauss=nquado*nquado
read (4,10)nam
do i=1,numnode
read(4,*)j,x(1,1),x(2,1)
enddo
read(4,10)nam
do i=1, numg
read(4,*)j,xc(1l,1i),xc(2,1)
enddo
read(4,10)nam
do j=1,numcell
read(4,*)1i,noCell(1,j),noCell(2,7),noCell(3,7),noCell(4,7)
enddo
read (4,10)nam
read (4, *) npEBCnum
read (4,10)nam
do i=1, npEBCnum
read (4, *)npEBC(1,1),npEBC(2,1),npEBC(3,1),pEBC(1,1),pEBC(2,1)
enddo
read(4,10)nam
read (4, *) npNBCnum
read(4,10)nam
do i=1,npNBCnum
read (4, *)npNBC(1,1i),npNBC(2,1),npNBC(3,1i),pNBC(1l,1i),pNBC (2,1)
enddo
read(4,10)nam
READ (4, *)nRBF, alfc,dc, g
read (4,10)nam
READ (4, *)mbasis

| xokxokkokdkoxkxokk ok Compute material matrix D[] for the plane stress
you=young/ (1.-anu*anu)
aimo=(1./12.)*ylength**3
Dmat (1,1)=you

10 format (a
RETURN
END

Program 4.5. Source code of Subroutine GaussCoefficient( )

SUBROUTINE GaussCoefficient (k,v)

! This subroutine returns a matrix with Gauss points and their weights
! input--k: k -- number of Gauss points;
! output--v(2,k): weight matrix of k Gauss points

implicit real*8 (a-h,o-2z)
dimension v (2, k)
SELECT CASE (k)
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Case (2)
v(1l,1)=-.57735
v(l,2)=-v(1,1)
v(2,1)=1.00000
v(2,2)=v(2,1)

Case (3)
v(l,l):—.77459
v(1,2)=-.00000
v(l, 3):—v(1 1)
v(2,1)=.55555
v(2,2)=.88888
v(2,3)=v(2,1)

Case (4)

v(l,1)=-.86113
v(l,2)=-.33998

)

)
v(l,3)=-v(1,2)
v(l,4)=-v(1,1)
v(2,1)=.34785
v(2,2)=.65214
v(2,3)=v(2,2)
v(2,4)=v(2,1)

Case (6)
v(l,1)=-.93246
v(l,2)=-.66120
v(l,3)=-.23861
v(l,4)=-v(1,3)
v(l,5)=-v(1,2)
v(l,6)=-v(1,1)
v(2,1)=.17132
v(2,2)=.36076
v(2,3)=.46791
v(2,4)=v(2,3)
v(2,5)=v(2,2)
v(2,6)=v(2,1)

Case (8)
v(l,1)=-.96028
v(l,2)=-.79666
v(1l,3)=-.52553
v(l,4)=-.18343
v(l,5)=-v(1,4)
v(l,6)=-v(1,3)
v(l,7)=-v(1,2)
v(l,8)=-v(1,1)
v(2,1)=.10122
v(2,2)=.22238
v(2,3)=.31370
v(2,4)=.36268
v(2,5)=v(2,4)
v(2,6)=v(2,3)
v(2,7)=v(2,2)
v(2,8)=v(2,1)

end select
RETURN
END

Program 4.6. Source code of Subroutine CellGaussPoints
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SUBROUTINE CellGaussPoints (ibk,numcell, k, numg, numgauss, xc,noCell, gauss, gs)

This subroutine to set up Gauss points,Jacobian and weights for a cell

input--ibk: the No. of the consider cell;
numg: number of points for background cells;
numcell: number of background cells;
numgauss: number of Gauss points in a cell;

k: number of Gauss points used, numgauss=k*k for 2D cell;
xc (nx,numg) : coordinates of points for background cells;
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10

4

noCell

gauss (2, k) :

output--gs (ng

Chapter 4

(ng,numcell) : No. of points to form this cell;

implicit real*8 (a-h,o-z)
include 'parameter.h'
dimension xc (nx,numqg),noCell (ng,numcell),gauss (nx, k), gs (ng, numgauss)

dimension

do j=1,ng
je=noC
xe (j)=

psid(ng),etad(ng), xe(ng), ve(ng)

ell(j,1ie)
xc(1l,7je)

ve (3)=xc(2,]je)

enddo

do 10 i=1
do 10

1
3=1,1

index=index+1

eta
psi
do

=gauss (1,1)
=gauss (1,7)
ik=1,ng

coefficients of Gauss points;
nx,ng: parameters are defined in file parameter.h.
,numgauss) : coordinate of the Gauss points,

weight and Jacobian

,aN (ng) ,aNJpsi (ng),aNJeta (ng)

N(ik)=.25*(1.+psi*psid(ik))* (1.+eta*etad (ik))

aNJpsi (ik)=.25*psiJ (ik) * (1.+eta*etad (ik))
aNJeta (ik)=.25*%etad (ik) * (1.+psi*psid (ik)

enddo

Xps
yps
xet
yet
do

i=0.

i=0.

a=0.

a=0.

jk=1,ng
xpsi=xpsi+aNJpsi (jk
ypsi=ypsi+aNJdpsi (jk
xeta=xeta+aNJeta (jk
yeta=yeta+aNJeta (jk

) *
) *
) *
) *

X
Y
X

e
e
e
ye

=gauss (2,1) *gauss (2, 7)

enddo
ajcob=xpsi*yeta-xeta*ypsi
xg=0.
ya=0.
do kk=1,ng
xg=xg+aN (kk) *xe (kk)
yg=yg+aN (kk) *ye (kk)
enddo
gs (1, index)=xq
gs (2, index)=yq
gs (3, index)
gs (4, index)=ajcob
continue
RETURN
END

Program 4.7. Source code of Subroutine SupportDomain
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SUBROUTINE SupportDomain (numnode, nx, gpos, x,ds,ndex,nv)

This subroutine to determines nodes in the support domain of a Gauss point
input--numnode: total number of field nodes;

nx=2: for 2D problem;

x (nx,numnode) : coordinates of all field nodes;

numgauss: number of Gauss points in a cell;

gpos (2) : x and y coordinate of a Gauss point;

ds (nx,numnode) : sizes of support domain;
input and output-- ndex: when input ndex=0;

when return ndex is the number of nodes in the support domain

output--nv (ndex): No. of field nodes in the support domain

implicit real*8 (a-h,o-2z)
dimension gpos (nx), x (nx,numnode) ,ds (nx, numnode) , nv (numnode)
eps=1l.e-16
ndex=0
do ik=1,numnode
v (1k)=0
enddo
do ik=1,numnode
dx=ds (1, ik) -dabs (gpos (1) -x (1,1ik))
dy=ds (2, ik) -dabs (gpos (2) -x (2, 1k))
if((dx.ge.eps).and. (dy.ge.eps)) then
ndex=ndex+1
nv (ndex) =ik
end if
enddo
RETURN
END

Program 4.8. Source code of Subroutine PointStiffnessMatrix

SUBROUTINE PointStiffnessMatrix (ndex,weight,ajac,ph,Dmat,GSPk)

! This subroutine to calculate sparse stiff matrix

! input--ndex: the number of nodes in the support domain;

! weight: weight of Gauss quadrature;

! ajac: Jacobian;

! dphix: first dirivetive of x of shape function;

! dphiy: first dirivetive of y of shape function;

! Dmat (3,3): the matrix of strain-stress;

! output--GSPk (2ndex, 2ndex) : sub-stiffness matrix of the Gauss point

implicit real*8 (a-h,o0-2z)
dimension ph(10,ndex),Dmat (3,3),GSPk (2*ndex, 2*ndex)
dimension bmat (3, 2*ndex) ,dphix (ndex) ,dphiy (ndex)
nb=2*ndex
do i=1,ndex
dphix (i)=ph(2,1)
dphiy (1)=ph(3,1)
enddo
do ib=1,3
do jb=1,nb
Bmat (ib, jb)=0.
enddo
enddo
do in=1,ndex
j=2*in-1
k=2*in
Bmat (1,Jj)=dphix (in)
Bmat (1,k)=0.
Bmat (2,3)=0
Bmat (2, k) =
Bmat (3, 7)

dphiy (in)
=dphiy (in)
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Bmat (3, k) =dphix (in)
enddo
do ii=1,nb
do jj=1,nb
GSPk(ii,jj)=0.
enddo
enddo
do ii=1,nb
do jj=1,nb
do kk=1,3
do mm=1, 3
GSPk(ii,jj)=GSPk(ii,jj)+weight*ajac*Bmat (kk,ii)* &
Dmat (kk, mm) *Bmat (mm, jJj)
enddo
enddo
enddo
enddo
RETURN
END

Program 4.9. Source code of Subroutine EssentialBC

SUBROUTINE EssentialBC (numnode,pAlf,alfs, x,ds,ak,af, npEBCnum, npEBC, pEBC)

! This subroutine to enforce point essential bc's using penalty method;
! input--numnode: total number of field nodes;

! pAlf: penalty Fac; npEBCnum: number of e. Db.c points

! alfs: coefficient of support domain

! X (nx, numnode) : coordinates of all field nodes;

! input and output-- ak[]: stiffness matrix;

! af{}:force vector.

implicit real*8 (a-h,o-2z)

include 'parameter.h'

COMMON/rpim/ALFC,DC, Q, nRBF

common/basis/mbasis

dimension npEBC(3,100),pEBC(2,100)

dimension x(nx,numnode),ds (2,numnode),ak (2*numd, 2* (numnode) ), af (2*numnode)
dimension nv (numnode),ph (10, numnode), x2(2)

maxak=0.
do iebc=1, 2*numnode

if (abs (ak(iebc, iebc)) .gt.maxak) maxak=abs (ak(iebc, iebc)
enddo

do 10 iebc=1,npEBCnum
ie=npEBC (1, iebc)
x2(1)=x(1,1ie)
X2 (2)=x(2,1e)
ndex=0
! call support (x2,x,ds,nv(1l),numnode,nx,ndex)
call SupportDomain (numnode,nx, x2,x,ds,ndex,nv)
do ik=1,ndex
do jk=1,10
ph(jk,ik)=0.
enddo
enddo
call RPIM ShapeFunc 2D(x2,x,nv,ph,nx,numnode, ndex, &
alfc,dc,g,nRBF, mbasis)

do iee=1,ndex
ine=nv (iee)
do ii=1,ndex
Jjne=nv (i1i)
if (npEBC (2, iebc) .eq.1l) then
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ak((ine*2-1), (jne*2-1))=ak((ine*2-1), (jne*2-1))-pAlf*maxak* &
ph(l,iee)*ph(1l,1ii)
endif
if (npEBC (3, iebc) .eqg.1l) then
ak((ine*2), (jne*2))=ak((ine*2), (jne*2))-pAlf*maxak* &
ph(l,iee)*ph(1l,1ii)

endif

enddo

if (npEBC (2, iebc) .eq.1l) then
uu=pEBC (1, iebc)
af (ine*2-1)=af (ine*2-1) -pAlf*uu*maxak*ph (1, iee)

endif

if (npEBC (3, iebc) .eq.1l) then
uu=pEBC (2, iebc)
af (ine*2)=af (ine*2)-pAlf*uu*maxak*ph (1, iee)

endif

enddo
10 continue
RETURN
END

Program 4.10. Source code of Subroutine NaturalBC concentrated

SUBROUTINE NaturalBC concentrated(x,nx,numnode,af,ds,alfs, npNBCnum, npNBC, pNBC)
implicit real*8 (a-h,o-z)
dimension npNBC (3,100),pNBC(2,100)
COMMON/ rpim/ALFC, DC, Q, nRBF
common/basis/mbasis
dimension af (2*numnode) , x (nx, numnode) , ds (nx, numnode)
dimension ph (10, numnode), gpos (2),nv (numnode)
do 10 iebc=1,npNBCnum
ie=npNBC (1, iebc)
gpos (1)=x(1,1ie)
gpos (2)=x(2,1e)
ndex=0
call SupportDomain (numnode,nx, gpos, x,ds,ndex,nv)
do kph=1,3*ndex
do ik=1,10
ph (ik, kph)=0.
enddo
enddo
call RPIM ShapeFunc 2D (gpos, x,nv,ph,nx, numnode, ndex, &
alfc,dc,q,nRBF, mbasis)
do iee=1,ndex
ie=nv (iee)
uu=pNBC (1, iebc)
af (ie*2-1)=af (ie*2-1)+ph (1, iee) *uu
uu=pNBC (2, iebc)
af (ie*2)=af (ie*2)+ph (1, iee) *uu
enddo
10 continue
RETURN
END

Program 4.11. Source code of Subroutine NaturalBC _distributed

SUBROUTINE naturalBC_distributed (numnode, numg, in, jn,alfs, x,xc,ds, &
gauss, nquado, force)
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! This subroutine to enforce point natural bc's;
! input—numnode, numg, in,Jjn,alfs,x,xc,ds,gauss, nquado.
! input and output-- force{}:force vector.

implicit real*8 (a-h,o-2z)

include 'parameter.h'
common/para/xlength, ylength, p, young, anu, aimo
COMMON/rpim/ALFC, DC, Q, nRBF

COMMON /basis/mbasis

Chapter 4

dimension xc (nx,numq),gauss (2,nquado), force (2*numnode) , x (nx, numnode)

dimension ph (10, numnode),gpos (2),nv (numnode) ,ds (nx, numnode)
ax=0.5* (xc(1l,in)-xc(1,jn))
ay=0.5* (xc(2,1in)-xc(2,3n))
bx=0.5* (xc (1,1in)+xc(1,jn))
by=0.5% (xc (2,1in) +xc (2, 3jn))
do il=1,nquado
gpos (1) =ax*gauss (1,1l) +bx
gpos (2) =ay*gauss (1,1l) +by
weight=gauss(2,11)
ajac=0.5*sgrt ((xc(1l,in)-xc(1l,Jjn)) **2+(xc(2,1in)-xc(2,Jjn)) **2)
aimo=(1./12.)*ylength**3
ty=(-1000./(2.*aimo) ) * (ylength*ylength/4.-gpos (2) *gpos (2))
call SupportDomain (numnode, nx,gpos, x,ds,ndex,nv)
do kph=1,ndex
do ik=1,10
ph (ik, kph)=0.
enddo
enddo
call RPIM ShapeFunc_2D(gpos, x,nv, ph,nx, numnode, ndex, &
alfc,dc, q,nRBF, mbasis)
do ie=1l,ndex
nn=nv (ie)
force (2*nn)=force (2*nn) +weight*ajac*ph(1l, ie) *ty
enddo
enddo

END

Program 4.12. Source code of Subroutine SolverBand

SUBROUTINE SolverBand (ak, fp,neq,nmat)

! Sloving linear equations; it calls BandSolver & GaussSolver
! input—ak, fp, neqg, nmat
! output--fp

implicit real*8 (a-h,o-2z)
dimension ak(nmat,nEq), fp (nmat)
real(8), allocatable :: tp(:,:)
real(8), allocatable :: stfp(:,:)
allocate (tp(l:neq,l:nmat))
allocate (stfp(l:neq,l:neq))

ep=1.d-10
do i=1,nEq
do j=1,nEq
stfp(i,j)=0.
tp(i,3)=0.
enddo
enddo
do i=1,nEq
do j=1,nEq
stfp(i,3)=ak(i,])
enddo
enddo
ni=nEq
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20

END

Lp=0 ! half band width
do 20 i=1,ni
do j=ni,i,-1

if(stfp(i,j).ne.0.) then ! stfp[,] stifness matrix
if (abs(j-1i) .gt.Lp) Lp=abs(j-1i)
go to 21
endif
enddo
continue
do j=1,1i
if(stfp(i,j).ne.0.) then
if (abs(j-1i).gt.Lp) Lp=abs(j-1i)
go to 20
endif
enddo
continue
ilp=2*1p+1l ! band width
nm=nEqgq

if(ilp.lt.nEqg) then

call BandSolver (stfp, fp, tp,nm,1lp,ilp,nmat) !

call GaussSolver (nEq,nmat, ak, fp,ep, kkkk) !

else

endif

deallocate (tp)
deallocate (stfp)

SUBROUTINE BANDSOLVER (A, F,B,N,L,IL,nmat)

implicit real*8 (a-h,o-z)
DIMENSION A (N,N),F(N)
DIMENSION B (N,nmat),d(n,1)
M=1
LP1=L+1
DO I=1,N
DO K=1,IL
B(I,K)=0.
IF(I.LE.LP1)

IF(I.GT.LP1.AND.I.LE. (N-L)
IF(I.GT. (N-L).AND. (I+K-LP1) .LE.N)
ENDDO
ENDDO
DO I=1,N
D(I,1)=F(I)
ENDDO
IT=1
IF (IL.NE.2*L+1) THEN
IT=-1

WRITE (%, *) " ***FATL*** '
RETURN
END IF
LS=L+1
DO 100 K=1,N-1
P=0.0
DO I=K,LS

IF (ABS(B(I,1)).GT.P)

P=ABS (B (I, 1))
IS=I
END IF
ENDDO
IF (P+1.0.EQ.1.0)
IT=0
WRITE (%, *) "***FAIL***'
RETURN
END IF

THEN

B(I,K)=A(I,K)

B(I,K)=A(I,I+K-LP1)
B(I,K)=A(I,I+K-LP1)

THEN

standard solver

229

solver for band matrix
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DO J=1,M
T=D (K, J)
D(K,J)=D(IS,J)
D(IS,J)=T
ENDDO
DO J=1,1IL
T=B (K, J)
B (K, J)=B(IS,J)
B(IS,J)=T
ENDDO
DO J=1,M
D(K,J)=D(X,J)/B(K,1)
ENDDO
DO J=2,1IL
B(K,J)=B(K,J)/B(K, 1)
ENDDO
DO I=K+1,LS
T=B(I,1)
DO J=1,M
D(I,J)=D(I,J)-T*D(K,J)
ENDDO
DO J=2,1IL
B(I,J-1)=B(I,J)-T*B(K,J)
ENDDO
B(I,IL)=0.0
ENDDO
IF (LS.NE.N) LS=LS+1
100  CONTINUE
IF (ABS(B(N,1))+1.0.EQ.1.0) THEN
IT=0
WRITE (*,*) '"***FATL***"'
RETURN
END TIF
DO J=1,M
D(N,J)=D(N,J)/B(N,1)
ENDDO
Js=2
DO 150 I=N-1,1,-1
DO K=1,M
DO J=2,JS
D(I,K)=D(I,K)-B(I,J)*D(I+J-1,K)
ENDDO
ENDDO
IF (JS.NE.IL) JS=JS+1
150  CONTINUE

if(it.le.0) write(*,*) "BandSolver failed"
DO I=1,N
F(I)=D(I,1)
ENDDO
RETURN
END

SUBROUTINE GaussSolver (n,mk,a,b,ep, kwji)

! Stnadard Gauss elimination slover for linear equations that are
! not suitably solved by BandSolver.

implicit real*8 (a-h,o0-2z)
dimension a (mk,mk),b (mk)
integer, allocatable :: m(:)
allocate (m(2*mk)
ep=1.0e-10
kwji=0
do i=1,n

m(i)=1
enddo
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do 20 k=1,n
p=0.0
do 30 i=k,n
do 30 j=k,n
if(abs(a(i,j)).le.abs(p)) goto 30
p=a(i,J)
10=1
jo=j
30 continue
if (abs(p)-ep) 200,200,300
200 kwji=1
return
300 if(jo.eqg.k) goto 400
do i=1,n
t=a(i,jo)
a(i,jo)=a(i, k)
a(i, k)=t
enddo
j=m (k)
m (k) =m(jo)
m(jo)=j
400 if(io.eqg.k) goto 500
do j=k,n
t=a(io, J)
a(io,j)=a(k,J)
a(k,j)=t
enddo
t=b (io)
b (io)=b (k)
b (k) =t
500 p=1.0/p
in=n-1
if (k.eqg.n) goto 600
do j=k,in
a(k,j+l)=a(k,j+1)*p
enddo
600 b (k)=b (k) *p
if (k.eq.n) goto 20
do i=k,in

do j=k,in
a(i+l,j+l)=a(i+l,j+1)-a(i+l, k) *a(k,j+1)
enddo
b(i+1l)=b (I+1)-a(i+l, k) *b (k)
enddo
20 continue
do il=2,n
i=n+1-il

do j=i,in
b(i)=b(i)-a(i,j+1)*b(j+1
enddo
enddo
do k=1,n
i=m(k)
a(l,i)=b(k)
enddo
do k=1,n
b(k)=a(l,k)
enddo
kwji=0
deallocate (m)
return
END

Program 4.13. Source code of Subroutine GetDisplacement
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SUBROUTINE GetDisplacement (x,ds,u2,disp,alfs, nx,numnode)
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! This subroutine to get the final displacements from

! displacement parameters using the MFree interpolation;
! input--numnode: total number of field nodes;

! alfs: coefficent of support support
!
!
|

% (nx,numnode) : coordinates of all field nodes;
u2 (2*numnode) : displacement parameters;
input and output-- disp: final displacements.

implicit real*8 (a-h,o-z)

COMMON/rpim/ALFC,DC, Q, nRBF

common/basis/mbasis

dimension x (nx,numnode),ds (nx,numnode),gpos (nx),u2 (nx, numnode)
dimension disp (2*numnode)

dimension ph (10, numnode), nv (numnode)

write(2,*) 'Displacements of field nodes'
nn=2*numnode
do i=1,nn
disp(i)=0.
enddo
ind=0
do 50 id=1,numnode
ind=ind+1
gpos (1)= x(1,1id)
gpos (2)=x(2,1id)
ndex=0
call SupportDomain (numnode, nx,gpos, x,ds,ndex,nv)
do kph=1,ndex
do ik=1,10
ph(ik, kph)=0.
enddo
enddo
call RPIM ShapeFunc 2D (gpos, x,nv,ph,nx, numnode, ndex, &
alfc,dc,qg,nRBF, mbasis)
ncl=2*ind-1
nc2=2*ind
do kk=1,ndex
m=nv (kk)
disp (ncl)=disp(ncl)+ph(1,kk)*u2(1,m)
disp (nc2)=disp(nc2)+ph (1, kk)*u2(2,m)
enddo
50 continue
do ii=1,numnode
write(2,52) 1ii,disp(2*ii-1),disp(2*ii)
enddo
52 format (1x,15,2e20.5)
RETURN
END

Program 4.14. Source code of Subroutine GetStress

SUBROUTINE GetStress (x,noCell,ds,Dmat,u2,alfs,nx,numnode, numgauss, &
xc,gauss,nquado, ng,numg, numcell, ENORM, Stressnode)

This subroutine to get the stress and energy error;
input--numnode: total number of field nodes;
numcell: number of cells;
numqg: total number of points for cells;
alfs: coefficent of support support;

x (nx,numnode) : coordinates of all field nodes;

xc (nx,numcell) : coordinates of all points for cells;
u2 (2*numnode) : displacement parameters;

ds (nx, numnode) : sizes of influence domain;

Dmat (3,3): material matrix;



4. Meshfree methods based on global weak-forms

nquado: number of Gauss points in a cell;
gauss (nx,nquado) : coefficients of Gauss points;
numgauss: total number of Gauss points in all cells;
output-- Enorm: energy error;
Stressnode:stress for field nodes;
compute out--Stress: stress for Gauss points;
stressex, strne: exact stresse for beam problem.

implicit real*8 (a-h,o-z)
common/para/xlength, ylength, p, young, anu, aimo
COMMON/rpim/ALFC, DC, Q, nRBF
common/basis/mbasis

dimension noCell (4,numcell) ,ds (nx, numnode), X (nx, numnode) , u (2*numnode)

dimension xc (nx,numnode),gauss (nx,nquado)

dimension Dmat (3, 3),u2 (nx, numnode)

dimension Stressnode (3, numnode), strne (3, numnode)
dimension stress(3),stressex(3),err(3),Dinv(3,3),der (3)

integer, allocatable :: nv(:)
integer, allocatable :: ne(:)
real (8), allocatable :: ph(:,:)
real (8), allocatable :: gpos(:)
real (8), allocatable :: gs(:,:)
real (8), allocatable :: bmat(:,:)

allocate ( nv(l:numnode) )
allocate ( ne(l:2*numnode) )

allocate ( ph(1:10,1:3*numnode) )
allocate ( gpos(l:nx) )
allocate ( gs(l:ng,l:numgauss) )
allocate ( bmat (1:3,1:2*numnode)
close (37)
open (37, file='midstr.dat')
do id=1,3
do jd=1,3
Dinv (id, jd) =Dmat (id, jd)
enddo
enddo
invd=3
ep=1.d-10

call GetINVASY (invd, invd,Dinv,EP)
do iu=1,numnode
Jju=2*iu-1
ku=2*iu
u(ju)=u2 (1, iu)
u(ku)=u2(2,1iu)
enddo
enorm=0.
!****************Compute energy error
do 100 ibk=1,numcell
ind=0
call CellGaussPoints (ibk, numcell, nquado, numg, numgauss, &
xc,noCell, gauss, gs)
do 200 is=1,numgauss
do i=1,3
stress(i)=0.
stressex(i)=0.
enddo
ind=ind+1
gpos (1)= gs(1l,1is)
gpos (2) =gs (2, is)
weight=gs (3, 1is)
ajac=gs(4,1is)
call SupportDomain (numnode,nx, gpos, x,ds,ndex,nv)
do kph=1, 3*ndex
do ik=1,10
ph (ik, kph)=0.
enddo
enddo
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call RPIM ShapeFunc_2D(gpos, x,nv, ph,nx, numnode, ndex, &
alfc,dc,q,nRBF, mbasis)
nb=2*ndex
do in=1,nb
ne (in) =0
enddo
do ine=1,ndex
nl=2*ine-1
n2=2*ine
ne (nl)=2*nv(ine) -1
ne (n2)=2*nv (ine)
enddo
do ib=1,3
do jb=1,nb
Bmat (ib, jb)=0.
enddo
enddo
do inn=1,ndex
Jj=2*inn-1
k=2*inn
Bmat (1,3)=ph(2,1inn)
Bmat (1,k)=0.
Bmat (2,3)=0.
Bmat (2, k)=ph (3, inn)
(3
(

Bmat (3, j)=ph (3, inn)
Bmat (3, k)=ph (2, inn)
enddo
do ii=1,3
do kk=1,3
do mm=1,nb
mn=ne (mm)
stress (ii)=stress(ii)+&
Dmat (ii, kk) *Bmat (kk, mm) *u (mn)
enddo
enddo
enddo

[HRxxAxkxkkxkxkxkxExact stress for beam problem
stressex (1l)=(1./aimo) *p* (xlength-gpos (1)) *gpos (2)
stressex (2)=0.
stressex (3)=-0.5*% (p/aimo) * (0.25*ylength*ylength-gpos (2) *gpos (2) )
do ier=1,3
err (ier)=stress (ier)-stressex (ier)
enddo
do jer=1,3
der (jer)=0.
do ker=1,3
der (jer)=der (jer)+Dinv (jer, ker) *err (ker)
enddo
enddo
err2=0.
do mer=1,3
err2=err2+weight*ajac* (0.5*der (mer) *err (mer))
enddo
enorm=enorm+err2
200 continue
100 continue

DA xAxkxkk xR xkxkxCompute nodal stresses
write(2,*)'Stress of field nodes'
do is=1,numnode

gpos (1)= x(1,1is)
gpos (2) =x(2,1s)
do ii=1,3

Stressnode (ii,is)=0.
enddo
ndex=0
call SupportDomain (numnode, nx,gpos, x,ds,ndex,nv)
do kph=1, 3*ndex

do ik=1,10

ph (ik, kph)=0.
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enddo
enddo
call RPIM ShapeFunc_2D(gpos, x,nv, ph,nx, numnode, ndex, &
alfc,dc, q,nRBF, mbasis)

nb=2*ndex

do in=1,nb
ne (in)=0

enddo

do ine=1,ndex
nl=2*ine-1
n2=2*ine
ne (nl)=2*nv (ine) -1
ne (n2)=2*nv (ine)

enddo

do ib=1,3
do jb=1,nb

Bmat (ib, jb)=0.

enddo

enddo

do inn=1,ndex
j=2*inn-1

k=2*inn
Bmat (1,3)=ph(2,1inn)
Bmat (1,k)=0.
Bmat (2,73)=0.
Bmat (2, k)=ph (3, inn)
Bmat (3,3)=ph(3,1inn)
Bmat (3, k)=ph(2,1inn)
enddo
do 1i=1,3
do kk=1,3

do mm=1,nb
mn=ne (mm)
Stressnode (ii,is)=Stressnode(ii, is)+&
Dmat (ii, kk) *Bmat (kk,mm) *u (mn)
enddo
enddo
enddo
strne(l,is)=(1l./aimo) *p* (xlength-gpos (1)) *gpos (2)
strne(2,1is)=0.
strne (3,1s)=-0.5* (p/aimo) * (0.25*ylength*ylength-gpos (2) *gpos (2))

write(2,220) is,Stressnode(l,is),Stressnode(2,1is),Stressnode(3,1is)
if (abs (gpos(l)-24).le.1.d-5) then
write (37,240) is,gpos(2),Stressnode(l,1is),Stressnode(2,1is), &
Stressnode (3,1is),strne(l,is),strne(2,1is),strne(3,1s)
endif
enddo
enorm=dsqgrt (enorm)
write(2,230) enorm
220 format (1x,15,3e20.5)
230 format (1x, 'Energy Error=',e20.10)
240 format (1x,1i5,£8.3,6e15.5)
deallocate ( nv)

deallocate ( ne)

deallocate ( ph)

deallocate ( gpos)

deallocate ( gs )

deallocate ( bmat)
RETURN

END

Program 4.15. Source code of Subroutine Getlnvasy
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SUBROUTINE GetInvasy(N,MA,A,EPS)
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This subroutine to get INVARSION OF A(N,N) USING THE GAUSS-JODON METHOD.
MATRIX A MUST BE DEFINITE BUT MAY BE ASYMMETRIC.
input--N: dimension of A;
MA: max number of rows of A;
EPS: tolerance;
Input and output--A[N,N]: the matrix in the input and invarsion in output;
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A (MA,N)
DO 10 K=1,N
C=A(K,K)
IF (DABS (C) .LE.EPS)pause
c=1.0/C
A(K,K)=1.0
DO J=1,N
A(K,J)=A(K,J) *C
ENDDO
DO 10 I=1,N
IF(I.EQ.K)GOTO 10
C=A(I,K)
A(I,K)=0.0
DO J=1,N
A(I,J)=A(I,J)-A(K,J)*C
ENDDO
10 CONTINUE
RETURN
END
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MESHFREE METHODS BASED ON LOCAL
WEAK-FORMS

5.1 INTRODUCTION

In Chapter 4, the MFree methods (EFG and RPIM) based on global
Galerkin weak-forms were introduced. In these MFree methods, global
background cells are needed for numerical integrations in computing the
system matrices. These MFree methods are, therefore, said not “truly”
MFree methods. The use of the global weak-form requires the system
equation in the global integral form to be satisfied over the entire problem
domain, and hence, a set of background cells has to be used for the
numerical integration. To avoid the use of global background cells, a so-
called local weak-form is used to develop the meshless local Petrov-Galerkin
(MLPG) method (Atluri and Zhu, 1998a, b; 2000a, b). Some other
variations of MLPG are also proposed. MFree methods based on local weak-
forms are called MFree local weak-form methods in this book.

When a local weak-form can be used for a field node, the numerical
integrations are carried out over a local quadrature domain defined for the
node, which can also be the local domain where the test (weight) function is
defined. The local domain can have a regular and simple shape (such as
spheres, rectangulars, ellipsoids, etc.) for an internal node, and the
integration can be done numerically within the local domain. For a node on
or near the boundary of complicated geometry, only a local mesh is required.

237
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Therefore, no global background mesh is required. As in the EFG method,
the MLS approximation is used to construct the shape functions in MLPG.

Atluri and Zhu (1998a) solved the Laplace equation, Poisson equation
and potential flow problems using MLPG. The MLPG method has been
improved and extended by Atluri’s group (Atluri et al., 1999b) and other
researchers over the years. MLPG has been applied to solve elastostatics
and elastodynamics problems of solids (Atluri and Zhu, 2000a,b; Gu and
GR Liu, 2001c¢), 4th order ODEs (or PDEs) for thin beams (Atluri et al,
1999a) and thick beams (shear deformable beams)(Cho and Atluri, 2001),
plate structures (Gu and GR Liu, 2001f; Long and Atluri, 2002), linear
fracture problems (Ching and Batra, 2001), fluid mechanics problems (Lin
and Atluri, 2000; 2001; GR Liu and Wu et al., 2001, 2002), and so on. An
error analysis of MLPG has been carried out by Kim and Atluri (2000).

MLPG does not need a global mesh for either function approximation or
integration. The procedure is quite similar to numerical methods based on
the strong-form formulation, such as the finite difference method (FDM).
However, because the MLS approximation is used in MLPG, special
treatments are needed to enforce the essential boundary conditions.

GR Liu and his co-workers applied the concept of MLPG and developed
two variations of MFree local weak-form methods, the local point
interpolation method (LPIM) (GR Liu and Gu, 2001b) and the local radial
point interpolation method (LRPIM) (GR Liu and Yan et al., 2002; GR Liu
and Gu, 2001c). In the LPIM, polynomial PIM shape functions (see, Sub-
section 3.2.1) that have the delta function property are used. However, as
polynomial basis functions are used, the interpolation moment matrix can be
singular and hence the matrix triangularization algorithm (MTA) (GR Liu
and Gu, 2001d, 2003a) has to be used. The radial PIM (RPIM) shape
function (see, Sub-section 3.2.2) that also has the delta function property is
another effective alternative, and has been used to formulate the local radial
point interpolation method (LRPIM) method (GR Liu and Gu, 2001¢; GR Liu
and Yan et al., 2002) that is very robust for domains with randomly distributed
nodes because of the excellent interpolation stability of RBFs.

Note that in a local weak-form method, global compatibility is not
required.

LRPIM has been successfully applied to solid mechanics (e.g., GR Liu
and Gu, 2000b, 2001b,c,e, 2002a; Xiao et al., 2003a,b,c), soil mechanics
problems (Yan, 2001), fluid mechanics (GR Liu and Wu 2002), 4th order
ODEs (or PDEs) for beam structures (Gu and GR Liu, 2001d),
microelectronic mechanical system (MEMS) (Li and Wang et al., 2004), and
SO on.

In this Chapter, MLPG and LRPIM are discussed in detail. Formulations
are obtained for two-dimensional elastostatics. A source code for these two
MFree local weak-form methods is provided with detailed descriptions.
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Numerical examples are presented to examine the present code. The
formulations of MLPG and LRPIM are quite similar, and the difference is
mainly in the type of MFree shape functions used, and the resultant
differences in the formulation procedure (can consider LRPIM as a special
MLPG). LRPIM is first discussed because it is simpler in the formulation
than MLPG and hence easier to understand. Note that LRPIM was
developed after the MLPG by replacing MLS shape function with the RPIM

shape function.

5.2 LOCAL RADIAL POINT INTERPOLATION
METHOD

5.2.1 LRPIM formulation

Consider a solid mechanics problem defined in the domain Q shown in
Figure 5.1. For a field node I, the governing equation (Equation (4.1)) is
satisfied using a locally weighted residual method, leading to a weak form
equation for this node. The local weighted residual form defined over a local
quadrature domain €2, bounded by I',, (shown in Figure 5.1) has the
following form.

[#,(o,; +p)d0=0 5.0
Q, '

where W, is the weight or test function centred usually at node /. Equation
(5.1) is applied to all the nodes in the problem domain.

When the local weighted residual formulation rather than the global
energy principle is used to create the discretized system equations node by
node, the compatibility of the shape functions in the whole domain is not
required. As long as the field approximation is continuous at any point in the
local quadrature domain, the shape function is differentiable (for an
integration by parts) and the resultant integrand is integrable, the solution
will exist'. In other words, the MFree local weak-form method only requires
the local compatibility in the local quadrature domain. The RPIM shape
function satisfies all these requirements, in addition to its delta function
property. This feature of the local weighted residual formulation was

" Stabilization measures may be required depending on the type of problem. See, for
example, Section 6.4.
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follows the fact that the MFree local weak-form method using shape
functions of at least linear consistency can easily pass the standard patch
tests.

"""""" Weight function —— Quadrature domain Q,
domain Q,,
—-— Support domain Q O Field nodes

® Quadrature point

Figure 5.1. A problem domain and boundaries modeled using the MFree local weak-form
methods. Weight function domain ,, and quadrature domain Q, for field nodes, and the
support domain Q; for a Gauss quadrature point x,.

The first term on the left hand side of Equation (5.1) can be integrated by
parts to arrive at

J.VIA/,G,].JdQ = J-Vf/,izjo-y,dl" - J-Vf/}’jaide
Q r )

q q q

(5.2)

where n; is the jth component of the vector of the unit outward normal on

the boundary (see Figure 1.4 and Figure 5.1). Substituting Equation (5.2)
into Equation (5.1), we can obtain the following local weak-form.

[Wiondr = [[W, 0, Wb, | =0
r Q

q q

(5.3)

Figure 5.1 shows that the boundary I', for the local quadrature domain,
Q, has composed by three parts, i.e., I, =I' , 0’ UI_, where
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I, is the internal boundary of the quadrature domain, which does not
intersect with the global boundary I';
I’y is the part of the natural boundary that intersects with the quadrature
domain;
', 1s the part of the essential boundary that intersects with the quadrature
domain.
Therefore, Equation (5.3) can be re-written as

/M0 /] gt

.[W]an.dl"+ JVI;]O'» ndl’ + IW,G.n.dF
r, T, Ty

B .[[WIK’/ —W[b,-]dﬂzo (5.4)

Q,

For a local quadrature domain located entirely within the global domain,
there is no intersection between I', and the global boundary I'. We then have
I',=I', and there is no integral over I',, and I';,. In such a case, Equation (5.4)
becomes

jW,aﬁn_idr - I[W’Jo_” ~W,b, ] dQ=0
r, Q

q

(5.5)

In this local weak-form, Equations (5.4) and (5.5), the Petrov-Galerkin
method can be used, in which the trial and test functions are selected from

different spaces. The weight function Vf/] is purposely selected so that it
vanishes on I'j; to simplify the local weak-form. Note that the weight
functions mentioned in Chapter 3, e.g. the cubic or quartic spline (W1 and
W2), can be chosen to be zero along the boundary of the internal quadrature
domains, hence they can be used as the weight functions in LRPIM. If the
weight function satisfies this property, the local weak-forms of Equations
(5.4) for a node whose local quadrature domain intersects with the global
boundaries can be re-written as

[/ L LT

[Wioyndr+ [W,oundr— [[W, 0~ Wb ]d2=0 5.6)
r,, r Q ’

qt q

Equation (5.5) that is for a node whose local quadrature domain does not
intersect with the global boundaries can be re-written as

_ j[pf/“(;] ~W,b,|d2=0 (5.7)

We note the relation between the stress and the traction on the boundary

oyn; =1 (5.8)
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Imposing Equation (5.8) and the natural boundary condition Equation (4.2)
into Equation (5.4), we obtain:

[7j0,40= [Wadr = [Wedr = [W7dr+ [Wpdo (5.9)
Q, ' r, T, r Q, ‘

7 q qt

Equation (5.9) suggests that the strong-form of the system equation given in
Equations (4.1) is changed to a relaxed weak-form with integrations over a
small local quadrature domain. This integral operation can smear out the
numerical error, and therefore make the discretized system more accurate
than the MFree procedures that operate directly on the strong-forms of
system equations. The LRPIM ensures the satisfaction of the equilibrium
equation at a node in an integral sense over a local quadrature domain, but it
does not ensure the satisfaction of the strong system equation exactly at the
node. The size of the local quadrature domain determines the extent of the
‘relaxation’.

In order to obtain the discretized system equations, the global problem
domain Q is represented by properly distributed field nodes. Using the RPIM
shape functions (see sub-section 3.2.2), we can approximate the trial
function for the displacement at a point x as

u

4 0 s o]l

, u 1 S ]
Uiy (X)= { } - { 0 0 } ST PaanUam) (5.10)

v ¢1 ¢n un

where 7 is the number of nodes in the support domain of a sampling point at
x, and @ is the matrix of RPIM shape functions constructed using these
nodes. Note that these » field nodes are numbered from 1 to n, and it is a
local numbering system for the support domain. The field node also has a
global number that is uniquely given to all field nodes from 1 to N. This
global numbering system is used to assemble all the local nodal matrices to
form the global matrix. Hence, an index is needed to record the global
number for a field node used in the support domain for the purpose of
assembling the global matrixes.

As in Equations (4.8)~(4.10), we can obtain the strain and stress as

€)= B(3><2n)u(2n><1) (5.11)

=D =D, B

G (3. (3x3) € (31 3:3)P 3x2am B (2011 (5.12)



5. Meshfiree methods based on local weak-forms 243

where D is the matrix of elastic constants of defined in Equation (2.27) or
(2.28), and B is the strain matrix given in Equation (4.8), i.e.

9 o .. %
Ox ox
o o,
B(3><2/1): 0 5_y] 0 E (5.13)
o o4 . 9 09
| oy ox oy Ox |

We now change Equation (5.4) to the following matrix form to derive the
discretized system equations in a matrix form.

[V/eda- [Wtdr— [Wtdl = [W el + [W,bd
Q Q

q r‘/’ rqu r‘/’ q (5 ' 14)
where W is a matrix of weight functions given by
~ ~ W(x,x ) 0

W, =W(x,X,) ., = - 5.15

I D) { 0 W(xx,) (5.15)

In Equation (5.14), \7, is a matrix that collects the derivatives of the weight

functions:

W (x,x;) 0

V, =V(X,X,) 50 = 0 W, (x,x;) (5.16)

Vf/’y(X,X]) VI}:x(XaXI)

It is in fact the strain matrix caused by the variation of the weight (test)
functions.
The tractions t at a point x can be written as

tx] |_nx 0 n, T
t= ; TZ L 0 n n O, (= n(2><3)D(3><3)B(3><2n)u(2n><l) (5.17)
¥y y x (2x3) TW
n

in which (n_,n y) is the vector of the unit outward normal on the boundary

n, 0 n,
"=l . (5.18)

(see Figure 1.4).
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Substitution of Equations (5.16)~(5.18) into Equation (5.14) leads to the
following discretized systems of equations for the /th field node.

[V/DBudQ— [W/nDBudl - | W, nDBudl
l"ql T,

Q

q q!

— . (5.19)
= [W/Wr+ [Wibdo

L, Q,
The matrix form of Equation (5.19) can be written as

(K )pnn (W), = (K)o (5.20)

where K; is a matrix called nodal stiffness matrix for the Ith field node,
which is computed using

_for T _ {wrT
K,_QfV,DBdQ JW,nDBdF rjw,nDBdr (5.21)

q qi q!

In Equation (5.20), f; is a nodal force vector with contributions from body
forces applied in the problem domain, and tractions applied on the natural
boundary.

_ T 7T
f,= W, tdr+0jw, bdQ (5.22)

Ty

In Equation (5.20), u is the vector collecting displacements for the field
nodes that are included in any of the support domains of the quadrature
points in the quadrature domain of the /th field node.

Equation (5.20) gives the general form of system equations for a field
node. For the local quadrature domain of a field node located entirely within
the global domain, there is no intersection between I', and the global
boundary, I', and the weak-form is given in Equation (5.5). In this case, K,
and f; can be obtained using, respectively,

l‘AT [
K, = JV, DBdQ - JW, nDBdI’

Q, r,

(5.23)

and
f,= [W/bdQ
Q(

q

(5.24)

We use Gauss quadrature to obtain the integrals in Equations (5.21) and
(5.22). Note that in the formulation for K, and f,, there are area integrals,

and curve integrals. Consider a rectangular local quadrature domain, in the
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standard Gauss quadrature, Equations (5.21) and (5.22) can be expressed as
follows.

K, = Z:‘kaf (X )DB(x) 'Jf ‘

B Z WkWIT (X )NDB(x, )‘in (5.25)
k=1
= 2 W] (xgnDB(x,,)|1,
k=1
f, = Z W (xg €|+ ; W W] (X, )b |37 (5.26)

where n, is the total number of Gauss points in the quadrature domain, 7, is
number of Gauss points used in a sub-curve, w, is the Gauss weighting factor

for Gauss point x¢, J 5 is the Jacobian matrix for the area integration of the

local quadrature domain, and J Z, J Z, and J 5, are, respectively, the Jacobian
jr Lgoand T .

Note that different Gauss points in the same local quadrature domain may
use different support domains. This means that the matrices in Equations
(5.25) and (5.26) could be different for different Gauss points.

Equation (5.20) presents two linear equations for the /th field node.
Using Equation (5.20) for all the N field nodes in the entire problem domain,
we obtain a total of 2N independent linear equations. Assemble all these 2N
equations based on the global numbering system to obtain the final global
system equations in the form of

matrices for the curve integration of the sub-boundaries I"

1/!1 fix
K, K, KI(ZN—I) KI(ZN) Vi fly
K(2171)1 K(21—1)2 K(Z]—I)(ZN—I) K(Zl—l)(zN) U flx
Ith node K v K v =
N Do Kaen2 (21)(2N-1) X 20)(2N) V; f1y
_K(ZN)I K(zzv)z K(2N)(2N—1) K(ZN)(ZN)_ Uy fo
Kivaon VN fNy
—_— [S—
U2N><I F2N><1
(5.27)

or
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Ko vonUova = Fona (5.28)

Equation (5.27) shows that the two nodal equations for the /th node have
been assembled into the (2/-1)th and 2/th rows in the global equations.

Note that the assembling to form Equation (5.28) is different from that in
the conventional FEM and the MFree global weak-form methods, such as
EFG. In the FEM and EFG, the element or nodal matrices are stamped
symmetrically into the global matrix. In the MFree local weak-form methods,
however, the nodal matrix is stacked together row-by-row to form the global
matrix. This stacking procedure is similar to that in the finite difference
method (FDM).

Equation (5.28) is the final discretized system equation of LRPIM. Note
that the essential boundary conditions, Equation (4.3), are not considered in
the LRPIM formulations. Because the RPIM shape functions have the
Kronecker delta function property, the essential boundary conditions can be
enforced in LRPIM as easily as in the RPIM or the conventional FEM. The
procedure has also been detailed in Sub-section 4.2.2. After enforcing
essential boundary conditions, we can solve the modified system equation
for displacements for all field nodes and then to compute the stresses using
Equations (4.10) and (5.12).

5.2.2 Numerical implementation
5.2.2.1 Type of local domains

Gauss quadrature is needed to evaluate the integrations in Equations
(5.21) and (5.22). As shown in Figure 5.1, for a field node x;, a local
quadrature cell Q, is needed for the Gauss quadrature. For each Gauss
quadrature point Xy, the RPIM shape functions are constructed to obtain the
integrand. Therefore, for a field node x;, there exist three local domains:

a) the local quadrature domain Q, (size r,);
b) the local weight (test) function domain Q,, where w0 (size r,,);
c) the local support domain Q; for x,, (size ry).

These three local domains are arbitrary as long as the condition r,<r,, is
satisfied. It has been noted that when an appropriate weight function is used,
the local weak-form, Equation (5.9), can be simplified because the
integration along the internal boundary I';; vanishes. Hence, for simplicity in
this book, we always use r,=7,.

The size of the local quadrature domain (r,) for node 7 and the size of the
support domain (r,) are defined as
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r=0ty dey (5.29)

ri=0 dc[ (530)
where d,, is the nodal spacing near node /, which is defined in Sub-section

3.1.3, o, and o are dimensionless sizes chosen to control the actual domain
sizes. The effects of ¢, and o, will be investigated later.

5.2.2.2 Property of the stiffness matrix

The system stiffness matrix K in the present LRPIM is sparse as long as
the support domain of RPIM is compact. If the field nodes are properly
numbered, K is banded. Note also that K is usually asymmetric (Atluri and
Shen, 2002). The asymmetry has two causes:

1) The Petrov-Galerkin formulation uses different functions for the trial and
test functions. Furthermore, the sizes and/or the shapes of the local
support domains for constructing the trial and test functions can also be
different. In addition, the sizes and/or the shapes of the local quadrature
domain may differ for different field nodes. Hence, the domain
integration in Equation (5.21) is, generally, asymmetric, i.e.

[vipBdo= [V/DBdO

(%) (1)
Q Q,

(5.31)

where Q;k) and Qf;) are local quadrature domains for the kth and the /th

field nodes, respectively, and Vk and \7, are matrices of derivatives of

the weight functions used for the kth and the /th field nodes, respectively.
B, and B; are the strain matrices of the /th and the kth field nodes.

2) The part of K from the boundary integrations in Equation (5.21) is
asymmetric. The sizes and/or shapes of the local quadrature domains
may be different for different field nodes; this means that boundary
integrations in Equation (5.21) are, in general, asymmetric, i.e.

[ W/nDB,dr - [ W/nDB,dr
) )
! . " . (5.32)

#+ [W'nDB,dr - [ W'nDB,dr

1 1
) rin)

Therefore, K is asymmetric, i.¢.,

Ky # Ky (5.33)
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In conclusion, the stiffness matrix K in the LRPIM is generally sparse,
banded and asymmetric.

Note that in LRPIM, the essential boundary conditions can be directly
implemented as in the RPIM and FEM due to the fact that the RPIM shape
functions possess the Kronecker delta function property. Because the system
equation of LRPIM is assembled based on nodes as in the finite difference
method (FDM), the rows in the matrix K for the nodes on the essential
boundary need not be computed. This can save some computational costs.
This simple treatment is possible because 1) the RPIM shape functions have
the delta function property and 2) the rows of the K are based on nodes.

5.2.2.3 Test (weight) function

As LRPIM can be regarded as a local weighted residual method, the test
(weight) function plays an important role in the performance of this method.
Theoretically, any test function is acceptable as long as the condition of
continuity is satisfied. However, the local weak-form is based on a local
quadrature domain of a field node with the node at the centre. It can be
shown that test functions which decrease in magnitude with increasing
distance from the centre yield better results. We use the test functions that
depend only on the distance between the two points: the cubic spline
function (W1), the 4th-order spline weight function (W2) and other weight
function given in Sub-section 3.3.2.

To simplify Equation (5.9), we can deliberately select the test functions
so that they vanish over I'j;. This can be achieved using, for example, the
4th-order spline weight function (W2) with r,=r, (see Sub-section 3.3.2)

because W (r) is zero when r=r,.

There is a wide range of weight functions that can be used in LRPIM,
including all weight functions that are used to form different weighted
residual methods (see, Section 1.4). Atluri and Shen (2002) used six weight
functions in MLPG. These weight functions can also be used in LRPIM.

Although there are many types of weight functions, the spline weight
functions (e.g., W1 or W2) are the most popular; it is the most convenient to
use and accurate. Hence, in this book, we focus on the use of these spline
weight functions.

5.2.2.4 Numerical integration
The integrations in LRPIM can be performed over regularly-shaped local

quadrature domains for internal nodes; circles, ellipses, rectangles, or
triangles in two-dimensional problems; spheres, rectangular parallelepipeds,
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or ellipsoids in three-dimensional problems. These local domains can be
automatically generated during computation.

Issues of numerical integrations in MFree methods have been discussed
in detail in the existing publications (Atluri et al.,1999b; Dolbow and
Belytschko,1999; GR Liu, 2002). Insufficiently accurate numerical
integration may cause deterioration in the numerical solution and rank-
deficiency in the stiffness matrix. The difficulty of the numerical integration
for LRPIM comes mainly from the complexity of integrands. First, the shape
functions constructed are complicated, and have different forms in each
integration region. The derivatives of shape functions can even have
oscillations. Second, the overlapping of local support domains complicates
the integrands further. In order to ensure the accurate numerical integration,
Q, should be further divided into small regular partitions (see Figure 5.8). In
each small region, the number of Gauss quadrature points should be chosen
to ensure sufficient accuracy (Atluri et al. 1999b).

If the rectangular quadrature domain is used, the standard Gauss
quadrature can easily be performed. Circles centred on the field node are
often used; they have no directional bias, and have simple weight functions.

To obtain the numerical integration for a circular quadrature domain, a
mapping technique has been used, as shown in Figure 5.2.

The circular quadrature domain is divided into four quarters.

The quarter is mapped into a rectangle region.

The rectangle region is mapped to a standard square for Gauss quadrature.

The standard Gauss quadrature is used.

For simplicity, the rectangular quadrature is used in the following study.

| H

e

Step 1 Step 2

Figure 5.2. Transformation of a quarter circular domain into a standard square.
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5.3 MESHLESS LOCAL PETROV-GALERKIN METHOD

The MLPG is developed by Atluri et al. (Atluri and Zhu, 1998a,b; Alturi
and Shen, 2002); this section provides a concise introduction; the complete
record of MLPG is given in Atluri and Shen (2002).

5.3.1 MLPG formulation

Consider a two-dimensional problem of solid mechanics in domain Q
bounded by I' whose strong-form of governing equation and the essential
boundary conditions are given in Equations (4.1) to (4.3). In the MLPG, the
local weak-form can be obtained from the following weighted residual
method.

[, +b)d2—a [, (u ~iz)dr =0 (5.34)
Q Fou

q ql

where W is the weight or test function. Note that the second integral in
Equation (5.34) is the curve integral to enforce the essential boundary
conditions, because the MLS shape functions used in MLPG lack the
Kronecker delta function property. In Equation (5.34), the penalty method is
used to enforce the essential boundary conditions. €3, is the local domain of
quadrature for node 7, I';, is the part of the essential boundary that intersect
with the quadrature domain Q,, and « is the penalty factor used in Chapter 4.
Here we use the same penalty factor for all the displacement (essential)
boundary conditions.

The displacements at a sampling point x are approximated using the MLS
shape functions (see, Section 3.3) in the following form

U
40 g 0]
h u B .
LYo (X)_{v}_{o ¢ - 0 ¢J S E I I (5.35)
v}’l

where ¢ is the MLS shape function, and ® is the matrix formed with MLS
shape functions.
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Substituting the foregoing expression for all the displacement
components of u into the local weak-form Equation (5.34), and following the
exact procedure detailed in Sub-section 5.2.1 yield the following nodal
discretized system equations of MLPG for the /th field node.

K[ll:fj (536)
where K| is a matrix called the nodal stiffness matrix for the Ith field node,
For £ N
K, = J ; DBdQ — JW, nDBAI" - J W, nDBdI'
Qq

Ty Lo

_ (5.37)
+o [ W/ adr
FW

and f; is a nodal force vector with contributions from body forces applied in
the problem domain, tractions applied on the natural boundary, as well as the
penalty force term.

f,= [W/Wr+ [W/bdQ+a [ W/adr
r Qz/ ]"q“

qt

(5.38)

Compared with Equations (5.21) and (5.22), the last terms in Equations
(5.37) and (5.38) are new. They are required for imposing the essential
boundary conditions. For a field node whose local quadrature domain lies
entirely within the global domain, there is no intersection between I', and the
global boundary I', and the local weak-form is given in Equation (5.5). In
this case, K; and f; have the same formulations as Equations (5.22) and
(5.23).

We use Gauss quadrature to obtain the integrals in Equations (5.37) and
(5.38); the algorithm is the same as that used in Equations (5.25) and (5.26)
for LRPIM.

Equation (5.38) presents two linear equations for the /th field node.
Using Equation (5.38) for all N field nodes in the entire problem domain and
assembling all these 2N equations, we can obtain the final global system
equations in the discretized linear algebraic form for MLPG, i.e.

Ko vanUaya =Foyyg (5.39)

Solving the above equation, we can obtain the nodal parameters of
displacements and then compute the actual displacements at any point
(including field nodes) in the problem domain using Equation (5.35). Finally
the strains and stresses can be obtained using Equations (5.11) and (5.12).
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5.3.2 Enforcement of essential boundary conditions

In Sub-section 5.3.1, the penalty method has been used to enforce
essential boundary conditions in MLPG. In fact, other methods for enforcing
essential boundary conditions in EFG, which have been discussed in Section
4.3, can also be used in MLPG.

Note that, in MLPG, the system equation is constructed node by node.
There are only two rows in the global stiffness matrix and the global force
vector that are related to each field node. With this structural feature of the
system equation of MLPG, the following direct interpolation method can be
used to enforce essential boundary conditions.

Assume the displacements at the /th field node on the essential boundary
are prescribed as

h J—
u =u
{; o (5.40)
vV, =V,
Using the MLS approximation, one has
U
_Jutl [ao0 g 0] 7,
uj=q = D p=@u=<_ (5.41)
v 0 ¢ - 0 9, v
u}’l
Vn

Equation (5.41) produces two linear equations for the /th field node, and can
be re-written explicitly as

{¢lul + ¢2uZ teet ¢nun = 17[

oy +dv, +-+4v, =V, (5.42)

In Equation (5.40), both u and v of the /th node are prescribed. For some
field nodes, it could be that only one of the two displacement components (u
or v) is prescribed. Therefore, only one of the linear equations in Equation
(5.42) can be obtained from the essential boundary condition for the
prescribed displacement component at this field node. The other equation
for the unprescribed displacement should still be obtained as in Equation
(5.4).

Equation (5.42) is assembled (stacked) directly into the system equations
for field nodes to obtain the modified global system equations of

K2N><2NU2N><1 = F2N><1 (5-43)

where the modified global stiffness matrix K is
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Kn K12 KI(ZN—I) K1(2N)
é 0 ... by 0 <++——2[-1)throw
K= . (5.44)
0 & 0 ¢N - 27th row
_K(zN)l K(2N)2 K(ZN)(ZN—I) K(zw)(zw) |

The modified global force vector F is

S

<«+— (2/-1)th row

U
F =
v, 44— 2lthrow (5.45)

fNy

(2Nx1)

For simplicity and without losing generality, ¢ ~¢, are used in Equation

(5.44). Note that because the MLS shape functions are constructed in a
compact support domain, the number of field nodes, n, selected in the
support domain for the /th node will usually be much smaller than the total
number of field nodes, N (i.e., n << N'). Therefore, many of ¢ ~¢, will be

Zero.

This direct interpolation method for the treatment of essential boundary
condition is straightforward and very effective. It was used in the boundary
node method (BNM) by Mukherjee and Mukherjee (1997), suggested for
MLPG by Atluri et al. (1999b), and implemented in the MLPG for 2D solids
by GR Liu and Yan (2000).

5.3.3 Commons on the efficiency of MLPG and LRPIM
There are many advantages in using MFree local weak-form methods, e.g.
LRPIM and MLPG.
1) No global background cell is needed for the integrations.

2) The implementation procedures are as simple as numerical methods
based on the strong-form formulation, such as the FDM.

3) No global compatibility of the shape functions is required, because no
global energy principle is used in the formulation.
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However, these advantages of MFree local weak-form methods do not
come without some cost. The following study shows the fact that the MFree
local weak-form method is generally less efficient than the MFree global
weak-form method, and of course the FEM.

5.3.3.1 Comparison with FEM

Compared with FEM, the LRPIM and MLPG are computationally more
expensive if the same field nodes are used. The additional computational
computation cost mainly comes from: 1) the MFree interpolation, 2) the
numerical integrations, and 3) solving the asymmetric stiffness matrix. A
detailed study on the efficiency is conducted by comparing with FEM, and
the results are presented using the numerical examples given in Sub-section
5.54.

5.3.3.2 Comparison with MFree global weak-form methods

Compared with MFree global weak-form methods, such as EFG and
RPIM, discussed in Chapter 4, the major disadvantages of LRPIM and
MLPG are the additional parameters introduced and the asymmetric system
matrix. The additional parameters in LRPIM and MLPG include the sizes of
local quadrature domains and the choice of the test function, etc. The
asymmetric matrix will increase the computational cost in LRPIM and
MLPG, as will be shown in the example problems given in Sub-section 5.5.4.

5.4 SOURCE CODE

In this section, a standard source code, MFree Local.f90, of the MFree
local weak-form method is provided and described in detail. This code is
developed using FORTRAN 90. Combined with some of the subroutines
given in Chapter 3 and Chapter 4, the code functions as either LRPIM or
MLPG, respectively.

5.4.1 Implementation issues

1) Local quadrature domains

To perform the integrations for the local weak-form, local quadrature
domains are needed. The local quadrature domain can be as simple as
possible for the internal nodes. Rectangular domains are simple and easy to
use, and they are used in this book.
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For a rectangular quadrature domain, the dimension of the quadrature
domain can be determined by r,, and r,, in x and y directions, respectively.

r,=a,d, (5.46)

where a,, and o, are dimensionless sizes of the quadrature domain in x and
v direction, respectively, and d., and d,, are the local nodal spacings in x and
v directions, which have been defined in Sub-section 3.1.3.

2) Method to enforce essential boundary conditions

The methods of enforcing essential boundary conditions in the LRPIM
and MLPG have been discussed in Sections 5.2 and 5.3. The direct
interpolation method is one of the most efficient methods for MLPG; it is
used in this code.

3) Global error in energy norm

For the error analysis, the energy norm defined in Equation (4.78) is used
as an error indicator, as the accuracy in strains or stresses is much more
critical than the displacements. Note that the integration in Equation (4.78) is
over the global domain. Hence, in order to get the global error in energy
norm, global background cells, that can be the same as those used in the
RPIM (or EFGQG), have to be used purely for the error assessment.

4) Flowchart of the subroutine

The flowchart of the computer code, MFree Local.f90, is plotted in
Figure 5.3. The procedure of LRPIM is very different from that of FEM and
RPIM (EFQG).

The major steps in a LRPIM analysis are as follows

e The geometry of the problem domain is modelled and a set of field

nodes is generated to represent the problem domain;

e The influence domains are set for all field nodes;

e The system matrices are assembled through two loops;

o The outer loop is for all the field nodes. At the beginning of
this loop, a local quadrature domain is first constructed.

o The inner loop is for all the Gauss quadrature points in the
quadrature domain.

e The boundary conditions are enforced;

e The system equation is solved using the standard equation solver;

e The post-processing is performed to plot the final results including

displacements, stresses, etc.
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5.4.2 Program description and data structures

The main program of MFree Local.f90 calls several subroutines. The
macro chart for the program is given in Figure 5.4. The functions of these
subroutines used in the main program are listed in Appendix 5.1. The main
program is listed in Programs 5.1 and 5.2.

1) Programs for LRPIM and MLPG

The present program listed in the following Program calls the subroutine
RPIM_ShapeFunc 2D that is for the construction of RPIM shape functions.
Hence, the present program is for LRPIM. This program can be easily
changed to the program for MLPG by replacing all the subroutine
RPIM_ShapeFunc 2D with the subroutine MLS_ShapeFunc 2D. These two
subroutines, RPIM_ShapeFunc 2D and MLS_ ShapeFunc 2D, have been
described in Chapter 3.

The source code of the main program is listed in Program 5.2.

2) Major variables

The major variables used in the program are listed in Appendix 5.2. The
include file of variables, variableslocal.h, is listed in Program 5.1.
a. Most global variables are similar to the global variables that are
presented in the program MFree Global.f90 in Chapter 4.
Note that some of subroutines used in MFree Local.f90 are the same as
those used in the program MFree Global.f90 (see Appendix 5.1). Therefore,
the descriptions for these subroutines are not repeated here.

3) Subroutine Input

Source code location: Program 5.3.

Function: This subroutine performs simple operations of inputting data
from a given external data file, and hence is self-explanatory,
and easy to understand.

4) Subroutine Qdomain

Source code location: Program 5.4.
Dummy arguments: Appendix 5.3.
Function: This subroutine is to construct the local quadrature domain for
a field node, and it is designed to construct a rectangular
quadrature domain. Coordinates of four vertexes of the local
quadrature domain are stored in the array xc. Readers can
modify this subroutine slightly for creating other shapes of
quadrature domains.
Note here that one of major challenges in MFree local weak-form
methods is to develop an efficient algorithm for automatically forming the
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local quadrature domains, especially for nodes on or near boundaries of a
problem domain of a complex shape.

Loop over
field nodes

A

Determine local quadrature domain for this field node

Loop over all the
quadrature points

!

Search all influence domains to determine nodes involved in interpolation

|

Compute meshfree shape functions for the quadrature point

\4

Compute sub-stiffness matrix of the quadrature point

|

Assemble the nodal stiffness matrix into the global stiffness matrix

}

End of the loop for the quadrature point

I

End of the loop for the field nodes

}

Enforce essential boundary conditions

!

Solve the system equation to obtain displacements and then the stresses, etc.

End

Figure 5.3. Flowchart of the program of MFree Local.f90.
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_ input

| SobverBand }_ —{ Qdomain
GetDisplacement CaussCoefcent
| GeMNodeSress  [— | DomainGaussPois

Main program of
| Qutput | MFree local SupportDomain
— weak-form
| TotalGaussPaints | method TestFunc

(MF_Local 00) RPIM_ShapeFunc_2D

| Ceffrergyfror | {or MLS_ShapeFunc_20)
Infeqration BCCuAQ
| Dobmax —
—  Integration BCQ!
| Gelnvasy | P

Figure 5.4. Macro flowchart of the program of MFree Local.90.

5) Subroutine DomainGaussPoints

Source code location: Program 5.5.

Dummy arguments: Appendix 5.4.

Function: This subroutine is to set the Gauss points and calculate the
Jacobian for a local quadrature domain. In the present
program, rectangular local quadrature domains are used.
Hence, the subroutine is designed to set Gauss points for a
quadrilateral quadrature domain.

6) Subroutine TestFunc

Source code location: Program 5.6
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Function: This subroutine is to compute test or weight functions (the
quartic spline function) and their derivatives. The field node is
at the center of the weight functions. Note that the weight
function domain is the same as the quadrature domain (r,=r,)
defined in Equation (5.46).

7) Subroutine Integration BCQuQi

Source code location: Program 5.7.

Dummy arguments: Appendix 5.5.

Function: This subroutine is to compute the integrations on the
boundaries, I'y, and I';, of the quadrature domain that intersect
with the global boundary. The integration is defined in the last
two terms in Equation (5.21). Because the rectangular
quadrature domains are used and the problem domain
considered is also a rectangle, the integrations on these sub-
boundaries are curve integrations along a line. These
integrations can be obtained using the standard curve Gauss
quadrature scheme. The main flowchart of this subroutine is
shown in Figure 5.5.

8) Subroutine Integration BCQt

Source code location: Program 5.8.

Dummy arguments: Appendix 5.6.

Function: This subroutine is to compute the integrations on the boundary,
Iy, of the quadrature domain that intersects with the global
force boundary. The integration is defined in the first term in
Equation (5.22). Because the rectangular quadrature domains
are used and the problem domain considered is also
rectangular, the integration on the sub-boundary I' ;; is a curve
integration scheme. The flowchart of this subroutine is shown
in Figure 5.6.

Note here that subroutines of Integration BCQu and Integration BCQt
are two important subroutines used in MFree local weak-form methods. How
to efficiently achieve these boundary integrations is another major challenge
in MFree local weak-form methods, especially for a problem domain with a
complex geometry.

9) Subroutine EssentialBC

Source code location: Program 5.9.

Dummy arguments: Appendix 5.7.

Function: This subroutine is to implement the essential boundary
conditions.
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Determine local boundaries of l_q”and l"w_

|

Set Gauss pointsonI’, and T’
qu qi

|

Loop over Gauss
points

I

Compute nodal matricesW, n and B for this
Gauss point

Assemble the nodal stiffness
matrices into the global stiffness
matrix

Figure 5.5. Flowchart of the subroutine Integration BCQuQi.

10)Subroutine GetDisplacement

Source code location: Program 5.10.

Dummy arguments: Appendix 4.10.

Function: This subroutine is used only in MLPG to obtain the final
displacements. This subroutine is unnecessary for LRPIM if
only nodal displacements are interested, as the RPIM shape
functions possess the delta function property (Sub-section
3.2.2).

11)Subroutine GetNodeStress

Source code location: Program 5.11.

Dummy arguments: Appendix 5.8.

Function: This subroutine is to compute stress components at all field
nodes using Equations (4.10) and (5.12).

12)Subroutine Output

Source code location: Program 5.12.
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Function: This subroutine performs the simple task of outputting the
results. The source code of this subroutine is listed.

Input data

Compute the intersection betweenI” and the global
boundary T,

Set Gauss pointson T,

Loop over Gauss
points

Compute the nodal force vector

Figure 5.6. Flowchart of the subroutine Integration BCQt.

13)Subroutine TotalGaussPoints

Source code location: Program 5.13.
Function: This subroutine is to obtain Gauss points for a global
background mesh.

14) Subroutine GetEnergyError

Source code location: Program 5.14.
Function: This subroutine is to compute the global error in energy norm
of the solution using Equation (4.78).

15) Subroutine Dobmax and Getlnvasy

The source code of the subroutine Dobmax for computing multiplication
of two matrices is listed in Program 5.15. The subroutine Getlnvasy that is
listed in Program 4.14 is used to compute the inversion of a matrix.
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5.5 EXAMPLES FOR TWO DIMENSIONAL SOLIDS — A
CANTILEVER BEAM

To provide a quantitative analysis, a cantilever beam subjected to a
parabolic traction at the free end as shown in Figure 4.5 is considered. The
beam has a unit thickness and is in a plane stress. The exact solution of this
problem is listed in Equations (4.79)~(4.84). The study of this simple
example has the following purposes.

a) To demonstrate the standard procedure of an MFree local weak-

form method;

b) To show the usage of the present programs, MFree Local.f90, of

LRPIM and MLPG;
c¢) To investigate the effects of the shape parameters of MQ-RBF in
LRPIM:;

d) To investigate the effects of the size of local domains;

e) To study numerically the convergence of LRPIM and MLPG;

f)  To study the efficiency of LRPIM and MLPG.

5.5.1 The use of the MFree local.f90

To use this program of MFree local.f90, three steps, which are similar to
that discussed in Chapter 4, may be followed:

Step 1: Preparation of input file

The problem should be modeled in this step. The aim of this step is to
prepare the input data file for the program.

An example of input data file for the beam problem is listed in Appendix
5.9. The field nodes used in this file is plotted in Figure 5.7. The domain of
the beam is represented by regularly distributed 55 (11x5) field nodes. This
data file can be largely divided into five parts.

Part 1: this part includes the parameters of description of the problem
including: Length and Width of the problem domain; Young’s modules;
Poisson’s ratio; The distributed traction; Total number of field nodes; Global
boundary information (X, » Xin > Vimin > Vimax )-

Part 2: this part provides the parameters for determination of sizes of the
local domains, including: Sizes of the local quadrature domain (in x, y
directions); Number of sub-partitions used to divide the quadrature domain
(in x, y directions); Number of Gauss points used in each partition; Size of
the local influence domain.
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Figure 5.7. An MFree model with 55 regular field nodes used to represent the problem
domain and boundaries.

Part 3: this part contains the detailed coordinates of field nodes: Number
of node, x; and y;.

Part 4: this part defines the essential boundary conditions and the natural
boundary conditions. The exact essential boundary conditions (see Equations
(4.79) and (4.81)) and natural boundary conditions (see Equation (4.84)) are
used to compute these values.

Part 5: this part includes the global background cells and the coordinates
of the vertexes of the background cells that are used only to compute the
global error in energy norm in the solution.

Step 2: Execution of the program

After the preparation of the input data file, the program can be executed
to obtain the results. LRPIM is first used, and results are listed in Appendix
5.10 and Appendix 5.11. In Appendix 5.10, the displacements at field nodes
are listed, and the stresses at the field nodes are listed in Appendix 5.11. In
the output, the error in energy norm is also presented in Appendix 5.11.

The MLPG method is also used, and results are listed in Appendix 5.12
and Appendix 5.13. The displacements at field nodes are listed in Appendix
5.12, and the stresses at field nodes are listed in Appendix 5.13 together with
the error in energy norm.

Step 3: Analysis of the output data

The task of this step can be performed using any post-processor like
MFree Post in the sofyware of MFree 2D (GR Liu, 2002).

Results of LRPIM are plotted in Figure 5.9~Figure 5.10. The MQ-RBF
with linear polynomial terms is used in LRPIM, and the parameters used are
a,=1.0, ¢g=1.03, and d, =3.0. For the local influence domains, 4., =4.8,

d, =3.0, and &, =3.0 are used. For local quadrature domains, ¢, =2.0 is
used. To ensure the accuracy of numerical integration, the local quadrature

domain is further divided into n; xng small sub-partitions, as shown in
Figure 5.8. In this study, we let n, =n, =n, and n;, =2. In each sub-
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partition, a total of 16 (4x4) Gauss points are used. The cubic spline function
1s used as the test function for the local Petrov-Galerkin weak-form.

Quadrature

Q

Sub-partitions

/N

O

domain \
O

X

:O : : :Ithznode : i L
Of x x} "x',_;"_;_ T x| nay=2
. X X X x 1 X X
Field nodes _.Q 3 XO 3 E XOX @ \ O
O X X O X X Vx X & J
O \/ O Gauss points
Nng=2

Figure 5.8. A local quadrature domain is divided to n,4, x 5y, sub-partitions. A total 4x 4

Gauss points are used in each partition.

The deflection results are plotted in Figure 5.9. For comparison, the
analytical results of displacements are also plotted in the same figure. A
very good agreement can be found between LRPIM results and the analytical
results. The results of shear stress, 7, , are plotted in Figure 5.10. Compared

with the analytical results, LRPIM gives a reasonably good result even for
stresses.

Results of MLPG are analyzed in Figure 5.11~Figure 5.12. In computing
the results shown in these figures, the linear polynomial basis and the cubic
spline weight function are used in the MLS approximation. For the local
influence domains, . =4.8, dcy =3.0, and a; =3.0 are used. For local

quadrature domains, e, =1.5, 4(2x2) sub-partitions, and 16 (4x4) Gauss

points in each partition are used. The cubic spline function is used as the test
function for the local weak-form. The deflection results are plotted in Figure
5.11. For comparison, the analytical results of displacements are also plotted
in the same figure. A very good agreement between MLPG result and the
analytical result is found. The results of the shear stress, 7, ,are plotted in

Figure 5.12. Compared with the analytical results, the results given by
MLPG are very good.

Two nodal distributions of 189 regular nodes and 189 irregular nodes
shown in Figure 5.13 are used to test the present code further. Shear stresses
7., are computed using LRPIM and plotted in Figure 5.14. The same stresses
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7,y are also obtained using MLPG and plotted in Figure 5.15. Compared with
analytical results, results of both LRPIM and MLPG are very good. It is seen
that the nodal irregularity has little effects on the results, and this is true for
both LRPIM and MLPG.

G—6666
& 0O 0o

O: Analytical solution; A: Numerical solution.

Figure 5.9. Deflections of the beam obtained using LRPIM and 55 regularly
distributed field nodes. Note that the displacements plotted are magnified by 500
times.
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Figure 5.10. Shear stress 7, distribution on the cross-section at x=L/2 of the beam
obtained using the LRPIM and 55 regular field nodes.
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8 7 MLPG result

o©r — Analytical result |
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Figure 5.11. Deflections at the central axis at y =0 of the beam obtained using the
MLPG and 55 regular field nodes.
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Figure 5.12. Shear stress distribution on the cross-section at x=L/2 of the beam obtained
using the MLPG and 55 regular field nodes.
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Figure 5.13. Nodal arrangements for the cantilever beam. (a) 189 regular nodes; (b) 189
irregular nodes.
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Figure 5.14. Shear stress distributions on the cross-section at x = L/2 of the beam
obtained using the LRPIM and 189 field nodes.

5.5.2 Studies on the effects of parameters

In the following studies, the problem domain is represented using 189
(21x9) regular nodes. For quantitative and accurate analyses, the exact
essential boundary conditions and natural boundary conditions are used. The
error in energy norm, Equation (4.78), is used as an accuracy indicator. In
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LRPIM, the linear polynomial terms are added in the RPIM-MQ. In MLPG,
the linear basis is used in the MLS approximation.

20

O

A MLPG (189 regular nodes)
O MLPG (189 irregular nodes)
20 —— Analytical result

K60
-80
-100 |
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@) ol
140 .
) 4 2 0 2 4 6
y

Figure 5.15. Shear stress distributions on the cross-section at x=L/2 of the beam
obtained using the MLPG and 189 field nodes.

5.5.2.1 Parameters effects on LRPIM
a) Shape parameters of RBF

The shape parameters of the MQ-RBF are studied. More detailed
discussion on the effects of RBF parameters for other RBFs are presented in
the paper by Wang and GR Liu et al. (2002c) and a book by GR Liu (2002).
Readers can also slightly modify the present codes and input data file to
conduct their own study on other RBFs.

In MQ-RBF, there are two shape parameters, ¢, and ¢, that have been
discussed in Section 3.2. Because the regular nodes are used, d. that is a
parameter of the nodal spacing is a constant of d. =L/20=2.4. In this
study, «; =3.0 is used for the construction of support (influence) domains.

First, g is investigated, while ¢, is fixed at 1.0, 2.0 and 4.0. Errors in energy
norm for five different values of g (¢ =—0.5, 0.5, 0.98, 1.03 and 1.2) are plotted
in Figure 5.16. From Figure 5.16, it can be confirmed that g=0.98 and ¢=1.03
with o.=4.0 give better results for this problem. According to the conclusions of

the study by GR Liu (2002), g=1.03 is generally stable and accurate for many
problems. Hence, g=1.03 is used in the following studies.
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Figure 5.16. Influence of ¢ on the accuracy of the results obtained using the LRPIM-

MQ. It can be found that «, =4.0, ¢=0.98 and 1.03 give accurate results.
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Figure 5.17. Influence of ¢, on the accuracy of the results obtained using LRPIM-MQ

(¢=1.03). It can be found that the results of . =3.0 ~5.0 are more accurate.
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In the study on ¢, the range of 0.5~7.0 with ¢ fixed at 1.03 is now
considered. Errors in energy norm for different values of ¢, are plotted in
Figure 5.17. From this figure, we can find that all ¢, in the considered range
can lead to satisfactory results. The results of . =3.0~7.0 are slightly

better. For convenience, a, =4.0 will be used in the following studies.

Comparing with those in Section 4.5, the findings from this study are
very much the same, and hence the same shape parameters are used for both
RPIM and LRPIM.

b) Effects of the size of local quadrature domain

The size of the local quadrature domain affects the accuracy of the
LRPIM solutions. The sizes of quadrature domains are defined in Equation
(5.29), in which d, =L/20=2.4 and d,, = D/8=1.5 are used in this study.

The sizes of quadrature domains will be, therefore, determined by «,, and «,,
which are dimensionless coefficients in x and y directions, respectively. For
simplicity, o, =a,~=a, is used. The errors in energy norms for different o,
are obtained and plotted in Figure 5.18; the accuracy for solutions generally
is improved by increasing the size of the quadrature domain.

When the quadrature domain is too small (,<1.0), the error in results will
become unacceptably large. This is because a local residual formulation with a
very small quadrature domain for the weight function behaves more like a
purely  strong-form formulation (a collocation method). Strong-form
formulation is usually less accurate than a weak integral form formulation, in
which the integration smears the error over the integral domain (Liu and Han,
2003). More detail on this topic will be given in Chapter 6.

When the quadrature domain is large enough (¢,>1.5), results obtained
are very good. However, it is difficult to obtain accurate numerical
integrations for a large local quadrature domain (see Sub-section 5.2.2.4).
Because more regular small partitions and Gauss quadrature points are
needed, the numerical integration in a large quadrature domain becomes
computationally expensive and is not really necessary. Figure 5.18 shows
that a too large local quadrature domain is not necessary to give a significant
improvement in the accuracy. Hence, o,=1.5-2.5 is an economical choice
that gives good results. In the following studies of LRPIM, ¢,=2.0 is used.

¢) Effects of numerical integration

As discussed above, there are difficulties in obtaining accurate numerical
integration because of the complexities of integrands (see Sub-section
5.2.2.4). To study effects of numerical integrations in more detail, a local
quadrature domain Q, with ¢,=2.0 is used. The local quadrature domain is
further divided into ng xn, small partitions, as shown in Figure 5.8. In this
study, we let n,, =n,, =n,. In each partition, 4x4 Gauss points are used.
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Figure 5.18. Influence of the sizes of local quadrature domain on the accuracy

of the results obtained using LRPIM.

015F ————— -

Jolie ABl

[}

ug

3.5

2.5

1.5

na

Figure 5.19. Influence of the number of sub-partitions on the accuracy of the

results obtained using LRPIM-MQ (g=1.03, c.c=4.0).



272 Chapter 5

Results of errors in energy norms for different n, are obtained and plotted
in Figure 5.19. It can be observed that the accuracy of solutions improves
with the increase of n, due to the improvement of the accuracy of numerical
integrations. Hence, in order to ensure an accurate numerical integration, Q,
should be divided into some regular sub-partitions. In each sub-partition,
sufficient Gauss quadrature points should be used.

However, the increase of the number of sub-partitions and Gauss points
will increase the computational cost. A good and economical choice is n,=2.

d) Effects of the size of the influence domain

The size of influence domains is defined in Equation (4.75), d.. and d_,
are the nodal spacings in x and y directions near the field node /. In this study,
d.,=L/20=24 and d,=D/8=1.5 are used. The size of influence

domains is determined by ¢, and ¢, which are dimensionless coefficients
in x and y directions. For simplicity, we use a,=a,~a;.

Errors in energy norms for different ¢; are plotted in Figure 5.20 for two
cases. The shape parameters of MQ-RBF are ¢ =1.03 and o, =4.0 for case

I; ¢=1.03 and a.=1.0 for case 2. It can be found that the accuracy
changes with ¢;, and the results of ¢, >2.0 are very good. The reason of the
bad results obtained using «; <1.5 is that the influence domain is too small.

There are not enough field nodes included for interpolation. For a too large
influence domain, e.g. a; = 4.0, the accuracy is good, but the computational

cost will also increase accordingly for the inclusion of large number of nodes
in the interpolation. An economical choice is &=2.0~3.0 for reasonably
good results. In the following studies on LRPIM, «; =2.5 will be used.

e) Convergence

In the numerical convergence study, regularly and evenly distributed 18
(3x6), 28 (4x7), 55(5x11), 112(7x16), 189(9x21), and 403(13x31) field
nodes are used. The convergence curves obtained numerically are shown in
Figure 5.21, where / is equivalent to the element size (in x direction) in the
FEM analysis in this case. The convergence rate, R, that is computed via
linear regression is also given in Figure 5.21. From Figure 5.21, it is
observed that convergence rate of LRPIM is about 1.5. However, the
convergence is not a straight line.

It should be mentioned again that the shape parameters chosen in the
MQ-RBF will affect the convergence rate and the accuracy of the LRPIM.
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convergence rate computed by linear regression.
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5.5.2.2 Parameter effects on MLPG

1) Effects of the size of local quadrature domain
In this study, d,=L/20=24, d, =D/8=15, and a,=a,=q, are

used. Several quadrature domains with different «, are investigated, and the
errors in the energy norm in the solution of the cantilever beam problem have been
plotted in Figure 5.22. From this figure, it can be found that the accuracy for
solutions generally improves with the increase of the size of the quadrature
domain. When the quadrature domain is too small (¢,<1.0), the error of the
results will become unacceptably large. When the quadrature domain is large
enough (¢,>1.5), results obtained are very good. The reasons are similar to
the discussions in LRPIM. However, a too large local quadrature domain
(,23.0) does not necessarily lead to a significant improvement in the
accuracy. Hence, «,=1.5-2.5 is an economical choice in MLPG for a
reasonably accurate solution. In the following studies on MLPG, «,=1.5 is
used.

2) Effects of numerical integration

As discussed above in LRPIM, to obtain accurate numerical integrations,
the local quadrature domain is divided into 74 xng small sub-partitions, as
shown in Figure 5.8. In this case, n, =n, =n, is used, and there are 4x4
Gauss points in each partition. Results of errors in energy norms for different
ny are obtained and plotted in Figure 5.23. This figure shows that the
accuracy of solutions improves with the increase of n; due to the
improvement of the accuracy in the numerical integrations. However, the
increase of the number of sub-partitions and Gauss points will increase the
computational cost. In the following studies on MLPG, n,=2 is used.

3) Size of the influence domain

In the study of the effects of the influence domains, d, =L/20=2.4,
d,=D/8=15, and a;, =, =, are used. Errors in energy norm for
different ¢; are plotted in Figure 5.24. It can be found that the accuracy
changes with ¢; and the results for 2.0< ¢, <4.0 are very good.

It is found that a too small influence domain (¢; <2.0) leads to large

errors. The inaccuracy of a too small influence domain is caused by the fact
that there are not enough nodes to perform accurate approximation for the
field variables.

A too large influence domain (¢, >4.0) will considerably increase the

computational cost. Hence, a proper influence domain should be used in
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MLPG. Our studies have found that ¢,
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Figure 5.22. Influence of the sizes of local quadrature domain on the accuracy of the results
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Figure 5.24. Influence of the sizes of local influence domain on the accuracy of the
results obtained using the MLPG.

4) Convergence

The convergence of MLPG is studied numerically using regularly and
evenly distributed 18 (3x6), 28 (4x7), 55(5x11), 112(7x16), 189(9x21), and
403(13x31) field nodes. The convergence curve of MLPG results obtained
numerically is shown in Figure 5.25. The convergence rates, R, computed
via linear regression are also given in Figure 5.25. It is observed that the
convergence rate of MLPG is about 1.67. Note that only the linear basis is
used in the MLS approximation to obtain the MLPG results shown in Figure
5.25.

5.5.3 Comparison of convergence

For comparison between methods, an intensive numerical study has been
carried. The convergence curves of LRPIM, MLPG, RPIM, EFG and FEM
computed for the same cantilever beam under exactly the same conditions,
and are plotted together in Figure 5.26. The same results for RPIM, EFG and
FEM have already been presented in Sub-section 4.5.3. From Figure 5.26,
the following remarks can be made:

a) Both the convergence rates and the accuracies of LRPIM and MLPG
are much better than those of FEM using bi-linear elements.
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b) The convergence rate of MLPG is slightly better than that of LRPIM.
In addition, the convergence rate of MLPG is better than that of EFG
and their accuracies are very close.

¢) Both accuracy and convergence rate of LRPIM are slightly worse
than those of RPIM. In addition, although the convergence rate and
the accuracy of LRPIM are very good, the convergence process of the
LRPIM slows down at finer nodal distributions.

5.5.4 Comparison of efficiency

A successful numerical method should obtain high accuracy at a lower
computational cost. For a fair comparison, both the accuracy in results and
the cost to get the results are investigated. Regularly distributed 18, 55, 189
and 403 nodes are used to calculate the error against the computation time
curves for LRPIM, MLPG, RPIM, EFG and bi-linear FEM. These curves are

plotted in Figure 5.27 for easy comparison. In this efficiency study, o, =2.5
is used in LRPIM, RPIM, EFG, and MLPG.
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Figure 5.27. Comparison of the computational efficiencies of LRPIM, MLPG, RPIM,
EFG and bi-linear FEM in error e, of energy norm.

It can be found form Figure 5.27 that
1) The efficiencies of MFree methods are better than that of FEM.
2) The EFG method shows the best performance.
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3) LRPIM needs more computational time than MLPG. In other words,
the efficiency of MLPG is better than that of LRPIM. This is because
of their difference in the interpolations. RPIM shape functions need
more computation than the MLS shape functions.

4) The efficiencies of the MFree local Petrov-Galerkin weak-form
methods (LRPIM and MLPG) are lower than the corresponding
counter-part of the MFree global Galerkin weak-from methods
(RPIM and EFQ). It is because the system matrices in the LRPIM
and MLPG are asymmetric. There seems to be a trade off between
the efficiency and the use of background mesh.

Note that when the Lagrange multiplier method is used in EFG or MLPG,
their efficiency will drop, as discussed in Section 4.5 and shown in Figure
4.24.

5.6 REMARKS

MFree local weak-form methods, LRPIM and MLPG, are presented in
this chapter. The numerical implementations of both LRPIM and MLPG
discussed. A computer code is provided. The present code is examined
using numerical examples. LRPIM and MLPG are studied to reveal the
effects of different parameters, convergence, performances, etc. From these
studies in this chapter, we can make the following important remarks:

a) The compatibility of the trial (shape) functions in the whole domain
is not required in MFree local weak-form methods.

b) For local weak-forms, the global background cells are successfully
avoided. The integration in the MFree local weak-form methods is
performed in a local quadrature domain with simple shapes for
internal nodes.

¢) In LRPIM, the shape parameters of MQ-RBF are recommended with
the shape parameters fixed at g=1.03 and «=4.0.

d) When the local quadrature domains used in LRPIM and MLPG are
large enough (&,>1.5), results obtained are very good, and ¢,=2.0 is
recommended. In order to ensure accurate numerical integration, €2,
should be divided into some regular sub-partitions, and 2x2 is
recommended. In each sub-partition, sufficient Gauss quadrature points
should be used, and 16 (4x4) Gauss points are recommended.
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e) The accuracy of solutions change with the sizes of the influence
domains ¢; and the results obtained using 2.0<¢, <4.0 are very

good. We recommend ¢=2.5.

f) The convergence rates of both the LRPIM and MLPG are very good.
They are all about 1.5. The convergence rate and the efficiency of
MLPG are slightly better than these of LRPIM.

Note that these remarks are based on the simple cantilever beam problem,
whose solution is of simple polynomial forms.

The present MFree local Petrov-Galerkin weak-form methods (e.g.
LRPIM and MLPG) possess the following advantages over their counterpart
of the MFree global Galerkin weak-form methods (e.g. RPIM and EFG).

1) No global background integration cells is needed, which is one step
closer to truly meshfree.

2) The implementation procedure is node based. It is similar to the
methods based on strong-forms, yet possesses high accuracy as long
as the local quadrature domains are sufficiently large.

However, MFree local weak-form methods possess some disadvantages.

1) Some parameters need to be determined via numerical tests, as these
parameters usually do not have theoretical optimum values.

2) The system matrix is usually asymmetric, which affects the
efficiency of the method.

Much more research work is needed to improve MFree local weak-form
methods, especially in dealing with the integrations for nodes near and on
the boundaries, and the asymmetry of the discretized system equations.
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APPENDIX
Appendix 5.1. Major subroutines used in MFree Local.f90 and their functions
Subroutines Functions Location
Input Input data from the external Program 5.3
data file
Qdomain Set quadrature domain for a Program 5.4
field node
GaussCoefficient Obtain coefficients of Gauss Program 4.5
points
DomainGaussPoints Set Gauss points for a Program 5.5
quadrature domain
SupportDomain Determine the support domain  Program 4.7
for a quadrature point
RPIM ShapeFunc 2D Compute shape functions and ~ Program 3.1

(or MLS ShapeFunc 2D)

TestFunc

Integration BCQuQi
Integration BCQt
EssentialBC
SolverBand
GetDisplacement
GetNodeStress

Output
TotalGaussPoints

GetEnergyError
Getlnvasy

Dobmax

their derivatives of an
interpolation point
Compute the cubic spline
weight function

Compute boundary
integrations on I'y, and T';

Compute boundary integration
onTl,

Enforce essential boundary
conditions

Solve system equations

Obtain the actual
displacements using the RPIM
or the MLS shape functions

Retrieve the strain and stress
for field nodes

Output results

Set Gauss points for global
cells

Compute error in energy norm

Obtain the inversion of a
matrix

Compute multiplication of
two matrices

(Program 3.9)

Program 5.6
Program 5.7
Program 5.8
Program 5.9
Program 4.12
Program 5.10
Program 5.11

Program 5.12
Program 5.13

Program 5.14
Program 4.14

Program 5.15
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Appendix 5.2. The global variables used in MFree Global.f90

Variable Type Usage Function
numnode Integer Input Number of field nodes
x(nx, numnode) Long Input Coordinates x and y for all field
real nodes: x(1, i)=x; x(2, i)=y;
xc(nx, 4) Long Work Coordinates x and y for a
real array rectangular quadrature domain:
xe(Liy=xs xc(2,0)=y;
ngx,ngy Integer Input Number of sub-partitions for a
quadrature domain in x and y
directions
nquado Integer Input Number of Gauss points used in
one dimension in a partition.
npEBCnum, Integer Input Number of field nodes with
essential boundary conditions
npEBC(3,100), Integer Input Essential boundary condition.
pEBC(nx,100) long real
npNBCnum, Integer Input Number of field nodes with
natural boundary conditions
npNBC(3,100), Integer Input Natural boundary condition
pNBC(nx,100) long real
alfs Long Input Dimensionless sizes of support
real (influence) domains
Ds(nx, numnode) Long Work The size of the influence domain:
real array ds(1,i)=d,;, ds(2,1)=d;
ndex Integer Input Number of field nodes in the
local domain
Ph(10, ndex) Long Output Shape functions and their
real derivatives:
AKk(2*numnode, Long Work Global stiffness matrix
2*numnode) real array
Force(2*numnode)  Long Work Global force vector
real array
disp(2*numnode) Long Work Displacement vector:
real array disp(2¥i-1)=u;; disp(2*i-1)=v,
Stress(3, numnode)  Long Work The array to store the stress
real array components for all field nodes
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Appendix 5.3. Dummy arguments used in the subroutine Qdomain

Variable  Type Usage Function

rgx, rqy Long real Input Sizes of the quadrature domain

Xn,yn Long real Input Coordinates of the field node considered

xm(4) Longreal  Input Geometrical description of the global
boundary (designed for a rectangular
domain): xm(1)=xn;  Xm(2)=X s
xm(3):ymax; xm(4):ymin

xc(nx, 4) Long real Output Coordinates x and y for a rectangular

quadrature domain:
xe(Liy=x; xe(2,i)=y;

Appendix 5.4 Dummy arguments used in the subroutine DomainGaussPoints

Variable Type Usage Function

xc(nx, 4) Longreal Input  Coordinates x and y for a
rectangular quadrature domain:
xe(Liy=x; xe(2,0)=y;

Gauss(nx,nquado) Longreal Input  Coefficients of Gauss point

nquado Integer Input  Number of Gauss points used in 1D
in the domain considered. For a
rectangular partition, total Gauss
points is nquadoxnquado.

numgauss Integer Input  Total number of Gauss points for a
domain. It is nquado X nquado.

nxc Integer Input  nxc=4 for a rectangular quadrature
domain

gs(4, numgauss) Integer Output  Gauss points for a cell:

gs(1,i): x for Gauss point i;
gs(2,i): y for Gauss point i;
2s(3,i): Gauss weighting factor;
2s(4,i): Jacobian value for this cell
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Appendix 5.5. Dummy arguments used in the subroutine Integration BCQuQi

Variable Type Usage Function

nod Integer Input ID of the field node considered

numnode Integer Input Total number of field nodes

X(nx, numnode) Long real Input Coordinates x and y for all field
nodes. x(1,i)=x; x(2,i)=y;

xc(nx, 4) Longreal  Output Coordinates x and y for a
rectangular quadrature domain:
xc(Liy=x;; xc(2,0)=y;

nquado Integer Input Number of Gauss points used in
the domain considered.

xspace,yspace Longreal Input Sizes of the quadrature domain
(e.g.rgx, rqy)

xm(4) Long real Input Geometrical description of the
global boundary (designed for a
rectangular domain):
xm(l):xmin; xm(z):xmaxa
Xm(3)=Vmar;  XM(4)=Vin

Ds(nx, numnode) Longreal Input The size of the influence domain.
dS( 1 ’i):dsxia ds(zyi):dsyi

alfs Longreal Input Dimensionless coefficient for
support (influence) domain

mk Integer Input Maxium number of rows of Ak

Ak Longreal Input Global stiffness matrix

output

Appendix 5.6. Dummy arguments used in the subroutine Integration BCQt

Variable Type Usage Function

nod Integer Input ID of the field node considered

numnode Integer Input Total number of field nodes

x(nx, numnode) Long real Input Coordinates x and y

xc(nx, 4) Long real Output Coordinates x and y for a
rectangular quadrature domain

nquado Integer Input Number of Gauss points used in the
domain considered.

xspace,yspace  Long real Input Sizes of the quadrature domain (e.g.

rqx, rqy )
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xm(4) Long real
Xcent(2) Long real
f(2) Long real

Input
Input

output

Geometrical description of the
global boundary

x and y coordinates for the field

node considered

Nodal force vector

Appendix 5.7. Dummy arguments used in the subroutine EssentialBC

Variable Type Usage Function

numnode Integer Input Total number of field nodes

alfs Long real Input Dimensionless size for a
support (influence) domain

Ds(nx, numnode) Long real  Input The size of the influence
domain

npEBCnum Integer Input Number of field nodes with
essential boundary conditions

npEBC(3,100), Integer, Input Essential boundary condition

pEBC(nx,100) long real

mk Integer Input Maxium number of rows of Ak

AKQ2*numnode, Longreal Input and  Giobal stiffness matrix

2*numnode) output
Fk(2*numnode) Longreal Input and Global force vector

output

Appendix 5.8. Dummy arguments used in the subroutine GetNodeStress

Variable Type Usage Function
nx Integer Input nx=2 for 2-D problem
numnode Integer Input Total number of field nodes
X(nx, numnode) Longreal  Input Coordinates x and y for
all field nodes
alfs Longreal  Input Dimensionless size for the
support (influence) domain
Ds(nx, numnode) ~ Longreal Input The size of the influence
domain
U2(2, numnode) Longreal Input Displacement vector
Stress Long real  Output Stress matrix
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Appendix 5.9. The data file:Local Input55.dat used in MFree Local.f90. A total of
55 regular field nodes is used

*L,H,E,Vv,P,

48. 12. 3.e7 .3 1000.

*numnode

55

* Global BC: Xmin,Xmax,Ymax, Ymin
48. 6. -6.

Nodal spacing: Dcx,Dcy

.8 3.0

Local quadrature domain: Agx,Aqy
2.

Num. of sub-partitions: Nsx,Nsy
2

*Influence domain

3.

*Num. of Gauss Points

4

*RBF shape parameters: nRBF ALFc, dc and g

1 1.0 3.0 1.03

*Num. of Basis

N * N * D kO

3
*Field nodes: x[xi,yi]
1 0.0000 6.0000 29 24.0000 -3.0000
2 0.0000 3.0000 30 24.0000 -6.0000
3 0.0000 0.0000 31 28.8000 6.0000
4 0.0000 -3.0000 32 28.8000 3.0000
5 0.0000 -6.0000 33 28.8000 0.0000
6 4.8000 6.0000 34 28.8000 -3.0000
7 4.8000 3.0000 35 28.8000 -6.0000
8 4.8000 0.0000 36 33.6000 6.0000
9 4.8000 -3.0000 37 33.6000 3.0000
10 4.8000 -6.0000 38 33.6000 0.0000
11 9.6000 6.0000 39 33.6000 -3.0000
12 9.6000 3.0000 40 33.6000 -6.0000
13 9.6000 0.0000 41 38.4000 6.0000
14 9.6000 -3.0000 42 38.4000 3.0000
15 9.6000 -6.0000 43 38.4000 0.0000
16 14.4000 6.0000 44 38.4000 -3.0000
17 14.4000 3.0000 45 38.4000 -6.0000
18 14.4000 0.0000 46 43.2000 6.0000
19 14.4000 -3.0000 47 43.2000 3.0000
20 14.4000 -6.0000 48 43.2000 0.0000
21 19.2000 6.0000 49 43.2000 -3.0000
22 19.2000 3.0000 50 43.2000 -6.0000
23 19.2000 0.0000 51 48.0000 6.0000
24 19.2000 -3.0000 52 48.0000 3.0000
25 19.2000 -6.0000 53 48.0000 0.0000
26 24.0000 6.0000 54 48.0000 -3.0000
27 24.0000 3.0000 55 48.0000 -6.0000
28 24.0000 0.0000
*Num. of Essential BC: numFBC
5
*Node, iUx, iUy, Ux, Uy
1 1 1 0.000000000000E+00 -0.599999982119E-04
2 1 1 -0.718749978580E-05 -0.149999995530E-04
3 1 1 0.000000000000E+00 0.000000000000E+00
4 1 1 0.718749978580E-05 -0.149999995530E-04
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5 1 1 0.000000000000E+00 -0.599999982119E-04
*Num. of concentated loading: numEFBC
5
*Node, 1Tx, iTy, Tx, Ty
5111 0 0.0 521 1 O.
5311 0. 0.0 54 1 1 O.
5511 0. 0.0
* Num. of nodes and cells(for en. error)

0.0
0.0

55 40
*Nodes for cells: xc| ]
1 0.0000 6.0000 29 24.0000 -3.0000
2 0.0000 3.0000 30 24.0000 -6.0000
3 0.0000 0.0000 31 28.8000 6.0000
4 0.0000 -3.0000 32 28.8000 3.0000
5 0.0000 -6.0000 33 28.8000 0.0000
6 4.8000 6.0000 34 28.8000 -3.0000
7 4.8000 3.0000 35 28.8000 -6.0000
8 4.8000 0.0000 36 33.6000 6.0000
9 4.8000 -3.0000 37 33.6000 3.0000
10 4.8000 -6.0000 38 33.6000 0.0000
11 9.6000 6.0000 39 33.6000 -3.0000
12 9.6000 3.0000 40 33.6000 -6.0000
13 9.6000 0.0000 41 38.4000 6.0000
14 9.6000 -3.0000 42 38.4000 3.0000
15 9.6000 -6.0000 43 38.4000 0.0000
16 14.4000 6.0000 44 38.4000 -3.0000
17 14.4000 3.0000 45 38.4000 -6.0000
18 14.4000 0.0000 46 43.2000 6.0000
19 14.4000 -3.0000 47 43.2000 3.0000
20 14.4000 -6.0000 48 43.2000 0.0000
21 19.2000 6.0000 49 43.2000 -3.0000
22 19.2000 3.0000 50 43.2000 -6.0000
23 19.2000 0.0000 51 48.0000 6.0000
24 19.2000 -3.0000 52 48.0000 3.0000
25 19.2000 -6.0000 53 48.0000 0.0000
26 24.0000 6.0000 54 48.0000 -3.0000
27 24.0000 3.0000 55 48.0000 -6.0000
28 24.0000 0.0000
*No. of nodes in cells[1,2,3,4]
1 1 2 7 6 21 26 27 32 31
2 2 3 8 7 22 27 28 33 32
3 3 4 9 8 23 28 29 34 33
4 4 5 10 9 24 29 30 35 34
5 6 7 12 11 25 31 32 37 36
6 7 8 13 12 26 32 33 38 37
7 8 9 14 13 27 33 34 39 38
8 9 10 15 14 28 34 35 40 39
9 11 12 17 16 29 36 37 42 41
10 12 13 18 17 30 37 38 43 42
11 13 14 19 18 31 38 39 44 43
12 14 15 20 19 32 39 40 45 44
13 16 17 22 21 33 41 42 47 46
14 17 18 23 22 34 42 43 48 47
15 18 19 24 23 35 43 44 49 48
16 19 20 25 24 36 44 45 50 49
17 21 22 27 26 37 46 47 52 51
18 22 23 28 27 38 47 48 53 52
19 23 24 29 28 39 48 49 54 53
20 24 25 30 29 40 49 50 55 54

*END of data file
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Appendix 5.10. A output sample for displacements obtained using MQ LRPIM

No. of field nodes u %

1 0.56898E-13 -0.60000E-04
2 -0.71875E-05 -0.15000E-04
3 -0.19977E-13 0.11007E-13
4 0.71875E-05 -0.15000E-04
5 0.23840E-13 -0.60000E-04
6 0.31081E-03 -0.20687E-03
7 0.15043E-03 -0.16341E-03
8 -0.11083E-13 -0.15038E-03
9 -0.15043E-03 -0.16341E-03
10 -0.31081E-03 -0.20687E-03
31 0.13105E-02 -0.38899E-02

32 0.64903E-03 -0.38727E-02
33 0.29249E-14 -0.38668E-02
34 -0.64903E-03 -0.38727E-02
35 -0.13105E-02 -0.38899E-02
36 0.14157E-02 -0.50129E-02
37 0.70169E-03 -0.50000E-02
38 0.27869E-14 -0.49955E-02
39 -0.70169E-03 -0.50000E-02
40 -0.14157E-02 -0.50129E-02
41 0.14905E-02 -0.62077E-02
42 0.73916E-03 -0.61990E-02
43 0.28311E-14 -0.61960E-02
44 -0.73916E-03 -0.61990E-02
45 -0.14905E-02 -0.62077E-02
46 0.15364E-02 -0.74499E-02
47 0.76229E-03 -0.74455E-02
48 0.28175E-14 -0.74440E-02
49 -0.76229E-03 -0.74455E-02
50 -0.15364E-02 -0.74499E-02
51 0.15513E-02 -0.87164E-02
52 0.76992E-03 -0.87171E-02
53 0.28155E-14 -0.87169E-02
54 -0.76992E-03 -0.87171E-02
55 -0.15513E-02 -0.87164E-02

*The parameters used are
a,=1.0, ¢=1.03 and d; =3.0 for MQ RBF;

d.. =48, d., =3.0, and o, =3.0 for the local influence domains;

a,=2.0 xn, =2%x2
q and ¢ for local quadrature domains;.

The linear polynomial terms are added in MQ RPIM;

The cubic spline function is used as the test function for the local

Petrov_galerkin weak form.
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Appendix 5.11. A output sample for stress obtained using MQ LRPIM
No. of field O o'yy Txy
nodes
21 0.10836E+04 -0.52377E+02 -0.69790E+02
22 0.54814E+03 0.10130E+02 -0.95905E+02
23 0.63871E-08 0.79569E-08 -0.14641E+03
24 -0.54814E+03 -0.10130E+02 -0.95905E+02
25 -0.10836E+04 0.52377E+02 -0.69790E+02
26 0.89328E+03 -0.48896E+02 -0.68019E+02
27 0.45566E+03 0.24844E+01 -0.90400E+02
28 -0.34138E-08 -0.16003E-08 -0.13671E+03
29 -0.45566E+03 -0.24844E+01 -0.90400E+02
30 -0.89328E+03 0.48896E+02 -0.68019E+02
31 0.71423E+03 -0.36210E+02 -0.66052E+02
32 0.36336E+03 0.50542E+01 -0.89572E+02
33 0.16079E-08 0.45941E-09 -0.13599E+03
34 -0.36336E+03 -0.50542E+01 -0.89572E+02
35 -0.71423E+03 0.36210E+02 -0.66052E+02
36 0.53176E+03 -0.28593E+02 -0.65551E+02
37 0.27039E+03 0.25663E+01 -0.87817E+02
38 -0.54533E-09 0.11596E-10 -0.13328E+03
39 -0.27039E+03 -0.25663E+01 -0.87817E+02
40 -0.53176E+03 0.28593E+02 -0.65551E+02
41 0.35854E+03 -0.17493E+02 -0.64554E+02
42 0.18269E+03 0.15669E+01 -0.86972E+02
43 0.17923E-09 -0.52410E-10 -0.13191E+03
44 -0.18269E+03 -0.15669E+01 -0.86972E+02
45 -0.35854E+03 0.17493E+02 -0.64554E+02
46 0.15814E+03 -0.17753E+02 -0.66139E+02
47 0.75874E+02 -0.36322E+01 -0.88991E+02
48 -0.68326E-10 0.85947E-10 -0.13401E+03
49 -0.75874E+02 0.36322E+01 -0.88991E+02
50 -0.15814E+03 0.17753E+02 -0.66139E+02

Energy error:= 0.2419E+00

*The parameters used are

a, =10, ¢=1.03 and d, =3.0 for MQ RBF;

d.. =438, d, =3.0, and , =3.0 for the local influence domains;

a, =2.0 and ng xn,

The linear polynomial terms are added in MQ RPIM;

=2x2 for local quadrature domains;.

The cubic spline function is used as the test function for the local

Petrov_galerkin weak form.
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Appendix 5.12. A output sample for displacements obtained using MLPG

No. of field nodes u v
1 0.34272E-15 -0.60000E-04
2 -0.71875E-05 -0.15000E-04
3 -0.39980E-16 0.68236E-15
4 0.71875E-05 -0.15000E-04
5 -0.46273E-15 -0.60000E-04
6 0.29397E-03 -0.20657E-03
7 0.14080E-03 -0.16710E-03
8 0.22333E-16 -0.15389E-03
9 -0.14080E-03 -0.16710E-03
10 -0.29397E-03 -0.20657E-03
31 0.13229E-02 -0.38436E-02
32 0.65460E-03 -0.38257E-02
33 -0.90234E-17 -0.38197E-02
34 -0.65460E-03 -0.38257E-02
35 -0.13229E-02 -0.38436E-02
36 0.14346E-02 -0.49791E-02
37 0.71048E-03 -0.49657E-02
38 -0.10666E-16 -0.49612E-02
39 -0.71048E-03 -0.49657E-02
40 -0.14346E-02 -0.49791E-02
41 0.15146E-02 -0.61915E-02
42 0.75033E-03 -0.61826E-02
43 -0.12135E-16 -0.61796E-02
44 -0.75033E-03 -0.61826E-02
45 -0.15146E-02 -0.61915E-02
46 0.15619E-02 -0.74550E-02
47 0.77406E-03 -0.74506E-02
48 -0.12619E-16 -0.74491E-02
49 -0.77406E-03 -0.74506E-02
50 -0.15619E-02 -0.74550E-02
51 0.15784E-02 -0.87437E-02
52 0.78212E-03 -0.87439E-02
53 -0.18770E-16 -0.87438E-02
54 -0.78212E-03 -0.87439E-02
55 -0.15784E-02 -0.87437E-02

*The parameters used are
d.. =48, d, =3.0, and a, =3.0 for the local influence domains;

a, =15 and n, xn, =2x2 for local quadrature domains;.

The linear polynomial basis and the cubic spline weight function are used in
the MLS approximation;
The cubic spline function is as the test function for the local weak form.
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Appendix 5.13. A output sample for stress obtained using MLPG

No. of field Oy O, Ty
nodes
21 0.11874E+04 0.68411E+01 -0.18401E+02
22 0.59427E+03 -0.78572E+00 -0.88914E+02
23 -0.25722E-10 -0.10118E-10 -0.12424E+03
24 -0.59427E+03 0.78572E+00 -0.88914E+02
25 -0.11874E+04 -0.68411E+01 -0.18401E+02
26 0.99634E+03 0.62591E+01 -0.16038E+02
27 0.49745E+03 -0.23578E+00 -0.86858E+02
28 0.31903E-11 -0.27569E-11 -0.12228E+03
29 -0.49745E+03 0.23578E+00 -0.86858E+02
30 -0.99634E+03 -0.62591E+01 -0.16038E+02
31 0.79699E+03 0.48532E+01 -0.18323E+02
32 0.39835E+03 -0.34690E+00 -0.90428E+02
33 -0.20520E-10 0.63380E-11 -0.12649E+03
34 -0.39835E+03 0.34690E+00 -0.90428E+02
35 -0.79699E+03 -0.48532E+01 -0.18323E+02
36 0.59791E+03 0.35348E+01 -0.16586E+02
37 0.29898E+03 -0.27567E+00 -0.88766E+02
38 -0.56843E-11 -0.97771E-11 -0.12486E+03
39 -0.29898E+03 0.27567E+00 -0.88766E+02
40 -0.59791E+03 -0.35348E+01 -0.16586E+02
41 0.39737E+03 0.24781E+01 -0.19015E+02
42 0.19772E+03 -0.17138E+00 -0.92160E+02
43 -0.10289E-10 0.14779E-11 -0.12879E+03
44 -0.19772E+03 0.17138E+00 -0.92160E+02
45 -0.39737E+03 -0.24781E+01 -0.19015E+02
46 0.19294E+03 -0.39955E-01 -0.16144E+02
47 0.97666E+02 -0.45676E+00 -0.88943E+02
48 0.79581E-12 0.86402E-11 -0.12531E+03
49 -0.97666E+02 0.45676E+00 -0.88943E+02
50 -0.19294E+03 0.39955E-01 -0.16144E+02

Energy error:=0.5573E-01

*The parameters are
d.. =48, d, =3.0, and o, =3.0 for the local influence domains;

a, =1.5 and n, xn, =2x2 forlocal quadrature domains;.

The linear polynomial basis and the cubic spline weight function are used in
the MLS approximation;
The cubic spline function is as the test function for the local weak form.
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COMPUTER PROGRAMS

Program 5.1. The include file VariablesLocal.h

parameter (nx=2,ng=4,ndim=600)
common/para/xlength, ylength, p, young, anu, aimo
common/rpim/ALFC, DC, Q, nRBF

common/basis/mbasis
common/localdomains/dcx,dcy, dex,dey, ngx, ngy

dimension Dmat (3,3),x(nx,ndim),conn (ng,ndim) , xBK (nx, ndim)
dimension npEBC(3,100),pEBC(2,100)

dimension nbc(100),1ibcn(2,100),bcn(2,100),xnbcl (2,100)
dimension nv(ndim),gpos (nx),gauss (nx,20),xm(4)

dimension phi (10,ndim),ds (2, ndim)

dimension gss(4,ndim), gst(4,10*ndim)

dimension ak(2*ndim,2*ndim), £k (2*ndim)

dimension xc(2,4),xcc(2,4),dsi(2),xcent(2),£f2(2)
dimension fbcl(2,4)

dimension u2(2,ndim),u22(2,ndim),displ (2*ndim),stress (3,ndim)
dimension bb(3,2),bbt(2,3),ww(3,2),ek(2,2),bd(2,3)

Program 5.2. The main program of MFree local.f90

main program--2D FORTRAN 90 CODE-MFree local weak-form methods
Using rectangular support domain and rectangular background cells

input file -- input.dat
output file -- result.dat
include file -- variablelocal.h

implicit real*8 (a-h,o-z)

include 'variableslocal.h'

ir=4

open(ir,file="' Local_Input55.dat ', status='old')
open (2, file="result.dat', status="'unknown')
maxmatrix=2*ndim

| *xkkkkkkkxkkx* Tnput boundaries / parameters
call Input(ir,x,ndim,nx,numnode,xm, &
nquado, Dmat,ALFs, numcell, numg, xBK, conn, &
npEBCnum, npEBC, pEBC, npNBCnum, nbc, ibcn, becn)

I Akkxkakkkkkkxk Determine domains of influence--uniform nodal spacing
xspace=dcx*dex
yspace=dcy*dey
xstep=xspace/dex
ystep=yspace/dey
do j=1,numnode
ds(l,j)=alfs*xstep
ds(2,j)=alfs*ystep
enddo
I Axkxkxkkxkxkx Coefficients of Gauss points,Weights and Jacobian for each cell
call GaussCoefficient (nquado, gauss)
eps=1l.e-16
b=-100*eps
do iak=1,2*numnode
fk(iak)=0.0
do jak=1,2*numnode
ak (iak,jak)=0.
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enddo
enddo

| FEkxxkAkxxkAkxkxk Toop for field nodes
do 100 nod=1, numnode
write(*,*) 'Field Node=', nod
xn=x (1, nod)
yn=x (2, nod)
xss=xspace
yss=yspace
numgauss=nquado*nquado
call QDomain (xss,yss,xn,yn,xm,xc) ! Local quadrature domain
nxc=ng ! for the rectangular domain
| xokkokkkdoxkxdkkx Tocal quadrature domain is divided to sub-paritions
xgs=(xc(1l,4)-xc(1,1))/ngx
ygs=(xc(2,1)-xc(2,2))/ngy
x0=xc (1,1)
do 60 iix=1,ngx
xx=x0+(1iix-1) *xgs
y0=xc(2,1)
do 60 jjy=1,ngy
yy=y0-(jjy-1) *ygs
xcc (1l,1)=xx
xcc(2,1)=yy
xcc (1, 2)=xx
xcc(2,2)=yy-vygs
xcc (1, 3)=xx+xgs
xcc (2, 3)=yy-ygs
xcc (1,4)=xx+xgs
xcc(2,4)=yy
call DomainGaussPoints (xcc,gauss,gss,nx,ng,nxc,nquado, numgauss)

I xokkokkkkoxkxkk ok  Toop quadrature points
numgauss=nquado*nquado
do 30 ie=1,numgauss

gpos (1) =gss (1, ie)
gpos (2) =gss (2, ie)
weight=gss (3, 1ie)
ajac=gss (4, 1ie)
ndex=0
call SupportDomain (numnode,nx, gpos, x,ds,ndex,nv)
do kph=1,ndex
do ii=1,10
phi (ii, kph)=0.
enddo
enddo
dsi(1)=xspace
dsi(2)= yspace
xcent (1) =
xcent (2)=yn
call TestFunc (dsi, xcent,gpos,w,wx,wy)
Call RPIM ShapeFunc_2D(gpos, x,nv,phi, nx,numnode, ndex, alfc,dc, &
g, nRBF, mbasis)
ikl=nod*2-1
ik2=nod*2
| Fxkkxkkxdkxxkx Get Stiffness Matrix
do ine=1,ndex
nl=2*nv (ine) -1
n2=2*nv (ine)
do 1i=1,3
do jj=1,2
bbt (jj,11)
bb(ii,jj)=
w(ii,jj)=

=0.
0.
=0.

phi (2, ine
phi (3, 1ine
(
(

phi (3, ine

)
)
)
phi (2, ine)
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!

|

!

!

!

1

do jj=1,2
bbt (jj,1i)=ww(ii, J)
enddo
enddo
call DOBMAX (bbt,2,3,2,dmat, 3, 3,bd, 2)
call dobmax(bd,2,3,2,bb,2,3,ek,2)

ak (ikl,nl)=ak(ikl,nl)+weight*ajac*ek(1,1)
ak (ikl,n2)=ak (ikl,n2)+weight*ajac*ek(1,2)
ak (ik2,nl)=ak (ik2,nl) +weight*ajac*ek(2,1)
ak (1k2,n2)=ak (1k2,n2) +weight*ajac*ek(2,2)
enddo
30 continue !End of integration for local quadrature domain

*kkxKkkxkkxk%xx B.C. Integrations
NNQ=nquado

call Integration BCQt (nx,ng, xcc, £2, x, numnode, NNQ, &

Xm, Xxss, yss, xcent)
fk(2*nod-1)=fk (2*nod-1)+£2 (1)
fk (2*nod)=fk (2*nod) +£2 (2)

call Integration_ BCQuQi (nx,ng,nod, xcc, x, numnode, nNQ, dmat, xm, xss&

,YSS,ak, maxmatrix,alfs,ds)

60 continue
100 continue ! End of loop for field nodes

FxAkxkkkAkxkxkx Boundary conditions: essential

call EssentialBC (x,numnode, ak, fk,maxmatrix,ds,alfs, npEBCnum, npEBC, pEBC)

FrAxKAFAXAXAX Solve equation to get the solutions
ep=1.0e-20
neg=2*numnode
write (*,*) 'Solve equation...'
call SolverBand (ak, fk,neqg,maxmatrix)
do kk=1,numnode
u2(1,kk)=fk(2*kk-1)
u2(2,kk)=£fk (2*kk)
enddo
FrAxFAAxxHFAx** get the final displacement
call GetDisplacement (x,ds,u2,displ,alfs,nx,numnode)
do kk=1,numnode
u22(1l,kk)=displ (2*kk-1)
u22(2,kk)=displ (2*kk)
enddo

* ok ok ok ok ok ok ok ok ok ok ok ok Get StreSS
call GetNodeStress(x,ds,Dmat,u2,Stress,alfs,nx,numnode)
call Output (x,numnode,u2,u22,Stress) ! ouput results

FRAXKAFAXAXKX Get energy error using global BK cells
write (*,*) 'Computing global energy error...'
ngst=numcell*nquado**2
call TotalGaussPoints (xBK,conn,gauss,gst,nx,ng, &

numg, numcell, nquado, ngst)
call GetEnergyError (nx,ng,xBK, numg,u2,dmat,ds, &
ngst,gst,alfs)

write(*,*)'THE END'

STOP
END

Program 5.3. Source code of Subroutine Input

SUBROUTINE Input (ir, x,numd, nx,numnode, xm, nquado, Dmat,ALFs,numcell, numqg, &
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xc, conn, npEBCnum, npEBC, pEBC, npNBCnum, nNBC, npNBC, pNBC)

! This subroutine is to input data from data file
! input—ir
! output—all other variables

implicit real*8 (a-h,o-z)
common/para/xlength, ylength, p, young, anu, aimo
COMMON/ rpim/ALFC, DC, Q, nRBF
common/basis/mbasis
common/localdomains/dcx, dcy, dex, dey, ngx, ngy
CHARACTER*50 NAM
dimension npEBC (3,100),pEBC(2,100)
dimension nNBC (100),npNBC(2,100),pNBC(2,100)
dimension x (nx,numd),Dmat (3,3),xm(4)
dimension conn (4, numd), xc (nx, numd)
read(4,10)nam
read(ir, *) xlength, ylength, young,anu,p
read (ir, 10) nam
read (ir, *) numnode

read(ir, 10)nam
read (ir, *)xm(1l) ,xm(2),xm(3),xm(4)
read(ir, 10)nam

read (ir, *)dcx,dcy

read(ir,10)nam
read (ir, *)dex,dey

read(ir,10)nam
read (ir, *)ngx, ngy
read(ir,10)nam

read (ir, *)ALFs
read(ir,10)nam
read (ir, *)nquado

READ (ir, *)nRBF, alfc,dc,q
read(ir,10)nam
READ (ir, *)mbasis

(
(1
(1
(1
read(ir,10)nam
(1
(1
(1
(

read(ir,10)nam
do i=1,numnode
read(ir,*)3j,x(1,1),x(2,1)
enddo
read(ir,10)nam
read (ir, *) npEBCnum
read (ir, 10) nam
do i=1, npEBCnum
read (ir, *)npEBC(1,1),npEBC(2,1i),npEBC(3,1),pEBC(1l,1),pEBC(2,1)
enddo
read (ir, 10) nam
read (ir, *) npNBCnum
read(ir, 10)nam
do i=1, npNBCnum
read(ir, *)nNBC (i) ,npNBC(1,1i),npNBC(2,1),pNBC(1l,1i),pNBC(2,1)
enddo
read(ir, 10) nam
read (ir, *)numg, numcell
read(ir, 10) nam
do i=1,numg
read(ir,*)j,xc(1l,1i),xc(2,1)
enddo
read(ir, 10) nam
do j=1,numcell
read(ir,*)i,conn(1l,3j),conn(2,j),conn(3,73),conn(4,7j)
enddo

I Axdkxkkkkoxdoxkx Compute material matrix D[] for the plane stress
you=young/ (1.-anu*anu)
aimo=(1./12.)*ylength**3
Dmat (1, 1)—you
Dmat (1 =anu*you
Dmat (1
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10 format (a
RETURN
END

Program 5.4. Source code of Subroutine Qdomain

SUBROUTINE QDomain (xs,ys,X,y,Xm, XC)

This subroutine is to construct local quadrature domain for a field node
input—xs, ys: sizes of quadrature domain;

x,y: coordinates of the field node;

xm(4): (xmin, xmax,ymax,ymin) for the global boundary;
output-- xc(2,4): coordinates of points for the quadrature domain;!

implicit real*8 (a-h,o0-2z)
common/para/xlength, ylength, p, young, anu, aimo
common/node/numnode, numcell, dex, dey, nquado
dimension xm(4),xc(2,4)

x1l=x-xs
Xr=xX+Xs
yu=y+ys
yd=y-ys
if(x1l.le.xm
if (xr.ge.xm
if (yu.ge.xm
if (yd.le.xm
xc(1l,1)=x1

Program 5.5. Source code of Subroutine DomainGaussPoints

SUBROUTINE DomainGaussPoints (xc,gauss,gs,nx,ng,nxc, k, numgauss)

This subroutine is to set up Gauss points,Jacobian and weights
for a the local quadrature domaincell
input--nxc: number of vertexes of the local quadrature domain, nxc=4;
numgauss: number of Gauss points in the domain;
k: number of Gauss points used, numgauss=k*k for 2-D domain;
xc (nx,nxc): coordinates of points for background cells;
gauss (2, k) : coefficients of Gauss points;
nx,ng: parameters are defined in file parameter.h.
output--gs (ng, numgauss) : coordinate of the Gauss points, weight and Jacobian

implicit real*8 (a-h,o0-z)

dimension xc (nx,nxc),gauss (nx, k)

dimension gs (ng,numgauss),psid(ng),etad(ng), xe(ng),ye (ng),aN(ng)
dimension aNJpsi (ng),aNJeta (ng)

index=0

psid(l)=-1.
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psid(2)=1
psiJ(B):l
psid(4)=-
etaJ(l):—l
etad (2)=-1
etad (3)=1
etad (4)=1
1=k
do j=1,ng
xe (3)=xc(1,3)
ve (J)=xc(2,7)
enddo
do 80 i=1,1
do 80 j=1,1

index=index+1
eta=gauss(1l,1)
psi=gauss(1,7)
do ik=1l,ng

N(ik)=.25*(1l.+psi*psid(ik))* (1.+eta*etad (ik)
aNJp31( ik)=.25*psiJd (ik) * (1.+eta*etad (ik)
aNJeta (ik)=.25%etad (ik) * (1.+psi*psiJ (ik)

enddo
xpsi=0.
ypsi=0.
xeta=0.
yeta=0.
do jk=1,ng
xpsi=xpsi+aNJdpsi (jk) *xe (jk)
ypsi=ypsi+aNJpsi (jk) *ye (jk)
xeta=xeta+taNJeta (jk) *xe (jk)
yeta=yeta+aNJeta (jk) *ye (jk)
enddo
ajcob=xpsi*yeta-xeta*ypsi
xq=0.
vyg=0.
do kk=1,ng
xg=xqg+aN (kk) *xe (kk)
yg=ya+aN (kk) *ye (kk)
enddo
gs (1, index)=xq
gs (2, index) =yq
gs (3, index)=gauss (2,1) *gauss (2, 3)
gs (4, index)=ajcob
80 continue
RETURN
END

Program 5.6. Source code of Subroutine TestFunc
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SUBROUTINE TestFunc (dsi,xcent,xg,w,wxx,wyy)

Cubic spline test (weight) function
input—dsi: size of weight domain;

xcent: center of the weight domain;
xg: coordinate of point considered;

output—w, wxx,wyy

IMPLICIT REAL*8 (A-H,0-Z)

dimension dsi(2),xcent (2)

dimension xg(2)

ep=1l.e-15

difx=xg(1l)-xcent (1)

dify=xg(2)-xcent (2)

if (dabs(difx) .le.ep) then
drdx=0.

else
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drdx=(difx/dabs (difx)) /dsi (1)

end if

if (dabs(dify).le.ep) then
drdy=0.

else
drdy=(dify/dabs (dify)) /dsi (2)

end if

rx=abs (xg (1) -xcent (1))

ry=abs (xg (2) -xcent (2))

rx=rx/dsi (1)

ry=ry/dsi(2)

if (rx.gt.0.5) then
wx=(4./3.)-4.*rx+4*rx*rx-(4./3.) *rx**3
dwx=(-4.+8.*rx-4.*rx*rx) *drdx

else
wx=(2./3.)-4.*rx*rx+4 . *rx**3
dwx=(-8.*rx+12.*rx*rx) *drdx

endif

if (ry.gt.0.5) then
wy=(4./3.)-4.*ry+4*ry*ry- (4
dwy=(-4.+8.*ry-4.*ry*ry) *dr

else
wy=(2./3.)-4.*ry*ry+d. *ry**
dwy=(-8.*ry+12.*ry*ry) *drdy

endif

if(rx.gt.1l.) wx=0.

if(ry.gt.1.) wy=0.

W=WX* WYy

WXX=wy*dwx

wyy=wx*dwy

RETURN

END

Program 5.7. Source code of Subroutine Integration BCQuQi

L/3.)*ry**3
dy

3
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SUBROUTINE Integration BCQuQi (nx,ng,nod, xc, X, numnode, nquado,dmat, &

The subroutine is to compute the integrations on the internal

input—nx, ng, nod, xc, x, numnode, nquado, dmat, xm, xspace,mk,alfs,ds

Xm, Xspace, yspace,

and the essential sub-bounda

Input & output—ak

implicit real*8 (a-h,o-z)
common/para/xlength, ylength,p,
common/rpim/ALFC,DC, Q, nRBF
common/basis/mbasis
dimension x(2,numnode),nv (50)
dimension xcent (2),dsi(2),ak(m
dimension gs(4,100),gpos (2),xm
dimension phi (10, numnode),ds (
dimension bb(3,2),bn(2,3),bnd(

call GaussCoefficient (nquado,
ikl=2*nod-1

ik2=2*nod
xcent (1)=x(1,nod)
xcent (2)=x(2,nod)
do i=1,2

do j=1,2
eK(i,3)=0.
enddo

enddo
dsi (1)=xspace
dsi (2)=yspace

ak,mk,alfs,ds)

ries;

young, anu, aimo

,xc(2,4),gauss (2,20)

k,mk) ,ek(2,2)

(4) ,dmat (3, 3)
2,numnode)
2,3),ebb(2,2),ss(2,2)
gauss)
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KRXKF XK F XA X XA XXX INTEGRATION FOR LEFT B.C. Qu

do i=1,2
do j*l 3
n(i,j)=0.
b (3,1)=0.
bnd( ,3)=0
enddo
enddo
ax=0.5* (xc(1,4)-xc(1,1))
ay=0.5*(xc(2,4)-xc(2,1))
bx=0.5% (xc(1,4)+xc(1,1))
by=0.5* (xc(2,4)+xc(2,1))

do il=1,nquado
gpos (1) =ax*gauss (1,1l) +bx
gpos (2)=ay*gauss (1,11) +by
weight=gauss(2,11l)

ajac=0.5*sqgrt ((xc

ndex=0

(1,4)-xc(1,1))**2+ (xc
call TestFunc(dsi,

xcent, gpos, w, wx, wy)

(2,4)-

c(2,1))**2)

call SupportDomain (numnode,nx, gpos, x,ds,ndex,nv)

call RPIM ShapeFunc_2D(gpos, x,nv,phi, nx, numnode, ndex,alfc,dc, &

do ine=1,ndex
nl=2*nv(ine) -1
n2=2*nv (ine)
do i=1,2
do j*l 3
n(i,j)=
b (3,1)
bnd( ']
enddo
enddo
do i=1,2
do j=1,2
K(i,q)=
s(i,j)=
enddo
enddo
bb(l 1)=phi
b (2,2)=phi
b (3,1)=phi
b (3, 2)—ph1
n (1
n (2

)

2,

3
2,

3)=
2)=

IF(XC(2,1).1
ss(1l,1)=1.
ss(2,2)=1

endif

q,nRBF, mbasis)

0.
0.
=0.
0.
0.
ine

)
)
ine)
ine)

call DOBMAX (bn,2,3,2,dmat, 3,3,bnd, 2)

(
call dobmax (bn
call dobmax (eb.
ak (ikl,nl)=ak(

d,2,3,2,bb,2,3,ebb, 2)
b,2,2,2,8s8,2,2,¢ek,2)

ikl,nl)-w*weight*ajac*ek(1,1)

bx=0.5*% (xc (1,2)+xc(1,3))

(
ak(ikl,n2)=ak(ikl,n2)-W*weight*ajac*ek(1,2)
ak(ik2,nl)=ak(ik2,nl)-W*weight*ajac*ek (2,1
ak (ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek (2, 2)

enddo
enddo
FAKK A A XK KA XXX KA *TNTEGRATION FOR DOWN B.C. Qu
do i=1,2
do j=1,3
bn(i,j)=0.
bb(j,1)=0.
bnd( ,3)=0.
enddo
enddo
ax=0.5* (xc(1,2)-xc(1,3))
ay=0.5*(xc(2,2)-xc(2,3))

299
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by=0.5* (xc (2,2) +xc (2, 3)
do il=1,nquado
gpos (1)=ax*gauss (1,1il) +bx
gpos (2)=ay*gauss (1,1il) +by
weight=gauss(2,1il)
ajac=0.5*sqgrt ((xc(1l,2)-xc(1l,3))**2+(xc(2,2)-xc(2,3))**2)
call TestFunc (dsi, xcent,gpos,w,wx, wy)
ndex=0
call SupportDomain (numnode, nx,gpos, x,ds,ndex,nv)
call RPIM ShapeFunc 2D (gpos, x,nv,phi,nx, numnode, ndex,alfc,dc, &
d,nRBF, mbasis)
do ine=1,ndex
nl=2*nv (ine)-1
n2=2*nv (ine)
do i=1,2
do j=1,3
bn(i,3)
bb(j,1)
bnd(i,J
enddo
enddo
do i=1,2
do j=1,2
eK(i,j)=0.
ss(i,3)=0.
enddo
enddo

=0.
=0.
)=0.

2,1ine)

phi

Il

kel

=g

o

3000

b

=3

[

) .gt.xm(4)) then

endif

call DOBMAX (bn,2,3,2,dmat,3,3,bnd, 2)
call dobmax (bnd,2,3,2,bb,2,3,ebb,2)
call dobmax (ebb,2,2,2,ss,2,2,¢ek,2)

ak(ikl,nl)=ak (ikl,nl)-w*weight*ajac*ek(1,1)
ak(ikl,n2)=ak (ikl,n2)-W*weight*ajac*ek (1,2)
ak(ik2,nl)=ak (ik2,nl)-W*weight*ajac*ek (2,1)
ak (ik2,n2)=ak (1k2,n2)-W*weight*ajac*ek (2,2)
enddo
enddo

| ARk Rk kxR kA x A x X INTEGRATION FOR RIGHT B.C. Qu
do i=1,2
do j=1,3
bn(i,j)=0.
bb(j,1)=0.
bnd (i, 3)=0.
enddo

by=0.5*(xc (2,4
do il=1,nquado

gpos (1) =ax*gauss (1,1l) +bx

gpos (2) =ay*gauss (1,11l) +by

weight=gauss (2,11l)

ajac=0.5*sqgrt ((xc(1l,4)-xc(1,3))**2+(xc(2,4)-xc(2,3))**2)

call TestFunc (dsi, xcent,gpos,w,wx,wy)

ndex=0

call SupportDomain (numnode, nx,gpos, x,ds,ndex,nv)

call RPIM ShapeFunc_2D(gpos, X,nv,phi, nx, numnode, ndex, alfc,dc, &

d,nRBF, mbasis)
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do ine=1,ndex
nl=2*nv (ine) -
n2=2*nv (ine)
do i=1,2
do j*l 3
bn(i,j)=
bb(3,1)=
bnd (i, 7)
enddo
enddo

0.
O

call DOBMAX (bn,2,3,2,dmat,3,3,bnd, 2)
call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
call dobmax (ebb,2,2,2,ss,2,2,¢ek,2)

ak(ikl,nl)=ak(ikl,nl)-w*weight*ajac*ek(1l,1)

k(ikl,n2)=ak (ikl,n2)-Wr*weight*ajac*ek(1l,2)

k(ik2,nl)=ak (ik2,nl)-W*weight*ajac*ek(2,1)

k(ik2,n2)=ak (ik2,n2)-W*weight*ajac*ek(2,2)
enddo

enddo

| RxAR R AKX XA X XA X INTEGRATION FOR LEFT B.C. Qu

do i=1,2
do j=1,3
bn (i, 3)=0.
bb(j,1)=0.
bnd (i, j)=0.
enddo
enddo
ax=0.5* (xc(1,2)-xc(1,1)
ay=0.5*% (xc(2,2)-xc(2,1)
bx=0.5* (xc (1,2)+xc(1,1)
by=0.5*% (xc (2,2)+xc(2,1)

do il=1,nquado
gpos (1) =ax*gauss (1,11) +bx
gpos (2)=ay*gauss (1,11l) +by
weight=gauss(2,1il)
ajac=0.5*sqgrt ((xc(1,2)-xc(l,1))**2+(xc(2,2)-xc(2,1))**2)
call TestFunc (dsi,xcent,gpos,w,wx,wy)
ndex=0
call SupportDomain (numnode,nx, gpos, x,ds,ndex,nv)
call RPIM ShapeFunc 2D(gpos, x,nv,phi,nx,numnode, ndex,alfc,dc, &

d,nRBF, mbasis)

do ine=1,ndex
nl=2*nv(ine) -1
n2=2*nv (ine)
do i=1,2
do j—l 3
bn (i, J)
bb (3 ):
bnd( 3)
enddo
enddo
do i=1,2
do j=1,2

=0.
0
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eK(i,j)=0.
ss(i,3)=0.

enddo

enddo
bb(1,1)=phi(2,1ine)
bb(2,2)=phi (3, ine)
bb (3,1)=phi(3,1ine)
bb (3,2)=phi (2, ine)
bn(l,1)=-1.
bn(2,3)=-1.
ss(1l,1)=1.
ss(2,2)=1

call DOBMAX (bn,2,3,2,dmat, 3,3,bnd, 2)
call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
call dobmax (ebb,2,2,2,ss,2,2,¢ek,2)

ak(ikl,nl)=ak(ikl,nl)-w*weight*ajac*ek(1l,1)
ak(ikl,n2)=ak(ikl,n2)-W*weight*ajac*ek(1l,2)
ak(ik2,nl)=ak(ik2,nl)-W*weight*ajac*ek(2,1)
ak(ik2,n2)=ak (ik2,n2)-W*weight*ajac*ek (2,2)
enddo
enddo
RETURN

END

Program 5.8. Source code of Subroutine Integration BCQt

SUBROUTINE Integration BCQt (nx,ng, xc, f, x,numnode, nquado, &
xXm, Xxspace, yspace, xcent)

! The subroutine is to compute the integrations on the natural sub-boundary;
! input— nx,ng,xc, x,numnode,nquado,xm,xspace,yspace,xcent
! Input & output— £f;

implicit real*8 (a-h,o0-2z)
common/para/xlength, ylength, p, young, anu, aimo
common/rpim/ALFC, DC, Q, nRBF
common/basis/mbasis
dimension x(2,numnode),nv(50),f(2),xc(2,4),gauss (2,20)
dimension xcent (2),dsi(2),fbcl(2,4)
dimension gs(4,100),gpos(2),xm(4)
dimension phi (10, numnode)
call GaussCoefficient (nquado, gauss)
do j=1,2
£(3)=0.
enddo
dsi (1)=xspace
dsi(2)=yspace
I Axkxkkokk kA kkxkx ok Set global force BC for a rectangular domain

do j=1,4
fbel(1,3)=0.
fbel(2,3)=0.
enddo
fbcl(2,2)=1.0 ! force in y direction at right end is not zero

Ioxk kxR kR xRk R xokok ok TNTEGRATION FOR UP B.C.
IF(XC(2,1) .GE.xm(3)) then
txx=fbcl (1, 3)
tyy=fbcl (2, 3)
ax=0.5*(xc(1,4)-xc(1,1))
ay=0.5*%(xc(2,4)-xc(2,1))
bx=0.5% (xc(1,4)+xc(1,1))
by=0.5% (xc(2,4)+xc(2,1))
do il=1,nquado
gpos (1)=ax*gauss (1,1il) +bx
gpos (2)=ay*gauss (1,1il) +by
weight=gauss (2,1il)

’

’
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ajac=0.5*sqrt ((xc(1l,4)-xc(1,1))**2+(xc(2,4)-xc(2,1))**2)
call TestFunc (dsi, xcent,gpos,w,wx,wy)
f(l)=£f(1)+w*weight*ajac*txx
f(2)=£f(2) -w*weight*ajac*tyy
enddo
endif

FrkxF KK AxKxFxxAkx INTEGRATION FOR DOWN B.C.

IF(XC(2,2) .1E.xm(4)) then
txx=fbcl (1,4)
tyy=£fbcl(2,4)

ax=0.5* (xc(1,2)-xc(1,3))
ay=0.5%(xc(2,2)-xc(2,3))
bx=0.5* (xc (1,2)+xc (1, 3)
by=0.5* (xc (2,2)+xc (2, 3)

do il=1,nquado
gpos (1) =ax*gauss (1,1il) +bx
gpos (2) =ay*gauss (1,11l) +by
weight=gauss(2,1il)
ajac=0.5*sqrt ((xc(1,2)-xc(1,3))**2+(xc(2,2)-xc(2,3))**2)
call TestFunc (dsi, xcent,gpos,w,wx,wy)
f(1)=f(1)+w*weight*ajac*txx
f(2)=f(2)-w*weight*ajac*tyy

enddo

endif

A XK KKK KA KKKk xx INTEGRATION FOR RIGHT B.C.
IF(XC(1,4).GE.xm(2)) then
txx=fbcl (1,2)
tyy=fbcl (2,2)

ax=0.5* (xc(1,4)-xc(1,3))
ay=0.5*% (xc(2,4)-xc(2,3)
bx=0.5* (xc (1,4)+xc(1,3)
by=0.5*% (xc (2,4)+xc(2,3))

do il=1,nquado
gpos (1) =ax*gauss (1,11) +bx
gpos (2) =ay*gauss (1,11) +by
weight=gauss(2,1il)
ajac=0.5*sqgrt ((xc(l,4)-xc(1,3))**2+(xc(2,4)-xc(2,3))**2)
call TestFunc(dsi,xcent,gpos,w,wx,wy)
aimo=(1./12.)*ylength**3
ty=-(-1000./(2.*aimo)) * (ylength*ylength/4.-gpos (2) *gpos (2) )
f(1)=£(1)+w*weight*ajac*0.*txx
f(2)=f(2)-w*weight*ajac*ty*tyy ! Exact force B.C.
enddo
endif
RETURN
END

Program 5.9. Source code of Subroutine EssentialBC

303

SUBROUTINE EssentialBC (x,numnode,ak, fk,mk,ds,alfs, npEBCnum, npEBC, pEBC)

This subroutine to cenforce point essential bc's using the direct method;

input--numnode: total number of field nodes;
npEBCnum: number of e. b.c points
alfs: coefficent of support support
X (nx, numnode) : coordinates of all field nodes;
input and output-- ak[]: stifness matrix;
fk{}:force vector.

IMPLICIT REAL*8 (A-H,0-2)
common/para/xlength, ylength, p, young, anu, aimo
common/rpim/ALFC, DC, Q, nRBF

common /basis/mbasis

dimension x (2,numnode),ds (2, numnode)
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dimension npEBC(3,100),pEBC(2,100)
dimension ak (mk,mk), fk (2*numnode)
dimension f (2*numnode),phi (10, numnode), nv (numnode) , gpos (2)
nx=2
eps=2.2204e-16
do 135 ib=1,npEBCnum
in=npEBC (1, 1ib)
1l=in*2-1
lr=in*2
if (npEBC (2, 1ib) .eq.1l) £(11)=pEBC(1l,ib)
if (npEBC (3,1ib) .eq.1) £ (lr)=pEBC(2,1ib)
135 continue

do 231 ib=1, npEBCnum
in=npEBC (1, ib)
gpos (1) =x(1,1in)
gpos (2) =x(2,1in)
11=in*2-1
lr=in*2
ndex=0
call SupportDomain (numnode, nx,gpos, x,ds,ndex,nv)
Call RPIM ShapeFunc_2D(gpos, x,nv,phi, nx,numnode, ndex,alfc,dc, &
g, nRBF, mbasis)

if (npEBC(2,1ib) .eq.1l) then
do ii=1, 2*numnode
ak(11l,ii)=0.
enddo
do ii=1,ndex
mm=nv (ii)
ak(1ll,mm*2-1)=phi(1,ii)
ak(1ll,mm*2)=0.
enddo
endif

if (npEBC (3,1ib) .eq.1l) then
do ii=1,2*numnode
ak(lr,ii)=0.

enddo
do ii=1,ndex
mm=nv (11)

ak (lr,mm*2)=phi(1,1ii)
ak (lr,mm*2-1)=0.
enddo
endif
231 continue

do 165 ib=1, npEBCnum

in=npEBC (1, 1ib)

1l=in*2-1

lr=in*2

1f (npEBC(2,1ib) .eq.1l) fk(11l)=£f(11)

1f (npEBC(3,1b) .eq.1l) fk(lr)=f (lr)
165 continue
RETURN
END

Program 5.10. Source code of Subroutine GetDisplacement

SUBROUTINE GetDisplacement (x,ds,u2,disp,alfs,nx,numnode)

! The subroutine is to compute the final nodal displacements
! input— x,ds,u2, alfs,nx,numnode
! Output— disp;
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common/rpim/ALFC,DC, Q, nRBF
common /basis/mbasis
dimension x (nx,numnode),ds (nx,numnode), gpos (nx),u2 (nx, numnode)
dimension nv (numnode),phi (10, numnode), aa (nx, numnode) ,disp (2*numnode)
do i=1, 2*numnoden
disp(i)=0.
enddo
ind=0
do 50 id=1, numnode
ind=ind+1
gpos (1)= x(1,1id)
gpos (2) =x(2,1d)
ndex=0
call SupportDomain (numnode, nx,gpos, x,ds,ndex, nv)
do kph=1,ndex

do ii=1,10
phi (ii, kph)=0.
enddo
enddo

call RPIM ShapeFunc 2D (gpos, x,nv,phi,nx, numnode, ndex,alfc,dc, &
d,nRBF, mbasis)

ncl=2*ind-1

nc2=2*ind

do kk=1,ndex
m=nv (kk)
disp(ncl)=disp(ncl)+phi (1, kk)*u2(1l,m)
disp(nc2)=disp (nc2)+phi (1, kk)*u2(2,m)

enddo
50 continue
RETURN
END

Program 5.11. Source code of Subroutine GetNodeStress

SUBROUTINE GetNodeStress (x,ds,Dmat,u2,stress,alfs,nx,numnode)

! The subroutine is to compute the nodal stress components.
! input— x,ds,Dmat,u2,alfs,nx,numnode;
! Output— stress;

implicit real*8 (a-h,o-z)
common/para/xlength, ylength, p, young, anu, aimo
common/rpim/ALFC,DC, Q, nRBF

common/basis/mbasis

dimension ds (nx,numnode),gpos (nx),x (nx, numnode)

dimension nv(numnode),phi (10, numnode), aa (nx, numnode) , ne (2*numnode)
dimension stress (3, numnode),Bmat (3, 2*numnode)

dimension Dmat (3, 3),u2 (nx,numnode) , u(2*numnode)

do iu=1,numnode
u(2*iu-1)=u2(1,iu)
u(2*iu)=u2 (2, iu)

enddo

do i=1,3
do j=1,numnode

stress(i,3)=0.

enddo

enddo

ind=0

do 200 is=1,numnode
ind=ind+1
gpos (1)=x(1,1s)
gpos (2)=x(2,1s)
ndex=0
call SupportDomain (numnode,nx, gpos, x,ds,ndex,nv)
do kph=1,ndex
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do ii=1,10
phi (ii, kph)=0.
enddo
enddo

Call RPIM ShapeFunc 2D(gpos, x,nv,phi,nx,numnode,ndex,alfc,dc, &
d,nRBF, mbasis)
nb=2*ndex
do in=1,nb
e (in)=0
enddo
do ine=1,ndex
nl=2*ine-1
n2=2*ine
ne(nl)=2*nv(ine)-1
ne (n2)=2*nv (ine)
enddo
do ib=1,3
do jb=1,nb
Bmat (ib, jb)=0.
enddo
enddo
do inn=1,ndex
j=2*inn-1
k=2*inn
ml=ndex+inn
m2=2*ndex+inn
Bmat (1, j)=phi (2, inn)

Bmat (1,k)=0.
Bmat (2,3)=0.
Bmat (2, k)=phi (3, inn)
Bmat (3, j)=phi (3, inn)
Bmat (3, k)=phi (2, inn)
enddo
do 1ii=1,3
do kk=1,3

do mm=1, nb
mn=ne (mm)
stress(ii,ind)=stress(ii, ind)+Dmat (ii, kk) *Bmat (kk, mm) *u (mn)

enddo
enddo
enddo
200 continue
RETURN
END

Program 5.12. Source code of Subroutine Output

SUBROUTINE Output (x, numnode,u2,u22,str)

! The subroutine is to output resultscompute the final nodal displacements
! Output— all;

IMPLICIT REAL*8 (A-H,0-2)
common/para/xlength, ylength, p, young, anu, aimo
dimension x (2, numnode),u2 (2, numnode) , str (3, numnode) ,u22 (2, numnode)
write(2,*) TXxxkxkxxxxx ** *<DISPLACEMENT OF NODES>****xkxkkkkkxx !
do i=1,numnode

nn=2*i-1

kk=2*1

write(2,10)1i,x(1,1),x(2,1),u22(1,1),u22(2,1)
enddo
W]’:ite(2,*) |**************<STRESSES OF NODES>**************8V
do i=1, numnode

nn=2%1i-1

kk=2*1
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write(2,20)i,x(1,1),x(2,1i),str(l,i),str(2,1i),str(3,1
enddo
10 format (1x,1i3,1x,2£10.5,3E15.5)
20 format (1x,1i3,1%x,2f10.5,1x,3E15.5)
RETURN
END

Program 5.13. Source code of Subroutine TotalGaussPoints

SUBROUTINE TotalGaussPoints (xc,conn,gauss,dgs,nx,ng,numnd, &
numcell, k, numgauss)

The subroutine is to set up Gauss points,Jacobian and weights
for the global background cells;

input— xc,conn,gauss,nx,ng,numg,numcell, k, numgauss

Output— gs;

implicit real*8 (a-h,o-z)

dimension xc (nx,numq),conn(ng,numcell), gauss (nx, k)
dimension gs(ng,numgauss),psiJ(4),etad(4),xe(4),ye(4),aN(4)
dimension aNJpsi (4),aNJeta (4)

index=0

do 10 ie=1,numcell
! determine nodes in each cell
do §=1,4
je=conn(j, ie)
xe (J)=xc (1, ]je)
ye (j)=xc(2,7je)

enddo
do 30 i=1,1
do 30 j=1,1

index=index+1

eta=gauss (1,1)

psi=gauss(1l,3)

! write(2,*) 'psi,eta',psi,eta
do ik=1l,ng
N(ik)=.25* (1.+psi*psiJ(ik))* (1l.+eta*etad (ik)

aNJpSL( ik)=.25%psiJd (ik) * (1.+eta*etad (ik)
aNJeta (ik)=.25*etad (ik) * (1.+psi*psiJ (ik)

enddo

xpsi=0.

ypsi=0.

xeta=0.

yeta=0.

do jk=1,ng
xpsi=xpsi+aNJpsi
ypsi=ypsi+aNJpsi
xeta=xetataNJeta
yeta=yetat+aNJeta

enddo

ajcob=xpsi*yeta-xeta*ypsi

xg=0.

ya=0.

do kk=1,ng
xg=xqg+aN (kk) *xe (kk)
yg=yg+aN (kk) *ye (kk)

enddo

gs (1, index)=xqgq

X

Y
X

e
e
e
ye

(3k)*
(3k) *
(3k) *
(3k)*
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gs (2, index) =yq
gs (3, 1index)=gauss (2,1) *gauss (2, 7)
gs (4, index)=ajcob

30 continue
10 continue
RETURN

END

Program 5.14. Source code of Subroutine GetEnergyError

SUBROUTINE GetEnergyError (nx,ng,x,numnode,u2,dmat,ds, numgauss,gs,alfs)

! The subroutine is to compute the global energy;
! input- all;

IMPLICIT REAL*8 (A-H,0-Z)
common/para/xlength, ylength, p, young, anu, aimo
common/rpim/ALFC,DC, Q, nRBF

common/basis/mbasis

dimension x(2,numnode),u2 (2,numnode) ,dmat (3,3),str (3, numgauss)
dimension ph (10, numnode), gs (4, numgauss)

dimension bx (3, 2*numnode) ,dipl (2*numnode) ,db (3, 2*numnode)
dimension dbu(3),gpos(2),nv (numnode)

dimension err(3),Dinv(3,3),der(3),stressex(3,numgauss)
dimension ds (2,numnode) ,ddd(3)

enorm=0.

errext=0.

do id=1,3
do jd=1,3

Dinv (id, jd) =Dmat (id, jd)

enddo

enddo

invd=3

call getinvasy (INVD,INVD,Dinv,EP)

do 10 nod=1,numgauss
xn=gs (1, nod)
yn=gs (2, nod)
weight=gs (3, nod)
ajac=gs (4, nod)

gpos (1) =xn
gpos (2) =yn
ndex=0

call SupportDomain (numnode, nx,gpos, x,ds,ndex,nv)
do i=1,ndex

nn=nv (i)

nl=2*i-1

n2=i*2

dipl (nl)=u2(1l,nn)

dipl (n2)=u2(2,nn)
enddo
do ii=1,10

do jj=1,ndex

ph(ii, j3)=0.

enddo
enddo
call RPIM ShapeFunc_2D(gpos, x,nv,ph, nx, numnode, ndex, alfc, &
dc, g, nRBF, mbasis) ! RPIM Shape function
! call MLS_ShapeFunc_ 2D (gpos, x,nv,ds,ph,nx, numnode, ndex,mbasis) ! MLPG
do i=1,2*ndex
bx(1,1i)=0.
bx(2,1)=0
bx(3,1)=0
enddo

do i=1,ndex
nl=i*2-1
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n2=2*i

nn=2*numnode

call DOBMAX (dmat,3,3,3,bx,m,3,db, 3)
call DOBMAX (db,3,m,3,dipl,1,nn,dbu, 3)

str(1l,nod)=dbu(l)
str(2,nod)=dbu(2)
str(3,nod)=dbu(3)

Exact stress for beam problem
stressex (1,nod)=(1./aimo) *p* (xlength-gpos (1)) *gpos (2)
stressex (2,nod)=0.
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stressex (3,nod)=-0.5* (p/aimo) * (0.25*ylength*ylength-gpos (2) *gpos (2) )

do ier=1,3

err (ier)=str(ier,nod)-stressex(ier,nod)

enddo

do jer=1,3
der (jer)=0.
ddd (jer)=0.
do ker=1,3

der (jer)=der (jer)+Dinv (jer, ker) *err (ker)
ddd (jer)=ddd (jer) +Dinv (jer, ker) *stressex (ker, nod)

enddo
enddo
err2=0.
eex=0.
do mer=1,3

err2=err2+weight*ajac* (0.5*der (mer) *err (mer)
eex=eex+weight*ajac* (0.5*ddd (mer) *stressex (mer,nod) )

enddo
enorm=enorm+err2
errext=errext+eex

10 continue
enorm=dsqgrt (enorm)
errext=sqrt (errext)

Write (2, %) "*xAxxAx KA XA AX<Global energy error>k K kK xkkxkkxkk

write (2,180)enorm

180 format (1x, 'The global energu error:',e20.8)

RETURN
END

Program 5.15. Source code of Subroutine Dobmax

SUBROUTINE DOBMAX (A,N,M1,M3,B,M2,M4,C,M5)
! This subroutine is used to calculate A[N][M1]*B[M1][M2]=C[N][M2].
IMPLICIT REAL*8 (A-H,0-%Z)
DIMENSION A (M3,M1),B(M4,M2),C (M5,M2)

C(I,J)=C(I,J)+A(I,K)*B(K,J)

DO I=1,N
DO J=1,M2
C(I1,J)=0.0
ENDDO
ENDDO
DO I=1,N
DO J=1,M2
DO K=1,M1
ENDDO
ENDDO
ENDDO
RETURN

END



Chapter 6
MESHFREE COLLOCATION METHODS

6.1 INTRODUCTION

MFree collocation methods (or MFree strong-form methods) have a long
history. To approximate strong-form of PDEs using MFree methods, the PDE
is usually discretized at nodes by some forms of collocation. There are
various MFree strong-form methods, e.g., the vortex method (Chorin, 1973;
Bernard, 1995), the finite difference method(FDM) with irregular grids or the
so-called general FDM (GFDM) (Girault,1974; Pavlin and Perrone,1975;
Snell et al,1981; Liszka and Orkisz,1977; 1980; Krok and Orkisz), the finite
point method (FPM) (Oniate et al., 1996,1998, 2001), the Ap-meshless cloud
method (Liszka et al., 1996), the meshfree collocation method (Kansa, 1990;
Wu, 1992; Xu et al, 1999; Zhang et al.,2000; Liu X et al.,2002, 2003a-d), etc.

MFree strong-form methods have following advantages:

e The procedure for discretizing the governing equations is
straightforward, and the algorithms for implementing the discretized
equation are simple. The discretized equations can be obtained
directly from the strong-forms of PDEs governing the problem.

e They are, in general, computationally efficient. The PDEs are
discretized directly without using weak-forms, and hence no
numerical integration is required.

e They are truly meshless: no mesh is used for both field variable
approximations and numerical integrations.

310
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Owing to these advantages, MFree strong-form methods have been studied
and used in computational mechanics with some success, especially in fluid
mechanics. There are, however, the following two major issues that have
prevented the use of collocation methods with irregular grids or nodes.

One such an issue is the singularity of the moment matrix arising in the
process of function approximation. The use of weighted least square method
(Krok and Orkisz, 1989) has provided an effective way to solve this problem.
The matrix triangularization algorithm (MTA) proposed by GR Liu and Gu
(2001d, 2003a) is a novel procedure to overcome the singularity problem in
the point interpolation method (PIM) that uses polynomial basis. The PIM
shape functions so created possess the delta function property (see, e.g.,
Section 3.2). Kansa (1990) has also solved this kind of singularity problem
using radial basis functions (RBFs). The Kansa method is a global
collocation method that uses all the grids in the problem domain, which
leads to a fully populated system matrix. Since the RBFs are used, the
moment matrix is, in general, not singular. A more stable symmetric
formulation has also been proposed by Wu (1992). In addition, RBF is also
used for creating RPIM shape functions using /ocal nodes for MFree
methods based on the global weak-form (GR Liu and Gu, 2001c; Wang et al.,
2000; 2002a, Section 4.2), local weak-form (GR Liu and Gu, 2000b, 2001b,
c,e, 2002a; GR Liu and Yan et al.,, 2000, 2002; Xiao and McCharthy,
2003a,b,c; Section 5.2) and strong-form (Liu X et al., 2002, 2003a~e,
Section 6.3).

Another key issue that has been preventing the idea of collocation
methods with irregular grids or nodes from practical applications is the
presence of derivative boundary conditions (DBCs). It is well-known that
the boundary conditions (BCs) are crucial in a collocation method. We
emphases specifically that it is the DBCs (not Dirichlet BCs) that are the true
culprit responsible for the poor accuracy and instability problems in the
MFree strong-form methods using arbitrary nodes. Therefore, we will
discuss this issue at great length with many examples of 1D and 2D
problems in the next section.

6.2 TECHNIQUES FOR HANDLING DERIVATIVE
BOUNDARY CONDITIONS

In using an MFree strong-form method to solve a problem governed by a
set of partial differential equations (PDEs), the problem is represented by a
set of nodes that are arbitrarily distributed in the problem domain and the
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boundaries. Strong-form methods can produce accurate results for PDEs,
when the boundary conditions are all of Dirichlet type. If there is any
derivative boundary condition, the accuracy of the solution deteriorates
drastically, and the solution can be unstable: small changes in the setup of
the problem can lead to a large change in the solution. The discretized
system equation behaves, like an ill-posed problem in which errors
introduced into the system are magnified in the output.

For convenience, we denote the boundary with derivative boundary
conditions (BDCs) as the derivative boundary, and a node on the derivation
boundary as a “DB-node”.

A number of strategies can be used to impose the DBCs in the strong-
form methods. Six of them are listed below.

1) The direct collocation (DC) method: The DBCs are discretized by
simple collocation to obtain a set of separate equations that are
different from the governing system equations. In other words, there
is no special treatment for DBCs.

2) The method using fictitious points (FP): along the derivative
boundaries, a set of fictitious points is added outside the problem
domain along the derivative boundary. In this case, two sets of
equations are established at each DB-node: one for the DBC, and the
other for the governing equation.

3) The Hermite-type collocation (HC) method: this uses additional
derivative variables for the DB-nodes to enforce the DBCs. This
treatment has been used by many researchers, such as Zhang et al.
(2000), etc.

4) The method using regular grids (RG): in this method, one or several
layers of regularly distributed nodes are used in the problem domain
along the derivative boundary. The standard differential scheme used
in FDM is adopted for these regular nodes. The DBCs can then be
implemented using the same procedure as that in the standard FDM.

5) The use of dense nodes (DN) in the derivative boundaries (see, e.g.,
Liszka et al., 1996).

6) The MFree weak-strong (MWS) form method: being a combination
of the local weak-form and the strong-form, the DBCs can be
naturally satisfied through the local weak-form. The MWS method is
proposed by GR Liu and Gu (2002d, 2003b). It can efficiently and

" We assume of course that the problem is well-posed, the moment matrix is not
singular or badly conditioned, and a reasonable collocation scheme is used.
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completely solve the problem of the enforcement of DBCs in the
strong-form methods, and it will be detailed in Chapter 7.

There are also other means to stabilize the solution of meshfree
collocation methods, such as adding in higher order differential terms in
strong form equations for stabilization (Onate et al., 1998, 2001). In the
following sections, MFree strong-form methods with the first five types of
treatments for DBCs will be used to examine in detail for one-dimensional
(1D) and two-dimensional (2D) problems.

Note that the source code used in this chapter is not provided because 1)
it is very simple and straightforward; 2) Chapter 7 contains the same routines
for strong-form methods.

6.3 POLYNOMIAL POINT COLLOCATION METHOD
FOR 1D PROBLEMS

In this section, we use simple 1D problems to illustrate the collocation
procedure for establishing the discretized system equations together with
five different ways to deal with the DBCs.

For 1D problems, the polynomial PIM shape functions work best; we
will use these, and call the procedure as polynomial point collocation
method (PPCM). Other types of shape functions discussed in Chapter 3 are
of course applicable to 1D problems, and some of them will be used later for
2D problems.

6.3.1 Collocation equations for 1D system equations

6.3.1.1 Problem description

Consider problems governed by the following general second-order
ordinary differential equation (ODE) in 1D domain, Q.

2

AT+ AT A ,(9=0 (6.1)

where u is the unknown scalar field function, the coefficients 4y, 4; and 4,
are given and may depend upon x, and ¢, is a given source term that can be
also a function of x. There are two-types of boundary conditions:

e DBC:
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du(x)

B, (
L (x) i

+ By (x)u(x) + ¢ (x) =0 6.2)

where x is a point on the derivative boundary I',,, By and B, are

given functions of x, and g5 is a given source term on I, .

¢ Dirichlet boundary condition:
u(x)-u=0 (6.3)

where x is a point on the Dirichlet boundary denoted by I',, , and u is
the specified value for the field function.

6.3.1.2 Function approximation using MFree shape functions

Assume that there are N, internal (domain) nodes and N, =Npg+ N,
boundary nodes, where Npg is the number of DB-nodes and A, is the number
of nodes on the Dirichlet boundary. The collocation points could be
different (in term of both locations and numbers) from the field nodes, but
we always take them to be the same in this book.

For convenience, consider a 1D domain shown in Figure 6.1, and x; is on
the Dirichlet boundary and x, is on the derivative boundary. Therefore,
Npg=1 and N,=1. The problem domain is represented by N field nodes
numbered sequentially with x, =x, . Hence, there are N —2 internal nodes.

Support domain

Dirichlet boundary Derivative boundary (DB)
X

SO —- —
X=X1=XN

=X X
Internal nodes DB-node

Figure 6.1. Nodal distribution used in a 1D problem domain.

Using the MFree shape functions introduced in Chapter 3, we have the
following formulae for approximating the unknown function and their
derivatives at the collocation node at x;.

ul =u"(x;)=®"u, (6.4)
auf o0

= u 6.5
Ox o (65)
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u (6.6)

P
where @ is the vector of shape functions, and u, is the vector that collects
nodal values of the unknown function, i.e.,

= b - 4 (6.7)

u: :{ul u2 un} (68)
in which 7 is the number of nodes used in the local support domain of x;
where the shape functions are created.
6.3.1.3 System equation discretization

For an internal node at x;, Equation (6.4) gives the discretized governing
Equation (6.1) can be obtained by simple collocations at x;:

d2<I>T dcpT
Ay (x))—+ A4 (x ) +A0(Yl u, =—q,(x,)
ax’ T (6.9)
Kl J1
or in the matrix form
K, =/ (6.10)

where K; is the nodal matrix for the collocation node at x;, which can be
written in detail as

2 T T

d d®
=4 (xl) +A(x1) +A0(x1)

{ e
A(XI) +A( 7) +A0(xl) (6.11)
A(x,)‘i,"j b4, (xy) ¢"+Ao<r,}

The dimension of K; is (1xn).
In Equation (6.9), f; is given by
Jr==4.4(x) (6.12)

Note that Equation (6.10) is established for all the internal nodes, and for
the DB-nodes if so required.
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6.3.1.4 Discretization of Dirichlet boundary condition

For a node at x; that is on the Dirichlet boundary, the Dirichlet boundary
condition Equation (6.3) can be re-written as

(6.13)

T —_
D u, =u
—_ S
K, i

J1

where K| is the nodal matrix for the collocation node at x; given by
K=®'={¢g ¢ - 4} (6.14)

where ¢, is created using n nodes in the support domain of node 1. In
Equation (6.13), f; is given by

Ji=u (6.15)

Note that if shape functions with the delta function property, such as PIM
and RPIM shape functions are used, we should have

K, =0"={ 0 - 0} (6.16)
Without losing generalization, we use Equation (6.14).

6.3.1.5 Discretized system equation with only Dirichlet boundary
conditions

When the problem has only Dirichlet boundaries at both ends of the 1D
problem domain, we should also have the Dirichlet boundary condition
equation for node NV:

T =
D v =iy (6.17)

Ky I
where the nodal matrix for the collocation nodes at xy is

Ky=0'=l$ ¢ - 4] (6.18)

where ¢ is created using n nodes in the support domain of node N. In
Equation (6.17), fyis given by

Sy =y (6.19)

Assembling Equations (6.9), (6.13) and (6.17) for the corresponding
nodes, we can obtain the system equations as

K v Uy = Fova (6.20)

where the global system matrix K has the form of
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- - Related to Dirichlet BC

K” K]Z e Kl(Nfl) KIN <4—— from Equation (6.14)
K K K K
21 2 2N-1 2N ‘\\ Related to the system
—: : . : . PDE from Equation
Koo = : S U
K(N—l)l K(N—l)z K(N—l)(N—l) K(N—I)N
K K | Related to Dirichlet
_KNI AEN2 SEN(N-D) “*NN <__ BC from Equation
(6.18)
6.21)
and the global vector F consist of
u, Related to Dirichlet BC
! from Equation (6.15)
—q4(x,)
FDC _ Related to the system PDE
(Nx1) — from Equation (6.12) (622)
—q,4(xy)
LTN Related to Dirichlet BC
from Equation (6.19)
In Equation (6.20), U is the vector that collects all nodal values, i.e.
U
U,
Uiy =1 (6.23)
Uy
Uy

6.3.1.6 Discretized system equations with DBCs

In the following, we discuss how to construct collocation system
equations for problems with both a Dirichlet BC at x; and a derivative
boundary condition at the DB-node at xy. The treatment for the governing
equations and the Dirichlet boundary condition is the same as for those
discussed in Sub-section 6.3.1.3 and 6.3.1.4. As discussed in Section 6.2,
some special treatments are needed to impose the DBC. Treatments (1)~(4)
listed in Section 6.2 are discussed here. Note that because the formulations
of the treatment (5) listed in Section 6.2 are exactly the same as those the
treatment (1) that is the direct collocation (DC) method, they are not
presented here.

1) The direct collocation (DC) method
Substituting Equation (6.4) into the DBCs, Equations (6.2), we have
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T

d®d
(B (xy) e + B (xy )(DT)us =—qp(xy) (6.24)
Iy
Ky

where Ky is the nodal matrix for the collocation node at xy, which can be
written as

T

dd
Ky =B,(xy) + By (xy Yo'
dx

N

{Bm w,fuB(m Bl<xm>"—¢"+30<x]v)¢n}

and fy is given by
Sy =—a5(xy) (6.26)

Assembling Equations (6.9), (6.13) and (6.24) for the corresponding
nodes, we can obtain the discretized system equations as

K?]\(‘/jx N)Y B\?xl) = F(]?VCXI) (6.27)
where the global system matrix K has the form of

- . Related to Dirichlet BC
Kll K12 R Kl(N—l) KIN <¢—— from Equation (6.14)

K K - K K
21 2 2(N-D) 2N ‘\\ Related to the governing

KDC oot PDE from Equation

(Nx \/) A/ 6.11)

K(N—l)l K(N—l)z e K(l‘v’—l)(f\’—l) K(N—I)N

\

Related to DBC from
Equation (6.25)

| K Ky, o Ky Ky <—

(6.28)

and the global source vector F°¢ consists of

u <4—— Related to Dirichlet BC
from Equation (6.15)

—q,4(x,)
FDC : Related to the system PDE
(Nxl) =3+ from Equation (6.12) (629)

—44 (-7"'1\'71)
—qp(xy) <

Related to DBC from
Equation (6.26)

In Equation (6.27), UPC is the vector that collects all nodal values, i.e.
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U
U,
U?AC,XI) =1 (6.30)

Uy

Uy

Solving Equation (6.27) gives the nodal values of u for all field nodes,
provided K is not singular.

Note that the assembling is different from that in the conventional FEM
and the MFree global weak-form methods, such as EFG and RPIM. In the
FEM, EFG and RPIM, the element or nodal matrices are stamped
symmetrically into the global matrix. In the collocation method, however,
the nodal matrix is stacked together row-by-row to form the global matrix,
which is very much similar to the procedure used in the MFree local weak-
form methods discussed in Chapter 5.

Note also that the global system matrix K" given in Equation (6.28) is,
usually, sparse because of the use of the local support domain that contains
usually a very small portion of the field nodes, and many of entries in K°°
are zero. It is, however, asymmetric for the reasons given in Sub-section
5.2.2.

2) The method using the fictitious point (FP)

In order to impose the DBC, a fictitious point beyond the DB-node is
added outside the problem domain. The coordinate of this fictitious point is

Xy, =Xy +d, (6.31)
where d. is the nodal spacing given by
d, =xy—Xy (6.32)

Hence, an additional degree of freedom (DOF), uy., is added into the system,
and the discretized global system equation becomes

FP FP FP
K vinxovn Uvia = Fvea (6.33)

where the global stiffness matrix K" becomes
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- - Related to Dirichlet BC

K” Klz K]N Kl(N+1) <¢—— from Equation (6.14)
K K - K K, .
21 2 2N 2(N+D ‘\\ Related to the system
KFP =: IR |~ PDE from Equation
(N+D)x(N+1) : : c ) A 61D
KNl KNZ T KNN KN(N+1)
K K . K K Related to DBC from
L @+DL o SN2 BN S T Equation (6.25)

(6.34)

Note that there are two equations to be satisfied at the DB-node at xy:
Equations (6.9) and (6.24). The global source vector F becomes

u Related to Dirichlet BC
from Equation (6.15)
=q4(x,)
FF P _ Related to the system PDE
(N+Dx1 — - from Equation (6.12) (635)
—44 (3L N )
—p ()CN ) Related to DBC from

Equation (6.26)
where the global vector of nodal function values U is

U

U,

Ulvana =1 (6.36)

Uy

Uy

Up i

Solving these N+1 equations given in Equation (6.33) for the N+1 unknowns,
we obtain the nodal values for all field nodes including the fictitious point.

3) The Hermite-type collocation (HC) method

In the Hermite-type approximation, the derivative variable for the DB-
node is added as an additional DOF. For an internal collocation node at x;, if
its local support domain does not include the DB-node, the conventional
MFree shape functions are used, and the Equations (6.9)~(6.12) are used to
derive the collocation equations. If its support domain includes the DB-node,
the following formulation is used based on the Hermite-type shape functions
(see, Chapter 3):
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U

TENEL RS RS A (6.37)

u

n

!
Uy

where @ is the vector of shape functions obtained using the Hermite-type

approximation, ¢’ is the shape function related to the derivative DOF u}, ,

du(xy)
X

is the additional derivative DOF. Hence, the derivatives of u at the node /
can be approximated using

u, is the vector that collects nodal function values, and u), = which

a Ox Ox Ox

ou _o®" o4 04, 94" ",
Ox o !

(6.38)

aZu? _ aZ(I)T . 82¢1 62¢n 62¢H "
ox? ot o’ o’ ot *
Therefore, for an internal node whose support domain includes the DB-
node, the nodal matrix K; derived using Equation (6.9) is re-written as

2, T T
<o Alv\"/)dq) +4y(x))
dx

2
Th o)k ayx)
ax

d
dx
d*¢ d
A, (x;) dxzﬂ + .4 (x,)

(6.39)

bt ()
X

da.
2 H H
4

d de
~ +441(x1) - +Ao(x1)
dx” dx

Ix(n+1)

For the DB-node, the Hermite-type approximation, Equation (6.37), is
used. There are now two equations should be satisfied at the DB-node at xy.
One is Equation (6.9) that results in the similar nodal matrix K; presented in
Equation (6.39), and the other is Equation (6.24) where the nodal matrix
Ky, for the collocation node at xy can be re-written as
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do’
Ky., =5 (xN) +B (XN)(D

{B (XN) ¢1 + By (xy)4,
¢ (6.40)

B(’CN) + By (xy)9,

d H
By(xy )% 4 By(xy >¢”}

Ix(n+1)
The discretized global system equation becomes

HC HC HC
K(N+1)><(ZV+I)IJ(N+1)><1 = F(]\/+1)><1 (6.41)

where the global matrix K" is given by

— . Related to Dirichlet BC

Kll KIZ KIN KI(N+1) <¢—— from Equation (6.14)
Kzl K22 o KZN KZ(NH) ‘\\ Related to the system
KHC =|: IO L PDE from Equation
(N+D)x(N+1) A/ (6.11) or (6.39)
KNI KNZ KNN KN(NH)
Related to DBC from
_K(N+1)1 K(N+1)2 o K(N+1)N K(N+1)(N+1):‘_ Equation (6.40)
(6.42)
the global vector U™ is given by
U,
U,
HC :
Unipa = u (6.43)
N-1
Uy
’
Uy

and the global vector F' has the same form as F*" presented in Equation
(6.35).

Solving Equation (6.41) for N+1 unknowns, we can obtain the nodal
function values for all field nodes.

4) The method using regular grids (RG)

Three regularly distributed nodes, xy», Xy, xy are used inside the
problem domain near the derivative boundary. The following standard finite
difference scheme is used to construct the 1st derivative at the DB-node at xy
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ou(xy) Buy —duy_ +uy_,

o =) (6.44)

Replacing Equation (6.5) with this equation, we can obtain the
discretized system equation for the DB-node from the DBC Equation (6.2).
Together with Equations (6.9), (6.13), and (6.24), we can obtain N equations
for N unknowns of nodal function values. Solving these N equations gives
the nodal values for all field nodes. Note that the procedure for the RG
method is exactly the same as the DC method, except that the derivative for
the DB-node is approximated using Equation (6.44) instead of Equation
(6.5).

6.3.2 Numerical examples for 1D problems

In this section, several 1D examples are numerically analyzed reveal the
features of the collocation method with different treatments for the DBCs.
Because the analytical (exact) solutions are available, it is easy to conduct a
detailed analysis of errors in the numerical solutions. The following norms
are defined as error indicators in this chapter.

The error in the solution of function value is defined as ey:

N
exact num 2
2 —u

e = [ (6.45)
z(ufxact)Z
i=1

is exact values of the function, and u

exact
i

num
i

where u is numerical values of

function obtained using the numerical methods.

The errors in the 1st derivatives of the function is defined as e,

N 2
exact num
Z ( ui,x - ui,x )

e, = [ (6.46)

X N

Z(uszact)z

i=1

exact
i,x

numerical value of the 1st derivative obtained using the numerical methods.

is the exact values of the Ist derivative, and u; " is the

i,x

where u

The rates of h-convergence of the relative error norms in numerical
results, R(e), are defined as
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_ LOglo(ei+1/€i)
(e) - i+l i
LOgIO (dc /dc)

where e should be ¢, or ¢,, and d c”' and dj are the uniform nodal spacing of

(6.47)

two consecutive nodes.

Example 6.1: Wave propagation problem with Dirichlet boundary
conditions

One-dimensional problem governed by the following second-order linear
ordinary differential equation (ODE) is solved by the polynomial point
collocation method (PPCM), where the polynomial PIM shape functions are
used in Equations (6.4)~(6.6) for the field function approximation.

d’u
—+Au=0, xe(0,1) (6.48)
dx
which is subjected to the following Dirichlet boundary conditions
u(0)=0, u(1)=1.0 (6.49)

Equation (6.48) governs different types of physical problems depends on
the value of 4. When A>0, Equation (6.48) is the well-known 1D wave
propagation problem, and the exact solution can be easily found

_sin \/Zx
sin \/Z

Three models with 21, 41 and 81 regularly distributed nodes are used to
discretize the 1D problem domain. Three different kinds of interpolation
schemes using 3 nodes, 5 nodes and 7 nodes, as shown in Figure 6.2, are
adopted in the interpolations. There is no DBC in this example. The
conventional polynomial PIM is used to construct shape functions.

The errors in the numerical results of function u and its derivative u, are
listed in Table 6.1~Table 6.2. For further illustration, some representative
results have also been plotted in Figure 6.3~Figure 6.4.

uexact (x)

(6.50)

It can be found that very good (numerical) convergence rates have been
obtained using the PPCM.

1) For the 3-node interpolation scheme, the convergence rate of e, is
about 2.0 and the convergence rate of e, is close to 2.0.

2) For the 5-node interpolation scheme, the convergence rate of ¢, is
about 4.0-5.0 and the convergence rate of ¢, is the nearly same as e,.
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3) For the 7-node interpolation scheme, the convergence rate of ey is
about 6.0-7.0 and the convergence rate of e, is the also same as its e.

4) The error for the derivative solution is slightly bigger than that for
the corresponding function solution.

It can be found from these tables that the errors in the numerical results

obtained using the PPCM seems to be of the order O(dc””) for both the

field function and its derivatives, where d. is the nodal spacing. For example,
for the case of 5-node scheme (p=4), when the nodal density is doubled, the

4+1
error decrease to (%j :é times as shown in Table 6.1. For the case of

7-node scheme (p=6), when the nodal density is doubled, the error decrease
6+1

0 (%} :é times as shown in Table 6.1. Note also that the errors for

the first derivatives of the field functions are also about the same order of

o(d” 1y, as seen in Table 6.2. This only exception is for the case of 3-node

scheme for which the error is of the order of O(d,”). These facts

demonstrate that the collocation method is stable and convergent for
problems without DBCs.

= =
= =

= P
— L= .—9—9_9-—9—

1D 3-node interpolation scheme, m=3, p=2

o ot W o = ' o W ot ot Pt
— A - = - - — —

1D 5-node interpolation scheme, m=5, p=4

ot W ot Y Vo . ot ot Y ¥ o
— L= — = = = = =

1D 7-node interpolation scheme, m=7, p=6

@: collocation point; O: field nodes.

Figure 6.2. Interpolation schemes with different sizes of support domains for 1D problems
(m: number of polynomial basis; p: complete order of the polynomial basis).
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Table 6.1. h- and p- convergence of u obtained numerically using different
interpolation schemes

A 1.0 10.0 100.0
Model eo(%) R eo(%) R eo(%) R
ggo 20 L97x10” 13.82 / 15.32 /
221 41  485x10" 202 3.84 1.85 4.24 1.85
281 1206100 202 0.99 1.96 1.09 1.96
ggs 21 272x10° 0.043 / 0.36 /
S2 L 41 923x10" 488  240x10" 749  7.88x10° 551
T 81 3004107 484 LLxI0* 111 125x10° 265
o w21 5.14x10” / 1.74x10°  / 0.11 /
T5F 41 424x10" 692 1.62x10° 675  1.70x10°  6.06
B 81 136x107 497 153x107 672 1.69x10°  6.65

R: the convergence rate

Table 6.2. h- and p- convergence of u, obtained numerically using different
interpolation schemes

A 1.0 10.0 100.0
Model e(%) R e, (%) R e, (%) R
ges 2l 4.12x107 / 13.99 / 16.97 /
22 41  1.03x10%  2.00 3.89 1.85 4.74 1.84
3281 258107 2.00 1.00 1.96 1.22 1.96
g 2o 21 L4ex10® 0.04 / 031 /
22 L 41 1.09x10° 375 3.08x10%  7.11  1.18x107  4.74
27 81 743x10% 387  1.16x10" 141  1.73x10°  2.77
38c 2 2.28x10™® 1.75x107 0.12

2L 41 264x107° 643 1.63x107 675  1.83x107  6.04
2T 81 2 15¢10M 362 156x107 671 1.91x10°  6.59
o 21 4.17x10? 0.31 3.25

}:55 41 1.04x107  2.00 9.76x10%  1.68 0.98 1.73
5 81  2.60x10°  2.00 2.56x10* 1.93 0.257 1.93

R: the convergence rate
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Error (%)

|
e0, 3-node scheme, p=2 :
ex, 3-node scheme, p=2 | |
€0, 5-node scheme, p=4 | + -
ex, 5-node scheme, p=4 | |
e0, 7-node scheme, p=6 | |
ex, 7-node scheme, p=6 :

betddd

dc

Figure 6.3. h-convergence of the PPCM with different interpolation schemes (A =10 ),
where d. is the nodal spacing.

Error (%)

|
|
A g5 (A=1.0)
10° L | = e, (4=1.0)
o g (4=10.0) [ '

" -+ e, (1=10.0) : : |
10+ = & (1=100.0) i | 1 L
—— &, (1=100.0) [ ! !

T T | | |
10" | ; | i | | 1
2 25 3 3.5 4 4.5 5 5.5 6

Figure 6.4. p-convergence of the PPCM using uniform 41 nodes for the wave propagation
problems.

For comparisons, the results are also obtained using the quadratic FEM.
It is well-known that the convergence rate for the function value obtained
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using the FEM is of the order of O(h”*") (Zienkiewicz and Taylor, 2000)
that is the same as that of the collocation method. Note also that in the
conventional FEM, the error in derivative results is of the order of O(h")"
which is surely higher than that of the collocation method that is of the order
of O(d."™).

Note from this example that in the absent of the presence derivative
boundary conditions, the present PPCM can obtain stable and very accurate
solutions for the 1D problems. We have also studied the boundary layer
problems (when A<0), and similar results were found.

Example 6.2: 1D truss member with derivative boundary conditions

Consider a truss member or bar with force (derivative) boundary
conditions, as shown in Figure 6.5. The mechanics of the bar were discussed
in Sub-section 1.4.6. The bar is governed by the following equations:

e Governing equation in the form of ODE:

d’u

2

EA

+b(x)=0 (6.51)

where E is the Young’s modulus, 4 is the cross-section area, u is the axial
displacement in the x direction, b is the body force in x direction, and L is
the length of the truss element. For simplicity, £=1.0, 4=1.0, L=1.0.
Two cases of the b(x) are considered. The source force term with the
polynomial form that was used in Section 1.4 is first considered. Due to
the reproducibility of the polynomial PIM, very accurate results were
obtained using the collocation method with different treatments for DBCs.
To study numerically the convergence and accuracy of the collocation
methods, a more complex source term of non-polynomial form

b(x)=—(2.37)* sin(2.37x) is used in this study.

e Displacement (Dirichlet) boundary condition is given by:

=0 (6.52)

which means that the bar is fixed at x=0 as shown in Figure 6.5.

e Force (derivative) boundary condition is given by:

" The rate can change in the FEM, if the so-called super-convergence points can be
found. These kinds of special points may also exist in the collocation methods.
Here, we discuss only the results sampled at arbitrary points.
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f=4do,|_, :EA% =-2.37cos(2.37x) (6.53)
= dx x=L
or
d—u =-2.3mcos(2.371) 6.54
ax| . . (6.54)

which means that a concentrated force is applied at x=L.

The exact solution of the problem can be easily obtained by solving
analytically ODE with these boundary conditions, which yields

u®* (x) = —sin(2.37x) (6.55)

Figure 6.5. A uniform truss member fixed at x=0 and subjected to an axial loading
distributed in x direction and a concentrated force at x=L .

The same problem can be solved by imposing the following displacement
(Dirichlet) boundary conditions at x=L.

u| _,_, =-sin(2.37) (6.56)

which obtained simply using Equation (6.55). In this case, the problem can
be solved without using any derivative boundary conditions.

In seeking for an approximate numerical solution, we represent the 1D
truss member with regularly and irregularly distributed nodes shown in
Figure 6.6. The polynomial point collocation method (PPCM) is again used
to discretize Equations (6.51)~(6.54). The five different techniques
presented in Section 6.2 and Sub-section 6.3.1 are used to treat the force
(derivative) boundary condition in the following manner:
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DB-node
X
o —p
0 L
(a) 10 regular nodes
DB-node
X
G <5 o —Pp
0 L
(b) 10 irregular nodes
DB-node
X
G <5 o —Pp
0 L
(¢) 10 irregular nodes used in RG method
DB-node
X
o —p
0 L

(d) 11 field nodes used in the method of use of dense nodes

Figure 6.6. Nodal distributions on the 1D truss member

1) In the direct collocation (DC) method, the conventional polynomial
PIM shape functions are used and the force boundary condition,
Equation (6.54), is directly discretized by collocation.

2) In the method using fictitious points (FP), a fictitious point is added at
x=1.1. Two equations, Equations (6.51) and (6.54), are imposed at the
DB-node at x=L using the conventional polynomial PIM shape
functions.

3) In the Hermite-type collocation (HC) method, the Hermite-type
polynomial PIM (see Sub-section 3.2.2) shape functions are used.
The additional derivative variable, du/dx, at the DB-node is added
as an additional unknown or DOF.
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4) In the method using regular grid (RG): the conventional polynomial
PIM shape functions are used, and the standard finite difference
scheme given in Equation (6.44) is used to approximate the first order
derivative of the displacement at the DB-node.

5) The method of using dense nodes (DN) near the derivative boundaries,
one more node is used in the problem domain near the DB-node.

Three interpolation schemes shown in Figure 6.2 are used. To reveal the
effect of the DBC on the accuracy of the solution, the average relative error
1s used as the error indicator, which is defined as

1 N u;mm_u;exact
i=1

i

exact
i

where u;"" and u;™" are the displacement at the ith node obtained using the

numerical methods and the exact solution given in Equation (6.55),
respectively, and NV is the number of field nodes. Note that the case 0 is for
the problem with the Dirichlet boundary conditions, Equations (6.52) and
(6.56).

Table 6.3 lists the error in numerical results obtained using the
collocation methods and the 3-node interpolation scheme shown in Figure
6.2. From Table 6.3, we can make the following remarks.

1) If the problem is subjected only to Dirichlet BCs without any DBC,
the collocation method yields very good results. The error is small,
only e=0.51% for the regular model. The error for the irregular model
is 1.36%, which is about 2.7 times larger than that for regular nodes.
This is because the largest nodal spacing for the irregular model is
about 2.0 times that of the regular node model. This example
indicates the effects of the nodal irregularity on the accuracy of the
solution of the PPCM.

2) The presence of the DBC leads to large errors in the solution. If no
special treatment for the force boundary condition (the direct
collocation method) is used, the error of the direct collocation method
becomes 11.3%. The error magnification is more than 22 times.

3) Special treatments for handling the force (derivative) boundary
conditions can improve the accuracy of the solution.

4) The Hermite—type collocation method (HC) produces the accurate and
stable results for both regular and irregular nodal distributions. The
error magnification is about 5 times for the regular nodal distribution.
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The error for the irregular nodal distribution is only slightly larger
than that without the DBC (case 0).

5) The FP method works reasonably well for the model of regular nodes,
but not very well for the irregular nodes.

6) The RG method has the same accuracy as the DC method for the
model of regular nodes because the three nodes closest to the
Derivative boundary are used in Equation (6.44) that results in the
same formulation as the DC in this case. To use the RG method, the
10 irregular nodes shown in Figure 6.6(c) (not Figure 6.6(b)) are used.
Table 6.3 shows that the RG method leads to large error for the
irregular model.

7) The DN method that uses one more node in the problem domain near
the DB-node shown in Figure 6.6(d) leads to good result. This
confirms that the use of dense nodes near the derivative boundaries
can improve the accuracy of solution. This may be because the use of
dense nodes can better approximate the derivative of the function.

8) For the DC and the HC methods, the results of the model of irregular
nodes are better than that for regular nodes. This maybe because, in
the irregular model shown in Figure 6.6 (b), the nodal spacing near the
DB-node is smaller than that in the regular model.

Table 6.3. Relative errors e (%) in the displacement results obtained using the
PPCM with different schemes handling the DBCs

Cases Schemes  Regular nodes (R,,) Irregular nodes(R,,)
0 Dirichlet BC 0.51 (1.0) 1.36 (2.67)
1 DC 11.3(22.2) 1.21 (2.37)
2 FP 1.63 (3.2) 7.96 (15.61)
3 HC 2.68 (5.3) 1.42 (2.78)
4 RG 11.3(22.2) 6.12 (12.0)
5 DN 1.68 (3.3) /

e 3 nearest nodes are used in the local support domain

e R, = _fesel s the error magnification rate.
€case 0 regular
To study the A-convergence of these methods for this 1D truss problem,
regularly distributed 6, 11, 21, 41 and 81 nodes are used. To study the p-
convergence, the models of 41 regular nodes with 3-node, 5-node and 7-

node interpolation schemes are used. The relative errors, e, in the
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displacement results obtained by four different methods (excluding the DN
method) are listed in Table 6.4 and plotted in Figure 6.7 and Figure 6.8. All
these results re-confirm the fact that these special treatments for enforcement
of the force boundary condition are necessary to improve the accuracy of the
solution. Again, the Hermite—type collocation method produces better
results for all these cases.

Table 6.4. h- and p- convergence of u using different methods with different
interpolation schemes and different nodal distributions

Dirichlet BC DC FP HC RG

Number e(%) e(%) e(%) e(%) e(%)

of Nodes
. 11 5.10E-1 1.13E+1 1.63E+0 2.68 1.13E+1
E 21 6.59E-2 1.21E+0 1.99E-1 2.72E-1  1.21E+0
—q.é 41 8.37E-3 1.35E-1 246E-2  291E-2  1.35E-1
“ 81 1.05E-3 1.58E-2 3.05E-3 3.31E-3 1.58E-2
. 11 6.30E-2 5.46E+0 5.70E-1 2.92E-1  7.56E+0
Tré 21 1.35E-3 1.73E-1 1.62E-2  7.58E-3  9.55E-1
—q.é 41 3.21E-5 4.68E-3 4.06E-4 1.74E-4  1.10E-1
- 81 9.12E-07 1.29E-4 1.07E-5  4.28E-6  1.29E-2
S 11 431E-2 1.57E+0 8.46E-2 1.55E-2  9.92E+0
\g
..083 21 1.95E-4 2.24E-2 1.26E-3 1.01E-4  1.02E+0
s 41 9.33E-7 1.59E-4 8.42E-6  6.30E-6  1.12E-1

Table 6.4, Figure 6.7 and Figure 6.8 draw the following conclusions.
1) This example illustrate the dominant effects of the DBC

2) Although the accuracies of the different methods are different, their
convergence rates are nearly the same.

3) The errors in the numerical results obtained using the PPCM seems
again to be of the order of O(dcp”) , where d, is the nodal spacing,
regardless the presence of the DBC.
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4) The RG method does not achieve the p-convergence (see, Figure 6.8)
because the three nodes closest to the derivative boundary are always
used in Equation (6.44) for all the different interpolation schemes
used for the internal nodes. Since the error is largely controlled by the
large error induced by the boundary conditions, the accuracy will not
be improved, despite the increase of the order of the interpolation for
all the internal nodes, and the p-convergence of the RG method is
poor as shown in Figure 6.8.

The simple 1D example demonstrates that the enforcement of derivative
boundary conditions (DBCs) is the major technical issue in the use and the
development of MFree strong-form methods. A special treatment is required
to enforce the DBCs, and for this 1D problem, the Hermite method seems to
work well for both regular and irregular nodes.

10- ::::::::::::
SESSSSSSF=55350573353
,,,,,, =4 Dirichlet BC (R=3.0) [ ]
B == DC (R=3.1) ol
10 = FP (R=3.0) EEE
-~ 31 =8~ HC (R=3.2) EE!
,,,,,,,,,,,,, ] O RG(R=3.1) 1
-3

10 5 n L 1 Il L L1

10 10 10

Figure 6.7. h-convergence in relative errors in the numerical results obtained
using the PPCM with different schemes handling the DBCs (3-node scheme). The
R is the convergence rate, and d. is the nodal spacing
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Error (%)

=
4
1

o

Figure 6.8. p-convergence of the PPCM using different schemes handling the DBCs
(41 regular nodes)

6.4 STABILIZATION IN CONVECTION-DIFFUSION
PROBLEMS USING MFREE METHODS

Many practical problems in engineering are governed by the so-called
convection-diffusion equations, and hence the convection-diffusion problem
is important in computational mechanics. In a convection-diffusion equation,
there are convective and diffusive terms, and there is a well-known technical
issue in the analysis for convection-diffusion problem using the numerical
methods: the instability in the solution when the problem becomes
convection dominated. Much research has been performed to solve the
instability problem, and an overview on this topic can be found in the book
by Zienkiewicz and Taylor (2000). Many useful techniques have been
developed for stabilizing the numerical solution for FDM (Courant, et al.
1952; Runchall et al. 1969; Spalding, 1972; etc.), FEM (e.g., Zienkiewicz
and Taylor, 2000), FPM (Onate et al., 1996), and the GFDM (e.g., Cheng et
al., 1999, 2002). In GFDM used for CFD problems by Cheng et al. (1999,
2002), a simple idea similar to the upwind stabilization scheme is used by
choosing more nodes on the side of the support domain facing the flow. In
this section, the stability problem in the analysis of the convection-diffusion
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problem using MFree methods is discussed through a 1D example problem
of steady state convection-diffusion. The techniques studied are very simple
and easy to implement in MFree methods, and are in principle applicable
also to 2D or 3D problems. To simplify the issue, our discussion in this
section is confined for problems with only Dirichlet boundary conditions.

Consider a 1D steady-state convection-diffusion problem governed by
the following equations (Zienkiewicz and Taylor, 2000).
e Governing equation:
du d , du
V———(k—7)+¢g=0, x€(0, 1 6.58
o dx( dx) q 0, 1) (6.58)

where u is a scalar field variable, V, k and ¢ are all given constants,
and u, V, k and ¢ carry different physical meanings for different
engineering problems.

e Dirichlet boundary condition:

= (6.59)

Equation (6.58) is an ordinary differential equation (ODE) of second
order with constant coefficients, and it is a special case of Equations (6.1).
The exact solution is

4

exact q k W
u (x):—;+;clek +c, (6.60)
where
1
¢=01+V/g)————
= ( q) D) (6.61)
c, =—ke, 1V (6.62)

The stability of the numerical solution of this problem depends on the so-
called the Peclet number

Pe=—¢ 6.63
e=—i (6.63)

where d. is the nodal spacing.

In this example, the problem domain is represented using 21 regularly
distributed nodes, and hence 4. =0.05, and PPCM is used. To simplify the

problem, the source term is omitted: g=0 is used. The support domain is
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defined to select 3 nearest nodes for computing the PIM shape functions.
Figure 6.9 shows the results of u obtained using the PPCM for different Peclet
numbers. The accuracy of solutions deteriorates as Pe increases, if no special
treatment is performed. When Pe is large, Equation (6.58) becomes
convection dominated, and the accuracy of the standard numerical result
becomes oscillatory. If only the conduction term is omitted (4=0), which leads
to Pe — oo, the standard numerical procedure fails.

When the equation is convection dominated, the second term in Equation

(6.58) is negligible, and the down stream boundary condition u|X:1 =1, to

affects only a narrow region to form a thin boundary layer. The thin
boundary layer is difficult to reproduce by a standard numerical method, and
results become oscillatory.

This type of instability can occur in many numerical methods including
FEM, FDM and the MFree method if no special treatment is implemented.
The key to overcoming this problem is to effectively capture the upstream
information in the approximation of the field variables. The so-called
upwind scheme widely used in FDM was developed precisely for this
purpose (Courant, et al. 1952; Runchall et al. 1969; Spalding, 1972; etc.). In
the following, we discuss some simple strategies in MFree methods to deal
with this instability problem.

— Exact results

-+- Numerical results (Pe=0)
=-A- Numerical results (Pe=0.25)
-%=- Numerical results (Pe=1.25)
-©~ Numerical results (Pe=2.5)

0.5

-0.5

Figure 6.9. Results for the convection-diffusion problem with different Peclet numbers. A
total of 21 regularly distributed nodes are used in the PPCM and the support domain is
defined to select 3 nearest nodes.
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6.4.1 Nodal refinement

It is known that the instability is directly related to the Peclet number.
Therefore, a natural way to stabilize the solution is to reduce the Peclet
number by reducing the nodal spacing d. for given V and £.

To confirm this argument, two models with 21 and 41 regularly
distributed nodes are used to solve the same problem. The local support
domain is defined to select the 3 nearest nodes, and results are plotted in
Figure 6.10. It can be found that using finer field nodes is one of the simple
ways to alleviate the instability problem. Note however that this is not an
effective way to solve the instability problem. Increasing the nodal density
only in the boundary layer can certainly be more efficient.

1 -
— Exact results

=A- Numerical results ( 21 field nodes )
—-©- Numerical results (41 field nodes )

05

-0.5

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
X

Figure 6.10. Results of the 1D convection-diffusion problem with different nodal
distributions. =100 and k=1 are considered and the support domain is defined to select 3
nearest nodes.

6.4.2 Enlargement of the local support domain

The instability is caused by the failure to capture the upstream
information. The simplest way to capture the upstream information is
naturally to use more nodes in the interpolations. This may not be done
easily in FDM or FEM, but can be done without any difficulty in MFree
methods by simply enlarging the support domain of the collocation node
near the boundary layer.

Three types of local support domains, selecting 3, 5 and 7 nearest field
nodes, are used to solve the same problem, and results obtained using the
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PPCM are plotted in Figure 6.11. The accuracy and stability of solutions are
significantly improved by the enlargement of the local support domain.
Note that the overlap feature in the MFree interpolations may help also to
stabilize the solution.

Note that the enlargement of the local support domain needs to be done
only for the interpolation points (collocation nodes) that are in and near the
boundary layer.

— Exactresults

-©- Numerical results (n=3)
=-A- Numerical results ( n=5)
=+ = Numerical results ( n=7)

L L . . . I . . L )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 6.11. Results of the convection-diffusion problem solved using the PPCM with
different support domains. Pe=2.5 is considered and a total of 21 regularly distributed
nodes are used.

6.4.3 Total upwind support domain

Similar to the upwind difference scheme used in the FDM, the local
upwind support domain, as shown in Figure 6.12(b), is proposed here and
implemented in the PPCM to stabilize the solution. Results for Pe=0.25
and Pe=2.5 are obtained and plotted in Figure 6.13. The upwind support
domain improves the accuracy and stability for large Peclet numbers
because it can fully capture the information from upstream. However, it
gives poor results for cases of smaller Peclet numbers because of the fully
asymmetric interpolation using the upwind support domain, which mis-
represents the conduction term that is a 2nd derivative operator and should
be symmetric. In contrast, when using the normal symmetric local support
domain, it gives good results for small Peclet numbers but unstable results
for large Peclet numbers. Hence, the ideal support domain should change



340 Chapter 6

with Peclet number, i.e., when Pe increases, the support domain should be
biased towards the upwind side. We term such a support domain an adaptive
upwind support domain.

Stream direction Collocation node
—_

m
IS S— —

Support domain

(a) the normal support domain that is symmetric with respect to the collocation point

Stream direction Collocation node
_»
I I
S L g
Support domain

(b) the upwind support domain that is fully biased on the upwind side

New centre of the support domain

Stream direction Collocation node
A —

)

S o — P
Support domain |<du_>|

(c) Construction of an adaptive upwind local support domain with an offset distance d,

The normal support domain

Stream direction

Collocation node

The biased support domain

(d) Construction of a biased support domain by deliberately adding two more nodes in the
support domain in the upstream direction

Figure 6.12. Different types of local support domains.
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— Exact results
-A- Numerical results (normal support domain )

-©~ Numerical results (upwind support domain )

09 r

08

(a) Pe=0.25

— Exact results
-A- Numerical results (normal support domain ) "
1

-©- Numerical results (upwind support domain )

(b) Pe=2.5

Figure 6.13. Results of the convection-diffusion problem with normal and upwind support
domain. The support domain is defined to select 3 nearest nodes.

6.4.4 Adaptive upwind support domain

The adaptive upwind support domain can be defined using the following
formula (Zienkiewicz et al., 1975; Christie et al., 1976; Zienkiewicz and

Taylor, 2000; Atluri and Shen, 2002)
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d, = (coth|Pe|~1/|Pe|) -1, (6.64)

where d, is the central offset distance against the stream direction from the
collocation node as shown in Figure 6.12(c), and 7 is the dimension of the

support domain. Clearly Equation (6.64) satisfies the following two
conditions.

e When Pe=0, the central support domain should be used and 4, =0.
e When Pe=oo, fully upwind support domain should be used and d, =r, .

Figure 6.14 shows that Equation (6.64) works well for both large and
small Peclet numbers (the results are not presented here). It is one of the
most effective methods to ensure the stability of convection dominated
problems.

1.2

1+ —— Analytical solutions

Figure 6.14. Results of the convection-diffusion problem with adaptive upwind support
domain s.

6.4.5 Biased support domain

Another effective and simple way to establish a biased support domain is
to deliberately select more nodes in the upstream direction when
constructing the local support domain for a collocation node (Cheng and GR
Liu, 1999, 2002). Figure 6.12(d) shows a biased support domain based on a
normal support domain by adding two more nodes that are in the upstream
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direction. The PPCM with the biased support domain gives accurate result
both large and small Peclet numbers. Due to the freedom in selecting the
support domain in MFree methods, the method of using the biased support
domain is very effective and easy to use in practical applications (Cheng and
GR Liu, 1999, 2002).

In summary, using MFree methods to analyze the convection dominated
problem, the above mentioned simple methods can be used overcome the
instability issues in convection dominated problems. In these methods, the
adaptive upwind support domain and the enlargement of the local support
domain are the most effective methods and they are very easy to use because
of the freedom of selecting the support domain in an MFree method.
Comparing with the conventional FDM and FEM, the MFree method has a
very attractive advantage in solving the convection dominated problems
because it can easily overcome the instability problem even without the need
of any special treatment.

We have discussed MFree strong-form methods. MFree weak-form
methods can be modified in a similar way. Therefore, in solving a
convection-diffusion problem, the similar conclusions can be drawn for the
weak-form methods. In add