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Preface

The finite difference method (FDM) has been used to solve differential
equation systems for centuries.  The FDM works well for problems of simple 
geometry and was widely used before the invention of the much more 
efficient, robust finite element method (FEM). FEM is now widely used in 
handling problems with complex geometry.   Currently, we are using and 
developing even more powerful numerical techniques aiming to obtain more
accurate approximate solutions in a more convenient manner for even more 
complex systems.   The meshfree or meshless method is one such 
phenomenal development in the past decade, and is the subject of this book.

There are many MFree methods proposed so far for different applications.
Currently, three monographs on MFree methods have been published.

Mesh Free Methods, Moving Beyond the Finite Element Method byd
GR Liu (2002) provides a systematic discussion on basic theories,
fundamentals for MFree methods, especially on MFree weak-form
methods.  It provides a comprehensive record of well-known MFree 
methods and the wide coverage of applications of MFree methods to 
problems of solids mechanics (solids, beams, plates, shells, etc.) as
well as fluid mechanics.

The Meshless Local Petrov-Galerkin (MLPG) Method by Atluri and d
Shen (2002) provides detailed discussions of the meshfree local
Petrov-Galerkin (MLPG) method and its variations.  Formulations
and applications of MLPG are well addressed in their book. 

Smooth Particle Hydrodynamics; A Meshfree Particle Method by GR d
Liu and Liu (2003) provides detailed discussions of MFree particle
methods, specifically smoothed particle hydrodynamics (SPH) and 
some of its variations.  Applications of the SPH method in fluid 
mechanics, penetration, and explosion have also been addressed in
this book, and a general computer source code of SPH for fluid r
mechanics is provided.

Readers may naturally question the purpose of this book and the 
difference between this book and others, especially that by GR Liu (2002).  
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The second and the third books are related to specific MFree methods, 
which have clearly different scopes from this book.  The book by GR Liu 
(2002) is the first book published with a comprehensive coverage on many
major MFree methods.  It covers all the relatively more mature meshfree 
methods based on weak-form formulations with systematic description and 
broad applications to solids, beams, plates, shell, fluids, etc. However, the
starting point in that book is relatively high.  It requires a relatively strong
background on mechanics as well as numerical simulations.  In addition,
some expressions in this book were not given in detail, and no computer t
source code was provided, because of space limitation. 

After the publication of the first book, the first author received many
constructive comments, including requests for source codes and for more
detailed descriptions on fundamental issues.  This book is therefore intended
to complement the first book and provide the reader with more details of the
fundamentals of meshfree methods accompanied with detailed explanation mm
on the implementation and coding issues together with the source codes.  
This book covers only the very basics of meshfree weak-form methods, but 
provides intensive details on meshfree methods based on the strong-form
and weak-strong-form formulations.  The relationship of this book and the 
book by GR Liu (2002) is detailed in Table 0.1.  This shows that there isa
very little duplication of materials between the two; they are complementary.  
The authors hope that this monograph will help beginning researchers,
engineers and students have a smooth start in their study and further
exploration of meshfree techniques. 

The purpose of this book is, hence, to provide the fundamentals of MFree 
methods in as much detail as possible.  Some typical MFree methods, such 
as EFG, MLPG, RPIM, and LRPIM, are discussed in great detail.  The 
detailed numerical implementations and programming for these methods are 
also provided.  In addition, the MFree collocation (strong-form) methods are 
also detailed.  Many well-tested computer source codes for MFree methods
are provided.  The application and the performance of the codes provided 
can be checked using the examples attached.  Input and output files are 
provided in table form for easy verification of the codes.  All computer codes
are developed by the authors based on existing numerical techniques for 
FEM and the standard numerical analysis.  These codes consist of most of 
the basic MFree techniques, and can be easily extended to other variations of 
more complex procedures of MFree methods.  

Releasing this set of source codes is to suit the needs of readers for an
easy comprehension, understanding, quick implementation, practical 
applications of the existing MFree methods, and further improvement and 
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Table 0.1.  The relationship between this book and the meshfree method book by
GR Liu (2002)

Book by GR Liu (2002) This book
Topics Content Source 

code
Content Source

code
Weighted residual
methods

Briefed NA Detailed explicitly
with 1D examples

NA

Weak-forms Detailed  NA Briefed NA 

MFree shape 
functions

Detailed with
emphasizes on MLS,
PIM and RPIM 

No Detailed for MLS,
PIM WLS, RPIM,
and Hermite-type

Provided

MFree global weak-
form methods

Detailed for EFG, PIM 
and RPIM

No Detailed for EFG 
and RPIM

Provided

MFree local Petrov-
Galerkin weak-form
methods

Detailed for MLPG,
LPIM and LRPIM 

No Detailed for MLPG
and LRPIM

Provided

MFree collocation
methods

No No Detailed for various
techniques

No

MFree weak-strong
form methods

No No Detailed for MWS-
LS and MWS-
RPIM

Provided

Boundary-type MFree
methods

Detailed for BPIM and
BRPIM

No No NA

Coupled methods Detailed for EFG/BEM,
MLPG/FEM/BEM

No No NA

SPH Detailed for fluid
mechanics problems 

No No NA

Applications to solids 1D and 2D solids No 1D,  2D and 3D
solids

Partially
provided

Applications to beam, 
plate and shell 
structures

Yes No No NA

Applications to fluid 
mechanics problems 

Detailed for SPH,
MLPG and LRPIM

No Detailed using 
MWS

No

Material non-linear
problems 

Yes No No NA

Geometric non-linear
problems 

No NA Provided examples
of  RPIM

No

Convection-
dominated problems

No No Detailed for 1D and
2D problems using 
MFree strong-form
methods

No

MFree2D Detailed for usage and 
techniques used 

No No NA 

NA: not applicable.
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xvi Preface

development of their own MFree methods.  All source codes provided in this
book are developed and tested based on the MS Windows and MS Developer 
Studio 97 (Visual FORTRAN Professional Edition 5.0.A) on a personal
computer.  After slight revisions, these programs can also be executed in other
platforms and systems, such as the UNIX system on workstations.  In our
research group these codes are frequently ported between the Windows and qq
UNIX systems, and there has been no technical problem. 

Outline of this book 

Chapter 1: The weighted residual methods are introduced and 
discussed.  Various numerical approaches derived from the 
weighted residual method are introduced and examined 
using 1D examples.  The fundamental and theories of solid
mechanics and weak-forms are also provided.

Chapter 2: An overview of MFree methods is provided, including the 
background, classifications, and basic procedures in MFree
methods.

Chapter 3: Fundamental and theories of MFree interpolation
/approximation schemes for shape function construction, 
especially, MLS, PIM, WLS, and RPIM, and Hermite-type 
shape functions, are systemically introduced.  Source codes 
of two standard subroutines of computing MLS and RPIM 
shape functions are provided.

Chapter 4: Formulations of the MFree global weak-form methods,
EFG and RPIM, are presented in detail.  A standard source 
code of RPIM and EFG is provided. 

Chapter 5: Formulations of the MFree local weak-form methods,
MLPG and LRPIM, are presented in great detail.  A 
standard source code of LRPIM is provided. 

Chapter 6: Fundamentals and procedures of the MFree collocation 
methods are systemically discussed.  The issues related to 
the stability and accuracy in the strong-form methods are
discussed in detail.  In particular, the effects of the presence
of the derivative boundary conditions are examined in great 
detail.

Chapter 7: The MFree methods based on combination of local weak
form and collocation are derived and discussed in detail.  A
standard source code is provided.
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The book is written for senior university students, graduate students,
researchers, professionals in engineering and science.  Readers of this book 
can be any one from a beginner student to a professional researcher as well 
as engineers who are interested in learning and applying MFree methods to 
solve their problems.  Knowledge of the finite element method is not 
required but it would help in the understanding and comprehension of many
concepts and procedures of MFree methods.  Basic knowledge of solids
mechanics would also be helpful.  The codes provided for practise might be
the most effective way to learn the basics of MFree methods. 
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Chapter 1

FUNDAMENTALS

1 Fundamentals 

This chapter provides the fundamentals of mechanics for solids, as this 
type of problems will be frequently dealt with in this book.  Several widely 
used numerical approximation methods are outlined in a concise manner using 
one dimensional (1D) problems to address fundamental issues in numerical
methods.  Readers with experience in mechanics and numerical methods may
skip this chapter, but this chapter introduces the terms used in the book.  

1.1 NUMERICAL SIMULATION

Phenomena in nature, whether mechanical, geological, electrical, 
chemical, electronic, or biological, can often be described by means of 
algebraic, differential, or integral equations.  One would like to obtain exact 
solutions analytically for these equations.  Unfortunately, we can only obtain 
exact solutions for small parts of practical problems because most of these
problems are complex; we must use numerical procedures to obtain 
approximate solutions.  Nowadays, engineers and scientists have to be
conversant with numerical techniques for different types of problems. 
Because of the rapid development of computer technology, numerical
simulation techniques using computers (or computational simulation) have
increasingly become an important approach for solving complex and 
practical problems in engineering and science. 
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Chapter 1

The main idea of numerical simulation is to transform a complex 
practical problem into a simple discrete form of mathematical description, 
recreate and solve the problem on a computer, and finally reveal the
phenomena virtually according to the requirements of the analysts.  It is 
often possible to find a numerical or approximate solution for a complex
problem efficiently, as long as a proper numerical method is used.  

Numerical simulations follow a similar procedure to serve a practical 
purpose.  There are necessary steps in the procedure, as shown in Figure 1.1.

Physical phenomena

Mathematical model

Results Visualization and other
analysis tools

Simplification

Computer systems

Numerical algorithms
and implementation

Governing equations
and BC, IC, etc

Numerical techniques

Computer Code

Numerical simulation

Figure 1.1. Procedure of conducting a numerical simulation.  This book deals with 
topics related to the items in the shaded frames.   

Step  1: Identity and isolate the physical phenomenon; 

Step 2: Establish mathematical models for this phenomenon with some
possible simplifications and acceptable assumptions.  These mathematical 
models are generally expressed in terms of field variables in governing

2



1.  Fundamentals 3

equations with proper boundary conditions (BCs) and/or initial conditions
(ICs).  The governing equations are usually a set of ordinary differential
equations (ODEs), partial differential equations (PDEs), or integral equations.  
Boundary and/or initial conditions are needed to complement the governing
equations for determining the field variables in space and/or time.  This step 
is the base for a numerical simulation.

Step 3: Describe the mathematical model in a proper numerical 
procedure and algorithm.  The major aim of this step is to produce computer
code performing the numerical simulation.  For different numerical
techniques, the numerical algorithm and implementation are different, and 
hence the computer codes are also different.

Step 4: Numerically simulate the problem.  Te computer systems and the 
computer codes obtained in Step 3 are used to simulate the practical problem.   

Step 5: Observe and analyze the simulation results that are obtained in 
Step 4.  Visualization software packages are often very useful tools for 
presenting the data produced by computers as they are usually complex in 
nature and large in volume.   

In this procedure, we find that a numerical technique determines the 
algorithm and codes used in the numerical simulation.  In order to obtain a
successful simulation result representing the true physics, we need a reliable 
and efficient numerical technique.  Many researchers have been developing
the numerical techniques or numerical approximation methods.  Several 
efficient approximation methods have been proposed and developed so far, 
such as the finite difference method (FDM), the finite element method 
(FEM), the boundary element method (BEM), and the meshless or meshfree
methods (shortened as MFree methods in this book) †  to be discussed in this
book.

1.2 BASICS OF MECHANICS FOR SOLIDS

In this book, MFree formulations are presented mainly for mechanics
problems of solids and fluid flows.  In this section, the basic equations of 
solids are briefly introduced for future reference.

† A detailed definition of MFree methods will be presented in Chapter 2.tt
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1.2.1 Equations for three-dimensional solids

1.2.1.1 Stress components

Consider a continuum of three-dimensional (3D) elastic solids with a
volume  and a surface boundary , as shown in Figure 1.2.  The solid is
supported at various locations and is subjected to external forces that may be
distributed over the volume or/and on the boundary.  When the solid is
stressed, it will deform resulting in a displacement field.  The field variablest
of interest are the displacements.  The displacements and the stress level can 
be different from point to point in the solid depending on the configuration 
of solid, loading, and boundary conditions.

y

x

z

1t11

2t22

tt

u

nnzz

nyn
nx

b

Figure 1.2. A continuum of solids.
: the problem domain considered; : the global boundary of the problem domain; t: the

traction boundary (or force, derivative, natural boundary); u: the displacement boundary (or
Dirichlet, essential boundary); n={nx ,nyn , nz}T: the outward normal vector on the boundary.  

At any point in the solid, there are, in general, six components of stress to 
describe the state stressed, as indicated on the surface of a small cubic “cell”
shown in Figure 1.3.  On each surface, there will be one component of 
normal stress, and two components of shear stress.  The sign convention for
the subscript is that the first letter represents the surface on which the stress 
is acting, and the second letter represents the direction of the stress.  Note
that there are also stresses acting on the other three hidden surfaces.  As the 
normal to these surfaces are in the directions opposite to the corresponding
coordinates, positive directions of the stresses should also be in the directions 
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opposite to the coordinates.  There are a total of nine stress components shown 
on the cubic cell.  These nine components are the components of the stress 
tensor.  By taking moments of forces about the central axes of the cubic cell at t
the state of equilibrium, it is easy to confirm that 

xy yxx ; xz zx ; yzzy (1.1)

Therefore, there are six independent stress components in total at a 
particular point in a solid.  The stresses are often written in the vector form

T
xx yy zz yz xz xyxx yy zz yz xzyy zz yz xz (1.2)

xy
xxxx

yy

yz

yx

zy

zz

zx

y

x

z

yy

yz

yx

zy

zz

zx

xy
xx

Figure 1.3. Stress components on a small cubic cell in a stressed three-dimensional
solid.

1.2.1.2 Strain-displacement equations

The strain-displacement equation gives the relationship between 
displacements and strains.  There are six strain components at a point in
solids corresponding to the six stress components, which can also be written
in a similar vector form of

T
xx yy zz yz xz xyxx yy zz yz xzyy zz yz xz (1.3)

A strain is a rate of displacement per unit length.  The components of 
strain can be obtained by derivatives of the displacements for small 
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deformation in solids.  The strain-displacement relation can be written in the 
following matrix form. 

= Lu (1.4)

where u is the displacement vector having the form of 

uu
v
ww

u (1.5)

where u, v and v w are displacement components in x, y and z directions,z
respectively.

In Equation (1.4), L is a matrix differential operator given by 

0 0xxx
0 00 0y0 0y
0 0 zzz
0
0 0 zz
0 z y0 z yz y

x0 xxzz 0 xxxz 0 xz 0
y 0y x 0y xy x

L (1.6)

1.2.1.3 Constitutive equations

The constitutive equation gives the relationship between the stress and
the strain for a given material.  It is often called a generalized Hooke’s law.  
The generalized Hooke’s law for general anisotropic elastic materials can be
given in the following matrix form.

= D (1.7)

where D is a matrix of material constants, which have to be obtained through 
experiments.  The constitutive equation can be written explicitly as 

xxxx xxD D D D D D11 12 13 14 15 16D11 12 13 14 15 112 13 14 15 16D D D D D D11 12 13 14 15 112 13 14 15xxxx xxxx11 12 13 14 15 16

D D D D DD D D D D
11 12 13 14 15 16

yyyy yy22 23 24 25 26D22 23 24 25 223 24 25 26D D D D D22 23 24 25 223 24 25D D D D D
D D D D36D D D D33 34 35 334 35zzzzzz zzzz33 34 35 36

D D D
33 34 35 36D33 34 35 334 35 36D33 34 35 334 35zz zz

44 45 46D D D44 45 445 46D D D44 45 445D D Dyzyz yz

D Dsy D D55 56.sy D55 556.sy D55 556sy D D55 5xzxz xz

D6666D666D6yxyxy yxy

D (1.8)
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Note that Dij=D= jiD .  There are a total of 21 possible independent material 
constants Dij.  For different types of anisotropic materials, there will be
fewer independent material constants (see, e.g., GR Liu and Xi, 2001).  For
isotropic material, which is the simplest type of material, D can be gradually 
reduced to

11 12 12 0 0 0D D D11 12 11211 12 12

0 0 0D D
11 12 12

11 12 0 0 0D D11 1 0 0 0D D

11 0 0 0D111 0 0 0
( ) / 2 0 0

D111 0 0 0D1

11 12( ) / 2 0 011 1211 1 ) / 2 0 0(
( ) / 2 0sy 11 12( ) / 2 011 12. 11 1sy ) / 2 012( 11 1sy

( ) / 2( ) /11 12( )11 12( ) / 211 1211 1

D
(1.9)

where

11
(1 )

(1 2 )(1 )
ED1 22 )(12 )(12

; 12 (1 2 )(1 )
ED1
E

22 )(12 )(12
; 11 12

2
D D11 1 G (1.10)

in which E, and G are Young’s modulus, Poisson’s ratio, and shear G
modulus of the material, respectively.  There are only two independent 
constants among these three constants:  

2(1 )
EG (1.11)

1.2.1.4 Equilibrium equations

The equilibrium equation gives the relationship between the stress and
the external force.  Using equilibrium conditions of forces in a small block in 
a solid, we can obtain the following equilibrium equations in a concise 
matrix form for three-dimensional elastodynamics.  

TL b u uT c (1.12)

where is the mass density, c is the damping coefficient,
2

2t
uu is the

acceleration vector,
t
uu is the velocity vector, and bd is the vector of

external body forces in x, y, and z directions:z
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bxxbx

ybyby

b
y

zbzb
b (1.13)

Using Equations (1.4) and (1.7), we can write the dynamic equilibrium
Equation (1.12) in terms of displacements: 

TL DLu b u uT c (1.14)

This is the general form of the dynamic equilibrium equation for three-
dimensional elasticity.  If the loads applied on the solid are static, then the 
concern is only on the static status of the solid, and the static equilibriumf
equation can be obtained simply by dropping the dynamic terms in Equation
(1.14), which yields 

TL DLu b 0T (1.15)

Equation (1.12) can also be written in the following form using the tensor
notation.

ij j i i i, b u cui ii iuuiiu (1.16)

where i, j=(1, 2, 3) representing, respectively, x, y and z directions.z
Equation (1.12) or Equation (1.16) is the equilibrium equation of three-

dimensional elastodynamics.  The equilibrium equation is often called the
governing equation for solids; it is a partial differential equation (PDE) with 
the displacement vector as the unknown function of field variables.

1.2.1.5 Boundary conditions and initial conditions

The governing Equation (1.12) or Equation (1.16) must be complemented 
with boundary conditions and initial conditions.

Traction boundary condition: ij j in tj ij on t (1.17)

Displacement boundary condition:
ii uui on u (1.18)

Displacement initial condition: 0 0( , ) ( )0 0u( , ) (, ) (0 00 x (1.19)

Velocity initial condition:  0 0( , ) ( )0 0u( , ) (, ) (0 00 x (1.20)

where iu , it , u0 and v0 denote the prescribed displacements, tractions, initial
displacements and velocities, respectively, and njn is a component of the 
vector of the unit outward normal on the boundary of the domain (see
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Figure 1.2).  The traction boundary condition is, in general, a type of 
derivative boundary condition or natural boundary condition (in the weak-
form context).  The displacement boundary conditions are often called the
Dirichlet ort essential boundary conditions in the weak-form context.

In summary, the governing equation (Equation (1.12) or Equation (1.16)), 
the constitutive equation (Equation (1.7)) and the strain-displacement 
equation (1.4) together with boundary conditions and initial conditions
(Equations (1.17)~(1.20)) form a boundary value problem (BVP) and the
initial value problem (IVP) for three-dimensional solids.  The entire set of 
equations is called system equations. 

Note that equations obtained in this section are applicable to 3D elastic
solids.  Theoretically, these equations for 3D solids can be applied to all 
other types of structures such as trusses, beams, plates and shells, because
they are all made of 3D solids. However, treating all the structural
components as 3D solid makes computation very expensive, and practically 
impossible.  Therefore, theories for making good use of the geometrical 
advantage of different types of solids and structural components have been
developed.  Application of these theories in a proper manner can reduce 
analytical and computational effort drastically. 

1.2.2 Equations for two-dimensional solids

1.2.2.1 Stress components 

For two-dimensional (2D) solids as shown in Figure 1.4, it is assumed 
that the geometry of the domain is independent of z-axis, and all the external
loads and supports are independent of the z coordinate, and applied only in z
the x-y plane.  This assumption reduces the 3D equations to 2D equations.
There are two types of typical states of 2D solids.  One is plane stress, and
another is plane strain.  Plane stress solids are solids whose thickness in the
z direction is very small compared with dimensions in thez x and y directions.
As external forces are applied only in the x-y plane, and stresses in z
direction ( zz, xz, yz) are all zero.  There are only three in-plane stresses, 
( xx, yy, xy).

Plane strain solids are solids whose thickness in the z direction is veryz
large compared with dimensions in the x and y directions.  External forces
are applied uniformly along the z-axis, and the movement in the z directionz
at any point is constrained.  The strain components in z direction (z zz, xz, yz)
are all zero, there are only three in-plane strains, ( xx, yy, xy) to deal with.

The system equations for 2D solids can be obtained by simply omitting
the terms related to the z direction in the system equations for 3D solids. z
Equations for isotropic materials are given as follows.
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Figure 1.4. A two-dimensional continuum of solids.
: the problem domain considered; : the global boundary of the problem domain; t: the
traction boundary (or force boundary); u: the displacement boundary; n={nx ,nyn }T: the

outward normal vector on the boundary. 

The stress components are

xxxxxxx

yyyyyy

xyx

(1.21)

where the shear stress component, xyx , is often denoted xy .
There are three corresponding strain components at any point in 2D

solids, which can also be written in a similar vector form

xxxxxxx

yyyyyy

xyx

(1.22)

1.2.2.2 Strain-displacement equation 

The strain-displacement relation can also be written in the following 
matrix form.

Lu (1.23)

where the displacement vector is 

nyn

x

y

t
u

tb

n

nx
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uu
v

u (1.24)

and the differential operator matrix, L,  is given by

0
xxx

00
yyy

yy xy xy x

(1.25)

1.2.2.3 Constitutive equations

Hooke’s law for 2D elastic solids has the following matrix form: 

= D (1.26)

where D is a matrix of material constants, which have to be obtained through
experiments.  For isotropic materials in the plane stress state, we have

21
E

1 0
1 0

0
1 01 0

0 0 1 / 20 0 1 / 20 0 1 / 2
D (Plane stress) (1.27)

For solids in the plane strain state, the matrix of material constants D can be
obtained by simply replacing E andE , respectively, with E/(1EE 2) and 

/(1 ), which leads to 

(1 )
(1 )(1 2 )

E )
)( ))(

1 01 0
1

1 0
11

1 01 0
1

1 0
)(1 2 ))(1 2 ))(1 2 11

1 2
11

1 20 0 21 20 00 0
2(1 )2(1 )

D (Plane strain) (1.28)
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1.2.2.4 Equilibrium equations

The equilibrium equations for 2D elastic solids can be easily obtained by
removing the terms and omitting the differential operations related to the z
coordinate from Equation (1.12), i.e.,  

TTL b u uc (1.29)

where b is the external force vector given by 

xbxx

b
x

ybyb
b (1.30)

Equation (1.29) has exactly the same form as Equation (1.12).  For static 
problems, the equilibrium equations can be written as 

T 0L bT (1.31)

Equation (1.29) or (1.31) is much easier to solve then their counterpart
equations for 3D solids.  Equation (1.29) can be also written in the following
form using tensor notations: 

ij j i i i, b u cui ii iuuiiu (1.32)

where i, j=(1, 2) represent, respectively, x and y  directions, is the mass

density, c is the damping coefficient, ui is the displacement, 
2

2
i

i
uu
t

is the

acceleration, i
i

uu
t

 is the velocity, ij is the stress, bi is the body force, 

and ( ),j,, denotes
jxxx

.

1.2.2.5 Boundary conditions and initial conditions

The boundary conditions and initial conditions can be written as

Traction boundary condition:          ij j in tj ij on t (1.33)

Displacement boundary condition: ii uui on u (1.34)

Displacement initial condition:       0 0( , ) ( )0 0u( , ) (, ) (0 00 x (1.35)
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Velocity initial condition:                0 0( , ) ( )0 0u( , ) (, ) (0 0 x (1.36)

in which iu , it , u0 and v0 denote the prescribed displacements, tractions,
initial displacements and velocities, respectively, and njn is the component of 
the unit outward normal vector on the boundary (see Figure 1.4).

In summary, the governing equation, the constitutive equation, and the 
strain-displacement equation together with the boundary conditions and r
initial conditions form a set of system equations defining the boundary value 
problem (BVP) and the initial value problem (IVP) for two-dimensional 
solids.

1.3 STRONG-FORMS AND WEAK-FORMS

Partial differential equations (PDEs) developed in Section 1.2 are strong-
forms of system equations.  Obtaining the exact solution for a strong-form of t
system equation is ideal, but unfortunately it is very difficult for practical
engineering problems that are usually complex in nature.  One example of a 
strong-form numerical method is the widely used finite difference method 
(FDM).  FDM uses the finite differential representation (Taylor series) of a 
function in a local domain and solves system equations of strong-form to 
obtain an approximate solution.  However, FDM requires a regular mesh of 
grids, and can usually work only for problems with simple and regular
geometry and boundary conditions.  In a strong-form formulation, it is 
assumed that the approximate unknown function (u, v, w in this case) should 
have sufficient degree of consistency, so that it is differentiable up to the 
order of the PDEs.

The weak-form, in contrast to the strong-form, requires a weaker
consistency on the approximate function.  This is achieved by introducing an 
integral operation to the system equation based on a mathematical or 
physical principle.  The weak-form provides a variety of ways to formulate 
methods for approximate solutions for complex systems.  Formulation based 
on weak-forms can usually produce a very stable set of discretized system 
equations that produces much more accurate results.  

This book will use weak-form formulations to form discretized system
equations of MFree weak-form methods† for mechanics problems of solids

† A detailed discussion of the categories for mesh-free methods will be discussed in 
Chapter 2. 
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and fluids (see Chapters 4 and 5).  The strong-form formulation based on the 
collocation approach will also be used to formulate the so-called MFree
strong-form methods (or MFree collocation method, see Chapter 6).  In 
addition, both of them will be combined to formulate the MFree weak-strong
(MWS) form method (see Chapter 7), where the local weak-form is utilized
on and near the natural boundary to obtain stabilized solution.

The consistency requirement on the approximate functions for field 
variables in the weak-form formulation is quite different from that for the 
strong form.  For a 2kth order differential governing system equation, thekk
strong-form formulation assumes the field variable possesses a continuity of 
2kth order.  The weak-form formulkk ation, however, requires usually a
continuity of only kth order.kk

There are two major categories of principles used for constructing weak-
forms: variational and weighted residual methods.  The Galerkin weak-form 
and the Petrov-Galerkin weak-form may be the most widely used approaches
for establishing system equations; they are applicable for deriving MFree 
formulations.  Hamilton’s principle is often employed to produce
approximated system equations for dynamic problems, and is also applicable
to MFree methods.  The minimum total potential energy principle has been a 
convenient tool for deriving discrete system equations for FEM and many 
other types of approximation methods.  The weighted residual method is a 
more general and powerful mathematical tool that can be used for creating
discretized system equations for many types of engineering problems.  It has 
been and will still be used for developing new MFree methods.  All these
approaches will be adapted in this book for creating discretized system
equations for various types of MFree methods.   

1.4 WEIGHTED RESIDUAL METHOD 

The weighted residual method is a general and extremely powerful 
method for obtaining approximate solutions for ordinary differential 
equations (ODEs) or partial differential equations (PDEs).  Many numerical 
methods can be based on the general weighted residual method.  Hence, this 
section discusses some of those numerical methods using a simple example 
problem.  This section is written in reference to the text books by Finlayson
(1972), Brebbia (1978), Wang and Shao (1996), and Zienkiewicz and Taylor 
(2000).  The materials are chosen, organized and presented for easy 
reference in describing MFree methods in later chapters. 
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As discussed in Section 1.2, many problems in engineering and physics 
are governed by ODEs or PDEs with a set of boundary conditions.  Consider
the following (partial) differential equation.

( ) 0F u b( ))       in problem domain (1.37)

where F is a differential (partial) operator that is defined as a process whenF
applied to the scalar function u produces a function b.  The boundary
condition is given as

( )G u g( )     on the boundary (1.38)

where G is a differential (partial) operaG tor for the boundary condition.   

Most engineering problems which are expressed in ODEs or PDEs can
only be solved in an approximate manner, by which the function u is first
approximated by

( ) ( )
n

h
i i

i
u ( ) () (h )(( B (1.39)

where ( )i  is the ith term basis function or trial function, i  is the
unknown coefficient for the ith term basis function, and n is the number of
basis functions used.  These basis functions are usually chosen so as to 
satisfy certain given conditions, called admissibility conditions, relating to 
the essential boundary conditions and the requirement of continuity.   

In practice, the number of basis functions used in Equation (1.39), n, is
small, hence the governing Equation (1.37) and the boundary conditions, 
Equation (1.38), cannot usually be satisfied exactly.  Substituting Equation
(1.39) into Equations (1.37) and (1.38), we generally should have

( ) 0hF u b( ))h (1.40)

( ) 0hG u g( )) (1.41)

Hence, we can obtain the following residual functionsl sR and bR ,
respectively, for the system equations defined in the problem domain and the 
boundary conditions defined on the boundaries.

( )h
sR F u b( )h (1.42)

( )h
bR G u g( ) (1.43)

If Equation (1.39) is the exact solution of the governing Equation (1.37) and 
the boundary conditions Equation (1.38), residuals sR and bR will be zero.
However, the exact solution is usually unavailable for many practical
problems, and sR and bR are, in general, not zero.  Note that sR  and bR
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change with the approximate functions chosen.  We can use some techniques
to properly obtain an approximate function so as to make the residual as
“small” as possible; we force the residual to zero in an average sense by 
setting weighted integrals of residuals to zero.  For example, we impose

d 0i bi bddi sW R di sd (1.44)

where i=1, 2, …, n, W and V are a set of given weight functions for the
residuals sR and bR , respectively.  

Note that the approximate solution, Equation (1.39), can be chosen to 
satisfy the boundary conditions.  In such cases, bR is zero, and Equation
(1.44) becomes 

d 0i sW Ri (1.45)

This is the formulation of the weighted residual method that is often used in 
establishing numerical procedures (e.g., the FEM etc.).

Note also that in Equation (1.44), it is possible to use the same weight 
functions for both W and V .

Substituting Equations (1.42) and (1.43) into Equation (1.44), we can 
obtain

d 0h )h( d)(i g( )i ( )( )( )( )(iWi
hF u( h ) dd( )F ( ))( ) d) dddddd (1.46)

Using Equation (1.39), we have 

d 0diWi (1.47)

Equation (1.47) can be re-written more explicitly for i=1, 2, …, n as
follows.

d 0

d 0

d 0

d

d

d

1W1

2W2

nWn

(1.48)

From Equation (1.48), we can obtain n equations for n unknowns i

(i=1,2, …, n).  Solving these equations, we can obtain i, and then obtain the 
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approximate solution, which makes residuals, sR and bR , vanish in an 
average sense.  When 1) the weight functions iWi , iVi and the basis functions

( )iB  are  linearly independent; 2) the basis functions ( )i are continuous
of a certain order; 3) the weight functions and the basis function have certain
degree of overlapping; 4) and when n , the approximate solution 
Equation (1.39) will converge to the exact solution of the problem, if the 
solution of the problem is unique and continuous. 

This is the general form of the weighted residual method.  It should be
noted that Equation (1.48) is a set of integral equations that is obtained from
the original ODEs or PDEs.  Therefore, the weighted residual method
provides a way to transform an ODE or PDE to an integral form.  

This integral equation helps to “smear” out the possible error induced by
the function approximations, so as to stabilize the solution and improve the 
accuracy.  The integral operation can also reduce the requirement for the
order of continuity on the approximate function via integrals by parts to 
reduce the order of the differential operators.  It is termed a weak-form,
meaning that it weakens the requirement for continuity on the approximate 
function.

In the weighted residual method, the selection of weight functions will 
affect its performance.  Different numerical approximation methods can be 
obtained by selecting different weight functions.  In the following sub-
sections, several such methods are discussed.   

1.4.1 Collocation method 

Instead of trying to satisfy the ODE or PDE in an average form, we can 
try to satisfy them at only a set of chosen points that are distributed in the 
domain.  This is the so-called collocation method that seems to be first usedd
by Slater (1934) for problems of electronic energy bounds in metals. Early
development and applications of the collocation method include the works
by Barta (1937), Frazer et al. (1937), Lanczos (1938), etc.  The Lanczos’ 
method, known as the orthogonal collocation method, uses Chebyshev 
polynomials and their roots as collocation points.  

The standard formulation of the collocation method can be easily
obtained by using Dirac delta functions ( )i as the weight functions in 
Equation (1.44), i.e., 

( )
( )

i i(

i i(
W (i (
V (i ((

(
(

(1.49)

where i=1,2, …, n, and the Dirac delta function, ( )i , has the following 
property:  
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( ) 0,

( ) 1, 0
i

i

i i) 0,
x ci

i
x ci

x) 0,

) 1,)

(

(

) 0, x) 0,) 0,

1,1, (1.50)

Thus we derive the collocation method from the weighted residual 
formulation by substituting Equation (1.49) into Equation (1.44):

( ) d

d 0

i b))( )( ) d( )))

dd

( )i s))( ) d))) d))) d) d)) d))

( ii )(( ))( ))
(1.51)

which becomes:

        ( ) d ( ) d ( ) ( ) 0i b s i b i) d ( ) () d ( ) (( ) d ( ) () d ( )d ( ) (( ) d ( ) ( )( ) d ( ) () d ( ) () d ( )) d ( ) () d ( )d ( ) (( )( ) d( ) di s))( ) d))) d))) d) d)) d) (1.52)

or

0 (1.53)

Equation (1.52) is applicable to n points chosen in the problem domain,
which means that the collocation method forces the residuals to zero at the
points xi (i=1,2,  …, n) chosen in the domain.   

1.4.2 Subdomain method 

The subdomain method is similar to the collocation method.  Thed
difference is that instead of requiring the residual function to be zero at 
certain points, we make the integral of the residual function over n regions
(or subdomains), i (i=1,2, …, n), to be zero.  This method was first 
developed by Biezeno and Koch (1923), Biezeno (1923), Biezeno and 
Grammel (1955).  In the subdomain method, we use the weight function that 
has the following form

within1,
outside0,

i
i

i

Wi (1.54)

where i=1,2, …, n.   Hence, Equation (1.44) becomes 

d

d 0
i i

i i

i bi b

i

i

d

d

d d dd di s i b i sW R V R Wd di s i bsd i sdd dd dd dd ddd dd dd

(1.55)
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where i is the boundary of the intersection between the subdomain i and
the global problem boundary .

Equation (1.55) means that the subdomain method enforces the residuals 
to zero in a weighted average sense in n subdomains chosen in the problem 
domain.

1.4.3 Least squares method

The least squares method (LSM) was originated by Gauss in 1795 and d
Legendre in 1806 (see, e.g., Hall, 1970; Finlayson 1972).  Picone (1928) 
applied the LSM to solve differential equations.  In the LSM, we first define
the following functional 

( ) di s s))J ( ))) d (1.56)

and then seek for the minimum value of the functional J, which requires thatJJ

s
( ) ( ) d 0s

)

i i i

((J

ii

( ))JJ ds
( )(

i iiii

d 2( )( ) ds s( )) 2 (1.57)

or

s
( ) d 0s

i

R (1.58)

This means, in the context of the weighted residual method, that the weight 
function is chosen as the following form.  

( )h
s

i
i i

R FWi
RR FF

i
(1.59)

We can similarly obtain 

( )h
b

i
i i

R G(Vi
RR

i
(1.60)

Hence, Equation (1.44) becomes

d 0b
b

i

Rb

i

R RR R d
ii

d ddi s i b sW R V R Rd d ddi s i bs d s
RR ddddd ddd dd dddddds (1.61)

where i=1,2, …, n, which gives n equations for n coefficients i. Solving
these n equations for i leads to an approximate solution.   
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1.4.4 Moment method

The weight functions can be chosen to be monomials of, 1, x, x2,…, xn.
In this way, successive higher “moments” of the residuals are forced to be 
zero.  This technique, called the moment method, was invented by Yamada
(1947) and Fujita (1951).

The Moment method can be simply formulated as follows.  Let  
1i

i i iW V xi iiVV , i=1,2, …, n (1.62)

Equation (1.44) becomes 
1 d 01

i bi d111d dd i 11
i s i b i sW R Vd ddi i b idd 1d ddd dd dd11

(1.63)

which gives n equations for n coefficients i.  Solving these n equations for 
i yields an approximate solution.  Note that the results set of equations is 

often ill-conditioned.  An alterative is to use Chebyshev polynomials in stead 
of monomials.

1.4.5 Galerkin method 

The Galerkin method (Galerkin, 1915) can be viewed as a particular d
weighted residual method, in which the trial functions used for the 
approximation of the field function are also used as the weight functions.

i i

i i

W Bi i

V Bi i

(1.64)

Equation (1.44) now becomes

d

d 0

i bd

d

di sdB R di d

iBi

(1.65)

which gives n equations for n coefficients i.  Solving these n equations for
i yields an approximate solution. 

The Galerkin method has some advantages.  First the system matrix 
obtained by the Galerkin method is usually symmetric.  In addition, in many
cases, the Galerkin method leads to the same formulations obtained by the 
energy principles, and hence has certain physical foundations.  Therefore,
the Galerkin method is regarded so far as the most effective version of the
weighted residual method, and is widely used in numerical methods, in 
particular the finite element method (FEM).  Note that to obtain the 
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formulations of the FEM using the weighted residual method, Equation (1.45) 
is often used, in which only the residual for the governing equation is 
considered.  The boundary conditions (BCs) are treated separately for the
essential BCs and the natural BCs.  The former is handled after obtaining the
discretized system equations, and the latter is implemented after performing
integration by parts.  This procedure will also be followed in forming the 
MFree weak-form methods (Chapters 4 and 5).

1.4.6 Examples  

In order to illustrate these approximation methods, consider a simple
example problem of a truss member.  A truss member is a solid whose
dimension in one direction is much larger than those in the other two 
directions, as shown in Figure 1.5.  The force is applied only in the x
direction, and the axial displacement u is only a function of x.   Therefore,
the axial displacement u in a truss member is governed by the following
equilibrium equations.

2

2

d ( ) 0
d

uEA b x2

d (u
xdd

)b( (1.66)

where E is the Young’s modulus,E A is the cross-section area, and b(x(( ) is a
distributed external axial force applied along the truss member.  

We assume that the solution is constrained by the essential (displacement) 
boundary conditions. 

0 0x
x L

u (1.67)

where L is the length of the truss member.  

x
y

b(x(( )

Figure 1.5. A uniform truss member subjected to an axial loading distributed in the x
direction.
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For simplicity, 1.0E , 1.0A , 2( )b x x( ) 12 , and  L=1.0 are used in this
example.  The following exact solution of the problem for the axial 
displacement can be easily obtained by solving the differential Equation
(1.66) together with the boundary conditions Equation (1.67).

exact 4( )u x x xe ac ( ) 4xx (1.68)

In seeking an approximate solution for the axial displacement, we assume
that the solution has the following form.

1

1
( ) ( )( )1

n
ih ( ) ( )( i

i
u ( ) ( )() ( )(h ( ) ( )() (((( (1.69)

where i is the unknown coefficient to be determined, and 1( ) i
iB x x L x( )x(

is ith trial function.  Note that the basis function is deliberately chosen to
satisfy the displacement boundary conditions Equation (1.67).  

As the assumed displacement satisfies the boundary conditions, there is 
no residual on the boundary (i.e., Rb=0).  The approximate solution has 
continuity of all orders throughout the problem domain.  However, Equation
(1.69) may not exactly satisfy the equilibrium Equation (1.66), and the 
following residual exists in the problem domain:

2

2

d ( )2

( ) ( )
d

h ((R x b2

d ( )) ((
xdd 2

( ) (1.70)

In the approximate solution Equation (1.69), n can be taken as 1, 2, …,.
Because the Bi are linearly independent and complete‡, Equation (1.69) will 
converge to the exact solution when n .  For simplicity, we choose only
one and two terms (n=1 and 2) so that the solution is an approximation.

When n=1, the approximate solution can be written as

1 1 1( ) ( ) ( 1.0)1 11
hu 1( ) ( ) () ( ) (((1
h ( )(( )11 ( )(( )11 ( ) ((( )(( )) (1.71)

and the corresponding residual is
2

1 1( ) 2 121R x121) 2 12 (1.72)

When n=2, the approximate solution can be written as
2

2 1 2
2

1 2

( ) ( ) ( )2
1 21

( 1) ( 1)2
2

hu 2 ( ) ( ) () ( ) (2
1 2

h

((2

1111

1

( ) () (( ) (2
1 2( )(( ))11

( 1) ((2 ((21 ( 1)x( 1)1)
(1.73)

and the corresponding residual is 

‡ Meaning that there is no skip of orders: 1( ) i
iB x x L x( )i x(  for all i=1, 2, …n.
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2
2 1 2( ) 2 (6 2) 121 2R x(6 2) 122) 11112 (6 2)(6 2)(6 2)2)22 11 (1.74)

1.4.6.1 Use of the collocation method

When one term is used in the approximate solution (n=1), the middle

point on the truss (or 0.5
2
Lx ) is chosen as the point for the collocation 

method.  Using the collocation form given in Equation (1.52) and the
residual formulation given in Equation (1.72), we can obtain 1 and then the
following approximate solution using one term. 

( ) 1.5 ( 1.0)hu ( ) 1.5 () 1.5 (h 1 5 (( (1.75)

For two terms in approximate solutions (n=2), we choose two points on

the truss (or
3
Lx  and 2

3
Lx ) as the collocation points.  With Equations 

(1.52) and (1.74), we can obtain 1, 2, and the following approximate 
solution.

22( ) ( 1) 2 ( 1)22
3

hu ( ) ( 1) 2 () ( 1) 2 (h ( 1) 2 (( 1) 2 (( 1) (1.76)

1.4.6.2 Use of the subdomain method 

If the whole domain is used as the integration domain of the subdomain
method, using Equation (1.55) and the unit weight functions, the formulation
of the subdomain method using one term in the approximate solution (n=1)
can be written as

1 1
2

1 1
0 0

(2 12 )d 4+2 02
1 1(2 12 )d2( )d)d1 4+2 1(2 12 )d2 4+212 )d)d2
11 1( ) ( )d1W1( ) ( )d) ( )d11 (1.77)

which gives 1 2.0 . Hence, the approximate solution using one term is 
obtained as

( ) 2.0 ( 1.0)hu ( ) 2.0 () 2.0 (h 2 0 (( (1.78)

For two terms in the approximate solution (n=2), we use two subdomains 
and two unit weight functions, i.e.,

1 1

2 2

: 0 0.51.0,
: 0.5 1.01.0,

W1

W2

(1.79)
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Equation (1.55) and Equation (1.74) give two coefficients of 1 and 2.  The
approximate solution using two terms is

2( ) 1.0 ( 1) 2.0 ( 1)2hu ( ) 1.0 ( 1) 2.0 () 1.0 ( 1) 2.0 (h 1 0 ( 1) 2 0 (( 1) 2 0 (1 0 ( 1) (1.80)

1.4.6.3 Use of the least squares method 

In the least squares method, the weight function is chosen as

( )
i

i

RWi
RR

(1.81)

For one term in the approximate solution (n=1), we use the following
weight function

1
1

1

( ) 2.0R1(W1
RR

(1.82)

With Equation (1.61) and Equation (1.82), we can obtain 1 2.0 .  The
approximate solution becomes

( ) 2.0 ( 1.0)hu ( ) 2.0 () 2.0 (h 2 0 (( (1.83)

With two terms in the approximate solution (n=2), we use the following 
two weight functions, i.e.

2
1

1

2
2

( ) 2.0

( ) 6 2

R2 (W1

R2 (W x2
2

( ) 6R2 (

RR

RRR 6
(1.84)

From Equation (1.61) and Equation (1.84), we can obtain 1 1.0 and

2 2.0 .  The approximate solution using two terms is found as
2( ) 1.0 ( 1) 2.0 ( 1)2hu ( ) 1.0 ( 1) 2.0 () 1.0 ( 1) 2.0 (h 1 0 ( 1) 2 0 (( 1) 2 0 (1 0 ( 1) (1.85)

It should be noted that the coefficient matrix for solving the unknown 
coefficient i is symmetric in the least squares method.  

1.4.6.4 Use of the moment method 

In the moment method, the weight function is chosen as 
1i

iW xi (1.86)

For one term in the approximate solution (n=1), we use the following
weight function: 
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0
1 1W x1 x (1.87)

Using Equation (1.63) and Equation (1.87), we obtain 1 2.0 , and, hence,
the approximate solution

( ) 2.0 ( 1.0)hu ( ) 2.0 () 2.0 (h 2 0 (( (1.88)

With two terms in the approximate solution (n=2), we use two weight 
functions, i.e.

(1 1)
1

(2 1)
2

1.0W x1

W x x(2 1)
2

( )x
xx( ) (1.89)

From Equation (1.63) and Equation (1.89), we can obtain 1 1.0  and
2 2.0 .   Finally, the approximate solution using two terms is  

2( ) 1.0 ( 1) 2.0 ( 1)2hu ( ) 1.0 ( 1) 2.0 () 1.0 ( 1) 2.0 (h 1 0 ( 1) 2 0 (( 1) 2 0 (1 0 ( 1) (1.90)

1.4.6.5 Use of the Galerkin method

For one term in the approximate solution (n=1), we use the following
weight function:

1 1 ( 1)W B x1 1 (x( (1.91)

Using Equation (1.65) and Equation (1.91), we can obtain 1 1.8  and,
therefore, the approximate solution using one term is

( ) 1.8 ( 1.0)hu ( ) 1.8 () 1.8 (h 1 8 (( (1.92)

With taking two terms in the approximate solution (n=2), we use the
following two weight functions:

1 1
2

2 2

( 1)
( 1)

W B x1 1 (
W B x2

2 2 (
B xB1 (

x (
(1.93)

Using Equation (1.65) and Equation (1.93), we can obtain the following set
of equations in the matrix form of 

1 1 3
3 6 11 553 63 6 11

2
1 5

1 21 2 22 22
6 15 56 15 5

(1.94)

It can be seen that the coefficient matrix obtained using the Galerkin method 
is symmetric.  
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Solving these equations to yield 1 0.8 and 2 2.0 , we find the
approximate solution as 

2( ) 0.8 ( 1) 2.0 ( 1)2hu ( ) 0.8 ( 1) 2.0 () 0.8 ( 1) 2.0 (h 0 8 ( 1) 2 0 (( 1) 2 0 (0 8 ( 1) (1.95)

The approximate solutions obtained by the five approximation methods 
are listed in Table 1.1, and plotted in Figure 1.6~Figure 1.9 for easy 
comparison.  Figure 1.6 and Figure 1.7 plot the weight functions and the 
results of displacements obtained using the analytical solution and the one-
term approximate solution, respectively.  Figure 1.8 and Figure 1.9 plot the 
weight functions and the curves obtained using the analytical solution and 
the two-term approximate solutions, respectively.  These table and figures
show that the accuracy of the approximated results is different for different 
approximation methods and for different terms used in the approximate
solutions.  Usually, more terms used in the approximate solution lead to 
higher accuracy.  This can be easily observed from Figure 1.9.  Note that the 
Galerkin method leads to the best results for this example problem.  It 
provides the solution with best balanced over- and under-estimation of the
exact solution over the entire problem domain, as clearly shown in Figure
1.8 and Figure 1.9.  The solutions of other methods are one-side biased. 

1.4.6.6 Use of more terms in the approximate solution

To study the convergence of the weighted residual methods, we discuss 
results of the three-term approximate solution in this section.  We omit
details and present only the results.  Readers are also encouraged to obtain 
the solution using more than 3 terms.   

When three terms (n=3) are used, the approximate solution, Equation 
(1.69), can be written as

2 3
3 1 2 3( ) ( 1) ( 1) ( 1)2 3

1 2 31 2
hu3 ( )h ((31 221 21 2221 2( 1) ( 1) (( 1) (2 3 ((3

3( 1)( 1) 2( 1) ( 1)( 1) (( 1) ( 1)1) ( 1)1 2221 22 (1.96)

and the corresponding residual is
2 2

3 1 2 3( ) 2 (6 2) (12 6 ) 122( 6 )1 2 31 2R x(12 6 ) 1263) 1 21 21 21 22 (6 2) (12 6 )(6 2) (12 6 )2(12 6 )66 )32 (6 2)(6 2)(6 2)(6 2)(6 2)(6 2)1 21 22 (1.97)

The five versions of weighted residual methods all give the same coefficients, 
1 , 3  and 3 :

1

2

3

1
1
1

(1.98)

So that, the approximate solution using three terms is
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2 3( ) 1.0 ( 1) 1.0 ( 1) 1.0 ( 1)2 3hu ( ) 1.0 ( 1) 1.0 ( 1) 1.0 () 1.0 ( 1) 1.0 ( 1) 1.0 (3h 1 0 ( 1) 1 0 ( 1) 1 0 (( 1) 1 0 ( 1) 1 0 (1 0 ( 1) 1 0 ( 1)

4x x4x
(1.99)

The approximate solution is the same as the exact solution that is given in 
Equation (1.68).  This means that all these five weighted residual methods 
give the exact solution when three terms are used in the approximate solution 
given in Equation (1.69).  The same conclusion can be drawn when more
than 3 terms are used.  For quantitative analysis, the following norm is
defined as the error indicator.

num exact

exact

( ) ( )num
1

( )

N
j j) () (

j j

u( ) () () ((
e

N u(
(1.100)

where num( )ju( and exact( )ju(  are, respectively, displacements at point xjx
(j(( =1,2, …, N) obtained using the numerical methods and the analyticalNN
method, N is the number of uniform points used to study the error, andN N=21NN
is used here.

Figure 1.10 plots the convergence curves of different weighted residual
methods using different terms in the approximate solution.  When 3 or more 
terms are used, all these five weighted residual methods converge to the 
exact solution.

This example shows that if the exact solution is included in the basis (or
trial) functions, the different versions of weighted residual methods will
reproduce the exact solution.  This reproducibility property makes the
method fundamentally credible, and is essential to any numerical method.

1.5 GLOBAL WEAK-FORM FOR SOLIDS

The Galerkin weak-form can be derived directly from the energy 
principles for problems of solid mechanics.  One of these is the minimum
total potential energy principle.  This principle states that for a structural 
system that is at an equilibrium state, the total potential energy in the system
is stationary for a given set of admissible displacements.  This principle can
be used in a straightforward manner in the following three simple steps: 
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Figure 1.6. Weight functions used in different weight residual methods when the 
approximate solution is 1 1( ) ( )1

hu 1( ) () (1
h ((( with 1 being a coefficient.
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Figure 1.7.77 Displacement results for the truss member obtained using the analytical
method and five different weighted residual methods; the approximate solution is 

1 1( ) ( )1
hu 1( ) () (1
h ((( .

1W1 : the subdomain method, and the moment method 

1W1 : the collocation method

1W1 : the least squares method 

1W1 : the Galerkin method 

x

x

x
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Figure 1.8. Weight functions used in different weight residual methods when the 
approximate solution is 2

2 1 2( ) ( ) ( )2
1 21

hu 2 ( ) ( ) () ( ) (2
1 2

h
1111 ( ) () (( ) (2
1 2( )(( ))11 with 1 and 2 being

coefficients.
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Figure 1.9. Displacement results for the truss member obtained using the analytical
method and five different versions of weighted residual methods; the approximate

solution is 2
2 1 2( ) ( ) ( )2
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hu 2 ( ) ( ) () ( ) (2

1 2
h

1111 ( ) () (( ) (2
1 2( )(( ))11 .

x

1W1 : the least squares method 

2W2 : the Galerkin method 

x x

x
1W1 : the moment method

1W1 : the Galerkin method 

2W2 : the moment method

2W2 : the least squares method 

xx

1W1 : the subdomain method 2W2 : the subdomain method

1W1 : the collocation method

x x

2W2 : the collocation method

x

x



1.  Fundamentals 31

Figure 1.10.  Convergence of the results of the axial displacements obtained using different 
weighted residual methods with different terms in the approximate solution.

1) Approximate the field function (displacement) in terms of the nodal 
variables using the trial or shape functions; let d be the vector
consisting of all the nodal displacements in the problem domain. 

2) Express the total potential energy, , in terms of the nodal variables d.
For solids and structures of elastic materials, the total potential energy
can be expressed as 

= s WfWW (1.101)

where s is the strain energy, and the WfWW  is the work done by thef
external forces.

3) Use the stationary conditions to create a set of discretized system
equations.

0

d1d1d

d2d2d
(1.102)
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The number of equations created is equal to the number of the total
numbers of the nodal variables.  The solution of this problem can be
obtained by solving Equation (1.102). 

For solids and structures of elastic materials, the strain energy of the 
system can be expressed as

T1 d
2s (1.103)

The work done by the external forces is 
T dT

t

fWf dTTT TdT d (1.104)

where  is the problem domain, t stands for the boundary of the solids on 
which traction forces are prescribed.

Hence, the total potential energy can be expressed as 

T1 dT

2
t

dT1 T TTTTTd dT d TTTT TddTT
(1.105)

The variation of the potential energy can be written as 

T1( d d d )T1
2

t

( dT(1 T TTT TTTd dd dddT TTTT TddTT
(1.106)

Moving the variation operation into the integral operations, we obtain 

T1 dT

2
t

1 d1 T TTT TTTTT uTd ddT d dddTTTTT
(1.107)

because the changing of the order does not affect the results, as they operatest
on different arguments (variation is on the coefficients of the functions and
the integration is on the coordinates).  The integrand in the first integral term 
can be written as follows using the chain rule of variation.

T T TT T( ) +T T (1.108)

We note that
T T T TT TT T( )T TT (1.109)

Using the constitutive equation of solids and the symmetry of the matrix of
material constants D, we have

T T T T T T(T T TT T TT)( T TT T T( (1.110)
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Therefore, Equation (1.108) becomes 
T TT 2( )T (1.111)

and Equation (1.107) now becomes  
T dT

t

dTT TTTTTT TTTT TTTT Td ddT d dddTTTTT
(1.112)

The minimum total potential energy principle requires 0 .  Hence, the
following Galerkin weak-form can be obtained: 

T d 0T

t

dTT TTT TTTTTTTT TT d dddddTTTT
(1.113)

Equation (1.113) can also be viewed as the principle of virtual work,
which states that if a solid body is in its equilibrium states, the total virtual 
work performed by all the stresses in the body and all the external forces
applied on the body vanishes, when the body is subjected to a virtual
displacement.  The virtual work can be viewed as an alternative statement of
equilibrium equation.  In our situation given in Equation (1.113), we can 
suppose that the solid is subjected to a virtual displacement of u.  The first
term in Equation (1.113) is the virtual work done by the internal stress in the 
problem domain, ; the 2nd term is the virtual work done by the external 
body force; the 3rd term is the virtual work done by the external tractions on
the boundaries, t.  Therefore, using the principle of virtual work, we can 
actually write out Equation (1.113) directly without going through the above
procedure.

For static linear elastic problems, using the stress-strain relation, and then
the strain-displacement relation, we can express Equation (1.113) as follows 
in terms of the displacement vector u.

T d 0T

t

dTT TTd TT Td dddddT
(1.114)

This is the Galerkin weak-form written in terms of displacements, and it is
convenient because the displacement is to be approximated in FEM or 
MFree methods.  Equation (1.114) can also be derived from Equation (1.45) 
by performing integration by parts. 

It should be noted that in the weak-form of Equation (1.114) the traction
boundary conditions (see Equations (1.17) and (1.33)) have been imposed
naturally in the same system equation.  Hence, the traction (derivative)
boundary conditions in solids, Equations (1.17) and (1.33), are often called
natural boundary conditions in numerical methods based on the weak-forms.
However, in the weak-form of Equation (1.114), the displacement boundary
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conditions, Equations (1.18) and (1.34), are not considered.  To obtain
solutions for weak-forms, it is essential to satisfy the displacement boundary
conditions through other proper means.  Therefore, the displacement 
boundary conditions are often called essential boundary conditions in
numerical methods based on the weak-forms.  One simple technique to
satisfy the essential boundary conditions is to have the approximate solution 
satisfy these boundary conditions, as presented in Sub-section 1.4.6.  
Techniques used to satisfy the essential boundary conditions will be 
discussed in the following chapters for MFree methods. 

The above equation of Galerkin weak-form is very handy in application 
to problems of solid mechanics, because one does not need to perform 
integration by parts any more.  The discretized system equation can be
derived very easily using approximated displacements that satisfy the
admissible conditions.  This Galerkin procedure will be applied repeatedly in
the following chapters for many MFree methods.  

Note that in using the above-mentioned Galerkin procedure one does not 
have to know the strong-form of the governing equation.

1.6 LOCAL WEAK-FORM FOR SOLIDS

In deriving local weak-forms, the Petrov-Galerkin procedure has to be 
used.  The Petrov-Galerkin procedure is often used in the FEM formulation 
for convection dominated systems to obtain a stabilized solution
(Zienkiewicz and Taylor, 2000). 

The local Petrov-Galerkin weak-forms have been used to formulate the
meshless Petrov-Galerkin (MLPG) method (Atluri et al., 1999b).  The local
weak-form can be obtained from the subdomain weighted residual method 
discussed in Section 1.4.  In this section, the local weak-forms for solids are
presented.

In a problem domain , the governing Equation (1.31) of two-
dimensional solids at a point xIx is approximately satisfied by a subdomainI
weighted residual method.  A local weak-form of the partial differential
Equation (1.31), over a subdomain (a local quadrature domain) q bounded
by q can be obtained using the weighted residual method locally 

)d 0
q

I ij j i,( ,W b(I ( )d (1.115)
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where IWI  is the weight function or the test function centered at the point xIx .
The first term on the left hand side of Equation (1.115) can be integrated 

by parts to obtain 

d
q q q

I j ij,I jWI

q qq

dd ddI ij j, I j ijW dI ij j W nW nd ddij j I j ijdddddddd (1.116)

where jn is the jth component of the unit outward normal vector (see Figure
1.4) on the boundary.  Substituting Equation (1.116) into Equation (1.115),
we can obtain the following local weak-form: 

d 0
q qq

dI j ij I i,I j ij I iIWI jI ij jW n dI ij jn dij j (1.117)

Equation (1.117) is the local Petrov-Galerkin weak-form for two-
dimensional solids.

Equation (1.117) suggests that instead of solving the strong-form of the
system equation given in Equation (1.31), we employ a relaxed weak-form 
with integration over a small local quadrature domain.  This integration
operation can “smear” out the numerical error, and therefore make the 
discrete equation system much more accurate compared to the numerical
procedures that operate directly on the strong-forms of system equations.  In
other words, using Equation (1.117) for any node at xIx , we transform a global
boundary value problem into a localized boundary value problem over a 
local quadrature domain.  In the present formulation, the equilibrium 
equation and boundary conditions are satisfied in all local quadrature 
domains q and on their boundary q.  Although the quadrature domains
affect the solution, the equilibrium equation and the boundary conditionsm
will be approximately satisfied in the global domain  and on its boundary 
as long as the union of all the local quadrature domains covers the global
domain, , and the global boundary, , well.

Because the local weak-form is obtained by the weighted residual method, 
the test (weight) function plays an important role.  Theoretically, any test
function is acceptable as long as the condition of continuity is satisfied, and
all the weight functions defined for all the nodes in the problem domain are 
linearly independent.  For example, in the MLPG method (Atluri et al., 
1999b), the locally supported bell-shaped weight functions can be used so 
that the integrations are performed locally and no global integration is 
required.  Detailed discussions of the weight functions will be presented in 
Chapter 3 and Chapter 5.

The main disadvantage of the local Petrov-Galerkin method is that the 
system matrix is usually not symmetric.  The detailed properties of the local
weak-form will be discussed in Chapter 5 and Chapter 7. 
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1.7 DISCUSSIONS AND REMARKS

The basic equations of the solid mechanics were presented.  Different
versions of the weighted residual methods were introduced and demonstrated
using a simple example.   

The weighted residual methods will possess the convergence property,
meaning that the approximate solution of the weighted residual methods will 
approach the exact solution when the number of the basis functions used 
increases, as long as

1) The weight functions iWi , iVi  and the basis functions ( )i  are
linearly independent.

2) The basis functions ( )i have a certain order of continuity. 

3) The weight functions and the basis functions have a certain degree of 
overlapping.

The simple example solved using these five different methods 
(collocation, subdomain, moment, least squares and Galerkin) confirmed the 
convergence property.  This example showed that the weighted residual 
methods possess the reproducibility property, meaning that they are capable 
of producing the exact solution as long as the independent basis functions 
contain the components of the exact solution.  The convergence and 
reproducibility properties make the weighted residual methods as reliable
ways of obtaining approximate solutions.  However, the stability and 
accuracy of the solution depend on the quality of basis functions; the choices
of weight functions; and “matchablility” of the weight and trial (basis) 
functions.  The Galerkin method that uses the same functions for the weight 
and trial functions often performs the best. 

For problems with complicated domains, choosing an independent set of 
trial (basis) functions for the entire problem domain is often very difficult.  
Therefore, we usually use local shape functions in a l piecewise manner as the
trial functions.  The details of creating local MFree shape functions will be
given in Chapter 3. The choice of different weight functions leads to 
different formulation procedures for meshfree methods, such as the 
collocation scheme, Galerkin weak-form formulation, Petrov-Galerkin weak 
form formulation, etc.  Various MFree methods will be formulated in
Chapters 4~7 for problems in mechanics of solids and fluids. 
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OVERVIEW OF MESHFREE METHODS

2 Overview of meshfree methods 

2.1 WHY MESHFREE METHODS

One of the most important advances in the field of numerical methods 
was the development of the finite element method (FEM) in the 1950s.  In
the FEM, a continuum with a complicated shape is divided into elements, 
finite elements.  The individual elements are connected together by a 
topological map called a mesh.  The FEM is a robust and thoroughly
developed method, and hence it is widely used in engineering fields due to
its versatility for complex geometry and flexibility for many types of linear
and non-linear problems.  Most practical engineering problems related to 
solids and structures are currently solved using well developed FEM
packages that are commercially available.  

However, the FEM has the inherent shortcomings of numerical methods 
that rely on meshes or elements that are connected together by nodes in at
properly predefined manner.  The following limitations of FEM ared
becoming increasingly evident: 

1) High cost in creating an FEM mesh

The creation of a mesh for a problem domain is a prerequisite in using
any FEM code and package.  Usually the analyst has to spend most of the 
time in such a mesh creation, and it becomes the major component of the
cost of a computer aided design (CAD) project. Since operator costs now
outweigh the cost of CPU (central processing unit) time of the computer, it is 

37



Chapter 2

desirable that the meshing process can be fully performed by the computer
without human intervention.  This is not always possible without 
compromising the quality of the mesh for the FEM analysis, especially for 
problems of complex three-dimensional domains. 

2) Low accuracy of stress 

Many FEM packages do not accurately predict stress.  The stresses 
obtained in FEM are often discontinuous at the interfaces of the elements
due to the piecewise (or element-wise) continuous nature of the displacement 
field assumed in the FEM formulation.  Special techniques (such as the use
of the so-called super-convergence points or patches) are required in the 
post-processing stage to recover accurate stresses.

3) Difficulty in adaptive analysis 

One of the current new demands on FEM analysis is to ensure the
accuracy of the solution; we require a solution with a desired accuracy.  To
achieve this purpose, a so-called adaptive analysis must be performed.

In an adaptive analysis using FEM, re-meshing (g re-zoning) is required to
ensure proper connectivity.  For this re-meshing purpose, complex, robust 
and adaptive mesh generation processors have to be developed.  These 
processors are limited to two-dimensional problems.  Technical difficulties
have precluded the automatic creation of hexahedron meshes for arbitrary
three-dimensional domains.  In addition, for three-dimensional problems, the 
computational cost of re-meshing at each step is very expensive, even if an 
adaptive scheme were available.  Moreover, an adaptive analysis requires 
“mappings” of field variables between meshes in successive stages of the
analysis.  This mapping process can often lead to additional computation as 
well as a degradation of accuracy in the solution. 

4) Limitation in the analyses of some problems

Under large deformations, considerable loss in accuracy in FEM 
results can arise from the element distortions.
It is difficult to simulate crack growth with arbitrary and complex 
paths which do not coincide with the original element interfaces.  
It is very difficult to simulate the breakage of material with large 
number of fragments; the FEM is based on continuum mechanics, in 
which the elements cannot be broken; an element must either stay as 
a whole, or disappear completely.  This usually leads to a 
misrepresentation of the breakage path.  Serious error can occur
because the problem is non-linear and the results path-dependent.  

The root of these problems is the use of elements or mesh in the
formulation stage.  The idea of getting rid of the elements and meshes in the

38



2.  Overview of meshfree methods 39

process of numerical treatments has naturally evolved, and the concepts of 
meshfree or meshless methods have been shaped up.  For convenience, these 
methods are shortened as MFree methods in this book.

2.2 DEFINITION OF MESHFREE METHODS

The definition of an MFree method (GR Liu, 2002) is:

An MFree method is a method used to establish system algebraic
equations for the whole problem domain without the use of a predefined 
mesh for the domain discretization.

MFree methods use a set of nodes scattered within the problem domain
as well as sets of nodes scattered on the boundaries of the domain to
represent (not discretize) the problem domain and its boundaries.  These sets t
of scattered nodes are called field nodes, and they do not form a mesh, 
meaning it does not require any a priori information on the relationship
between the nodes for the interpolation or approximationr † of the unknown
functions of field variables.

What is the requirement for an MFree method?

The minimum requirement for an MFree method is 
A predefined mesh is not required in the field variable interpolation 
or approximation.  

The ideal requirement for an MFree method is l
No mesh is required at throughout the process of formulating and 
solving the problem of a given arbitrary geometry governed by partial 
differential system equations subject to boundary conditions.

Many MFree methods have found good applications, and shown very 
good potential to become powerful numerical tools.  However, the MFree
methods are still in their developing stage, and there are technical problems
that need to be resolved before the methods can become efficient and useful
tools for complex engineering problems.  

† We distinguish interpolation and approximation.   Interpolation refers to an approximation
procedure that reproduces the exact values of the approximated function at the nodes.   All 
the other approximation procedures that do not return nodal function values are called
approximation.  Both interpolation and approximation are used in MFree methods; theaa
standard FEM uses interpolation based on elements.rr
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2.3 SOLUTION PROCEDURE OF MFREE METHODS

In this section, the solution procedure of MFree methods will be outlined.
It will be introduced based on the comparisons with the familiar finite 
element method (FEM).

Figure 2.1 shows two procedures of FEM and the MFree method. This
tells us:

Figure 2.1. Flowcharts for FEM and MFree method.

1) The methods depart at the stage of mesh creation.  

2) The constructions of the shape functions in these two methods are 
different.  In the finite element method, the shape functions are
constructed using predefined elements, and the shape functions are 

Mesh generation

Shape functions based 
on a pre-defined 

element

Discretized system equations   

Solution for field variables

Node Generation

Geometry creation

Shape functions based 
on nodes in a local

support domain 

FEM

Post-processing

MFree



2.  Overview of meshfree methods 41

the same for the entire element.  In MFree methods, however, the
shape functions constructed are usually only for a particular point of 
interest based on selected local nodes; the shape functions can 
change when the point of interest changes. 

3) The methods follow the similar procedure once the global discretized
system equation is established.  Therefore, many techniques
developed for the FEM can be used in MFree methods.   

Comparisons between the finite element method and the MFree method 
are listed in Table 2.1.

Table 2.1.   Differences between FEM and MFree method

Items FEM MFree method
Mesh Yes No
Shape function
creation

Based on pre-defined 
elements

Based on local support 
domains

Discretized system
stiffness matrix

Banded, symmetric Banded, may or may not 
be symmetric depending
on the method used.

Imposition of 
essential boundary 
condition

Easy and standard Special treatments may be 
required, depending on the 
method used

Computation speed Fast Slower compared to the 
FEM depending on the 
method used.

Accuracy Accurate compared to
FDM

More accurate than FEM 

adaptive analysis Difficult for 3D cases Easier
Stage of
development 

Well developed Infant, with many
challenging problems

Commercial
software packages
availability

Many Few

We now list the steps in an MFree method with discussions on major
differences with the finite element method.

Step 1: Domain representation

In the MFree method, the problem domain and its boundary are first 
modelled and represented by using sets of nodes scattered in the problem 
domain and on its boundary.  Since these nodes carry the values of the field 
variables in an MFree formulation, they are often called field nodes. The
density of the nodes depends on the accuracy required and resources
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available. The nodal distribution is usually not uniform.  Since adaptive 
algorithms can be used in MFree methods, the density is eventually
controlled automatically and adaptively in the code; the initial nodal
distribution becomes not important. An MFree method should be able to
work for an arbitrary nodal distribution. 

In the finite element method, this step is different: meshing needs to be
performed to discretize the geometry and create the elements.  The domain
has to be meshed properly into elements of specific shapes such as triangles 
and quadrilaterals.  No overlapping or gaps are allowed.  Information, suchaa
as the element connectivity, has also to be created during the meshing for 
later creation of system equations.  Mesh generation is a very important part 
of the pre-process of the finite element method.  It is ideal to have an
entirely automated mesh generator; unfortunately, it is not practically 
available for general situations.

Figure 2.2 shows the differences of the domain representation in the 
MFree method and the FEM.

(a) FEM

(b) MFree

Figure 2.2. Domain representation in FEM and MFree method.

Field nodes

FEM elements
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Step 2: Function interpolation/approximation

Since there is no mesh of elements in an MFree method, the field variable
(e.g., a component of the displacement) u at any point at x=(x(( , y, z) within
the problem domain is interpolated using function values at field nodes 
within a small local support domain of the point at x, i.e.,

1
( )  ( )( )

n

i i( )( ) s
i

u( U( )  ( ))  (( )( )( )( ))) ( ) (2.1)

where n is the number of the nodes that are included in the local support
domain of the point at x, ui is the nodal field variable at the ith node, Us is
the vector that collects all the field variables at these n nodes, and ( )i is
the shape function of the ith node determined using these nodes included in 
the support domain of x.  As the shape functions will not be used regarded as
zero outside the local support domain in an MFree method, we often say that
the shape functions is locally support.

A local support domain of a point x determines the number of nodes to be
used to support or approximate the function value at x.  The support domain
can have different shapes and its dimension and shape can be different for
different points of interest x, as shown in Figure 2.3; they are usually circular
or rectangular. 

In the finite element method, the shape functions are constructed using
pre-defined elements.  In fact, if the so-called natural coordinate systems are 
used, the shape functions in the natural coordinates are the same for all the
elements of the same type.  These shape functions are usually pre-
determined for different types of elements before the finite element analysis
starts.

Figure 2.3. Local support domains used in the MFree method to construct shape
functions.

Local support 
domain

: point of interest : field node
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Step 3: Formation of system equations

The discrete equations of an MFree method can be formulated using the 
shape functions and strong or weak form system equation given in Chapter 1.  m
These equations are often written in nodal matrix form and are assembled
into the global system matrices for the entire problem domain.  The
discretized system equations of MFree methods are similar to those of FEM
in terms of bandness and sparseness, but they can be asymmetric dependingt
on the method used.

Step 4: Solve the global MFree equations

This is similar to that for FEM, except solvers for asymmetric matrix 
systems may be needed. 

2.4 CATEGORIES OF MESHFREE METHODS†

The development of some of the MFree methods can be traced back more 
than seventy years to the collocation methods (Slater, 1934; Barta, 1937; 
Frazer et al., 1937; Lanczos, 1938, etc).  Some of the early MFree methods 
were the vortex method (Chorin, 1973; Bernard, 1995), finite difference
method (FDM) with arbitrary grids, or the general FDM (GFDM) (Girault,r
1974; Pavlin and Perrone, 1975; Snell et al, 1981; Liszka and Orkisz, 1977;t
1980; Krok and Orkisz, 1989).  Another well-known MFree method is the
Smoothed Particle Hydrodynamics (SPH) that was initially used for
modelling astrophysical phenomena such as exploding stars and dust clouds
that had no boundaries.  Most of the earlier research work on SPH is
reflected in the publications of Lucy (1977), and Monaghan and his co-
workers (Gingold and Monaghan, 1977; Monaghan and Lattanzio, 1985;
Monaghan, 1992).  Detailed discussions on some of the recent developments 
for SPH can be found in the book by GR Liu and Liu (2003).  Overall, there
has been less research devoted to MFree strong-form methods.  This may be
partly because the MFree strong-form method was less robust than the 
method based on the weak-form, and partly because research was
concentrated on the finite element method (FEM) which used weak-forms; it
was then a natural step to MFree weak-form methods. 

† MFree methods and techniques presented in this section will be discussed in detail
in the following chapters. 
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From the early 1990s, there has been an increase in research devoted to
MFree weak-form methods, and a group of MFree methods has been greatly 
proposed.  Examples of these methods are the diffuse element method (DEM) 
(Nayroles et al., 1992), the element free Galerkin (EFG) method (Belytschko
et al, 1994a), the reproducing kernel particle method (RKPM) (Liu et al,
1995), the point interpolation methods (GR Liu and Gu, 2001c; Wang and 
GR Liu, 2000), the meshless local Petrov-Galerkin method (MLPG) (Atluri
1998a), the boundary node method (BNM) (Mukherjee and Mukherjee, 
1997), the boundary point interpolation method (BPIM) (Gu and GR Liu, 
2001e,2002a,2003b), the meshfree weak-strong (MWS) form method (GR
Liu and Gu, 2002d; 2004), etc.  These methods do not require a mesh at least 
for the field variable interpolations.  The approximation functions are
constructed by using a set of arbitrary nodes, and no element or connectivity 
of the nodes is needed for the function approximation.  Adaptive analyses 
and simulations using MFree methods become very efficient and much
easier to implement, even for problems which pose difficulties for the
traditional FEM.

Many MFree methods have been proposed and achieved remarkable
progress over the past years: we now classify them in different ways for easy 
understanding and later referencing.

2.4.1 Classification according to the formulation procedures 

According to the formulation procedures, MFree methods fall into three 
categories:

2.4.1.1 Meshfree methods based on weak-forms

These are called MFree weak-form methods in this book.  In MFree weak-
form methods, the governing partial differential equations (PDEs) with
derivative boundary conditions are first transformed to a set of so-called weak-
form integral equations using different techniques discussed in Chapter 1.  The 
weak-forms are then used to derive a set of algebraic system equations through
a numerical integration process using sets of background cells that may be 
constructed globally or locally in the problem domain.  

MFree weak-form methods were relatively under developed before 1990, 
but there has been a substantial increase in research effort since then.
Several important papers have been published.  The first was by Nayroles et 
al. (1992); they applied the moving least squares (MLS) approximation
proposed by Lancaster and Salkauskas (1981) to the Galerkin weak-form to
formulate the diffuse element method (DEM).  Belytschko et al. (1994a) 
published another important paper on the element free Galerkin (EFG)
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method based on the DEM.  He and co-workers have also made significant
contribution in further developing, improving and popularizing EFG for 
many mechanics problems.  The MFree weak-form methods have been
developed at a very fast pace since 1994; there are now many different 
versions of MFree weak-form methods.

MFree weak-form methods based on the global weak-forms are called 
MFree global weak-form methods, and those based on local weak-forms are
called MFree local weak-form methods.

MFree global weak-form methods are based on the global Galerkin
weak-form for equations of problems and the MFree shape functions. Two
typical MFree global weak-form methods: the element-free Galerkin (EFG) 
method (Belytschko et al., 1994a) and the radial point interpolation method 
(RPIM) (GR Liu and Gu, 2001c; Wang and GR Liu, 2000; 2002a), will be 
discussed in Chapter 4.  Another typical MFree global weak-form method is
the reproducing kernel particle method (RKPM) proposed by Liu and co-
workers in 1995 (Liu et al., 1995).  The main idea of RKPM is to improve
the SPH approximation to satisfy consistency requirements using a 
correction function.  RKPM has been used in nonlinear and large
deformation problems (Chen et al., 1996; Chen et al., 1998; Liu and Jun, 
1998), inelastic structures (Chen et al., 1997), structural acoustics (Uras et al.,
1997), fluid dynamics (Liu and Jun et al., 1997), and so on. 

MFree local weak-form methods were developed by Atluri and 
coworkers based on the local Petrov-Galerkin weak-form, and the MFree
shape functions. The detailed discussions of the meshless local Petrov-
Galerkin (MLPG) method (Atluri and Zhu, 1998a, 1998b, 2000a, 2000b; 
Atluri and Shen, 2002) and the local radial point interpolation method 
(LRPIM) (GR Liu and Gu, 2001c; GR Liu and Yan et al., 2002) will be
presented in Chapter 5.

Some other MFree weak-form methods have also been developed, such 
as the hp-cloud method (Armando and Oden, 1995), the partition of unity 
finite element method (PUFEM) (Melenk and Babuska, 1996;  Babuska and
Melenk, 1997), the finite spheres method (De and Bathe, 2000), the free
mesh method (Yagawa and Yamada, 1996), and so on.

2.4.1.2 Meshfree methods based on collocation techniques

These MFree methods are called MFree collocation methods or MFree
strong-form methods in this book.  In these methods, the strong-forms of 
governing equations and equations for boundary conditions are directly
discretized at the field nodes using simple collocation techniques to obtain a 
set of discretized system equations.  MFree strong-form methods have a long
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history. The finite difference method with arbitrary grids or the general finite 
difference method (GFDM) (Girault, 1974; Pavlin and Perrone, 1975; Snell et 
al, 1981; Liszka and Orkisz, 1977; 1980; Krok and Orkisz, 1989), MFree
collocation methods (see, e.g.  Kansa, 1990; Wu, 1992; Zhang and Song et al., 
2000; Liu X et al., 2002; 2003a-e; etc.), and the finite point method (FPM)
(Onate  et al., 1996; 1998; 2001; etc.) are all typical MFree strong-form methods.

MFree strong-form methods have some attractive advantages: a simple
algorithm, computational efficiency, and truly meshfree. However, MFree
strong-form methods are often unstable, not robust, and inaccurate,
especially for problems with derivative boundary conditions.  Several 
strategies may be used to impose the derivative boundary conditions in the
strong-form methods, such as the use of fictitious nodes, the use of the 
Hermite-type MFree shape functions, the use of a regular grid on the
derivative boundary, etc.  Detailed discussions appear in Chapter 6. 

2.4.1.3 Meshfree methods based on the combination of weak-form and
collocation techniques

These MFree methods are called MFree weak-strong (MWS) form
methods in this book.   The MWS method was developed by GR Liu and Gu
(2002d, 2003b).  The key idea of the MWS method is that in establishing thet
discretized system equations, both the strong-form and the local weak-form 
are used for the same problem, but for different groups of nodes that carries
different types of equations/conditions. The local weak-form is used for all 
the nodes that are on or near boundaries with derivative boundary conditions. 
The strong-form is used for all the other nodes (called collocatable nodes to 
be defined in Chapter 7).  The MWS method uses least background cells for
the integration, and it is currently the almost ideal MFree method that cant
provide stable and accurate solutions for mechanics problems.  

There are also MFree methods based on the integral representation 
method for function approximations, such as the Smooth Particle
Hydrodynamics (SPH) methods (Lucy, 1977; Gingold and Monaghan, 1977; 
GR Liu and Liu, 2003, etc.).  In the standard SPH method, the function
approximation is performed in a weak (integral) form, but strong-form k
equations are directly discretized at the particles. 

2.4.2 Classification according to the function approximation 
schemes

The method of function interpolation/approximation based on arbitrary
nodes is one of the most important issues in an MFree method.  Without 
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robust interpolation/approximation tools being developed, MFree methods
would not exist.  Hence, MFree methods may be classified according to the 
MFree interpolation/approximation methods used.  

2.4.2.1 Meshfree methods based on the moving least squares 
approximation

The moving least squares (MLS) approximation was originated by
mathematicians working on data fitting and surface construction (Lancaster
and Salkauskas, 1981).  The detailed discussions of MLS will be presented
in Chapter 3.  The invention of the MLS approximation was the key to the
development of many MFree weak-form methods, because the MLS can 
provide a continuous approximation for a field function over the entire
problem domain.   It is now widely used in many types of MFree methods
for constructing MFree shape functions.  Nayroles et al. (1992) used the
MLS approximation for the first time to develop the so-called diffuse
element method (DEM).  Many MFree methods have been since developed 
based on the MLS approximation, such as the element-free Galerkin (EFG)
method (Belytschko et al., 1994a) and the meshless local Petrov-Galerkin
(MLPG) method (Atluri and Zhu, 1998a).  EFG and MLPG will be 
described in Chapters 4 and 5, respectively.

2.4.2.2 Meshfree methods based on the integral representation method 
for the function approximation

These MFree methods use integral forms of function approximations. 
The widely used smooth particle hydrodynamic (SPH) method (Lucy, 1977;
Gingold and Monaghan, 1977; GR Liu and Liu, 2003) and the reproducing
kernel particle method (RKPM) (Liu et al., 1995) can belong to this category.   

Smooth Particle Hydrodynamic (SPH) was first invented to solve
astrophysical problems in three-dimensional open space, in particular
polytropes (Lucky, 1977; Gingold and Monaghan, 1977).  The basic idea of
SPH is that the state of a system can be represented by arbitrarily distributed 
particles, and then the SPH approximation is used to discretize the strong-
form of the PDEs of the problem. The applications of SPH include 
astrophysical problems and related fluid dynamics procedure, such as the
simulation of binary stars and stellar collisions (Benz, 1988; Monaghan,
1992), incompressible flows (e.g., Liu MB and GR Liu et al., 2001), elastic
flow (Swegle et al., 1992), gravity currents (Monaghan, 1995), heat transfer
(Cleary, 1998), and so on.  Recently, the SPH method has been applied for
the simulations of high (or hyper) velocity impact (HVI) problems.  Libersky 
and his co-workers have made substantial contributions in the application of 
SPH to impact problems (Libersky and Petscheck, 1991; Libersky et al.,
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1995; Randles and Libersky, 1996).  GR Liu and his co-workers have used
SPH to simulate explosion and penetration (GR Liu and Liu et al., 2001a,b; 
Liu MB and GR Liu et al., 2003a, 2003c-f).  A so-called discontinuous SPH
has also been formulated for simulating the discontinuity at the front of
shock waves (Lam et al., 2003e).

The major shortcomings of the SPH method include tensile instability,
lack of consistency in field variable approximation, and difficulty in
enforcing boundary conditions.  Some improvements and modifications of 
the SPH method have been achieved (Monaghan and Lattanzio, 1985;
Swegle et al., 1995; Morris, 1996; GR Liu and Liu et al., 2002; Liu MB and
GR Liu, 2003b).

2.4.2.3 Meshfree methods based on the point interpolation method  

The point interpolation method (PIM) is an MFree interpolation
technique that was used by GR Liu and his colleagues (GR Liu and Gu, 
2001a) to construct shape functions using nodes distributed locally to
formulate MFree weak-form methods.  Different from the MLS
approximation, PIM uses interpolations to construct shape functions that 
possess Kronecker delta function property.  Two different types of PIM
formulations using the polynomial basis (GR Liu and Gu, 2001c) and the
radial function basis (RBF) (Wang and GR Liu, 2000) have been developed. R
MFree methods using PIM shape functions will be discussed in Chapters 4, 5,
6, and 7. 

2.4.2.4 Meshfree methods based on the other meshfree interpolation 
schemes

These methods include MFree methods based on the hp-cloud method
(Durarte and Odenm 1995), the partition of unity (PU) (Melenk and Babuska,
1996; Babuska and Melenk, 1997) method, etc.  This book will not cover
these methods.

Note that all these interpolation/approximation methods can be applied
in strong-form methods.  More details on this can be found in Chapter 6.

2.4.3 Classification according to the domain representation

Similar to the classification of finite element method (FEM) and 
boundary element method (BEM), MFree methods may also be largely
categorized into the following two categories:
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2.4.3.1 Domain-type meshfree methods.

In these methods, both the problem domain and the boundaries are
represented by field nodes.  The discretized system equations are obtained 
using the weak-form or strong-form or both for the whole domain.

2.4.3.2 Boundary-type meshfree methods.   

MFree ideas have also been extended to the Boundary Integral Equation
(BIE) to formulate boundary-type MFree methods.  In these MFree 
methods, only the boundaries of the problem domain are represented by a set 
of nodes.  No node is needed within the problem domain.  The boundary
integral equation (BIE) is first established using the Green’s functions.  The 
discretized system equations are then obtained from boundary nodes using
MFree shape functions.

Mukherjee and co-workers proposed the boundary node method (BNM) 
(Mukherjee and Mukherjee, 1997; Kothnur et al., 1999).  In BNM, the
boundary of the problem domain is represented by a set of properly 
scattered nodes.  BIEs of problems considered are discretized using the 
MLS approximation based only on a group of arbitrarily distributed 
boundary nodes.  BNM has been applied to three-dimensional problems of 
potential theory and elasto-statics (Chati and Mukherjee, 2000; Chati et al., 
1999, 2001).  Very good results were reported.  However, because the
MLS shape functions lack the delta function property, it is difficult to 
satisfy the boundary conditions accurately in BNM.  This problem
becomes even more serious in BNM because many boundary conditions 
need to be satisfied.  The method used in BNM to impose boundary
conditions doubles the number of system equations compared with the 
conventional BEM.  This makes BNM computationally much more
expensive than the BEM.

Another boundary-type MFree method is the local boundary integral 
equation (LBIE) method (Zhu et al., 1998a, 1998b; Sladek et al., 2002).  In 
LBIE, the domain and the boundary of the problem are represented by
distributed nodes.  For each field node, BIE is used in a regular local domain 
to construct system equations.  The LBIE has been successfully used to
solve linear and non-linear boundary value problems (Zhu et al., 1998a,
1998b; Zhu et al., 1999; Atluri et al., 2000).

Gu and GR Liu used the PIM and RPIM shape functions in BIEs of PDEs
to formulate two boundary-type MFree methods (GR Liu and Gu, 2004a):
the boundary point interpolation method (BPIM) (Gu and GR Liu, 2002a)
and the boundary radial point interpolation method (BRPIM) (Gu and GR
Liu, 2001a,e, 2003b).  In BPIM and BRPIM, since the shape functions have 
the Kronecker delta function property, the boundary conditions can be
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enforced as easily as in the conventional BEM.  Hence, the BPIM and
BRPIM are much more efficient than the methods using MLS shape
functions.

In the late eighties, alternative boundary element formulations were
developed based on generalized variational principles.  DeFigueiredo and
Brebbia (1991) proposed a hybrid boundary integral equation (HBIE).  The 
HBIE leads to a symmetric stiffness matrix, which makes HBIE easy and 
accurate to combine with other numerical methods that produce symmetric
system matrices.  A hybrid boundary point interpolation method (HBPIM)
and a hybrid boundary radial point interpolation method (HBRPIM) (Gu and
GR Liu, 2002b, 2003a) were also formulated for solving boundary value
problems.  HBPIM and HBRPIM are formulated using the PIM and RPIM
shape functions in HBIE.  In HBPIM and HBRPIM, the stiffness matrices
obtained are symmetric.  This property of symmetry can be an added
advantage in coupling HBPIM and HBRPIM with other established MFree
methods that produce symmetric system matrices.  

Some of the MFree methods are summarized in Table 2.2 based on the
above-classifications.

2.5 FUTURE DEVELOPMENT

Table 2.3 lists a matrix of different possible ways to formulate an MFree 
method.  It is clearly shown again from this matrix that MFree methods are
proposed based on different combinations of interpolation /approximation 
techniques and formulation procedures.  It should be noted that there are stillt
some empty entries in the matrix.  These empty entries may not be possible to
be filled, or may not result in a good method a class of problems, but provide a 
window of possibilities for future development of ideal MFree methods.   

The authors believe that the development of MFree methods has not only
led to a group of useful numerical methods that are useful for a different 
classes of engineering problems, but also frees the minds of researchers from
conventional ideas of numerical methods for further exploration of new
numerical methods.  The following four areas could be the future possible
direction to develop ideal MFree methods.

Development of new method for MFree function approximation; 
Development of new formulation procedures; 
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Development of MFree methods based on different combinations of
function approximations and formulation procedures;
Development of MFree methods based on combinations of methods of
function interpolation/approximations or formulation procedures for
different parts of the problem domain or for different types of 
equations.

Table 2.2. Three categories of MFree methods 

Classification Categories Example MFree
methods†

MFree methods based on strong-forms of 
governing equations 

MFree collocation
methods, FPM etc.

MFree methods based on weak-forms of
governing equations

EFG,  RPIM, MLPG,
LRPIM , etc. 

Based on
formulation
procedure

MFree methods based on the combination
of weak-form and strong-form

MWS, etc.

MFree methods using MLS EFG, MLPG, etc. 

MFree methods using integral
representation method for function 
approximations

SPH, etc.

MFree methods using PIM RPIM, LRPIM, etc. 

Based on
interpolation
/approximation
method

MFree methods using other meshfree
interpolation schemes. 

PUFEM, hp-cloud, etc.

Domain-type MFree methods SPH, EFG, RPIM,
MLPG, LRPIM, etc.Based on domain

representation
Boundary-type MFree methods BNM, LBIE, BPIM,

BRPIM, HBRPIM, etc.

† See Chapters 4-7 for more details on these methods.
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Chapter 3 

MESHFREE SHAPE FUNCTION
CONSTRUCTION

3 Meshfree shape function construction 

3.1 INTRODUCTION

As we have seen in Chapter 2, in seeking for an approximate solution to a 
problem governed by PDEs and boundary conditions, one first needs to 
approximate the unknown field function using trial (shape) functions, before 
any formulation procedure can be applied to establish the discretized system 
equations.  This chapter discusses various techniques for MFree shape 
function constructions.  These shape functions are locally supported, because 
only a set of field nodes in a small local domain are used in the construction
and the shape function is not used or regarded as zero outside the local
domain. Such a local domain is termed the support domain or influence
domain or smoothing domain†.

In the finite element method (FEM), the shape functions are created using
interpolation techniques based on elements formed by a set of fixed nodes. 
This type of interpolation is termed stationary element based interpolation. t
In MFree methods, the problem domain is usually represented by field nodes 
that are, in general, arbitrarily distributed.  The field variables at an arbitrary
point in the problem domain are approximated using a group of field nodes 
in a local support domain.  Hence, a moving domain based interpolation/

† The difference between the support domain and the influence domain will be presented in 
Chapter 4.
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approximation technique is necessary to construct the MFree shape function 
for the approximation of the field variables using a set of arbitrarily
distributed nodes.  In the development of an MFree method, the construction 
of efficient MFree shape functions is the foremost issue needed to be settled.

3.1.1 Meshfree interpolation/approximation techniques 

A good method for creating MFree shape functions should satisfy some 
basic requirements.  

1) It should be sufficiently robust for reasonably arbitrarily distributed 
nodes (arbitrary nodal distribution).

2) It should be numerically stable (stability).
3) It should satisfy up to a certain order of consistency (consistency).
4) It should be compactly supported (compact), i.e., it should be

regarded as zero outside a bounded region, the support domain.
5) The approximated unknown function using the shape function should 

be compatible (compatibility) throughout the problem domain when
a global weak-form is used, or should be compatible within the local
quadrature domain when a local weak-form is used. 

6) It is ideal if the shape function possesses the Kronecker delta
function property (Delta function property(( ), i.e. the shape function is
unit at the node and zero at other nodes in the support domain. 

7) It should be computationally efficient (efficiency).

The requirement of arbitrary nodal distribution is essential for
developing a robust MFree method for practical engineering problems.  

The stability condition concerns two issues.  The first is the interpolation
stability, meaning that the shape functions constructed should be stable with 
respect to small perturbations of node locations in the support domain.  This
requires the moment matrix created using the arbitrarily distributed nodes to 
be well-conditioned.  The interpolation stability will be briefly addressed in 
Sections 3.2 and 3.3.  The second issue is the solution stability, meaning that 
the numerical solution using the shape functions together with a formulationff
procedure should not have the so-called numerical or l unphysical oscillations
that have been observed from, for example, convection dominated problems
(see Chapter 6).  For the second instability, even if the local interpolation istt

 In an MFree method (or even FEM), the shape functions are constructed in a 
piecewise manner based on local support domains. Therefore, the field function 
approximated using these shape functions may not be continous when the support 
domain moves in the global problem domain.  If the approximation is continous,
we say it is compatiable, otherwise incompotable. 
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stable, the solution could be unstable due to the mismatch of the
interpolation scheme (or formulation procedure) with the physical nature of 
the problem.  Changing the interpolation schemes is a possible way to solve 
this problem.  The formulation procedure can also play a very important role
in producing a set of discretized system equation that produces a stable 
solution.  This requires a properly designed formulation procedure based on
the nature of the problem to have the dominant terms properly reflected in
the formulation.  This aspect of numerical treatment is addressed to certain 
degree of satisfaction in the finite difference method (FDM) by changing the 
interpolation scheme using so-called upwind grids (Courant et al., 1953; d
Runchall and Wolfstein, 1969; Spalding 1972; Barrett, 1974; etc.).  It has 
also been well studied by Guymon et al., (1970), Adey and Brebbia (1974), 
Zienkiewicz et al.  (1975), Christie et al. (1976), Morton (1985), Donea et al,
(1985), Hughes et al. (1988), Onate  (1998), and many others for the FEM. 
More detailed discussions on this issue can be found in the book by
Zienkiewicz and Taylor (2000) and the references provided there.

Unfortunately, the instability in MFree methods for convection
dominated problems has not been properly addressed, and the issue is far
from conclusive.  Hence, this book will not provide concrete discussions on
this topic, but will discuss some of the techniques in Chapter 6 for
convection dominated problems.   

Another type of solution instability often encountered is the well-known
tensile instability that arises in applying the SPH approximation to 
hydrodynamics with material strength. Some discussions and measures have
been developed (Swegle et al., 1995; Balsara; 1995; Dyka and Ingel, 1995;
Morris 1996; Dyka et al., 1997; Monaghan, 2000; Randles and Libersky, 
2000; Gray et al.  2001; GR Liu and Liu, 2003).

The consistence is important for an accurate function approximation and
convergence of the MFree method. 

The compact support is required to produce a set of sparse discretized
system equations that can be solved effectively.  This is extremely importantff
for large systems.  

When a global weak form is used, the global compatibility of the shape 
function, meaning that it has to be compatable in the entire (global) problem 
domain, is required. When local weighted residual methods of collocation 
methods are used for establishing the discretized system equations, only
local compatibility in the local weighted domain is required.

The Kronecker delta function property is not rigid because one can use 
special measures to impose essential boundary conditions if the MFree shape
function does not have this property (see Chapters 4~5). 
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The development of effective construction methods for MFree shape 
functions has been one of the hottest areas in the research of MFree methods.
Several MFree approximation formulations have been proposed.  GR Liu
(2002) classified these formulations into three large categories based on the
types of theories of function approximation/representation, i.e., the integral
representation, the series representation, and the differential representation. 
Table 3.1 lists some of the techniques under these categories. 

Table 3.1. Categories of MFree interpolation techniques 

Categories MFree approximation techniques 

Integral
representation

Smoothed Particle Hydrodynamics (SPH)

Reproducing Kernel Particle Method (RKPM)

Series
representation

Moving Least Squares  (MLS) 

Point Interpolation Methods (PIM, RPIM)

Partition of Unity (PU) methods 

Differential
representation General Finite difference method (GFDM)

In the integral representation method, the function is represented using
its information in a local domain (smoothing domain or influence 
domain) via a weighted integral operation.  The consistency is achieved 
by properly choosing the weight function.  It is often used in the so-
called smoothed particle hydrodynamics (SPH).   

The series representation methods have a long history.  They are well 
developed in FEM and are now used in MFree methods based on
arbitrary distributed nodes. The consistency is ensured by the 
completeness of the basis functions.  The moving least square (MLS) 
approximation is the most widely used method.  The point interpolation
method (PIM) using radial basis function (or RPIM) is also often used. 
Both MLS and RPIM will be discussed in this chapter in detail.

The differential representation method has also been developed and used 
for a long time in the finite difference method (FDM).  The finite
difference approximation is not globally compatible (see, e.g., 
Zienkiewicz and Tayler, 2000), and the consistency is ensured by the 
theory of Taylor series.  Differential representation methods are usually
used for establishing system equations based on strong-form formulations, 
such as FDM and the general finite difference method (GFDM).   
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In the following sections, we will discuss the point interpolation method 
(PIM) and the moving least squares (MLS) approximation in detail.  There
are other methods of constructing MFree shape functions, such as the SPH
approximation, the hp-clouds method, and partitions of unity finite element 
method, and so on.  Readers can refer to the related references for more
details and more precise descriptions.  

Before introducing the MFree interpolants, the concept of support 
domain that is often used in the MFree interpolation operations is introduced. 

3.1.2 Support domain 

The accuracy of interpolation for the point of interest depends on the 
nodes in the support domain as shown in Figure 3.1.  Therefore, a suitable
support domain should be chosen to ensure an efficient and accurate
approximation.  For a point of interest at xQ, the dimension of the support
domain dsd is determined by

dsd = sdcdd (3.1)

where s is the dimensionless size of the support domain, and dcdd is the nodal
spacing near the point at xQ.  If the nodes are uniformly distributed, dcdd is
simply the distance between two neighboring nodes.  When nodes are non-
uniformly distributed, dcdd can be defined as an average nodal spacing in the
support domain of xQ.

The dimensionless size of the support domain s controls the actual 
dimension of the support domain.  For example, s=2.1 means a support
domain whose radius is 2.1 times the average nodal spacing.  The actual
number of nodes, n, can be determined by counting all the nodes included in
the support domain.  Note that s should be pre-determined by the analyst
before analysis, and it is usually determined by carrying out numerical
experiments for a class of benchmark problems for which we already have 
solutions.  Generally, an s=2.0~3.0 leads to good results for many problems
that we have studied.

Note that the support domain is usually centered by a point of interest at
xQ.  Biased support domains can also be used for special problems such as
convection dominated problems (see, Section 6.4).

3.1.3 Determination of the average nodal spacing 

For one-dimensional cases, the simplest method of defining an average
nodal spacing could be

( 1)
s

c
Ds

Dsdc (3.2)
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where DsD is an estimated dsd  (in Equation (3.1)) that does not have to be very
accurate but should be known and is a reasonably good estimate of dsd , and nDs
is the number of nodes covered by the domain with the dimension of Ds.

Figure 3.1. Support domains of points of interest at xQ  in MFree models.
(a) circular support domains (rsr : the dimension of the support domain); 

(b) rectangular support domains (rsxr and rsyr : dimensions of the support domain in x and y
directions).  The support domain is centred byrr xQ.

(a)

(b)

s

rsyr
rsxr

s

rsr

xQ

xQ
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For two-dimensional cases, the simplest method of defining an average 
nodal spacing could be 

1
s

s
c

Ass

Assdc n (3.3)

where As is the area of the estimated support domain.  The estimate does not 
have to be accurate, but should be known and should be a reasonably good kk
estimate; nAs is the number of nodes covered by the estimated domain with 
the area of As.

Similarly, for three-dimensional cases, the simplest method of defining 
an average nodal spacing could be 

3

3 1
s

c
Vs

Vsdc n
(3.4)

where VsVV is the volume of the estimated support domain, and nVs is the
number of nodes covered by the estimated domain with the volume of VsVV .

After determining dcdd , using Equation (3.1), we can easily determine the
dimension of the support domain dsd  for a point at xQ in a domain with non-
uniformly distributed nodes.  The procedure is  

1. Estimate dsd  for the point at xQ, which gives Ds or As or VsVV ;
2. Count nodes that are covered by Ds or As or VsVV , which yields 

sDs
n ,

sAss
n ,

and
sVs

n ;

3. Use Equation (3.2) or (3.3) or(3.4) to calculate dcdd ;
4. Calculate dsd  using Equation (3.1), for a given (desired) dimensionless 

size of support domain.

3.2  POINT INTERPOLATION METHODS

The point interpolation method (PIM) is one of the series representation 
methods for the function approximation, and is useful for creating MFree 
shape functions.  Consider a scalar function u(x) defined in the problem 
domain  that is represented by a set of scattered nodes.  The PIM
approximates u(x) at a point of interest x in the form of

1

( ) ( )
m

i i( )
i

u B a( ) ( )( )(() (3.5)
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where the Bi(x) are the basis function defined in the space Cartesian 
coordinates xT=[x[[ , y], m is the number of basis functions, and the ai are the
coefficient.

For function approximation, a local support domain is first formed for the 
point of interest at x which includes a total of n field nodes.  For the
conventional point interpolation method (PIM), n=m is used that results in 
the conventional PIM shape functions that pass through the function values
at each scattered node within the defined support domain.  For the weighted
least square (WLS) approximation or the moving least squares (MLS) 
approximation, n is always larger than m.

There are two types of PIM shape functions have been developed so far
using different forms of basis functions.  Polynomial basis functions (GR
Liu and Gu, 1999; 2001a) and radial basis functions (RBF) (Wang and GR
Liu, 2000; GR Liu, 2002) have often been used in MFree methods.  These 
two-types of PIMs will be discussed in the following sections.

3.2.1 Polynomial PIM shape functions 

3.2.1.1 Conventional polynomial PIM

Using polynomials as basis functions in the interpolation is one of the
earliest interpolation schemes.  It has been widely used in establishing 
numerical methods, such as the FEM.  Consider a continuous function u(x)
defined in a domain , which is represented by a set of field nodes.  The
u(x) at a point of interest x is approximated in the form of  

T

T

1

( ) ( )
m

i i
i

u(
1a11a

maap

a

p aT( )p ( )( )i i( )( ))) ( )( )( )( ) (3.6)

where pi(x) is a given monomial in the polynomial basis function in the
space coordinates xT=[x, y], m is the number of monomials, and ai is the
coefficient for pi(x) which is yet to be determined.  The pi(x) in Equation
(3.6) is built using Pascal's triangles (see Figure 3.2), and a complete basis is 
usually (but not always) preferred.  For one-dimensional (1-D) and two-
dimensional (2-D) space, the linear basis functions are given by

T ( ) {1 }pT ( m=2 , p=1 (1-D) (3.7)

T ( ) {1 }pT ( m=3, p=1 (2-D) (3.8)

and the quadratic basis functions are
T 2( ) {1 }2pT ( m=3, p=2 (1-D) (3.9)
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T 2 2( ) {1 }x y x xy ypT ( m=6, p=2 (2-D) (3.10)

1

x y

x2 xy y2

x3 x2y x y2 y3

x4 x3y x2y2 xy3 y4

Figure 3.2. Pascal triangle of monomials for two-dimensional domains.

The complete polynomial basis of order p can be written in the following 
general form.   

T 2 1( ) {1 }p p1x x x xppT ( (1-D) (3.11)

T 2 2( ) {1 }p px y x xy y x yppT ( (2-D) (3.12)

In order to determine the coefficients ai, a support domain is formed for
the point of interest at x, with a total of n field nodes included in the support 
domain.   Note that in the conventional PIM, the number of nodes in the 
local support domain, n, always equals the number of basis functions of, m,
i.e., n=m.  The coefficients ai in Equation (3.6) can then be determined by 
enforcing u(x) in Equation (3.6) to pass through the nodal values at these n
nodes.  This yields n equations with each for one node, i.e., 

1 1
1

2 2
1

1

( ) ( )1

( ) ( )2

( ) ( )

m

i m1 1 2 1 3 1 m
i
m

i m2 1 2 2 3 2 m
i

m

i n n n m m n1 2 3 (n
i

u1 1 1 21 1 1 3 111

u2 2 1 22 1 2 3 222

un i n n n mi n n n m1 2 32( )

( )a p( 1

( )a p( 2

( )a p(ii ( )

(a p) a a x a ya a x a y1 211 1 3 1)1 1 211 1 3 11

(a p) a a x a ya a x a y1 211 2 3 2)2 1 211 2 3 22

(m (a pmm) a a x a ya a x a y1 2 322) n nnn n1 2 322)

(3.13)

which can be written in the following matrix form. 

s mU P as m (3.14)



3.  Meshfree shape function construction 63

where
T{ ... }s n1 2 3{ ...u u u1 2 32 ...1 2 32 ...U (3.15)

is the vector of nodal function values, and
T

1 2 3{ ... }na a a1 2 32 ...a (3.16)

is the vector of unknown coefficients, and 

m

1 ...... ( )1x y x y1 1 1 11 1 ......1 1 1 1 1( )1

1 ( )
my y p1 1 1 11 1 ( )1y y1 1 1 11 1

2 2 2 2 21 ( )2mx y x y p2 2 2 22 2 ...... )1 (x y x y
1 ...... ( )33( )3m3 3 3 33 3 3 33 3 ...... ( )33 3 3 33 3 ......

1 ( )1 ( )n n n n m n((x y x y ......n n n nn n n ......1 ( )x y x y

Pm 1 ...... (x y x y3 3 3 33 3 ......1 (1 x y x y3 3 3 33 3 ......3 3 3 33 3 ...... (3.17)

is the so-called moment matrix.  Because of n=m in PIM, Pm is hence a
square matrix with the dimension of (n n or m m).

Solving Equation (3.14) for a, we obtain 
1

m sa P U1
m (3.18)

In obtaining the foregoing equations, we have assumed 1
mPm exists, and left 

the issue regarding non-existence of 1
mPm to be addressed later.

It is noted that coefficients a are constants even if the point of interest at x
changes, as long as the same set of n nodes are used in the interpolation,
because Pm is a matrix of constants for this given set of nodes. 

Substituting Equation (3.18) back into Equation (3.6) and considering
n=m yield

T 1 T

1

( ) T ( )
n

m s i i s
i

u u( s ii iuiiix p x P U1) ( )) (T
m) ( )) ( m( )( U) (3.19)

where ( ) is a vector of shape functions defined by 
T T 1( ) ( ) ( ) ( ) ( )T 1T

m n1 2( ) ( )( ) ( )1 2p) ( ) ( ) ( ) () ( ) ( ) ( ) (T 1TT
m n( ) ( )( ) ( )( ) ( )( ) ( )) (1 21 21 2( ) ( )( ) ( )1 2( )( )( ) (3.20)

The derivatives of the shape functions can be easily obtained because the
PIM shape function is of polynomial form.  The lth derivatives of PIM shapell
functions can be written as

T
( ) 1( )( )

l

ml

( )
1 ( )(
111
( )

( ))1 (
( )
2 ( )(
22
( )
2 ( )

( ) ( )(( ) ( )n
( ) ( )(

pT ( P)
ml) 2 ( )2 ( ) p x(

x
(3.21)
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The properties of PIM shape functions (GR Liu, 2002) can be 
summarized as follows.

1) Consistency

The consistency of the polynomial PIM shape function depends on the 
highest complete order of the monomial pi(x) used in Equation (3.6).  If the
complete order of monomial is p, the shape function will possess pC
consistency.  This is because the PIM shape functions can reproduce the 
monomials that are included in the basis used to construct the shape
functions.  To demonstrate, we consider a field given by

1

( )
k

j j
j

f p b k m( ) ,( )j j( )( ) k( ) ,( )( )) (( (3.22)

where pjp (x) are monomials that are included in Equation (3.6).  Such a given
field can always be written in the form of Equation (3.6). 

1

T T

1

( ) ( )T T

0

m
k

j j
j

b1

bkf p( ) ( )j

0

p p( ) (( ) (T T
jp ( )( )j ( ) ( )( )( )( )( )( )) (3.23)

Using n (here n=m) nodes in the support domain of x, we can obtain the
vector of nodal function values Us as
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(3.24)

Substitute Equation (3.24) into Equation (3.19), we have 

T 1 T

1

( ) ( ) ( ) ( ) ( )T 1 T
k

s m m j j)
j

(u( ) ( bj( (j (p) ( ) ( )) ( ) ( )T 1 T1) ( ) ( )) ( ) ( )s m m) ( ) ( )( ) ( )) ( ) ( ) (3.25)
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This proves that any polynomial field function given by Equation (3.6) will 
be exactly reproduced by PIM interpolation, as long as the basis functions of 
the field function are included in the basis functions of the PIM shape
functions.  This can always be done as long as the moment matrix Pm is
invertible so as to ensure the uniqueness of the solution for the coefficient a.

2) Reproducibility 

On the extension of proving the consistency of the polynomial PIM shape 
functions, we can conclude that PIM shape functions can reproduce any
functions (not necessarily a polynomial) that are included in the basis 
functions.

3) Linear independence

PIM shape functions are linearly independent in the support domain.  
This is because basis functions are linear independent, and Pm is assumed to
be invertible.

4) Delta function property

Shape functions have the Kronecker delta function property, that is  

1 , 1,2, ,
0 , , 1,2, ,i

i j j n, 1,2, ,,
i j i j n, , 1,2, ,, ,, ,, ,, ,

(3.26)

This is because the PIM shape functions are created to pass thorough
nodal values.

5) Partitions of unity 

If the constant is included in the basis, the i x is form a partition of 
unity, i.e.,

1

( ) 1
n

i
i

i (3.27)

This can be proven easily from the reproducibility feature of the polynomial 
PIM shape functions.  For a given constant field u(x)=c, we have

1 2 nu u u c1 2 nu uu u2 (3.28)

Because the constant field can be reproduced using PIM shape functions, we
obtain

1 1

( )
n n

i
i i1

u c( ) ii
1

cc i iu ci iiiui ii (3.29)

which leads to



66 Chapter 3

1

1
n

i
i

i (3.30)

This shows that the polynomial PIM shape functions possess the partitions of
unity.  

6) Linear reproducibility 

PIM shape functions have the linear reproducibility, i.e.,   
n

i
ii

1
)( xix) (3.31)

if the complete 1st order monomials are included in the basis.  This can also
be proven easily from the reproducibility of the PIM shape functions.   

7) Polynomial form  

PIM shape functions and their derivatives have polynomial forms. 

8) Compact support 

The PIM shape function is constructed using nodes in a compact support 
domain, and its’ value at any point outside the support domain is regarded as
zero when it is used in MFree method.

9) Compatibility  

In using PIM shape functions, the compatibility in the global domain is 
not ensured when the local support domain is used, and the field function 
approximated could be discontinuous when nodes enter or leave the moving 
support domain.  Because no bell shape weight function is used in PIM, the
nodes in the support domain are updated suddenly, meaning that when the 
nodes are entering or leaving the support domain, they are actually 
“jumping” into or out of the support domain (GR Liu and Gu, 2004c).  Care 
must be taken when a global weak-form is used together with PIM shape 
functions with compact supports.  The global compatibility is not an issue 
when the strong-forms or the local weak-forms are used.

Note that our discussion is based on the assumption that 1
mP exists.  This

condition cannot always be satisfied depending on the locations of the nodes
in the support domain and the terms of monomials used in the basis.  If an
inappropriate polynomial basis is chosen for a given set of nodes, it may 
yield in a badly conditioned or even singular moment matrix.  There are a 
number of ways to solve the singularity problem.  The most practical method 
is the use of the matrix triangularization algorithm (MTA) (GR Liu and Gu,
2001d, 2003a) and the use of the radial basis functions (RBFs) in place of 
the polynomial basis (Sub-section 3.2.2).  In addition, the weighted least 
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square (WLS) method can also be used to overcome the singularity problem 
in the polynomial PIM.  The WLS approximation will be discussed in the 
following section. 

3.2.1.2 Weighted least square (WLS) approximation 

The weighted least square (WLS) approximation is a widely used
technique for data fitting.  In the WLS, the number of basis, m, is usually 
pre-determined according to the requirements on the consistency for shape
functions.  Using Equation (3.5), we can write a two-dimensional field 
function u(x) approximated using the polynomial basis as follows. 

T

1 2 3
1

T

( ) ( ) ( )
m

h
i i m m

i

a a x a y a p1 2 32u p( )h
i i( ) m( )a a a x a ya a x a y1 2 322) i( )

1a11a

maap

a

((())

p aT
(3.32)

where ai (i=1, 2, …, m) are the coefficients to be determined, and p is the
vector of basis functions.

To determine coefficients a in Equation (3.32), n nodes are selected in 
the local support domain for the approximation.  Note that in the WLS, n>m
is used.  Using Equation (3.32) for all these n nodes, we can obtain the
similar equations of Equations (3.14)~(3.17), i.e., 

( ) ( 1)( )s m ( ) () (( ) () () (U P a( )( )s m (( ) )) (3.33)

The moment matrix, Pm, is 

( )

m

1 ...... ( )1x y x y1 1 1 11 1 ......1 1 1 1 1( )1

1 ( )
my y p1 1 1 11 1 ( )1y y1 1 1 11 1

2 2 2 2 21 ( )2mx y x y p2 2 2 22 2 ......1 ( )x y x y
1 ...... ( )33( )3m3 3 3 33 3 3 33 3 ...... ( )33 3 3 33 3 ......

1 ( )1 ( )n n n n m n((x y x y ......n n n nn n n ......1 ( )x y x y

Pm 1 ...... (x y x y3 3 3 33 3 ......1 (1 x y x y3 3 3 33 3 ......3 3 3 33 3 ...... (3.34)

Note that Pm is not a square matrix because n>m.
Equation (3.33) is a set of overdetermined system of equations due to 

n>m meaning that the number of equations is more than the number of 
unknowns.  We can solve Equation (3.33) for a using the standard weighted 
least squares (WLS) method by minimizing the following weighted discrete
L2 norm:
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2

1

[ ( ) ( )]
n

h
i i i[ ( ) () (

i

W [ ( )J Wi[ ( )( )W [ (i[ ( (()))) (3.35)

where iWi (i=1, 2, …, n)  is the weight coefficient associated with the
function value at the ith node in the support domain, and ui becomes the
“nodal parameter” of u at x=xi .  The stationary condition for J isJ

0JJJ
a

(3.36)

which leads to the following linear relation between a and Us

T T
m m m sP WP a P WUT T
m m mm m (3.37)

where W is the diagonal matrix constructed from the weight constants, i.e., 

( ) 1 2 nW W W1 21 nW( (3.38)

Note that the weights used here are considered as constants (not functions of 
x) that define the different influences of the nodes in the approximation.  The
further nodes should have smaller influences while closer nodes have bigger
influences, iWi  can be computed from any weight function with the bell
shape that will be provided in Section 3.3.2.  For example, the following
formulations of iWi can be used.

2 2

2

( ) ( )) (2

( )
( )

1
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rr
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i i( rs
c

e ec
W Wi

e

( )

)((W (3.39)

2 2( ) ( )2
i ir x x( ) () (i ) (( ) (2( ) () () () ( (3.40)

where (x(( , y) is coordinate of the point of interest, rsr is the size of local
supported domain, and c is a constant to be determined by the analyst before
calculation.

We now let 
T
m mA P WPT
m m (3.41)

T
mB P WT
m (3.42)

Solving Equation (3.37) for a yields
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T 1 T( ) ( )T 1 T1
m m m s) ( )) (a P WP P W U( ) ( )) (T 1 T11) ( )) () ( (3.43)

or
1

sa A BU1 (3.44)

Substituting Equation (3.44) back into Equation (3.32), we have 

T T 1 T( )h
s su x p a p A BUT T 1T 1) U (3.45)

where the vector of shape functions  is

T T 1
1 2 n11 22p A BT 1Tp A B (3.46)

where i (i=1, 2, …, n) is the shape function corresponding to the ith node in
the support domain.   

Equation (3.45) is the approximation equation for the WLS.  Because the 
weighted least squares method is used, the shape functions so constructed do 
not have the Kronecker delta function property, which can cause difficulties 
in imposing essential boundary conditions, if it is used in MFree methods 
based on global weak-from such as the Galerkin weak-form (Chapter 4).  
However, it is not a big issue in the MFree methods based on local weak-
forms (Chapter 5) or the MFree collocation methods (Chapter 6), because the 
direct interpolation method can be used to enforce the essential boundaryd
conditions.  Note also that the WLS shape functions are compatible only in 
the local support domain rather than in the global domain.  This is not a
problem when the WLS shape functions are used in the local weak-form
methods or collocation methods, but care needs to be taken when it is used 
for global weak-form formulation, for which the moving least squares 
(MLS) to be discussed in Section 3.3 is a better choice. 

3.2.1.3 Weighted least square approximation of Hermite-type

In some problems, the normal derivatives of field functions at some 
nodes are important and need to be considered as independent variables.  For 
example, in order to impose the stress (derivative) boundary conditions in 
the analysis of solid mechanics problems using the MFree strong-form 
methods (see, Chapter 6), the normal derivatives of displacements at the 
nodes on the derivative boundaries (called DB-nodes) are often considered 
as independent variables in the function approximation.  This is the so-called 
Hermite-type approximation.  In this section, the Hermit-type WLS is 
discussed, which is an extension of the WLS and will be used in Chapter 6.
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Interior nodes and nodes on the Dirichlet boundary
 Collocation node
Nodes on Derivative boundary (DB-nodes) 

1
DBu
n

2
DBu
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3
DBu
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Problem
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Derivative
boundary

Dirichlet
boundary 

Support 
domain 

Figure 3.3  Hermite-type interpolation with normal derivatives as additional degrees of 
freedom.

To determine coefficients a in Equation (3.32), n nodes are selected in
the local support domain for the approximation.  The normal derivatives of
the function at the DB-nodes shown in Figure 3.3 are considered as variables
in addition to the variables of the nodal function values.  Applying Equation 
(3.32) to all these n nodes, we have

1 1 2 1 3 1 1

2 1 2 2 3 2 2

( )1
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( )

m m

m m

n n n m1 2 3 m n

u a a x a y a p1 1 2 1 3 11 2 1 3 m

u a a x a y a p2 1 2 2 3 21 2 2 3 m

u a a x a y a pn n n mn n1 2 32

a a x a ya a x a y1 2 1 3 11 2 1 31 2 1

a a x a ya a x a y1 2 2 3 21 2 2 31 2 2

a a x a ya a x a y1 2 322 n nn1 2 322

(3.47)

or

s mU P as m (3.48)

where the moment matrix Pm is given in Equation (3.34), and 
T{ . . }s n1 2 3{ .1 2 3 ...1 2 32 ...1 2 32 ..U (3.49)
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Now applying Equation (3.32) to these nDB DB-nodes, we have

( ) ( ) ( )DB DB DB
i i i) ( ) () ( ) (

xi yil l( )( )
xi y y

( ) ( )( )) ( )u( ) ( )( )( )( )( )l i( )
xixi yixx yy

(() ( )( )) () ( )( )) () ( )) (( )( )( )
(3.50)

and n is the vector of unit outwards normal, and lxil  and lyill are the direction
cosines for the outward normal at the DB-node at ( DBDD

ix , DBDD
iy ), which are 

defined by  

cos( , )

)

DBD
xi i

DBD
yi i

l xcos( ,xi

l ycos( ,yi
(3.51)

Using Equation (3.50) for all DB-nodes, we can obtain 
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(3.52)

Equation (3.52) can be written as the matrix form of 

s DU P as D (3.53)

where sU  is the vector that collects all the normal derivatives of function
values at the DB-nodes
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and the moment matrix PD is
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The dimension of PD is (nDB m).

Combining Equations (3.48) and (3.53) gives 

D
s

mm

D

mmU Pa aD
s

mm

D
(3.56)

where D
sU  is the vector that collects all the nodal values of the function at n

nodes and all nodal normal derivatives of the function at the nDB DB-nodes,
i.e.,

T

D
s

DBDB ( )DB( )( )1
uu DB ( )DB( )DB uu DB1( )1)( ) (1

DB
( )

DB( )1( ) ( ) nu
n1 )n1( ) (1UD

s ( ) () (( ) (1u( )1( )1( ) ( )( (3.57)

in which x1, x2~xn are coordinates for the n nodes in the support domain, 

DB

DB DB DB
1 22 nx x xDB DBDB
1 , ~2 are coordinates of the DB-nodes whose normal derivatives

are considered as independent variables.
In Equation (3.56), P is the moment matrix that can be written as

DB(( ) )DB ))DB ))))DB
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Equation (3.56) is a set of overdetermined system of equations due to
n+nDB>m meaning that the number of equations is larger than the number of 
unknowns.  We can obtain the solution for Equation (3.56) using the
standard weighted least squares method by minimizing the following
weighted discrete L2 norm of

DB DB
2
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n (3.59)

where iWi  and DBDD
jWj  are weight coefficients, and ui and

DB( )DB
ju

n
 are the

nodal parameters of u at x=xi and the normal derivatives of u at x= DB
jx .

The stationary condition of J requiresJ

0JJJ
a

(3.60)

which leads to the following linear relation between a and D
sU

T T D
sP WPa P WUT T (3.61)
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where W  is the diagonal matrix constructed using a weight function, i.e., 

DB DB
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In which iWi (i=1,2, …, n)  is the weight coefficient associated with the
function value for the ith node in the support domain, and DBDD

jWj  (j(( =1, 2, ..,
nDB) is the weight coefficient associated with the jth DB-node.  The weight
function iWi can be obtained using any function such as the one given in
Equation (3.39), and DBDD

jWj  can be given independently in the similar manner.  

The weight function DBDD
jWj  can also be obtained using jWj .  For example, we

may define

1 ( )DB D1 (D BD
j j(W WDB 1DD
j ((W (3.63)

where  is the constant to be determined before analysis.  
Considering the fact that W  is a diagonal matrix, we now let 

T T T( ) ( ) ( )T T TT( ) ( m m D D D0 ) () (0A ( ) ( ) () ( ) (T T TTT( ) ( ) () () (0( ) ( )( )) (T TTT
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0 )0
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Solving Equation (3.61) for a yields 
T 1 T( ) ( )T 1 T1 D

sa P WP P W U( ) ( )) (T 1 T11 (3.66)

or
1 D

sa A BU1 (3.67)

Substituting Equation (3.67) back into Equation (3.32), we have 
T(h DT T 1( ) D

s su x p a p A BU) T T 1T 1) U (3.68)

The vector of shape functions can be expressed as follows
T T 1

1 DB

H H H
i n j n11 11 1

H H HH
j nj11p A BT 1Tp A B (3.69)
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where i (i=1,2, …, n) is the shape function corresponding to the ith node in
the support domain, and H

j
H (j(( =1,2, …, nDB) is the shape function 

corresponding to the jth DB-node.
Similar to the WLS shape functions, these Hermite-type WLS shape

functions do not have the Kronecker delta function property.  Special
treatments are needed to enforce the essential boundary conditions.    

3.2.2 Radial point interpolation shape functions 

3.2.2.1 Conventional RPIM

In order to avoid the singularity problem in the polynomial PIM, the
radial basis function (RBF) is used to develop the radial point interpolation 
method (RPIM) shape functions for MFree weak-form methods (GR Liu and
Gu, 2001c; Wang and Liu, 2000; 2002a,c).  The RPIM shape functions will 
be used frequently in this book for both MFree weak-form and strong-form
methods.  The RPIM interpolation augmented with polynomials can be 
written as

T T

1 1

( ) ( )T T
n m

j j
i j1

( )u( )
1

( )( )i i R x a p x b( ) ( )( ) (T T
j( )j j( )( ) ( )( )( )T( )( )( )( )) ( )( )i i( )( )( )( )( )( )( ) (3.70)

where Ri(x) is a radial basis function (RBF), n is the number of RBFs, pjp (x)
is monomial in the space coordinates xT=[x[[ , y], and m is the number of
polynomial basis functions.  When m=0, pure RBFs are used.  Otherwise, the
RBF is augmented with m polynomial basis functions.  Coefficients ai and bjb
are constants yet to be determined.  

In the radial basis function Ri(x), the variable is only the distance between 
the point of interest x and a node at xi,

2 2( ) ( )2
i ir x x( i ) (( ) (2( ) () () () (     for 2-D problems (3.71)

There are a number of types of radial basis functions (RBF), and the 
characteristics of RBFs have been widely investigated (Kansa,1990; Sharan 
et al.,1997; Franke and Schaback, 1997; etc.).  Four often used RBFs, the 
multi-quadrics (MQ) function, the Gaussian (Exp) function, the thin plate
spline (TPS) function, and the Logarithmic radial basis function, are listed in
Table 3.2.  In utilizing RBFs, several shape parameters need be determined
for good performance.  In general, these parameters can be determined by
numerical examinations for given types of problems (see, e.g., Wang and GR 
Liu, 2000; 2002c).  For example, in the MQ-RBF, there are two shape
parameters: c and q, to be determined by the analyst.  When 0.5 , it is 
the standard MQ-RBF.  Wang and GR Liu (2001a, 2002c) left the parameter
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q open to any real variable, and found that q=0.98 or 1.03 led to good results 
in the analysis of two-dimensional solid and fluid mechanics problems.  This 
will be investigated further in Chapter 4 and Chapter 5.

Table 3.2 Typical radial basis functions with dimensionless shape parameters

Name ††Expression Shape Parameters 

1 Multi-quadrics
(MQ)

2 2) )2 q
i i c cR x y r d2( , ) ( (, ) ( (2
i i c( , ) ( ((, ) ( c(( 2(( 0c , q

2 Gaussian (EXP) 2( , ) exp[ ( ) ]2i
i c) exp[

c

riR (i ( ,,
dc

exp[exp[exp[ c

3 Thin Plate Spline 
(TPS) ( )i i(R r) i, ), r

4 Logarithmic ( ) logi i i( , ) logR r) log) i, ) log, )

†† Note: dcdd  is a characteristic length that relates to the nodal spacing in the local
support domain of the point of interest x, and it is usually the average nodal 
spacing for all the nodes in the local support domain as discussed in Section 3.1.

Table 3.3. Formulations of the compactly supported radial basis function (CSRBF)

CSRBF Formulation Ref. 

Wu-C2 2 3 4

2 3 4

( , ) (1 ) (8 405

48 25 5 )2 3 43

r r5) (8 405R x y( ,,

r r r3
25 525 5

) (

2 3 433 43

(1 ) (8(1 ) (85

48 2525252 33

Wu(1995)

Wu-C4  2 3 4 5

2 3 4 5

( , ) (1 ) (6 366

82 72 30 5 )2 3 4 53 4

r r6) (6 366R x y( ,,

r r r r3
72 30 572 30 5

) (

2 3 4 53 43 4 53 4

(1 ) (6(1 ) (66

82 72 3072 3072 302 3 433 4

Wu(1995)

Wendland-C2 ( , ) (1 ) (1 4 )4r r4) (1 4) (1 44R x y( ,, (1 ) (1(1 ) (14 Wendland
(1995)

Wendland-C4
2

2( , ) (1 ) (3 18 35 )6
2

r r r6) (3 18 35) (3 18 356R x y( ,, ) () ( 2(1 ) (3 18(1 ) (3 18) (3 186 Wendland
(1995)

Wendland-C6
2 3

2 3( , ) (1 ) (1 8 25 32 )8
2 3

r r r r8) (1 8 25 32) (1 8 25 328R x y( ,, ) () ( 2 33(1 ) (1 8 25(1 ) (1 8 25) (1 8 258
2

Wendland
(1995)

: the size of the local support 
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In addition, the so-called compactly supported radial basis functions
(CSRBFs) have also been developed (Wu, 1995; Wendland, 1995).  Several 
CSRBFs are listed in Table 3.3.  In contrast to the CSRBF, RBFs listed in
Table 3.2 can be called the classical RBFs.  These CSRBFs are strictly
positive definite for all r less than or equal to some fixed value, and can ber
constructed to have desired amount of smoothness of 2k.  In a CSRBF, there
is a shape parameter, , that determines the dimension of the local support
for the CSRBF.  When r , their values is regarded as zero. Studies by 
authors’ group (GR Liu and Gu, et al., 2004) failed to find clear advantages
of CSRBFs over the classic RBFs for their surface fitting and mechanics
problems. 

The polynomial term in Equation (3.70) is not always necessary.  Studies
have found the following conclusions. 

1) The RPIM shape functions with pure RBFs usually cannot pass the 
standard patch tests, meaning that they fail to reconstruct exactly a 
linear polynomial field.  Adding polynomial terms up to the linear
order can ensure the C1 consistency that is needed to pass the standard 
patch test. 

2) In general, adding polynomials can always improve the accuracy of the
results, at least no bad effect has been observed for MFree weak-form
methods.

3) Adding polynomial reduces the sensitivity of the shape parameters, 
and will provide us much more freedom and a wider range in choosing
shape parameters.  This is true at least for MFree weak-form methods. 

4) Adding polynomial can improve the interpolation stability for some
RBFs.  To ensure an invertible moment matrix of RBF, the polynomial 
augmented into RBF cannot be arbitrary (Schaback and Wendland,
2000).  A low degree polynomial is often used to augment RBF to
guarantee the non-singularity of the matrix (Cheng et al., 2003).  For 
example, for an MQ-RBF, the linear polynomial can ensure an
invertible moment matrix of RBF (Schaback and Wendland, 2000).

In order to determine ai and bjb in Equation (3.70), a support domain is 
formed for the point of interest at x, and n field nodes are included in the
support domain.  Coefficients ai and bjb  in Equation (3.70) can be determined 
by enforcing Equation (3.70) to be satisfied at these n nodes surrounding the
point of interest x.  This leads to n linear equations, one for each node.  The 
matrix form of these equations can be expressed as

s m0U R a P bs m000 (3.72)

where the vector of function values Us is
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T{ }s n1 2{ 1 21 21 2U (3.73)

the moment matrix of RBFs is

0

( )

1( ) ( ) ( )1 2 11 2 1R11( ) ( ) () ( ) (1 2 11 21 2 11 1 2 1 1) ( )1 2 11 2 1

( ) ( ) ( )
n

R ( ) ( ) (( )
1 ) ( )1 2 11 2 1

1 2 2 2 2) ( )2 2 22 2 2nR11( ) ( ) () ( ) (2 2 22 22 2 2 )R ( ) ( ) () ( ) (

( ) ( ) ( )R ( ) ( ) (( )1 )n n n n2 ( ) () (21 ( ) ( )2 ( ) () (2R1( ) ( ) () ( ) (2 )R ( ) ( ) (( )

R (3.74)

the polynomial moment matrix is 

T

( )

m

1 1 ... 1

1 2 ... nx x x1 2 ...x x x
y y y1 2 ... n1 21 2 ... ny y y1 2 ...1 2 ...

( ) ( ) ( )( )m m m n1 2 ((p (m m1 2( ) ( ) ...1 2( ) ( ) ( )p (

P

() ( ) ...1 2) ( ) () ( ) () ( )( )) (1 2

(3.75)

the vector of coefficients for RBFs is
T

1 2{ ... }1 2 n......1 2a (3.76)

the vector of coefficients for polynomial is 
T

1 2{ ... }1 2 m......1 2b (3.77)

In Equation (3.74), rkr ink Ri(rkr ) is defined as k

2 2( ) ( )2
k k i k irk k i kk( ) () () (( ) (2( ) () () (( ) () () ( (3.78)

However, there are n m  variables in Equation (3.72).  The additional m
equations can be added using the following m constraint conditions.

T

1

( ) 0T
n

j i i m
i

p (j i( ))) T)) , j=1, 2,  ..., m (3.79)

Combing Equations (3.72) and (3.79) yields the following set of equations in 
the matrix form

0s
s 0 m

T
m

G

s 0 m0U Gs
s 0 m0 m

T
0 m0 mss aTT

m
T
m
T (3.80)

where
T
0 1 2{ }1 2 n m1 21 21 21 1 21 2a (3.81)
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0 0 0s n1 2u u u1 21 2U 0 0u (3.82)

Because the matrix R0 is symmetric, the matrix G will also be symmetric.  
Solving Equation (3.80), we obtain 

1
0 sa G U1
0 (3.83)

Equation (3.70) can be re-written as 

T T T T( ) ( ) ( ) { ( )  ( )}T T T TT Tu
a

) ( ) ( ) { ( )  () ( ) ( ) { ( )  (T T T TT TT( ) ( )( ) ( )( ) ( )T TTT
(3.84)

Using Equation (3.83) we can obtain

T T 1 T( ) { ( )  ( )} ( )T T 1 TT
s su ) { ( )  ( )}) { ( )  ( )}T T 1TT 1{ ( ) ( )}( ) ( )} U)T (3.85)

where the RPIM shape functions can be expressed as
T T T 1( ) { ( )  ( )}T TT T G) { ( )  ( )}) { ( )  (T TT TT T

1 2 ( )n n n m1 21( ) ( ) ( ) ( )( ) ( ) ( )2 n n( )( ) nn11( )1 () ( ) ( ) ( )( ) ( ) ( )) ( ) ( ) (22 1( )( ) ( )1( )1( ) ( )( )) (( ) ( )
(3.86)

Finally, the RPIM shape functions corresponding to the nodal displacements 
vector ( ) are obtained as

T
1 2( ) ( ) ( ) ( )n( ) ( )( ) ( )1 2( ) ( )( ) ( )1 2 () ( ) ( )( ) ( )) (1 21 2 (3.87)

Equation (3.85) can be re-written as 

T

1
( ) ( )T

n

s i i
i

uis(u( ) (( U))U))) (3.88)

The derivatives of u(x) are easily obtained as
T

, ,( ) ( )T
l l s,( ) ( ),u U)) (3.89)

where l denotes either the coordinatesl x or y.  A comma designates a partial 
differentiation with respect to the indicated spatial coordinate that follows. 

Note that 1
0R usually exists for arbitrarily scattered nodes (Powell, 1992;

Schaback, 1994; Wendland, 1998).  In addition, the order of polynomial
used in Equation (3.70) is relatively low.  Therefore, in general, there is no 
singularity problem in the RPIM as a small number of nodes (typically 
10~40 for 2D problems) are used in the local support domain.  
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Note that the moment matrix R0 can be badly conditioned when the
number of nodes increases.  This is observed in MFree global collocation 
methods that use all the nodes in the entire problem domain in the 
formulation.  One of the features of the global collocation methods is that a 
symmetric formulation is possible (Wu, 1992).  This book, however, will not 
discuss these methods.

There are several advantages of using RBFs as a basis in constructing
PIM shape functions that use local compact support domains. 

Using RBFs can effectively solve the singularity problem of the 
polynomial PIM.   

RPIM shape functions are stable† and hence flexible for arbitrary and 
irregular nodal distributions.

RPIM shape functions can be easily created for three-dimensional
domains, because the only variable is the distance r in a RBF.  For r
three-dimensional interpolation, we simply change the distance
expression to

2 2 2( ) ( ) ( )2 22
i i ir x x( i i) ( ) () ( ) (( ) ( ) (( )2 222( ) ( ) () ( ) () ( ) () ( ) () ( ) (( ) (3.90)

RPIM shape functions are better suited than MLS functions for fluid 
dynamics problems (see, Chapter 7).

However, RPIM also has some shortcomings, such as

RPIM shape functions usually give less accurate solutions for solid
problems compared to MLS and the polynomial PIM shape functions.    

Some shape parameters must be determined carefully, because they
can affect the accuracy and the performance of the RPIM shape 
functions used in MFree methods.

RPIM shape functions are usually computationally more expensive 
than the polynomial PIM because more nodes are required in the local
support domain.   

The properties of RPIM shape functions (GR Liu, 2002) are listed in this 
section.

1) Delta function property

RPIM shape functions have the Kronecker delta function property.   

† Small changes in nodes locations or number of nodes in the support domain will
not give rise to a big change in the RPIM shape functions created. 
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2) Partitions of unity

RPIM shape functions have the property of partitions of unity, i.e., 

1

1
n

i
i

i (3.91)

if the linear polynomial terms are added in the basis (m=3 in Equation
(3.70)), and hence there is a constant term in the basis functions.  The
property of partitions of unity can be easily proven using the properties of 
reproduction of the RPIM shape functions. 

If the pure RBF is used (m=0 in Equation, (3.70)), the property of 
partitions of unity can be easily proven for CSRBFs, as there are clearly
constant terms in CSRBFs (see, Table 3.3).  However, there is no constant
term explicitly shown in some RBFs, such as the MQ-RBF.  Additional 
treatment is needed for these RBFs to explicitly reveal the constant term. 

An arbitrary function that has continous derivatives of all orders can be
expressed by an infinite Taylor series expansion.  For example, for the MQ-
RBF, the Taylor series expansion in the vicinity of r=0 is

2

2 2

(0)( ) (0) (0)
2!
(0)( )
2!

b (0)(0)b r b b r r( ) (0) (0)) (0) b

bC2C b (0)

2r r( )(0) (0)(0)(0)

2C b r rb r2 ( )(0)q

(3.92)

We clearly see that there is a constant term in Equation (3.92) because
0C in MQ-RBF.  The presence of this constant basis facilitates the

reproduction of a constant field following the reproducibility property of the 
RPIM shape functions.  Note that the condition for the reproduction of a 
constant field in the local domain is that all RBFs used in the RPIM have to
be evaluated exactly, meaning that the expansion in Equation (3.92) needs to 
have infinite terms.  This will be confirmed in the example presented in Sub-
section 3.2.3.3.  Therefore, Equation (3.91) may not be satisfied “exactly” 
but “approximately” in the numerical tests, because that there are always
numerical truncation errors in the computation of a RBF caused by the use of mm
finite terms in the Taylor series expansion.   

Note here that TPS-RBF and Logarithmic-RBF do not satisfy the 
condition of (0) 0b .  Hence, the polynomial terms are needed in TPS-RBF
and Logarithmic-RBF to ensure the property of partitions of unity for the 
RPIM shape functions.

3) Compact support

RPIM shape functions are compactly supported, as they are constructed
using nodes in a compact support domain, and they are not used or are 
regarded as zero outside the support domain.   
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4) Continuity 

The RPIM shape functions usually possess higher continuity because of 
the high continuity of the radial basis functions. 

5) Reproducibility

The RPIM with at least polynomial terms can ensure an exact 
reproduction of linear polynomials. 

Note that some RBFs will not have linear reproducibility meaning the
RPIM cannot reproduce a linear field function without being augmented with 
linear polynomial terms.  For example, in the case of the MQ-RBF, there
exist no linear terms in its Taylor expansion form of Equation (3.92) due toaa

(0) 0b .  This could be one of the major reasons for the poor h-
convergence in using MQ-RBFs.  Hence, the linear polynomial terms are 
sometimes added in the RPIM to improve the performance in this regard.   

6) Compatibility  

In using RPIM shape functions, the compatibility in the global domain is 
not ensured when the local support domain is used, and the field function 
approximated could be discontinuous when nodes enter or leave the moving
support domain.

3.2.2.2 Hermite-type RPIM 

As shown in Figure 3.3, if there are DB-nodes within the support domain 
of a point of interest, their normal derivatives are considered as the
additional unknowns.  This implies that the DB-nodes not only have function
values but also normal derivatives as variables.  This is achieved by adopting 
the following Hermite-type interpolation using RBFs.  The formulation 
procedure is similar to those given in Sub-section 3.2.2.1, except that it takes 
into consideration the additional normal derivative degrees of freedomrr
(DOFs ) for DB-nodes, which is again similar to the Hermite–type WLS 
discussed in section 3.2.1.3.

The approximation of a field function u(x) can be written in a linear
combination of RBFs at all the n nodes within the local support domain and 
the normal derivatives at the DB-nodes, i.e.,

DB DB

1

( )nn mDB DB ( )n
h

k k
i j k1 11

R
p c( )u ( )h

kk ( )
1 11

RR ( )j
i i j

R
b

( )
RR ( )a bR a j

i i( ) j
R

a bb( ) j
i( ) j) ((

n (3.93)

where ai, bjb and ck are coefficients to be determined, n is the number of
nodes in the local support domain (including the DB-nodes), nDB is the
number of the DB-nodes in the local support domain, m is the number of
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polynomial terms for augmentation, pk is a monomial, and k n is the vector of
the unit outward normal on the boundary at the DB-node.

In Equation (3.93), ( )i  and DB ( )jR are RBFs that have been
discussed in Sub-section 3.2.2.1.  We have 

( ) ( )i i( ) (R ( )i ( ) (()) ((
DB DB( ) ( ) DB
j j( ) (RDB ( )j ( ) (()) ((

DB DB DB ( )DB
j j j( ) ( )( )

xj yjl ljj ( )( )
xj y y

DB ( ) ( )( )DB
j ( ) ( )( )RRDB ( ) ( )( )DB
j ( ) ( )

l j
xjxj yjxx yy

(DB) ( )( )) (DB) ( )( )( )) (
(3.94)

where xi is the coordinate for the ith node in the local support domain, DB
jx

is the coordinate for the jth DB-node, and cos( , )xj jcos( ,cos( , and
)yj jl ycos( ,yj  are direction cosines.

Note that because the derivatives of the field function at the DB-nodes
are treated as unknowns, we use the derivatives of the same radial basis
functions as the basis in Equation (3.93) for the DB-nodes.  One may choose 
to use any other type of basis functions for these DB-nodes, as long as they 
are independent of the other basis used in Equation (3.93).

Equation (3.93) can be re-written in the following matrix form  
T

0( )hu B aT) (3.95)

where the vector of basis function B has the form of

T
DBDB
DB1

1 1 ( )1 ( )1 ( )BT DB1 1 (1111 (3.96)

and the vector of coefficients a0 is given by 

DB

T
0 1 2 1 n mDB1 1... ...1 1a a a b b c c1 2 11 2 1... ...1 1... ...1 1a (3.97)

The coefficients ai, bjb and ck in Equation (3.93) are determined by makingk
the interpolations pass through all n nodal function values within the support 
domain and equal the derivatives values of the function at the DB-nodes.   

For all the n nodes in the local support domain (including the DB-
nodes), we have

DB DB

1

( )
( )

n mDB ( )n DBn (h
l l( ) k l k

i j k1 11

R
( )u uh

l ( ) p c( )k lk l( )
1 11

RR
u ( )h ( )

)
( ) j l(

i l i( )( j
R

( )( )( bj
Rj

ia( )( )( bj)) ((
n (3.98)

where l=1, 2, l …, n.
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For all the DB-nodes, we have
2 DB DBDB DB DB

1

)DB( ( )DBn mDB ( )DBn DB 2DB( )DB n
l

k
i j k1 11

R c( )k lp

1 11

DB n
lu RRDB n
l p

i 1

( )i
i jj2

R a bb
)j l(

i jj2
RR ( )i l a bbj

i jj2
(k) m) p (kpppp(((RDB) DB)DB )) j (R

bb
)j (

ni 1 nn
(3.99)

where l=1, 2,l …, nDB.

To obtain a unique solution, we impose the following constraints. 

DB

1 1

0
nn

k j j
i j1

( )k j j( )(( )
1

( )( )(( )k i ip a( )k i i( )) (())) , k=1, 2,kk …, m (3.100)

Arranging Equations (3.98)~(3.100) together leads to the following set of 
equations in matrix form. 

0

0s

s
0 DB m

ss
0 DB

T
m0 DB m

DBDB
DBcDB

T T 0DB 0m
T 000

aG

0 DB m

GR R PTUs
DBDB T

DB DBcDB
T a
T

Dm
T

(3.101)

where G is the generalized moment matrix that consists of:  

the polynomial moment matrix evaluated at n nodes,

T

( )

m

1 1 ... 1

1 2 ... nx x x1 2 ...x x x
y y y1 2 ... n1 21 2 ... ny y y1 2 ...1 2 ...

( ) ( ) ( )( )m m m n1 2 ((p (m m1 2( ) ( ) ...1 2( ) ( ) ( )p (

P

() ( ) ...1 2) ( ) () ( ) () ( )( )) (1 2

(3.102)

and the moment matrix of the 1st derivatives of polynomials evaluated at nDB
DB-nodes,

DB

DB

( )DBDB

DB( )DB
1pl l pp 1

DB 1 DB 1
( )10 m

x y1 DB1 DB
pl lDB 1 D1 D

( )1m0 pl l p
yy

DB( )DB
20 pl l pp 2

DB 2 DB 2
( )20 m

x y2 DB2 DB
pl lDB 2 D2 D

( )20 mpl l p
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DB( )DB
DB

( )
DB

DB

0 m n(p
l l

( )DBpp
DB0 l lDB D

DB0 l lDB DB0 xn ynDBlDB DD

PD (3.103)

the moment matrix of RBFs evaluated at n nodes,
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0
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(3.104)

the moment matrix of 1st normal derivatives of RBFs evaluated at the DB-
nodes,

DB

T
DB
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DBDB DB ( )DB
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(3.105)

and the moment matrix of 2nd normal derivatives of RBFs evaluated at DB-
nodes,

DB DB( )DB DB

c
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In Equation (3.101), the extended vector of nodal variables is 

T
s

DBDB ( )DB( )DB uu DB1
( )

DB( )1( ) ( ) 0 0n( ) (1

uu ( )( ) uu)n1( ) (1 )( ) (1UT
s ( ) () (( ) (1u( )1( )1 ) 0( (3.107)

the vector of nodal function variables is
T{ ... }s n1 2 3{ ...u u u1 2 32 ...1 2 32 ...U (3.108)

and the vector of nodal normal derivative variables is
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T

DB
DB

DB 2 n
DBDB DB

2 nuu1
DBu11 2 DB1 2 DBn111 (3.109)

It is clear that G in Equation (3.101) is symmetrical.  For the same 
reasons mentioned in Sub-section 3.2.2.1, G is also, in general, invertible. 
Hence, we can solve Equation (3.101) for a0 to obtain

1
0 sa G U1
0 (3.110)

Substituting Equation (3.110) back to Equation (3.93) yields  
T T 1 T

0( )h
s su x B a B G UT T 1T 1

0( )h
0 UT (3.111)

where is a vector of the shape functions given by 
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Finally, the approximated function and its derivatives can be obtained 
using Equation (3.111).
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Because of the existence of 1G  for arbitrarily scattered nodes, there is 
no singularity problem in the process of computing the Hermite-type RPIM
shape functions.  In addition, the Hermite-type RPIM shape functions are
stable and very flexible for arbitrary nodal distributions.  They will be used 
in the MFree collocation methods discussed in Chapter 6.  



86 Chapter 3

3.2.3 Source code for the conventional RPIM shape
functions

In this section, a standard subroutine, RPIM_ShapeFunc_2D.f90, for
computing the conventional RPIM shape functions for two-dimensional 
problems is provided.  This subroutine is written in FORTRAN 90.

Note that all programs provided in this book are developed and tested 
based on the MS Windows and MS Developer Studio 97 (Visual FORTRAN 
Professional Edition 5.0.A) in a personal computer.  After slight revisions, 
these programs can also be executed in other platforms and systems, such as
the UNIX system on workstations.  In our research group these codes are 
frequently ported between Windows and UNIX systems, and there has been
no technical problem.

3.2.3.1 Implementation issues

1) Determination of the support domain

For a two-dimensional domain, , the support domain for a point of 
interest can be of various shapes.  Circular and rectangular support domains 
are often used, and shown in Figure 3.1(a) and Figure 3.1(b), respectively.  
The rectangular support domain is simple to construct and easy to 
implement.  Hence, in this section and following sections, the rectangular
support domains are used.  

Using the rectangular support domain, the dimension of the support 
domain is determined by dsxd and dsyd  in x and y directions, respectively, i.e., 

sx sx cxss

sy sy cys

d dsx sx cs

d dsy sy cs
(3.114)

where sx and sys are the dimensionless sizes of the support domain in x and
y directions.  For simplicity, one often uses sx= sys , and dcxdd  and dcydd  are the
nodal spacings in x and y directions in the vicinity of the interpolation point 
at xQ.  (see, Figure 3.1).  If the nodes are uniformly distributed, dcxdd  is simplyx
the distance in x direction between two neighboring nodes, and dcydd  is simply
the distance in y direction between two neighboring nodes.  When the nodes 
are non-uniformly distributed, dcxdd  and dcydd can be defined as an average nodal
spacing in the support domain of xQ using the simple procedure discussed inQ
Sub-section 3.1.3.

2) Shape parameters in radial basis functions

In the present subroutine of computing RPIM shape functions, the Multi-
quadrics (MQ)-RBF, Gaussian (EXP)-RBF, and Thin Plate Spline (TPS)-



3.  Meshfree shape function construction 87

RBF, are coded.  As shown in Table 3.2, the shape parameters in RBFs have 
to be pre-determined.  

For the MQ-RBF, there are two shape parameters: c and q. In the
standard RBF, 0.5q  is often used.   Wang and GR Liu (2001a, 
2002c) have left q open to any real number and found q=0.98 or 1.03 
good for solid and fluid mechanics.  Both q and c are now
dimensionless constants, and will be investigated later in this chapter
for surface fitting and in Chapters 4, 5, 6 for mechanics problems.  The
nodal spacing dcdd is calculated using 

22
cycxc ddd 2

cxc dd 2
cx (3.115)

where dcxdd  and dcydd  are nodal spacings in they x and y directions efined in
Equation (3.114).

For the EXP-RBF, there is only one shape parameter, c;  it is usually
a positive number smaller than 1.0. 

For the TPS-RBF, the only shape parameter is .

Shape parameters affect the performance of RBFs.  Generally, there are
no theoretically best values.  They have been determined by intensive
numerical investigations for classes of problems for weak-from formulations 
(GR Liu, 2002; Wang and GR Liu, 2002c). This issue will be further studied
in Chapters 4 and 5 for MFree weak-form methods, in Chapter 6 for MFree
strong-form methods, and in Chapter 7 for MFree weak-strong form 
methods.

3) Calculation of RPIM shape function

Equation (3.86) is used to compute RPIM shape functions.  Direct 
inversion of G is avoided using a linear equation solver.  Equation (3.86) can
be re-written as

T T T 1

T T

( ) { ( ), ( )}T TT T

{ ( ), ( )}T T

G G1) { ( ), ( )}) { ( ), (T TT TT T

( ), (( ), (T T
(3.116)

Hence, we have
T T T T T( ( ) ) { ( ), ( )}T T T TT T T) ) { ( ), () ) { ( ), (T T TT T TT T T (3.117)

or

T ( )
( )( )
( )
( )
( )( )
((

G
(

(3.118)



88 Chapter 3

Solving Equation (3.118) using a standard linear equation solver, we can 
obtain RPIM shape functions directly without computing 1G .

Derivatives of the RPIM shape functions can be obtained using Equation
(3.118).

( )

( )
( )( )
( ) ( )
( )
( )( )

R(
(( x

p((( )x
(3.119)

or

T ( )
( )( )( )

( )( )( )

(

G
(x

(3.120)

The 2nd derivative is

2
T

2
( )

2 ( )( ))
22

22 ( )2 ( )
2

(((

G
x (

(3.121)

Therefore, the derivatives of the RPIM shape functions can also be obtained 
by solving Equations (3.120) and (3.121) using the standard linear equation
solver.

4) Flowchart of the subroutine  

The flowchart of the subroutine RPIM_ShapeFunc_2D.f90 is shown in
Figure 3.4. 

3.2.3.2 Program and data structure 

The main subroutine RPIM_ShapeFunc_2D calls two subroutines that are
shown in Figure 3.4 and Appendix 3.1.

1) Main Subroutine RPIM_ShapeFunc_2D 

This subroutine is used to compute RPIM shape functions and their
derivatives for a two-dimensional domain.  In the current program, up to 
second order derivatives of shape functions are given.  The user can modify 
this subroutine to compute higher-order derivatives of shape functions 
without too much difficulty.  In addition, the polynomial terms added in the 
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radial basis are up to linear (mbasis=3).  If mbasis=0 is used, the program 
produces pure RPIM shape functions without polynomial augmentation.  
The user can add more polynomial terms by changing the subroutine slightly.   

The dummy arguments used in the subroutine RPIM_ShapeFunc_2D are
listed in Appendix 3.2.  The source code of the subroutine 
RPIM_ShapeFunc_2D is listed in Program 3.1. 

Input data

Compute the basis

Compute matrix G

Compute shape function
and its derivatives

Return

Call Subroutine 
Compute_RadialBasis

Call Subroutine
Gauss EqSolver_Sym

Figure 3.4. Flowchart of the program of RPIM_ShapeFunc_2D.f90 for computing RPIM 
shape functions.

2) Subroutine Compute_RadialBasis

Source code location: Program 3.2. 
Dummy arguments: Appendix 3.3.  
Function: to compute RBF R(r) and its derivatives.  In the current 

program, MQ-RBF, EXP-RBF and TPS-RBF are included. 
The user can change this subroutine slightly to include any 
other RBF (e.g., CSRBF). 

3) Subroutine GaussEqSolver_Sym 

Source code location: Program 3.3. 
Dummy arguments: Appendix 3.4.  
Function: it is a standard equation solver using the Gauss elimination

method.  To use this solver, the coefficient matrix must be
symmetric.
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3.2.3.3 Examples of RPIM shape functions 

An example is presented to illustrate the properties of the conventional 
RPIM shape function and its derivative created using 25 nodes in the support 
domain.  These 25 (5 5) nodes, as show in Figure 3.5, are regularly and 
evenly distributed in a rectangular domain: [ 1, 1]i  and [ 1, 1]iy .
The coordinates of these 25 nodes are listed in Table 3.4.  The RPIM shape
functions created can be evaluated at any point in the domain, and plotted in
x-y- space.  In this study, a total of 61 61 points is used to evaluate and plot 
the shape functions.

A simple main program is listed in Program 3.4.  In this program, the
influence domain is used as an alternative to the support domain.  The 
detailed discussions of comparisons between the support domain and the
influence domain are presented in Chapter 4.  The size of the influence 
domain for different field nodes is adjusted to ensure all 25 field nodes are
included in the interpolation for each evaluation point.

1) The RPIM shape functions and their derivatives

Three typical radial basis functions, MQ-RBF, Exp-RBF and TPS-RBF, 
are used, and RPIM-MQ, RPIM-EXP and RPIM-TPS will be used in the 
following to denote RPIM shape functions using MQ, EXP and TPS radial 
basis functions, respectively. 

Figure 3.6~Figure 3.8 show the RPIM-MQ shape functions and their 
derivatives.  The shape parameters, ac=2.0, dcdd =0.5, and q=0.5 are used with 
mbasis=0 (no polynomial augmentation). Figure 3.9 shows the RPIM-EXP
shape functions.  The shape parameters are ac=0.03, dcdd =0.5, and mbasis=0.
Figure 3.10 shows the RPIM-TPS shape functions.  The shape parameters 
are =4.001 and mbasis=0.

Appendix 3.5 lists a sample output of RPIM-MQ result from this
program for the sampling point at xT=[0.2, 0.4].  From this appendix, we can
observe that RPIM shape function satisfy the partitions of unity.  As 
discussed in Sub-section 3.2.2.1, however, Equation (3.91) may not be
satisfied exactly because there are always numerical truncation errors in the 
computation of complex RBFs.  The summation of shape functions is not 
exact but approximate 1.0, as shown in Appendix 3.5.

Appendix 3.6 lists a sample output of RPIM-MQ for this same program
for the sampling point at xT=[0, 0].  This appendix shows that the RPIM
shape functions have the Kronecker delta function property.  For example, ina
Appendix 3.6, at point xT=[0, 0] where node 13 is located, we have 

13

13

1 13 ( )13( )
0 13 ( )13

ii
13 (
13 (13 (

(3.122)
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This confirms numerically that that RPIM shape function possesses the t
Kronecker delta function property.

The distribution of and
xxx

 for the central node 13 along the line y=0

is plotted in Figure 3.11 and Figure 3.12.

Table 3.4. Coordinates of 25 field nodes shown in Figure 3.5

Node xIx yIyy Node xIx yIyy

1
2
3
4
5
6
7
8
9

10
11
12
13

-1
-1
-1
-1
-1

-0.5
-0.5
-0.5
-0.5
-0.5

0
0
0

1
0.5
0

-0.5
-1
1

0.5
0

-0.5
-1
1

0.5
0

14
15
16
17
18
19
20
21
22
23
24
25

0
0

0.5
0.5
0.5
0.5
0.5
1
1
1
1
1

-0.5
-1
1

0.5
0

-0.5
-1
1

0.5
0

-0.5
-1

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21 

22 

23

24

25

(-1, 0) (1, 0)

(0, 1)

(0, 1)

Figure 3.5. A total of 25 regularly distributed field nodes used to compute MFree shape
functions.
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2) The effect of shape parameters 

The effects of shape parameters of RBFs are examined by plotting thef
shape function for the central node 13 along the line of y=0.

Figure 3.13 shows the RPIM-MQ shape functions for different 
parameters of q= 0.5, q=0.5 and qd =1.03.  It is found that there is a little
difference in the shapes of the shape functions for different q values.

Figure 3.14 shows the RPIM-EXP shape functions for different 
parameters of c =0.03, c =0.1 and c =0.3.  It is found that a small c leads
to a large negative value for the shape functions.

Figure 3.15 shows the RPIM-TPS shape functions for different 
parameters of =4.001,  =5.001 and  =6.001.  It is found that there is a
little difference in shape functions for different values.

The RPIM shape functions with different terms polynomial augmentation
of mbasis=0 and 3 are also obtained.  It is found that the effect of mbasis on
the shape of shape functions is insignificant.  Therefore, figures of different 
mbasis are not plotted here.

Figure 3.6. RPIM  shape function for node 13 at point xT=[0, 0] obtained using 25 nodes
shown in Figure 3.5 (MQ-RBF is used with shape parameters of 0.5q , 2.0c ,

0.5cdc , and 0 .).
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Figure 3.7. The first-order derivative of the RPIM shape function for node 13 at xT=[0, 0]
obtained using 25 nodes shown in Figure 3.5 in the support domain (MQ-RBF is used with

shape parameters of 0.5q , 2.0c , 0.5cdc , and 0mbasis .).

Figure 3.8. The second-order derivative of the RPIM shape function for node 13 at xT=[0, 0]
obtained using 25 nodes shown in Figure 3.5 in the support domain (MQ-RBF is used with

shape parameters of 0.5 , 2.0c , 0.5cdc , and 0 .).
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Figure 3.9. RPIM shape function for node 13 at xT=[0, 0] obtained using 25 nodes shown in
Figure 3.5 (EXP-RBF is used with shape parameters of 0.03c , 0.5cdc  and

0mbasis .).

Figure 3.10. RPIM shape functions for xT=[0, 0] obtained using 25 nodes shown in Figure
3.5 (TPS-RBF is used with shape parameters of 4.001t , and 0 ).
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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1

MQ
EXP

TPS

x

Figure 3.11. RPIM shape functions for the node 13 at xT=[0,0] along the line of y=0 obtained
using different RBFs.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6

TPS

MQEXP 

x

xxx
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Figure 3.12. The 1st derivatives of RPIM shape functions for the node 13 at xT=[0,0] along
the line of y=0 obtained using different RBFs.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q= -0.5

q=1.03

q=0.5

x

Figure 3.13. RPIM-MQ shape function for node 13 at xT=[0,0] along the line of
y=0 obtained using different q

(in MQ-RBF, shape parameters.  2.0c , 0.5cdc , and 0 ).

Figure 3.14. RPIM-EXP shape function for node 13 at xT=[0,0] along the line of
y=0 obtained using different 

(EXP-RBF with 0.5cdc , 0b ).
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

=5.001=4.001

=6.001

x

Figure 3.15. RPIM-TPS shape function for node 13 at xT=[0,0] along the line of y=0
obtained using different (TPS-RBF with 0 ).

3.3 MOVING LEAST SQUARES SHAPE FUNCTIONS 

The moving least squares (MLS) approximation was devised by
mathematicians in data fitting and surface construction (Lancaster and 
Salkausdas 1981; Cleveland 1993).  It can be categorized as a method of 
series representation of functions.  An excellent description of the MLS
method can be found in a paper by Lancaster and Salkausdas (1981).  The
MLS approximation is now widely used in MFree methods for constructing d
MFree shape functions. 

3.3.1 Formulation of MLS shape functions

Consider an unknown scalar function of a field variable u(x) in the 
domain, .  The MLS approximation of u(x) is defined at x as
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T
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h
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j( )( )) p j ( ) ( )( )( )( ) (3.123)

where p(x) is the basis function of the spatial coordinates, xT=[x, y] for two-
dimensional problem, and m is the number of the basis functions.  The basis
function p(x) is often built using monomials from the Pascal triangle to 
ensure minimum completeness.  In some special problems, enhancement
functions can, however, be added to the basis to improve the performance of 
the MLS approximation.  We use only pure polynomial bases in this book.   

In Equation (3.123), a  is a vector of coefficients given by

T
1 2( ) { ( ) ( ) ( )}1 2 m( ) ( )( ) ( )1 2aT ( ) { ( ) ( ) () { ( ) ( ) (( ) ( )( ) ( )) (1 2 (3.124)

Note that the coefficient vector a(x) in Equation (3.123) is a function of 
x.  The coefficients a can be obtained by minimizing the following weighted
discrete L2 norm.

T 2
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( )[ ( ) ( ) ]T(
n
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i

J W ( )[ ( ) ( )T )))W ( )[ ( ) ()[ ( ) (T
i i)[ ( ) ()[ ()[ ( ) ()[ (( ) ()[ ( ) ()[ ( ) ()[ ( ) ()[ (( ) ( (3.125)

where n is the number of nodes in the support domain of x for which the
weight function ( ) 0i ) , and ui is the nodal parameter ofr u at x=xi.
Equation (3.125) is a functional, a weighted residual, that is constructed 
using the approximated values and the nodal parameters of the unknown
field function.  Because the number of nodes, n, used in the MLS 
approximation is usually much larger than the number of unknown 
coefficients, m, the approximated function, uh, does not pass through the 
nodal values, as shown in Figure 3.16. 

The stationarity of J with respect toJ a(x) gives 

/ 0J (3.126)

which leads to the following set of linear relations. 

A(x)a(x)=B(x)Us (3.127)

where sU  is the vector that collects the nodal parameters of field function 
for all the nodes in the support domain. 

T
sU (3.128)

and A(x) is called the weighted moment matrix defined by

T

1
( ) ( ) ( ) ( )T

n

i i i
i

( ) ( ) () ( ) (T
i i( ) ( ) (( ) () ( ) (A x( ) (3.129)

where
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iWi (x)= ( ) i (3.130)

Figure 3.16. The approximate function uh(x(( ) and the nodal parameters ui in the MLS
approximation.

For a two-dimensional problem and using the linear basis (m=3) defined in 
Equation (3.8), A is a symmetric 3 3 matrix that can be explicitly written as 

T
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The matrix B in Equation (3.127)  is defined as

B(x)=[ 1W1 (x)p(x1) 2W2 (x)p(x2) … nWn (x)p(xn)] (3.132)

which is a 3 n matrix, and can be expressed explicitly as 

B3 n(x)
1 11 1

( )( )( )W ( ) ( )( )( )( )1( ) ( ) (1 n )W x W x W( ) ( ) ( )1 )( )W ( ) ( )( )( )( ) xW ( 1 2 2( )( )1 2 2( )( )( )1 2 2) nxx

1 2y y1 2y y1 2y yyyy1 2 nynyy
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W W W1 21 2 nW W W1 2 n
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W W W1 1 2 2 n ny W y W y W1 1 2 21 2 n ny W y W y W

(3.133)

Solving Equation (3.127) for a(x), we have 
1( ) ( ) ( )1( ) ( ) ( ) sa x A x B x U( ) ( ) ( )) ( ) (1 (3.134)

Substituting the above equation back into Equation (3.123), we obtain
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where (x) is the vector of MLS shape functions corresponding n nodes in 
the support domain of the point x, and can be written as,

T T 1
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The shape function i(x) for the ith node is defined by

1
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Note that the WLS formulation mentioned in Sub-section 3.2.1.2 is very
similar to the MLS formulation.  In the MLS, the coefficient a is the function
of x which makes the approximation of weighted least squares move
continuously.  Therefore, the MLS shape function will be continuous in the
entire global domain, as long as the weight functions are chosen properly.  
This global continuity feature is preferred in the MFree global weak-form
methods (Chapter 4).  In WLS, however, because the coefficient a in 
Equation (3.32) is the constant, the WLS shape functions are piecewise
continuous, as discussed in Section 3.2.1.2.  The WLS approximation can be
viewed as a special form of the MLS approximation. 
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For the convenience in obtaining the partial derivatives of the shape
functions, Equation (3.136) is re-written as (Belytschko et al.  1996b) 

T T( ) ( ) ( )T ) () ( (3.138)

where
T T 1p ATT (3.139)

Since A is symmetric, (x) can be obtained from Equation (3.139)

A p (3.140)

The partial derivatives of can then be obtained by solving the following
equations.

, , ,i i i, ,,A p Aii,i (3.141)
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where i, j and k denote coordinatesk x and y, and a comma designates a partial 
derivative with respect to the indicated spatial coordinate that follows.  The 
partial derivatives of the shape function can be obtained using the 
following expressions.
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In the MLS approximation, a support domain, defined in Equation (3.1), 
can be formed for any point of interest.  Field nodes included in this support 
domain are used to perform the MLS approximation for the unknown function
at this point.  The number of nodes, n, chosen in the support domain, should be 
sufficient to ensure that the matrix A in Equation (3.134) is invertible, so as toA
provide the interpolation stability (Condition 2 in Sub-section 3.1.1).  The
choice of n depends on the nodal distribution and the number of basis 
functions, m.  In order to ensure the existence of 1A  and a well-conditioned
A, we usually let n m .  Unfortunately, there is no theoretical best value of 
n,  and it has to be determined by numerical experiments.   
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3.3.2 Choice of the weight function 

Equation (3.137) shows that the continuity of the MLS shape function 
is governed by the continuity of the basis function p as well as the
smoothness of the matrices A and B.  The latter is governed by the 
smoothness of the weight function.  Therefore, the weight function plays an
important role in the performance of the MLS approximation.  In the 
reported studies so far, ( )i  is always chosen to have the following
properties.

 ( ) 0i )  within the support domain

 ( ) 0i )  outside the support domain

 ( )i  monotonically decreases from the point of 
interest at x

 ( )i  is sufficient smooth, especially on the 
boundary of s

(3.147)

The last condition in Equation (3.147) is to ensure a smooth inclusion and
exclusion of nodes when the support domain moves, so as to guarantee the
compatibility of the MLS shape function in the entire problem domain. 

The choice of the weight function is more or less arbitrary as long as the 
requirements in Equation (3.147) are met.  The exponential function and 
spline functions are often used in practice.  Among them, the most 
commonly used weight functions are listed below. 

The cubic spline function (W1) has the following form of  
2 3
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which has 2nd order continuity (see, e.g., GR Liu and Liu, 2003).   

The quartic spline function (W2) is given by 
2 3 41 6 2 33

( )
0

i i i8 38
i

r3 i8 38Wi
6 2 3888 388 1

1
i

i

ri

ri

(3.149)

which has 3rd order continuity (see, e.g., GR Liu and Liu, 2003).   

The exponential function (W3) is expressed as
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Where is a constant of shape parameter, and 
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i

w w
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x x
(3.151)

in which didd =|x xi| is the distance from node xi to the sampling point x,
and rwrr  is the size of the support domain for the weight function.  

As the derivatives of all orders of W3 are continuous within the support f
domain, it is continuous at all orders within the interior of the support 
domain.  However, all the derivatives even the functions itself are not 
exactly zero on the boundary of the support domain.  Therefore,
theoretically, W3 cannot provide compatibility of any order.  Fortunately, 
these non-zero values of the function and its derivatives are very small on aa
the boundary of the support domain.  In practical numerical analyses, W3 
provides very high order compatibility with a very small numerical error,
provided the support domain is sufficiently large.  

Figure 3.17 plots all these three weight functions and their first 
derivatives.

Note that it is easy to construct a weight function with a desired order of 
continuity using the following common formulation (see, e.g., GR Liu and
Liu, 2003) of spline weight function.

0

1
( )

0 1

l
j

j i i
ji

i

b r r0j
j iWi (3.152)

where l is the order of the spline function, andl bjb  are the coefficients that can
be determined by the required conditions.   

For example, a 4th order spline function can be written in the general
form of

2 3 4
0 1 2 3 4 0 1

( )
10

ii2 3 42 3

i

i

b b r b rb b r2 333
0 1 2 3 41 2 3 i2 3 42 32 3

Wi

ri

b r b r b rb r b r b r2 33
1 2 31 2 31 2 32 32 32 32 3

(3.153)
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Figure 3.17. Weight functions and their first order derivatives.  W1: cubic spline; W2: 
quartic spline; W3: exponential function ( =0.3).

(a) weight functions; (b) the first order derivatives.

We now require the weight function to satisfy the following conditions. 

Unity condition states that the weight function is one at the centre of 
the support domain where 0iri :
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0
1

i
i ri

Wi (3.154)

Compact support condition states that 1st and 2t nd derivatives of thed
weight function are all zero at the boundary of the support domain 
where 1iri .  This compact support condition leads to the following 
set of equations.

1

1
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2
1

0

0

0

i

i

i

i ri

i

ri

i

ri

Wi

Wi

r

Wi

r

(3.155)

The condition of symmetry states that the 1st derivative of the weightt
function is zero at the centre of the support domain where 0iri .  The
condition of symmetry gives the following equation.   

0

0
i

i

ri

Wi

r (3.156)

Using Equations (3.154), (3.155) and (3.156), we can obtain the following
set of equations. 
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b0

b1

b b b b b0 1 2 3 41 2 3

b b b b1 2 3 43 42 3 42 32 3

b b b6 126 122 3 433

4b b b bb b b1 2 3 41 2 31 2 3

42 3 43 432 3 42 32 33

46 12126 3 4333

(3.157)

Solving the above set of equations for bi yields
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(3.158)

Substituting these coefficients back into Equation (3.153), we obtain the 
following weight function.

2 3 41 6 2 33

( )
0

i i i8 38
i

r8 3 i8 38Wi
6 2 3888 388 0 1

1
i

iri
(3.159)

This is the quartic spline weight function (W2) given by Equation (3.149).

Similarly, any other spline weight function (with required order of 
continuity and shape profile) can be constructed.  Atluri et al.  (1999b) also
mentioned a similar method for constructing the weight function.  More 
details on systematic ways to construct weight (smoothed) functions can be 
found in GR Liu and Liu (2003) including the construction of piecewise 
weight functions. 

3.3.3 Properties of MLS shape functions

1) Consistency

By the definition, the consistency of the MFree shape functions is the 
ability of the shape functions to reproduce the complete order of polynomial. 
The consistency of the MLS approximation depends on the complete order
of the monomial employed in the polynomial basis.  If the complete order of 
monomial is k, the shape function will possess C kC consistency.  This can bek

easily demonstrated (Krongauz and Belytschko, 1996; GR Liu, 2002) as 
follows.

Consider a field given by

1

k

j j
j

u p k m,     k, (3.160)

Such a given field can always be written in the form of 

1
( ) ( ) ( ) ( ) 0

k m

j j l
j l1 k

u( )
1

( )( ) ( )( ) ( )j jp j j( ) ( )( )( ) ( )( ) ( ))) (( ) ( )( ) ( )) (( )( )( )( ) (3.161)

If we let ai(x) = j(x), j=1,2, …, k, J in Equation (3.125) will vanish and itJ
will necessarily be a minimum, which leads to 
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k
h

j j
j

uh (3.162)

This proves that any monomial included in the basis of MLS will be exactly
reproduced by the MLS approximation.

2) Reproduction 

In the MFree method, the concept of reproduction is separated from thatf
of the consistency (GR Liu, 2002).  This is because different types of basis 
functions can be used in constructing MFree shape functions.  Reproduction
is the ability of the shape function to reproduce functions that are in the basis 
function used to construct the shape functions.  The function may not be a 
polynomial, such as the radial basis function (RBF) in the radial point 
interpolation method (RPIM).  However, consistency emphasizes the 
reproducibility of complete order of polynomials.  This is the mainf
difference between consistency and reproduction.

Similar to the demonstration of consistency, it can be proven that the
MLS approximation can reproduce exactly any function that appears in the 
basis.  This property will be very useful in the practical application.  For ff
example, we know that there is a singular stress field near the tip of a crack. 
If only the normal polynomial basis is used, the computational error will be 
certainly very large.  If we can enrich the basis by including a singular
functions into the basis, the reproduction property of MLS will ensure the 
reproduction of the singular field.  As results, the solution accuracy can be 
significantly improved without too much additional cost (see, e.g.,
Belytschko et al., 1995a,b).  Of course, one has to ensure that the weighted
moment matrix computed using Equation (3.129) is still invertible and well-
conditioned when these enriched basis functions are included, which can
otherwise be a problem sometimes.

3) Partitions of unity

If the constant is included in the basis, the MLS shape function i x is
of the partition of unity, i.e.,   

n

i
i

1

1)( (3.163)

This can be proven easily from the reproducibility feature of the MLS
approximation.  Detailed discussions can be found in Sub-section 3.2.1.1.

4) Lack of Kronecker delta function property

The MLS approximation is obtained by a special least squares method.  
As shown in Figure 3.16, the function obtained by the MLS approximation is
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a smooth curve (or surface) and it does not pass through the nodal values.  
Therefore, the MLS shape functions given in Equation (3.137) do not, in 
general, satisfy the Kronecker delta condition.  Thus, 

1
0i j ij

i j
i j

( )i j( ) ij (3.164)

This property will be demonstrated later in the numerical examples.

3.3.4 Source code for the MLS shape function

3.3.4.1 Implementation issues

1) Determination of the support domain

As for the RPIM subroutine discussed in Sub-section 3.2.3, the
rectangular support domains are used.  The dimension of the support domain
is determined by dsxd andx dsyd in the x and y directions, respectively, which are 
given by Equation (3.114).   

2) Determination of weight functions

As discussed above, the weight function plays an important role in the
performance of the MLS approximation.  All weight functions discussed in
Section 3.3.2 can be used.  In the program given here, the weight functions
of the cubic spline function (W1, Equation (3.148)) and the quartic spline
function (W2, Equation (3.149)), are included.  Because the rectangular
support domains are used, the weight functions need to be slightly modified.  
We define now

( ) ( ) ( ) ( ) ( )i i( ) x i( )( )ii y i( ) (( ) (i x i) () (ii yiW ( ) ( ) ( ) ( ) (( ) ( ) ( ) (i ( ) ( )( ) ( ) (( ) (( ) () (() ( )(( )) ( ) (( )) ( ) () ( )( ) (( ) (( )( )) ( (3.165)

where ixWix and iyWiy are any of the standard 1D weight functions in x and y
directions, respectively, given in Sub-section 3.3.2 with

i
ix

sx

x x
ri ds

(3.166)

i
iy

sy

y y
ri ds

(3.167)

When cubic spline weight function (W1) is used, we have 
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When the quartic spline weight function (W2) is used, we have 

2 3 4 0 11 6 2 33

( )
0 1

ixix ix ix8 38
ix

ix

r3 i8 38W (
ri

6 2 3888 388 (3.170)

2 3 4 0 11 6 8 32 33

( )
0 1

iyiy iy iy8 38
iy

iy

r3 i8 38W (
riy

6 86 2 388888
(3.171)

3) Calculation of MLS shape function

The MLS shape function is given by Equation (3.137).  If we use this
equation to calculate the MLS shape function, 1A  has to be computed,
which is not efficient.  In addition, the computation of derivatives of the 
MLS shape function is quite complex. Hence, the recurrence formulation 
presented in Equations (3.140)~(3.146) is often preferred and used in the
program.   

First, Equation (3.140) is solved by a standard linear equation solver to 
obtain .

Second, Equations (3.141)~(3.143) are solved to obtain derivatives of .

Third, Equations (3.138) and (3.144) ~ (3.146) are used to calculate the 
MLS shape function and its derivatives. 

This procedure avoids direct inversion 1A ; it is efficient to obtain 
arbitrary order derivatives of the MLS shape function. 

4) Flowchart of the subroutine  

The flowchart of the subroutine of the MLS approximation is shown in
Figure 3.18.
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Input data 

Compute the basis 

Compute matrices 
A, B

Compute and its
derivatives

Compute shape function 
and its derivatives

Return

Figure 3.18.  Flowchart of the program of MLS_ShapeFunc_2D.f90 for computing the MLS
shape functions. 

MLS_ShapeFunc_2D

Calculate_Basis

Calculate_AB 

GaussEqSolver_Sym

Weight_W1 

Return

Figure 3.19. Macro flowchart for subroutine MLS_ShapeFunc_2D.
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3.3.4.2 Program and data structure 
The main subroutine MLS_ShapeFunc_2D calls several sub-subroutines.  

The macro chart for the MLS_ShapeFunc_2D can be seen in Figure 3.19.  
The functions of these sub-subroutines are listed in Appendix 3.7.  The 
subroutine GaussEqSolver_Sym of a standard equation solver has been 
given in Sub-section 3.2.3.2. 

1) Subroutines Weight_W1 and Weight_W2

Source code location: Program 3.5 and Program 3.6. 
Dummy arguments: Appendix 3.8.  
Function: to compute the cubic spline function (W1) and the quartic

spline function (W2) given in Equations (3.165)~(3.171).

2) Subroutine Compute_Basis 

Source code location: Program 3.7. 
Dummy arguments: Appendix 3.9.
Function: to compute the basis function and its derivatives.  In the current 

program, the basis of Equation (3.12) is used.  In fact, the user
can easily change the number of basis functions through the 
control constant, mm, that is the number of monomials used in 
the basis functions (i.e., mm is the m used in Equation (3.123)).

3) Subroutine Compute_AB  

Source code location: Program 3.8. 
Dummy arguments: Appendix 3.10.  
Function: to compute matrices A and B those are given in Equations 

(3.129) and (3.132).

4) Main Subroutine MLS_ShapeFunc_2D

Source code location: Program 3.9. 
Dummy arguments: Appendix 3.11.   
Function: to compute MLS shape functions and their derivatives for a two-

dimensional domain.

3.3.4.3 Examples of MLS shape functions 

An example is presented to illustrate the properties of the MLS shape
function, and its derivative are computed using 25(5 5) nodes.  These 25 
nodes are regularly distributed in a rectangular domain: [ 1, 1]i  and

[ 1, 1]iy [ , as shown in Figure 3.5.  Coordinates of these 25 nodes are 
listed in Table 3.4.  To evaluate and plot the shape function and its 
derivatives, a resolution of 61 61 points is used.
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The main program listed in Program 3.10, is used to evaluate MLS shape
functions.  In the listed source code, the number of monomials used in the
basis function, m, is 3.  The user can easily change m to 6.

1) MLS shape functions and their derivatives 

The program obtains the MLS shape functions and their derivatives at 
these 61 61 points first using m=3 and the weight function W1.  The MLS
shape functions and their derivatives x/ xx and / yyy for the central
node 13 (see Figure 3.5) are plotted in Figure 3.20~Figure 3.22.  The and

x/ xx for the central node 13 along the line y=0 are plotted in Figure 3.23.   
Appendix 3.12 lists a sample output for shape functions at the evaluation
point xT=[0, 0].   Appendix 3.12 confirms that MLS shape functions have the 
following properties. 

First, by adding up the values of i at all the 25 nodes, we can confirm the
fact that the MLS shape function is of a partition of unity, i.e. 

1

( ) 1
n

i
i

i (3.172)

Figure 3.20.  MLS  shape function for node 13 at xT=[0, 0] obtained using 25 
nodes shown in Figure 3.5.
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Figure 3.21.  The first-order derivative of the MLS shape function for node 13 at xT=[0,
0] obtained using 25 nodes shown in Figure 3.5.

Figure 3.22. The second-order derivative of the MLS shape function for node 13 at xT=[0,
0] obtained using 25 nodes shown in Figure 3.5.
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Second, in Appendix 3.12, the point xT=[0, 0] is located at the field node 
13.  However, 13(x)=0.1467 1.0.  The MLS shape functions do not satisfy
the Kronecker delta condition.

Third, although only the low order basis is used, the MLS shape functions
have high order continuity due to the use of the weight function.  In this
example, although only the linear basis function (m=3) is used, the shape 
function has higher order continuity.  This fact is evident from the values of 

i x/i xx that are not constants but very smoothly, as also shown in Figure
3.21.  Note that even the 2nd derivatives 2 2

i x2 /i xx of the shape functions are
also smooth as shown in Figure 3.22.

2) Effect of weight functions

Weight functions W1 and W2 are used to construct the shape functions. d
Results of and x/ xx for the central field node 13 along a line y=0 are
plotted in Figure 3.23.  This figure shows that the weight function will affect
the MLS shape function.  When the order of basis is the same, the shape 
function will inherit the continuity of the weight functions.  Because thesef
two weight functions (W1 and W2) have different shapes and order of 
continuities, the MLS shape functions of different weightf functions shown in
Figure 3.23 are clearly different.

3) Effect of the  order of basis functions 

MLS shape functions and their derivatives using linear basis function 
(m=3) and the quadric basis function (m=6) are computed.  Results for the
central node 13 along the line y=0 and different m are plotted in Figure 3.24.  
The basis function affects the MLS shape function.  When m becomes larger,
the 13(x=0) increases.  If m=n=25, the 13(x=0)=1.  In this case, the MLS
approximation will become an interpolation of passing nodal values, and the 
MLS shape function will become the PIM shape function that possesses the 
Kronecker delta property if the moment matrix A is invertible.  Of course,
when m>n, the MLS approximation will fail because 1A will not exist.

3.4 INTERPOLATION ERROR USING MESHFREE
SHAPE FUNCTIONS

The MFree methods firstly depend upon the quality of MFree shape
functions.  Hence, the interpolation errors using MFree shape functions are 
examined through surface fitting operations for given functions.
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Figure 3.23. Effects of weight functions on the MLS shape function of node 13 and its
derivative.  The results are plotted along the line of y=0 using different weight functions.  (a) 

the shape function;  (b) the first-order derivative of the shape function.
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Figure 3.24. MLS shape functions of  node 13 obtained using different numbers of basis 
functions m=3 and m=6.  The results are plotted along the line of y=0. (a) the shape function; 

(b) the first-order derivative of the shape function.
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The MLS and RPIM shape functions are studied here as they will be used 
to develop MFree methods in the following chapters.  A domain of (x(( ,
y) [0,10] [0,10] is considered for the surface fitting.  The domain is 
represented by 11 11 uniformly distributed field nodes with a constant nodal 
distance dcdd =1.0.  A total of 100 points of (x(( , y) [0.4, 9.4] [0.4, 9.4] with
distance h=1.0 are considered as interpolation points; they are intentionally
chosen not to coincide with the field nodes to obtain a fair assessment of the
fitting accuracy.  In order to perform the interpolation for an interpolation
point, a rectangular local support domain is used.  The dimension of the local 
support domain is defined in Equation (3.114), in which the nodal spacing 
dcxdd and dcydd  in the x and y directions, respectively, are all set to 1.0.   

The RPIM-MQ augmented with linear polynomials and the MLS 
approximation using the linear basis and the cubic spline weight (W1) 
function are investigated.  The approximated value of the field function f(x(( )
for each interpolation point x can be interpolated using the nodes in the
support domain and the shape functions.  Let the approximated function be 
denoted by ( ) , we then have

1
( ) ( )

n

s i i
i

f fi( F)F)) (3.173)

where i is the MLS or RPIM shape function, and n is the number of field
nodes used in the support domain.  The Fs is the vector that collects the true
nodal function values (calculated analytically using the given function) for
these n field nodes, and fff is the function value for thef ith field node.

The derivatives of f(ff x) at an interpolation point x can also be
approximated using shape functions, i.e.,

( ) ( ) n
i

s i
i i i1i

f fix
( )ff

s
i i i 1xx x xx x1iii 1i

Fs (3.174)

The following norms are used as error indicators.  The average fitting
errors of function values over the entire domain are defined as

1

1 N
i i

t
ii

fi fiet N fi
(3.175)

where N is the total number of interpolaN tion points in the entire domain,  fff isf
the exact values of function, and ifi is the approximated values of function. 
In this example, N=100 is used. NN

The average fitting error of the 1st derivative of the approximated (fitted) 
function at the interpolation point i is defined as
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1

1 N
i i

t
i i

fi fiet N fi

f
(3.176)

where ifi  is the exact value of the 1st derivative of the function, and ifi is
values of the 1st derivative of the approximated function.

3.4.1 Fitting of a planar surface 

A two-dimensional plane is considered first. i.e., 

1 1.0f x y x y1( , ), ) (3.177)

It can be observed that both RPIM-MQ and MLS can exactly fit the plane to 
the machine accuracy ( 1610 ).  This confirms the linear reproduction
property of these shape functions.  It should be mentioned here that the 
surface fitting for the plane will have errors ( 510 ~ 710 ) if the linear
polynomial term is not included in the RPIM-MQ.  This is because the
RPIM-MQ without the augment of a linear polynomial term cannot exactly
reproduce linear polynomials, only a good approximation.   

3.4.2 Fitting of a complicated surface 

The following non-polynomial surface is fitted using the RPIM-MQ and
MLS shape functions.

2
2 2 ) 1.5
10 10

f x y x2 ( , ) sin( )cos(, ) sin( )cos(2
10

) ( 22) ( ))sin( )cos()cos(sin( (3.178)

1) Shape parameters of the RPIM-MQ 

The effects of two shape parameters, q and c, in the MQ-RBF are first 
studied.  In the studies of shape parameters, s=3.5 is used for the support
domain.

In the study of q, c=1.0 is fixed.  The average fitting errors et aret
obtained for different q and plotted in Figure 3.25.  It can be found that the 
interpolation quality changes with q.  The fitting error decreases when q is in 
the vicinity of 1.0, 2.0 and 3.0.  However, if q=1.0, 2.0, and 3.0, the RPIM-
MQ will fail due to the singularity of the moment matrix.  When q>3.0, the
error is also very large due to the badly conditioned moment matrix.   

In addition, the condition number of interpolation matrix of RPIM 
becomes larger as q approaches 1.0 or 2.0 or 3.0.  The preferred value of 
parameter q is 1.0q or 2.0 (but not equal 1.0 or 2.0, say, 0.98 or 1.03 or
1.99).  This confirms the feature of the RPIM shape functions that more 
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accurate fitting results are obtained when the moment matrix approaches (but
is not yet) singular.  However, when q is too close to 1.0 or 2.0 where the
moment matrix is nearly singular, the results are not stable due to the badly
conditioned moment matrix.  Therefore, in using RPIM shape functions, one 
needs to keep a balance between accuracy and stability.  Hence, q=0.98 or
1.03 is recommended for many problems (GR Liu, 2002).

The fitting errors using different c are plotted in Figure 3.26.  In the 
studies of c, q=0.5 is fixed.  It can be found that a smaller c leads to a 
larger interpolation error.  The effect of ac is less than that of q.
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Figure 3.25. Error et of surface fitting using RPIM-MQ shape functions with t
different q. (MQ-RBF is used with shape parameters: 1.0c , 1.0cx cyd dcx cd ;

the size of support domain is 3.5s , and 0m .).

2) Comparation studies of accuracy

The interpolation errors of MLS and RPIM-MQ are compared in Figure
3.27.  From these two figures, the following conclusions can be drawn.

a) The accuracy in the fitted function itself is higher than that in the
derivatives.  The higher the derivatives, the lower the accuracy.

b) Using the RPIM-MQ shape functions gives satisfactory accuracy in 
the surface fitting.  The fitting accuracy improves with the increase 
of the size of the support domain.  In addition, the shape parameters 
of RBF chosen affect the fitting results.  The fitting accuracy is
unstable sometimes when the moment matrix is too close to singular.  
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c) MLS with linear basis is less accurate in this example.  The increase 
in the size of the support domain cannot improve the fitting results. 
Lower accuracy in surface fitting is because the MLS shape 
functions do no pass through the nodal values.

3) Convergence studies 

In the convergence study, regularly and evenly distributed 36 (6 6), 121
(11 11), 441 (21 21), 961 (31 31), 1296 (36 36), 1681 (41 41), and 6561
(81 81), nodes are used.  The convergence curves are numerically obtained
are plotted in Figure 3.28.  Note that in Figure 3.28 h is in fact the nodal
spacing dcdd  defined in Sub-section 3.1.2.  To coincide with the common
definition of h-convergence, h is used here and in the following chapters in 
the studies of h-convergence.  The following remarks can be made from
Figure 3.28.

The accuracy of RPIM-MQ is higher than that of the MLS.  
However, the convergent process of RPIM-MQ is not very stable 
when finer nodes are used, although the accuracy is still much better 
than that of MLS.  Further tuning of the shape parameters are
necessary.
The MLS has very steady convergence for the surface fitting.
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Figure 3.26. Error et  of surface fitting using RPIM-MQ for differentt c .
(MQ-RBF is used with shape parameters: 0.5q , 1.0cx cyd dcx c ; the

size of support domain of 3.5s , and 0m .).
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Figure 3.27. Error et in surface fitting using MLS and RPIM-MQ shape t
functions created using different size of support domains. 

In MQ-RBF, 1.03q , 4c , 1.0cx cyd d ,  and 0 are used; In MLS,
the linear basis is used.
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Figure 3.28. Error et in surface fitting using MLS and RPIM-MQ shape functions.t
(In MQ-RBF, q=1.03, 4c , 1.0cx cyd d , 3.5s , and 0  are

used; In MLS, the linear basis is used)

It should be mentioned here that the interpolation error is only one part 
of total error in an MFree method in solving a problem of computational 
mechanics.  The studies of shape parameters presented in this section are 
only for checking the interpolation quality and the producibility of MLS and
RPIM shape functions.  The accuracy will be also studied in the following
chapters in the analysing actual problems of computational mechanics. 

3.5 REMARKS

In MFree methods, the first and one of the most important problems that 
we face is the MFree function approximation.  In contrast to the FEM, there
is no pre-defined element in MFree models that can be used in the function
approximation.  One of the challenges in MFree methods is how to construct 
shape functions efficiently without using any pre-defined relations between
nodes.
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This chapter presents a number of ways to meet this challenge. These 
MFree shape functions possess the following important features.

Reproducibility: they are capable of reproducing what is contained in
the basis; this is essential and crucial for any numerical method to 
produce accurate solutions. 

Convergence: this allows the error of the approximation of a function 
that is sufficiently smooth to approach zero when the nodal spacing is
sufficiently reduced. 

None of these shape functions depends upon any fixed relation between
nodes.  This brings freedom in the formulation of an MFree method.  It is
also easy to construct an MFree shape function with high orders; this is
needed for the solution of high order PDEs.  The MFree shape functions 
reduce the effort spent in post-processing.  Unfortunately, these freedoms
also lead to some challenging problems, for example, compatibility,
efficiency, and accuracy.
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APPENDIX

Appendix 3.1. Subroutines used in the program of RPIM_ShapeFunc_2D.f90

Subroutines Functions

RPIM_ShapeFunc_2D Compute the RPIM shape function and their
derivatives.

Compute_RadialBasis Compute the basis function vector and its 
derivatives for a point.

GaussEqSolver_Sym Solve the linear symmetric equation using Gauss 
elimination.

Appendix 3.2. Dummy arguments used in the subroutine RPIM_ShapeFunc_2D 

Variable Type Usage   Function

nx Integer Input Dimension of this problem; nx=2 for
2D problem

numnode Integer Input Number of field nodes 

ndex Integer Input Number of field nodes in the support 
domain 

mbasis Integer Input Number of monomials used in the
augmented RBF

nRBF Integer Input Types of RBF.  nRBF=1: MQ; FF
nRBF=2: Exp;FF nRBF=3: TSP

alfc Long real Input Shape parameter of RBF

q Long real Input Shape parameter of RBF

dc Long real Input Nodal spacing

X(nx,
numnode)

Long real Input Coordinates x and x y for all field
nodes. x(1,i)=x= i; x(2,i)=y= i

Gpos(nx) Long real Input Coordinates of the point of interest. 
gposgg (1)=x= , gpos(2)=y=
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Nv(ndex) Integer Input Field nodes in the local support 
domain 

Phi(10,

ndex)

Long real Output RPIM shape functions and their
derivatives. phi(1,i)~ phi(10, i):

i,
x
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xx
,

y
i

yy
,
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i
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Appendix 3.3. Dummy arguments used in the subroutine Compute_RadialBasis

Variable Type Usage   Function 

ndex Integer Input Number of field nodes used in the support 
domain 

mbasis Integer Input Number of monomials used in the augmented 
RBF

nRBF Integer Input Types of RBF. nRBF=1: MQ;FF nRBF=2: Exp;FF
nRBF=3: TSPFF

alfc Long real Input Shape parameter of RBF 

q Long real Input Shape parameter of RBF 

dc Long real Input Nodal spacing

x, y  Long real Input Coordinates of the point considered.

Xv(ndex) Long real Input Coordinates x andx y for field nodes in the
support domain. 

Rk(10, 
ndex)

Long real Output RBF and its derivatives. rk(1,i)~ rk(10,kk i):

Ri, iR
x
RR
xx

, iR
y
RR
yy

,
2

2
iR

xxx
,

2
iR

x yxx yy
,

2

2
iR

yyy
, … 

Appendix 3.4. Dummy arguments used in the subroutine GaussEqSolver_Sym 

Variable Type Usage   Function 

n Integer Input Number of linear equations.   

ma Integer Input Number of rows of matrix A.
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A(ma, n) Long real Input Coefficient matrix of Ax=B.

B(n) Long real Input 
Output

Right-hand side vector of Ax=B
when input.  The solution when
output.

ep Long real Input Required tolerance

kwji Integer Output Control constant.
When there is a unique solution,
kwij=0; Else kwij=1

Appendix 3.5.  An output sample of the shape function for node 13 evaluated at 
point T {0.2,0.4}x  using the subroutine RPIM_ShapeFunc_2D and 
25 field nodes shown in Figure 3.5 * +

1.00029i
i

ii

* Phi: ii ; dPhidx: i

xxx
; dPhidy: i

y
i

yy
; dPhidxx:

2

2
i

xxx
; dPhidyy:

2

2
i

yyy
+ MQ-RBF is used with 0.5q , 2.0c , 0.5cdc  and mbasis=0
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Appendix 3.6. An output sample of the shape function for node 13 evaluated at 
point {0.,0.}Tx using the subroutine RPIM_ShapeFunc_2D and 
25 field nodes shown in Figure 3.5* +

1.00000i
i

ii

* Phi: i ; dPhidx: i

xxx
; dPhidy: i

yyy
; dPhidxx:

2

2
i

xxx
; dPhidyy:

2

2
i

yyy
+ MQ-RBF is used with 0.5q , 2.0c , 0.5cdc  and mbasis=0

Appendix 3.7. Subroutines used in the program of MLS_ShapeFunc_2D.f90

Subroutines Functions

MLS_ShapeFunc_2D Compute the MLS shape function and their
derivatives

Compute_Basis Compute the polynomial basis vector and its
derivatives at a given point 

Compute_AB Compute A and B matrices in the MLS given in 
Equations  (3.131) and (3.133)

Weight_W1(or
Weight_W2)

Compute the cubic spline function (W1) (or the
quartic spline function, W2) defined in Equations 
(3.148) and (3.149), respectively 

GaussEqSolver_Sym Solve the linear symmetric equation using the
Gauss elimination method 
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Appendix 3.8.  Dummy arguments used in the subroutines Weight_W1 and 
Weight_W2 

Variable Type Usage   Function 

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

numnode Integer Input Number of field nodes

ndex Integer Input Number of field nodes used in the 
support domain

Nv(ndex) Integer Input Field nodes in the support domain 

Dif(ff nx,ndex) Long real Input Distances:
Ixxidif xxii ,

Iyyidif yyii

Ds(nx, 
numnode)

Long real Input The size of the support domain:   
ds(1,i)=dsxid , ds(2,i)=dsyid

W(ndex,10) Long real Output Weight function and its derivatives: 
( ,1) iW i W( ,1) i ; ( , 2) /iW i W x( , 2) / xx/ ;
( 3) iW i W y( ,3) /i / yy/ ; 2 2( ,4) /i xW ( ,4) 22 xx/2

2( ) iW i W x y( ,5) /i /2 x yx y/2 ; 2 2( 6) iW yW i W( ,6) i
22 yy/2

Appendix 3.9. Dummy arguments used in the subroutine Compute_Basis

Variable Type Usage   Function 

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

mm Integer Input Number of monomials used in the basis

Gpos(nx) Long real Input Coordinates of the point of interest:  
xgpos )1( , ygpos )2(

Gp(mm, 10)0 Long real Output  Basis function and its derivatives:
gp(1,1)~(6,1)=pT={1,x, y,xy,x2,y2};
gp(1,2)~(6,2)= T)(

xxx
p ={0,1,0,y,2x,0};

gp(1,3)~(6,3)= T)(
yyy
p ={0,0,1,x,0,2y2 };

……
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Appendix 3.10. Dummy arguments used in the subroutine Compute_AB

Variable Type Usage   Function 

nx Integer Input Dimension of this problem; nx=2 for
2D problem

numnode Integer Input Number of field nodes

ndex Integer Input Number of field nodes in the support 
domain

mm Integer Input Number of monomials used in the
basis

X(nx, numnode) Long 
real

Input x and y coordinates for all field nodes:
x(1, i)=x= i; x(2, i)=y= i

Gpos(nx) Long 
real

Input Coordinates of the point of interest:  
xgpos )1( , ygpos )2(

Nv(ndex) Integer Input Field nodes used in the support 
domain

Ds(nx, numnode) Long
real

Input The dimension of the support domain: 
ds(1,i)=dsxid , ds(2,i)=dsyid

A(mm,mm,10) Long
real

Output A matrix and its derivatives:
A(i, j,1)~ A(i,j,10) are

Aij, ijx
)(

xx
A ,

ijy
)(

yy
A ,

ijx
)( 2

2

xx
A ,

B(mm,mm,10) Long
real

Output B matrix and its derivatives:
B(i, j,1)~ B(i,j,10) are
Bij, ijx

)(
xx
B ,

ijy
)(

yy
B ,

ijx
)( 2

2

xx
B ,

Appendix 3.11. Dummy arguments used in the subroutine MLS_ShapeFunc_2D

Variable Type Usage   Function

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

numnode Integer Input Number of field nodes 

ndex Integer Input Number of field nodes in the support 
domain
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mm Integer Input Number of monomials used in the basis  

x(nx,
numnode)

Long real Input x and y coordinates for all field nodes:
x(1, i)=x= i; x(2 ,i)=y= i

Gpos(nx) Long real Input Coordinates of the point of interest: 
xgpos )1( , ygpos )2(

Nv(ndex) Integer Input Field nodes used in the support domain 

Ds(nx,
numnode)

Long real Input The dimension of the support domain:  
ds(1,i)=dsxid , ds(2,i)=dsyid

Phi(10,
ndex)

Long real Output MLS shape functions and their
derivatives.

 Appendix 3.12.  An output sample of the shape function for node 13 evaluated at 
point T {0,0}x using the subroutine MLS_ShapeFunc_2D, 25 field 
nodes shown in Figure 3.5, and weight function W1 and  mm=3*

1.000000i
i

ii

* Phi: i ; dPhidx: i

x
i

xx
; dPhidy: i

yyy
; dPhidxx:

2

2
i

xxx
; dPhidyy: 2

2
i

y
i

yy
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COMPUTER PROGRAMS

Program 3.1. Source code of Subroutine RPIM_ShapeFunc_2D

    SUBROUTINE RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,&
                                 alfc,dc,q,nRBF, mbasis)
!------------------------------------------------------------------
! Compute RPIM shape functions and their derivatives
! Input--gpos,x,nv,ds,alfc,dc,q,nx,numnode,ndex,mm,nRBF,nbasis
!        nRBF=1: MQ; 2:  EXP; 3: TSP
! Output--phi
!    From 1 to 10 of the two dimension of phi denotes 
! phi,dphix,dphiy,dphixx,dphixy,dphiyy
!         dphidxxx,dphidxxy, dphidxyy, dphidyyy
!------------------------------------------------------------------

implicit real*8 (a-h,o-z)
       dimension gpos(nx),x(nx,numnode),nv(ndex),rk(ndex+mbasis)
       dimension phi(10,ndex),xv(nx,ndex),rr(10,ndex+mbasis)
       dimension a(ndex+mbasis,ndex+mbasis),g0(ndex+mbasis,ndex+mbasis)

if(nrbf.eq.1) then
          rc=alfc*dc           ! For MQ;

endif
if(nrbf.eq.2) then

q=alfc/dc/dc         ! For EXP; 
       endif
       ep=1.d-20
       mg=ndex+mbasis
       do i=1,mg
          do j=1,mg

g0(i,j)=0.
enddo

enddo
       do i=1,ndex
          nn=nv(i)
          xv(1,i)=x(1,nn)
          xv(2,i)=x(2,nn)

enddo
! ****************** Assemble the matrix of G0
       do i=1,ndex
          nn=nv(i)
          call Compute_RadialBasis(x(1,nn),x(2,nn),xv,rr,ndex,rc,q,nRBF,mbasis)
          do j=1,ndex

g0(i,j)=rr(1,j)
          enddo
          if(mbasis.gt.0) then

g0(i,ndex+1)=1.
g0(i,ndex+2)=x(1,nn)
g0(i,ndex+3)=x(2,nn)
g0(ndex+1,i)=1.
g0(ndex+2,i)=x(1,nn)
g0(ndex+3,i)=x(2,nn)

endif
enddo

! ****************** Solve linear equation to obtain shape function
       do i=1,mg
          do j=1,mg
             a(i,j)=g0(i,j)

enddo
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enddo
       call Compute_RadialBasis(gpos(1),gpos(2),xv,rr,ndex,rc,q,nRBF,mbasis)

       do i=1,mg
          rk(i)=rr(1,i)

enddo
       call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji) 
       if(kwji.eq.1) then
        write(*,*)'Fail...'

pause
        endif
       do i=1,ndex
          phi(1,i)=rk(i)

enddo

! ****************** Solve linear equation to obtain dphidx
       do i=1,mg
          do j=1,mg
             a(i,j)=g0(i,j)

enddo
enddo

       do i=1,mg
          rk(i)=rr(2,i)
       enddo
       call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji) 
       do i=1,ndex

phi(2,i)=rk(i)
       enddo

! ****************** Solve linear equation to obtain dphidy
       do i=1,mg
          do j=1,mg
             a(i,j)=g0(i,j)

enddo
enddo

       do i=1,mg
          rk(i)=rr(3,i)

enddo
       call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
       do i=1,ndex

phi(3,i)=rk(i)
enddo

! ****************** Solve linear equation to obtain dphidxx
       do i=1,mg
          do j=1,mg
             a(i,j)=g0(i,j)
          enddo

enddo
       do i=1,mg
          rk(i)=rr(4,i)

enddo
       call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
       do i=1,ndex

phi(4,i)=rk(i)
enddo

! ****************** Solve linear equation to obtain dphidxy
       do i=1,mg
          do j=1,mg
             a(i,j)=g0(i,j)
          enddo
       enddo
       do i=1,mg
           rk(i)=rr(5,i)
       enddo
       call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji) 
       do i=1,ndex

phi(5,i)=rk(i)
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enddo

! ****************** Solve linear equation to obtain dphidyy
       do i=1,mg
          do j=1,mg
             a(i,j)=g0(i,j)
          enddo
       enddo 
       do i=1,mg
          rk(i)=rr(6,i)
       enddo 
       call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
       do i=1,ndex

phi(6,i)=rk(i)
enddo

       return
END

Program 3.2. Source code of Subroutine Compute_RadialBasis

    SUBROUTINE Compute_RadialBasis(x,y,xv,rk,ndex,R,q,nRBF,mbasis)
!------------------------------------------------------------------
!  Compute radial basis after added linear polynomial.
!  Input: x,y,xv[],ndex, r,q,nRBF,mbasis
!         nRBF: 1: MQ; 2: Exp; 3: TPS 
!  Output--rk[10,ndex+mbasis]
!         From 1 to 10 denotes
!         r,drx,dry,drdxx,drdxy,drdyy 
!         drdxxx,drdxxy, drdxyy, drdyyy 
!------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
       dimension xv(2,ndex),rk(10,ndex+mbasis)
       do i=1,ndex+mbasis
          do j=1,10
             rk(j,i)=0

enddo
enddo

       do 10 i=1,ndex
          rr2=(x-xv(1,i))**2+(y-xv(2,i))**2
          if(nRBF.eq.1) then      ! MQ
             rk(1,i)=(rr2+R**2)**q
             rk(2,i)=2.*q*(rr2+R**2)**(q-1.)*(x-xv(1,i))
             rk(3,i)=2.*q*(rr2+R**2)**(q-1.)*(y-xv(2,i))
             rk(4,i)=2.*q*(rr2+R**2)**(q-1.)+4.*(q-1)*q* &
                     (x-xv(1,i))**2*(rr2+R**2)**(q-2)
             rk(5,i)=4.*(q-1)*q*(x-xv(1,i))*(y-xv(2,i))* &
                     (rr2+R**2)**(q-2)
             rk(6,i)=2.*q*(rr2+R**2)**(q-1.)+4.*q*(q-1)* &
                     (y-xv(2,i))**2*(rr2+R**2)**(q-2)

endif

if(nRBF.eq.2) then  ! EXP
             rk(1,i)=exp(-q*rr2)
             rk(2,i)=-2.*q*exp(-q*rr2)*(x-xv(1,i))
             rk(3,i)=-2.*q*exp(-q*rr2)*(y-xv(2,i))
             rk(4,i)=-2*q*exp(-q*(rr2))+4*q*q*(x-xv(1,i))**2*exp(-q*rr2)
             rk(5,i)=4.*q*q*exp(-q*(rr2))*(y-xv(2,i))*(x-xv(1,i))
             rk(6,i)=-2*q*exp(-q*(rr2))+4*q*q*(y-xv(2,i))**2*exp(-q*rr2)
          endif

          if(nRBF.eq.3) then   ! TSP 
             rk(1,i)=(rr2)**(0.5*q)
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            rk(2,i)=q*(x-xv(1,i))*(rr2)**(0.5*q-1)
            rk(3,i)=q*(y-xv(2,i))*(rr2)**(0.5*q-1)
            rk(4,i)=q*(rr2)**(0.5*q-1)+2.*q*(0.5*q-1)*(x-xv(1,i))**2*(rr2) &
                    **(0.5*q-2)
            rk(5,i)=q*(0.5*q-1)*(x-xv(1,i))*(y-xv(2,i))*(rr2)**(0.5*q-2)
            rk(6,i)=q*(rr2)**(0.5*q-1)+2.*q*(0.5*q-1)*(y-xv(2,i))**2*(rr2) &
                    **(0.5*q-2)

endif
10 continue

if(mbasis.gt.0) then
         rk(1,ndex+1)=1.
         rk(1,ndex+2)=x
         rk(1,ndex+3)=y
         rk(2,ndex+2)=1.
         rk(3,ndex+3)=1.
      endif
      return 

END

Program 3.3. Source code of Subroutine GaussEqSolver_sym

   Subroutine GaussEqSolver_Sym(n,ma,a,b,ep,kwji)
!------------------------------------------------------------------
!  Solve sysmmetric linear equation ax=b by using Gauss elimination.
!  If kwji=1, no solution;if kwji=0,has solution
!  Input--n,ma,a(ma,n),b(n),ep, 
!  Output--b,kwji
!------------------------------------------------------------------

implicit real*8 (a-h,o-z)
      dimension a(ma,n),b(n),m(n+1)
      do 10 i=1,n
10     m(i)=i
      do 120 k=1,n

p=0.0
         do 20 i=k,n
            do 20 j=k,n
               if(dabs(a(i,j)).gt.dabs(p)) then 

p=a(i,j)
                  io=i 

jo=j
endif

20 continue
if(dabs(p)-ep) 30,30,35 

30        kwji=1
         return
35 continue

if(jo.eq.k) go to 45 
         do 40 i=1,n
            t=a(i,jo)
            a(i,jo)=a(i,k)
            a(i,k)=t
40        continue

j=m(k)
         m(k)=m(jo)
         m(jo)=j
45        if(io.eq.k) go to 55 
         do 50 j=k,n
            t=a(io,j)
            a(io,j)=a(k,j)
            a(k,j)=t
50 continue
         t=b(io)
         b(io)=b(k)

b(k)=t
55 p=1./p

in=n-1
if(k.eq.n) go to 65
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         do 60 j=k,in
60        a(k,j+1)=a(k,j+1)*p
65        b(k)=b(k)*p

if(k.eq.n) go to 120 
         do 80 i=k,in
            do 70 j=k,in
70              a(i+1,j+1)=a(i+1,j+1)-a(i+1,k)*a(k,j+1)
80              b(i+1)=b(i+1)-a(i+1,k)*b(k)
120 continue
         do 130 i1=2,n

i=n+1-i1
            do 130 j=i,in
130       b(i)=b(i)-a(i,j+1)*b(j+1)
         do 140 k=1,n

i=m(k)
140       a(1,i)=b(k)
         do 150 k=1,n
150       b(k)=a(1,k)
         kwji=0
   return 

END

Program 3.4. Source code of main program of using RPIM subroutine
!------------------------------------------------------------------
! Main program for testing the RPIM shape function.
! Call Subroutine RPIM_ShapeFunc_2D( ).
! 25 field nodes (5X5) in domain [x,y]--[-1,1;-1,1].
! 61X61 sampling points are used to plot 2-D RPIM shape Func. 
!------------------------------------------------------------------

implicit real*8 (a-h,o-z)
   parameter(nx=2,numnode=25)
   dimension x(nx,numnode),nv(numnode), gpos(nx),phi(10,numnode)
   open(2,file='phi.dat') ! Output file
   write(2,50)
   nRBF=1                     ! Using MQ-RBF

q=0.5
alfc=2.0
dc=0.5

   mbasis=0                   ! Number of basis
   xlength=2.

ylength=2.
   ndivx=4
   ndivy=4
   xstep=xlength/ndivx

ystep=ylength/ndivy
   nn=0
   do i=1,ndivx+1
      do j=1,ndivy+1
         nn=nn+1
         x(1,nn)=-1.+(i-1)*xstep   !x coordinates of field nodes
         x(2,nn)=-1.+(j-1)*ystep   !y coordinates of field nodes

enddo
enddo

   do i=1,numnode
      nv(i)=i                      ! Field nodes in support domain

enddo
   ndex=25
   nce=numnode/2+1     ! the node in the centre of 25 field nodes 
   nm=61
   ste=2./(nm-1)
   do ix=1,nm
      do il1=1,numnode
         do il2=1,10

phi(il1,il2)=0
         enddo 
      enddo

gpos(1)=-1.+ste*(ix-1)
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      do j=1,nm
         gpos(2)=-1.+ste*(j-1)

if((abs(gpos(1)).le.1).and.(abs(gpos(2)).le.1)) then
            call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,&
                                alfc,dc,q,nRBF, mbasis)

else
endif

! ***********Output RPIM shape function
if((abs(gpos(1)).le.1.d-8).and.(abs(gpos(2)).le.1.d-8)) then 

            do kk=1,ndex
               nd=nv(kk)
               write(2,100)nv(kk),x(1,nd),x(2,nd),phi(1,kk), & 

phi(2,kk),phi(3,kk),phi(4,kk),phi(6,kk)
            enddo 
         endif 
      enddo
   enddo
   write(2,150)
50  format(1x,'Node', 5x,'x', 7x,'y', 8x,'Phi', 6x,'dPhidx', &
          5x,'dPhidy', 4x, 'dPhidxx', 4x,'dPhidyy',/,80('-'))
100 format(1x,i4, 2f8.3,5f11.5)
150 format(80('-'))

END

Program 3.5. Source code of Subroutine Weight_W1

  SUBROUTINE Weight_W1(dif,nv,ds,w,nx,ndex,numnode)
!------------------------------------------------------------------
! Cubic spline weight function
! input--dif,nv,ds,nx,ndex,numnode
! output--w
! from 1 to 10 column of w denotes w,dwdx,dwdy,dwdxx,dwdxy,dwdyy
!------------------------------------------------------------------
      implicit real*8 (a-h,o-z)
      dimension dif(nx,ndex),nv(numnode),ds(nx,numnode),w(ndex,10)
      ep=1.0e-20
      do 10 i=1,ndex
         nn=nv(i)
         difx=dif(1,i)
         dify=dif(2,i)

if(dabs(difx).le.ep) then 
drdx=0.

else
            drdx=(difx/dabs(difx))/ds(1,nn)

end if
if (dabs(dify).le.ep) then 

            drdy=0.
else

            drdy=(dify/dabs(dify))/ds(2,nn)
end if

         rx=dabs(dif(1,i))/ds(1,nn)
         ry=dabs(dif(2,i))/ds(2,nn)
       if(rx.gt.0.5) then 
         wx=(4./3.)-4.*rx+4.*rx*rx-(4./3.)*rx*rx*rx
         dwxdx=(-4.+8.*rx-4.*rx*rx)*drdx
         dwxdxx=(8.-8.*rx)*drdx*drdx
         dwxdxxx=(-8.)*drdx*drdx*drdx
       else if(rx.le.0.5) then 
         wx=(2./3.)-4.*rx*rx+4.*rx*rx*rx
         dwxdx=(-8.*rx+12.*rx*rx)*drdx
         dwxdxx=(-8.+24.*rx)*drdx*drdx
         dwxdxxx=(24.)*drdx*drdx*drdx

end if
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if(ry.gt.0.5) then 
          wy=(4./3.)-4.*ry+4.*ry*ry-(4./3.)*ry*ry*ry
          dwydy=(-4.+8.*ry-4.*ry*ry)*drdy
          dwydyy=(8.-8.*ry)*drdy*drdy
          dwydyyy=(-8.)*drdy*drdy*drdy
        else if(ry.le.0.5) then 
          wy=(2./3.)-4.*ry*ry+4.*ry*ry*ry
          dwydy=(-8.*ry+12.*ry*ry)*drdy
          dwydyy=(-8.+24.*ry)*drdy*drdy
          dwydyyy=(24.)*drdy*drdy*drdy
        end if 
          w(i,1)=wx*wy
          w(i,2)=wy*dwxdx
          w(i,3)=wx*dwydy
          w(i,4)=wy*dwxdxx
          w(i,5)=dwxdx*dwydy
          w(i,6)=wx*dwydyy
          w(i,7)=wy*dwxdxxx
          w(i,8)=dwxdxx*dwydy
          w(i,9)=dwxdx*dwydyy
          w(i,10)=wx*dwydyyy
10 continue
    return

end

Program 3.6. Source code of Subroutine Weight_W2

    SUBROUTINE Weight_W2(dif,nv,ds,w,nx,ndex,numnode)
!------------------------------------------------------------------
! Quartic spline weight function
! input--dif,nv,ds,nx,ndex,numnode
! output--w
! from 1 to 10 column of w denotes w,dwdx,dwdy,dwdxx,dwdxy,dwdyy
!------------------------------------------------------------------

implicit real*8 (a-h,o-z)
       dimension dif(nx,ndex),nv(numnode),ds(nx,numnode),w(ndex,10)
       ep=1.0e-20
       do 10 i=1,ndex
          nn=nv(i)
          difx=dif(1,i)
          dify=dif(2,i)
          if(dabs(difx).le.ep) then
             drdx=0.

else
             drdx=(difx/dabs(difx))/ds(1,nn)

end if
if (dabs(dify).le.ep) then 

             drdy=0.
else

             drdy=(dify/dabs(dify))/ds(2,nn)
end if

          rx=dabs(dif(1,i))/ds(1,nn)
          ry=dabs(dif(2,i))/ds(2,nn)
          wx=1.-6.*rx*rx+8.*rx*rx*rx-3.*rx*rx*rx*rx
          dwxdx=(-12.*rx+24.*rx*rx-12.*rx*rx*rx)*drdx
          dwxdxx=(-12.+48.*rx-36.*rx*rx)/(ds(1,nn)*ds(1,nn))
          dwxdxxx=(48.-72*rx)*drdx**3
          wy=1.-6.*ry*ry+8.*ry*ry*ry-3.*ry*ry*ry*ry
          dwydy=(-12.*ry+24.*ry*ry-12.*ry*ry*ry)*drdy
          dwydyy=(-12.+48.*ry-36.*ry*ry)/(ds(2,nn)*ds(2,nn))
          dwydyyy=(48.-72*ry)*drdy**3
          w(i,1)=wx*wy
          w(i,2)=wy*dwxdx
          w(i,3)=wx*dwydy
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         w(i,4)=wy*dwxdxx
         w(i,5)=dwxdx*dwydy
         w(i,6)=wx*dwydyy
         w(i,7)=wy*dwxdxxx
         w(i,8)=dwxdxx*dwydy
         w(i,9)=dwxdx*dwydyy
         w(i,10)=wx*dwydyyy
10     continue 
   return 
   end

Program 3.7. Source code of Subroutine Compute_Basis

   SUBROUTINE Compute_Basis(gpos,gp,nx,mm)
!------------------------------------------------------------------
! Compute basis functions and their derivatives
! Input-gpos,nx,mm
! Output-gp
! From 1 to 10 columns of gp: p,dpdx,dpdy,dpdxx,dpdxy,dpdyy,
!                             dpdxxx,dpdxxy,dpdxyy,dpdyyy
!------------------------------------------------------------------
      implicit real*8 (a-h,o-z)
      dimension gpos(nx),gp(10,mm)
      do i=1,mm
         do j=1,10

gp(i,j)=0.0
enddo

enddo
gp(1,1)=1.0
gp(1,2)=gpos(1)
gp(1,3)=gpos(2)
gp(1,4)=gpos(1)*gpos(1)
gp(1,5)=gpos(1)*gpos(2)
gp(1,6)=gpos(2)*gpos(2)
gp(2,2)=1.0
gp(2,4)=2.0*gpos(1)
gp(2,5)=gpos(2)
gp(3,3)=1.0
gp(3,5)=gpos(1)
gp(3,6)=2.0*gpos(2)
gp(4,4)=2.0
gp(5,5)=1.0
gp(6,6)=2.0

   return
end

Program 3.8. Source code of Subroutine Compute_AB

   SUBROUTINE Compute_AB(gpos,x,nv,ds,a,b,nx,numnode,ndex,mm)
!------------------------------------------------------------------
! Compute A matrix and B matrix and their derivatives
! input--gpos,x,nv,dm,nx,numnode,ndex,mm
! output--a,b
! From 1 to 10 of the third dimension of a denotes
!    a,dax,day,daxx,daxy,dayy, dadxxx,dadxxy,dadxyy,dadyyy
! From 1 to 10 of the third dimension of b denotes
!    b,dbx,dby,dbxx,dbxy,dbyy,dbdxxx,dbdxxy,dbdxyy,dbdyyy
!------------------------------------------------------------------

implicit real*8 (a-h,o-z)
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      dimension gpos(nx),x(nx,numnode),nv(numnode),ds(nx,numnode)
      dimension a(mm,mm,10),b(mm,ndex,10) 
      dimension xv(nx,ndex),dif(nx,ndex),w(ndex,10),p(6,ndex),pp(mm,mm)

      do i=1,ndex
         nn=nv(i)
         xv(1,i)=x(1,nn)
         xv(2,i)=x(2,nn)

p(1,i)=1.0
p(2,i)=xv(1,i)
p(3,i)=xv(2,i)
p(4,i)=xv(1,i)*xv(1,i)
p(5,i)=xv(1,i)*xv(2,i)
p(6,i)=xv(2,i)*xv(2,i)

         dif(1,i)=gpos(1)-xv(1,i)
         dif(2,i)=gpos(2)-xv(2,i)

enddo
      call Weight_W1(dif,nv,ds,w,nx,ndex,numnode) 
! ************* Compute b and its derivatives
      do 20 ii=1,mm
         do 20 jj=1,ndex
            do 20 kk=1,10
               b(ii,jj,kk)=p(ii,jj)*w(jj,kk)
20 continue
! ************* Compute a and its derivatives
      do 25 ie=1,mm
         do 25 je=1,mm
            do 25 ke=1,10
               a(ie,je,ke)=0.
25     continue
      do 30 iii=1,ndex
         do 40 ik=1,mm
            do 40 jk=1,mm
               pp(ik,jk)=p(ik,iii)*p(jk,iii) 
40 continue
         do 50 ikk=1,mm
            do 50 jkk=1,mm
               do 50 kkk=1,10
                  a(ikk,jkk,kkk)=a(ikk,jkk,kkk)+w(iii,kkk)*pp(ikk,jkk)
50 continue
30 continue
   return

end

Program 3.9. Source code of Subroutine MLS_ShapeFunc_2D( )

   SUBROUTINE MLS_ShapeFunc_2D(gpos,x,nv,ds,phi,nx,numnode,ndex,mm)
!------------------------------------------------------------------
! Compute MLS shape functions and their derivatives
! Input--gpos,x,nv,ds,nx,numnode,ndex,mm
! Output--phi
! From 1 to 10 of the two dimension of phi denotes 
! phi,dphix,dphiy,dphixx,dphixy,dphiyy
!     dphidxxx,dphidxxy, dphidxyy, dphidyyy
!------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
      dimension gpos(nx),x(nx,numnode),nv(numnode)
      dimension  ds(nx,numnode),xv(nx,ndex)
      dimension gp(10,mm),gam(mm,10),a(mm,mm,10)
      dimension b(mm,ndex,10),c(mm),aa(mm,mm),phi(10,ndex)
      do i1=1,mm
         do j1=1,10

gp(j1,i1)=0.0
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enddo
enddo

      call Compute_Basis(gpos,gp,nx,mm)
      call Compute_AB(gpos,x,nv,ds,a,b,nx,numnode,ndex,mm)
      ep=1.0e-20
      do 10 in=1,mm
         c(in)=gp(1,in)
10     continue 
      do 20 i1=1,mm
         do 20 j1=1,mm
            aa(i1,j1)=a(i1,j1,1)
20 continue
      do i1=1,mm
         do j1=1,10
            gam(i1,j1)=0.0

enddo
enddo

! ************* Compute gam
      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
21     format(1x,' gam kwji=',i2)
      do 25 k1=1,mm

gam(k1,1)=c(k1)
25     continue 
! ************* Compute dgamdx
      do 30 in=1,mm
         c(in)=0.
         do 30 jn=1,mm
            c(in)=c(in)+a(in,jn,2)*gam(jn,1)
30 continue
      do 35 kn=1,mm
         c(kn)=gp(2,kn)-c(kn)
35 continue
      do 40 i1=1,mm
         do 40 j1=1,mm
            aa(i1,j1)=a(i1,j1,1)
40 continue
      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do 45 k1=1,mm

gam(k1,2)=c(k1)
45 continue
! ************* Compute dgamdy
      do 50 in=1,mm
         c(in)=0.
            do 50 jn=1,mm
               c(in)=c(in)+a(in,jn,3)*gam(jn,1)
50     continue 
      do 55 kn=1,mm
         c(kn)=gp(3,kn)-c(kn)
55 continue
      do 60 i1=1,mm
         do 60 j1=1,mm
            aa(i1,j1)=a(i1,j1,1)
60 continue
      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do 65 k1=1,mm

gam(k1,3)=c(k1)
65 continue
! ************* Compute dgamdxx
      do 70 in=1,mm
         c(in)=0.
         do 70 jn=1,mm
            c(in)=c(in)+a(in,jn,4)*gam(jn,1)+2.0*a(in,jn,2)*gam(jn,2)
70     continue 
      do 75 kn=1,mm
         c(kn)=gp(4,kn)-c(kn)
75     continue
      do 80 i1=1,mm
         do 80 j1=1,mm
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            aa(i1,j1)=a(i1,j1,1)
80 continue
      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do 85 k1=1,mm 

gam(k1,4)=c(k1)
85 continue
! ************* Compute dgamdxy
      do 90 in=1,mm
         c(in)=0.
         do 90 jn=1,mm
            c(in)=c(in)+a(in,jn,5)*gam(jn,1)+a(in,jn,2)*gam(jn,3)+ &
                  a(in,jn,3)*gam(jn,2)
90 continue
      do 95 kn=1,mm
         c(kn)=gp(5,kn)-c(kn)
95 continue
      do 100 i1=1,mm
         do 100 j1=1,mm

            aa(i1,j1)=a(i1,j1,1)
100 continue
      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do 105 k1=1,mm

gam(k1,5)=c(k1)
105    continue

! ************* Compute dgamdyy

      do 110 in=1,mm
         c(in)=0.
         do 110 jn=1,mm
            c(in)=c(in)+a(in,jn,6)*gam(jn,1)+2.0*a(in,jn,3)*gam(jn,3)
110 continue
      do 115 kn=1,mm
         c(kn)=gp(6,kn)-c(kn)
115 continue
      do 120 i1=1,mm
         do 120 j1=1,mm
            aa(i1,j1)=a(i1,j1,1)
120 continue
      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do 125 k1=1,mm

gam(k1,6)=c(k1)
125    continue

! ************* Compute dgamdxxx
      do in=1,mm
         c(in)=0.
         do jn=1,mm
            c(in)=c(in)+a(in,jn,7)*gam(jn,1)+3*a(in,jn,4)*gam(jn,2)+ &
                  3*a(in,jn,2)*gam(jn,4)

enddo
enddo

      do kn=1,mm
        c(kn)=gp(7,kn)-c(kn)

enddo

      do i1=1,mm
        do j1=1,mm
          aa(i1,j1)=a(i1,j1,1)
        enddo
      enddo 

      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do  k1=1,mm

gam(k1,7)=c(k1)
      enddo 

! ************* Compute dgamdxxy
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      do in=1,mm
         c(in)=0.
         do jn=1,mm
            c(in)=c(in)+a(in,jn,8)*gam(jn,1)+ & 
                  a(in,jn,4)*gam(jn,3)+2*a(in,jn,5)*gam(jn,2)+ & 
                  2*a(in,jn,2)*gam(jn,5)+a(in,jn,3)*gam(jn,4)
         enddo 
      enddo

      do kn=1,mm
         c(kn)=gp(8,kn)-c(kn)
      enddo

      do i1=1,mm
         do j1=1,mm
            aa(i1,j1)=a(i1,j1,1)

enddo
enddo

      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do k1=1,mm

gam(k1,8)=c(k1)
enddo

! ************* Compute dgamdxyy
      do in=1,mm
         c(in)=0.
         do jn=1,mm
            c(in)=c(in)+a(in,jn,9)*gam(jn,1)+ & 
                  a(in,jn,6)*gam(jn,2)+2*a(in,jn,5)*gam(jn,3)+ & 
                  2*a(in,jn,3)*gam(jn,5)+a(in,jn,2)*gam(jn,6)

enddo
enddo

      do kn=1,mm
         c(kn)=gp(9,kn)-c(kn)

enddo

      do i1=1,mm
         do j1=1,mm
            aa(i1,j1)=a(i1,j1,1)

enddo
enddo

      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do k1=1,mm

gam(k1,9)=c(k1)
      enddo
! ************* Compute dgamdyyy
      do in=1,mm
         c(in)=0.
         do jn=1,mm
            c(in)=c(in)+a(in,jn,10)*gam(jn,1)+ &
                  3*a(in,jn,6)*gam(jn,3)+3*a(in,jn,3)*gam(jn,6)

enddo
enddo

      do kn=1,mm
         c(kn)=gp(10,kn)-c(kn)

enddo

      do i1=1,mm
         do j1=1,mm
            aa(i1,j1)=a(i1,j1,1)
         enddo 
      enddo

      call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
      do k1=1,mm

gam(k1,10)=c(k1)
enddo
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!! ************* Compute Phi and their derivatives

      do 130 iph=1,ndex
         do iiii=1,10

phi(iiii,iph)=0.0
         enddo 
         do 130 jph=1,mm

phi(1,iph)=phi(1,iph)+gam(jph,1)*b(jph,iph,1)
phi(2,iph)=phi(2,iph)+gam(jph,2)*b(jph,iph,1)+ & 

gam(jph,1)*b(jph,iph,2)
phi(3,iph)=phi(3,iph)+gam(jph,3)*b(jph,iph,1)+ & 

                       gam(jph,1)*b(jph,iph,3)
            phi(4,iph)=phi(4,iph)+gam(jph,4)*b(jph,iph,1)+ & 
                       2.0*gam(jph,2)*b(jph,iph,2)+gam(jph,1)*b(jph,iph,4)
            phi(5,iph)=phi(5,iph)+gam(jph,5)*b(jph,iph,1)+ & 
                       gam(jph,2)*b(jph,iph,3)+gam(jph,3)*b(jph,iph,2)+ &
                       gam(jph,1)*b(jph,iph,5)

phi(6,iph)=phi(6,iph)+gam(jph,6)*b(jph,iph,1)+ & 
                       2.0*gam(jph,3)*b(jph,iph,3)+gam(jph,1)*b(jph,iph,6)

phi(7,iph)=phi(7,iph)+gam(jph,7)*b(jph,iph,1)+ & 
                       3.0*gam(jph,4)*b(jph,iph,2)+3*gam(jph,2)*b(jph,iph,4)+ &

gam(jph,1)*b(jph,iph,7)
phi(8,iph)=phi(8,iph)+gam(jph,8)*b(jph,iph,1)+ & 

                       2.0*gam(jph,5)*b(jph,iph,2)+2*gam(jph,2)*b(jph,iph,5)+ &
gam(jph,1)*b(jph,iph,8)+gam(jph,4)*b(jph,iph,3)+ &
gam(jph,3)*b(jph,iph,4)

phi(9,iph)=phi(9,iph)+gam(jph,9)*b(jph,iph,1)+ & 
                       2.0*gam(jph,5)*b(jph,iph,3)+2*gam(jph,3)*b(jph,iph,5)+ &

gam(jph,1)*b(jph,iph,9)+gam(jph,6)*b(jph,iph,2)+ &
                       gam(jph,2)*b(jph,iph,6)
            phi(10,iph)=phi(10,iph)+gam(jph,10)*b(jph,iph,1)+ &
                       3.0*gam(jph,6)*b(jph,iph,3)+3*gam(jph,3)*b(jph,iph,6)+ &
                       gam(jph,1)*b(jph,iph,10)
130 continue
   return

end

Program 3.10. Source code of main program of using MLS approximation

!------------------------------------------------------------------
! Main program for testing the MLS shape function.
! Call Subroutine MLS_ShapeFunc_2D( ). 
! 25 field nodes (5X5) in domain [x,y]--[-1,1;-1,1].
! 61X61 interpolation points are used to plot 2-D MLS shape Func.
!------------------------------------------------------------------
   implicit real*8 (a-h,o-z)

parameter(nx=2,numnode=25)
   dimension x(nx,numnode),nv(numnode), gpos(nx)
   dimension phi(10,numnode),ds(nx,numnode)

   open(2,file='phi.dat') ! Output file
   write(2,50)
   mm=3                   ! Number of basis
   xlength=2.

ylength=2.
   ndivx=4
   ndivy=4
   xstep=xlength/ndivx

ystep=ylength/ndivy
   nn=0
   do i=1,ndivx+1
      do j=1,ndivy+1

nn=nn+1
         x(1,nn)=-1.+(i-1)*xstep   !x coordinates of field nodes
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          x(2,nn)=-1.+(j-1)*ystep   !y coordinates of field nodes
enddo

enddo

    do i=1,numnode
       nv(i)=i
       ds(1,i)=0.
       ds(2,i)=0.

enddo
    ndex=25

    do j=1,numnode
       xn=x(1,j)

yn=x(2,j)
       rx0=abs(xn-1)

if(rx0.lt.abs(xn+1)) rx0=abs(xn+1)
       ry0=abs(yn-1)

if(ry0.lt.abs(yn+1)) ry0=abs(yn+1)
          ds(1,j)=rx0    ! rw for weight function (support domain) 
          ds(2,j)=ry0
    enddo 

    nce=numnode/2+1     ! the node in the centre of 25 field nodes 
    nm=61
    ste=2./(nm-1)
    do ix=1,nm
       do il1=1,numnode
          do il2=1,10

phi(il1,il2)=0
enddo

       enddo
gpos(1)=-1.+ste*(ix-1)

       do j=1,nm
gpos(2)=-1.+ste*(j-1)
if((abs(gpos(1)).le.1).and.(abs(gpos(2)).le.1)) then

             call MLS_ShapeFunc_2D(gpos,x,nv,ds,phi,nx,numnode,ndex,mm)
          else 

endif
! ***********Output MLS shape function

if((abs(gpos(1)).le.1.d-8).and.(abs(gpos(2)).le.1.d-8)) then
             do kk=1,ndex
                nd=nv(kk)
                write(2,100)nv(kk),x(1,nd),x(2,nd),phi(1,kk), &

phi(2,kk),phi(3,kk),phi(4,kk),phi(6,kk)
enddo

endif
enddo

enddo
    write(2,150)
50  format(1x,'Node', 5x,'x', 7x,'y', 8x,'Phi', 6x,'dPhidx', &
           5x,'dPhidy', 4x, 'dPhidxx', 4x,'dPhidyy',/,80('-'))
100 format(1x,i4, 2f8.3,5f11.5)
150 format(80('-'))
    end
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MESHFREE METHODS BASED ON GLOBAL
WEAK-FORMS

4 MFree methods based on global weak-forms 

4.1 INTRODUCTION

MFree methods based on the global weak-form (or MFree global weak-
form methods) are usually based on the Galerkin weak-form defined over the
global problem domain, using locally supported MFree shape functions d
discussed in Chapter 3.

The first MFree global weak-form method was the diffuse element 
method (DEM) proposed by Nayroles et al.(1992). In DEM, the MLS 
approximation proposed by Lancaster and Salkauskas (1981) for surface
fitting was used to create the shape functions.  The Galerkin weak-form over
the global problem domain is employed to construct the discretized system
equations.

In 1994, Belytschko et al. (1994a) proposed the element free Galerkin 
(EFG) method in their important paper, in which the MLS approximation
was used in the Galerkin weak-form to establish a set of algebraic equations. 
In the EFG method, the problem domain is represented by a set of properly
distributed nodes.  The MLS approximation is used to construct shape 
functions based only on a group of arbitrarily distributed nodes in a local 
domain.  A set of background cells are required to evaluate the integrals
resulted from the use of the Galerkin weak-form.   

Belytschko and his colleagues have reported that the EFG method is very 
accurate (Belytschko, et al, 1994a; 1996a), and the rate of convergence of 
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the EFG method obtained from numerical tests is higher than that of FEM 
(Belytschko, et al, 1994a).  In addition, the irregularity of nodes does not 
affect the performance of the EFG method (Belytschko, et al, 1994a).  The 
EFG method has been successfully applied to a large variety of problems
including two-dimensional (2-D) and three-dimensional (3-D) linear and 
nonlinear elastic problems (Belytschko, et al, 1994a; Lu et al., 1994; 
Belytschko et al., 1997; Jun, 1996; Chen and Guo, 2001), fracture and crack 
growth problems (Belytschko, et al, 1994b; Belytschko, et al, 1995a, 1995b, 
1995c; Krysl and Belytschko 1999; Lu et al., 1995), plate and shell 
structures (Krysl and Belytschko, 1995; 1996; GR Liu and Chen, 2000, 2001; 
Liu L and GR Liu et al., 2001, 2002a,b; Chen and GR Liu et al., 2001,2003;),
electromagnetic field problems (Cingoski et al., 1998), piezoelectric
structures (GR Liu and Dai et al., 2004, 2003), and so on.  In addition,
techniques of coupling EFG method with FEM (Belytschko and Organ, 1995;
Hegen, 1996) and with BEM (GR Liu and Gu, 2000c, 2000d; Gu and GR 
Liu, 2001b; 2003a) have also been proposed.  All these applications and 
extensions indicate that the EFG method is gradually becoming a mature and 
practical computational approach in the area of computational mechanics,
thanks to the use of the MLS approximation to achieve stability in function
approximation, and use of Galerkin procedure to provide stable and well-
behaved discretized global system equations.  

In developing the EFG method, the following issues have been or still are 
under intensive study.

1) EFG shape functions constructed using the MLS approximation lack 
the Kronecker delta function property.  Special techniques are, 
therefore, needed in the implementation of essential boundary
conditions.  Several techniques have been developed to enforce 
essential boundary conditions in EFG and will be discussed in Section 
4.3.

2) Global numerical integrations are needed for calculating the system
matrices.  Hence, a global background cell structure has to be used for
these integrations, so that the method is not truly meshless.  The 
issues in the global numerical integration of the EFG method have 
been studied by some researchers.  Beissel and Belytschko (1996) 
have proposed a stabilized nodal integration procedure to avoid the 
use of background cells

3) The EFG method is computationally more expensive than FEM.  This 
is because a) a set of algebraic equations has to be solved for each
sampling point to construct the MLS shape functions; b) the node
searching has to be performed during the construction of the MLS 
shape functions; c) the resultant system matrix has, in general, a 

146
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larger bandwidth due to the fact that more nodes are used in the
construction of the MLS shape functions.

GR Liu and Gu (1999, 2001a) proposed the MFree point interpolation
methods (PIM) based on the Galerkin weak-form.  In PIM, the problem
domain is represented by properly distributed nodes.  The polynomial point 
interpolation method (PIM) is used to construct shape functions based only 
on a group of nodes arbitrarily distributed in a local domain.  A global
background cell structure is required to evaluate the integrals in the Galerkin 
weak-forms.

The main feature of PIM is that their shape functions possess Kronecker 
delta function property.  Essential boundary conditions can be easily 
enforced as in FEM.  However, in the polynomial PIM, the moment matrix
can be singular.  Hence, a two-stage matrix triangularization algorithm 
(MTA) is proposed to overcome this problem automatically excluding the 
nodes and the terms of the polynomial basis used in the formation of the 
moment matrix (Liu and Gu, 2003a).  The MTA is a novel approach to solve
the problem of the singular moment matrix in the construction of PIM shape
functions.  However, due to the incompatibile nature of the polynomial PIM 
shape functions, the PIM based on the Galerkin weak-form is not robust for
irregular nodal distributions, especially when too many nodes are used in the 
local support domain resulting in too high order of polynomials, which leads 
to a too drastic variation in the PIM shape functions.

The radial point interpolation method (RPIM) (GR Liu and Gu, 2001c;
Wang and GR Liu, 2000; 2002a) that uses radial basis functions (RBF) is 
also proposed to overcome the singularity issue.  RPIM is stable and robust 
for arbitrary nodal distributions.  Therefore, RPIM is currently used more 
widely than the polynomial PIM.  RPIM has been successfully applied to 2D 
and 3D solid mechanics (GR Liu and Gu, 2001c; GR Liu and Yan et al.,
2002; GR Liu and Zhang et al, 2003a), geometrically nonlinear problems 
(GR Liu and Dai and Lim, 2003), problems of smart materials (GR Liu and 
Dai et al., 2002, 2003), plate and shell structures (Liu L and GR Liu et al.,
2002a; Chen, 2003), material non-linear problems in civil engineering
(Wang et al., 2001b; 2002b), and so on.

Note that the shape parameters of the RBFs have to be properly selected 
in RPIM.  In addition, the RPIM shape functions do not possess global 
compatibility (GR Liu, 2002; GR Liu and Gu, 2004b), which can have some
effects when it is used in a global energy principle such as the Galerkin 
weak-form.  Note that the global compatibility is not an issue when a local 
weak-form or a collocation procedure is used.  

 In this chapter, two MFree global weak-form methods, the RPIM and the 
EFG methods, will be presented and examined in detail.  We choose to 
discuss RPIM first because its formulation procedure is closer to the
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standard FEM procedure, and easier to comprehend.  It should be noted that 
historically the RPIM is based on the EFG method by replacing MLS shape
functions with the RPIM shape functions, and using the Galerkin weak-form. 

4.2 MESHFREE RADIAL POINT INTERPOLATION 
METHOD

4.2.1 RPIM formulation

Consider the following standard two-dimensional problem of linear
elasticity defined in the domain bounded by .  The partial differential 
equation and boundary conditions for a two-dimensional solid mechanics
problem have been given in Sub-section 1.2.2 and can be written in the form 
of

Equilibrium equation: T 0L bT in (4.1)

Natural boundary condition: n t on t (4.2)

Essential boundary condition: u u on u (4.3)

where
L: differential operator defined by Equation (1.25); 

T
xx yy xyxx yyyy : the stress vector;

T { }u : the displacement vector;
T { }x yb : the body force vector;

t : the prescribed traction on the traction (natural) boundaries;
u : the prescribed displacement on the displacement (essential) 

boundaries;
n: the vector of unit outward normal at a point on the natural boundary

(see Figure 1.4).

The standard variational (weak) form of Equation (4.1) is posed as 
follows (see Section 1.4).

T d 0T

t

dTT TT( ) ( )d d) ( )d d) ( )d dT TTTTT T) ( )d d) ( )d d) ( )dT dddTTT
(4.4)

where D is the matrix of elastic constants given in Equation (1.27) for the
plane stress and Equation (1.28) for the plane strain.
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Note that Equation (4.4) is a weak-form defined over the global problem 
domain, .  In order to evaluate the integrals in Equation (4.4), the global 
problem domain is discretized into a set of the so-called background cells
that are not overlapping, as shown in Figure 4.1.  To evaluate the integrals
along the natural boundary, a set of curve (for 2D problem) background cells 
(no overlapping) is used. 

Figure 4.1. Background cells used in MFree global weak-form methods.  The problem 
domain is represented by field nodes.  The background cell structure is used to evaluate the

integrations in the weak-form.  

The problem domain is now represented by a set of field nodes for the
purpose of field variable (displacement) approximation.  These nodes are 
numbered sequentially from 1 to N for the entire problem domain.  TheN
RPIM shape functions presented in Sub-section 3.2.2 are used to
approximate the displacements at any point of interest using a set of nodes in
a local support domain of the point.  

(2 1) (2 2 ) (2 1)
h

) (2) (2(21)

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u u (4.5)

Background cells
for quadrature

Field nodes

Problem
domain

: quadrature or sampling point: quadrature or sampling poin
: field node
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where is the matrix of shape functions, n is the number of nodes in the
local support domain, and u is the vector of the displacements at the n field
nodes in the support domain.  In Equation (4.5), the numbers in parentheses 
of the subscript denote the dimensions of matrices or vectors.  The same
convention is used throughout this book.  Equation (4.5) can also be written
in the following form of nodal summation.

(2 1)

n n
h

I I
I I

00 u
0 I I0 I IvIIIII

0I I0 uII III

0
I

v00
u u (4.6)

where I  is the matrix of shape functions of node I,  and II uI is the nodalI
displacements.   

In Equation (4.6), uh is the approximated displacements of a point of 
interest that can be a sampling point or a quadrature point.  

From Equation (4.6), we can obtain 

(2 1) (2 2 ) (2 1)

n
h

I I)) (2 1)) (2
I

I(2 1)1) (2 21) (2 ) (2) (2(2(2 1)(2 1)(2 2 ))u u (4.7)

Using Equations (1.23) and (4.6), the strains can be obtained using the 
approximated displacements.   

(3 1) (3 2) (2 2 ) (2 1)1) (3
h

) (2) (2Lu L u(3 2) (2 2 )(3
h

)(

1

1

0

0
00 1

0 100
n

u
v1

u

1 011

01 01 0

(3 2 ) (2 1)) (2) (2

1u1 0 011 1

v
1

xx xx x
1vv

11
1v

0 10 1100
u

y yy yy y
nuu

11111 1 n nn1 11 n11
nnv

y yy x y xy x y xy x y x
u

B

B u(3 2 ))0 n0 n00

n

I I
I

B uI

(4.8)
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where B is the strain matrix and BI is the strain matrix for nodeI I.  Similarly,II

(3 2) (2 2 ) (2 1) (3 2 ) (2 1) (3 2) (2 1))
n

h
I (3 2)( )(3) (2 1) (3 2 ) (2 1)) (2 1) (3 2 ) (2

I
( ) ((3

h ( )(31)2) (2 22) (2 ) (2 1) (3 2 ) (2) (2 1) (3 2 ) (21) (3 2 ) (22) (2 22) (2 ) (2 1) (3 2 ) (2) (2 1) (3 2 ) (2(2 1) (3 2 )1) (3 2 ) (2 (22)2)2)( ) ((3 2)( )(3 2)2)L (2 2 ) (2 1) (3 2 ) (2 1)(2 1) (3 2 )(2 1) (3 2 )(3 2)
h

) (2 1) (3 2 ) (2 1)(2 1) (3 2 )(2 1) (3 2 )2) (2 22) (2 ) (2 1) (3 2 ) (2) (2 1) (3 2 ) (2(2 1) (3 2 )1) (3 2 ) (2(2 1) (3 2 )( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ((( (4.9)

We can now obtain the stress vector using the constitutive equations for
the material at the point in the problem domain. 

= D (3 3) (3 2 ) (2 1) (3 3) (3 2) (2 1)( ) ( )
n

) (2) (2 (3 2)(3 2)
I

(23) (3 2 ) (2 1)3) (3 2 ) (2 (3 3)) (2) (2 (3 2)(3 2)(3 2)(3 2)(3 2)D(3 3) ( ) () ((3 2)(3 2)(3 2)(3 2)(3 2)(3 3) (3 2)(3 2)D B u(3 3) (3 2 ) (2 1)(3 2 )3) (3 2 ) (2 1)3) (3 2 ) (2(3 2 )) (2) (2 (4.10)

Substituting Equations (4.8) and (4.9) into the first term of Equation (4.4),
we have

T T

( ) ( )d

] dT

n n

J J
I J

n n

I I J J[ ]]
I J

( T (T
I I ) (T( ) ( )d) ( )dT ( ) (T) () ( )d) (T

uT[ ]]T
I [ ]]

(4.11)

Note that until this stage, I and I J are based on the local numbering systemJ
for the nodes in the local support domain.  We can now change the
numbering system from the local one to the global one that records all the
field nodes in the entire domain in a unique manner from 1 to N, the totalNN
number of nodes in the problem domain†.  Therefore, both I and I J inJ
Equation (4.11)  can now vary from 1 to N.  When nodeNN I and nodeI J are notJ
in the same local support domain, the integrand vanishes and hence the
integral.  With this operation, Equation (4.11) can be expressed as

T T[ ] dT
N N

I I J J[ ]]
I J

T( ) ( )dT) ( )dT) () (T uT[ ]]T
I [ ]] (4.12)

We now move the integration inside the summations to arrive at 

T d )T

IJ

N N

I J Jd )
I JI J

T T( ) ( )d (T
I () ( )d) ( )dT

K

) () (T ud )T d )((T (
(4.13)

where KIJK , which is a 2 2JJ matrix, is called the nodal stiffness matrix and  is
defined as

† This can be done using an index matrix that gives the relationship between the 
local node number and the global node number similar to that is done in the
conventional finite element method.
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T
2 3 3 3 3 2( ) ( ) dT
2 3 3 3 3 2IJ I( J 333 3 33 33 3 33 3( ) ( ) dT

3 233 3 33 3K IJ ( ) () (T
2 3 3 33 3( 3 3 33 33 3 (4.14)

Note that when node I and node I J are not in the same support domain of theJ
same quadrature point of integration, KIJK vanishes.J

Equation (4.13) can be now expressed as

T T( ) ( )d
N N

I IJ J
I J

T) ( )dT) () (T u K uT
I IJIJ (4.15)

Note that the summation in the right-hand-side of this equation is in fact an 
assembly process.  To view this, we perform the following operation.   

1 11 1 1 12 2 1 1

2 21 1 2 22 2 2

2 2

2+

+

N N
T T T T
I IJ J N N

I J
T T T

NN

T T T
N N N N1 1 N NN N
T

1 11 1 1 12 2
T T TT T
I IJ J

2 21 1 2 22 2
T TT

2 2
T TT
N N N N1 1

u K u1 1
T

N1 11 1 1 12 21 1 12
T T TT TT T
I IJ JIJ 1 11 1 1 12 211 1 1 12

T TT TT T

u K u2 2
T

N2 21 1 2 22 221 1 2 22
T TTT

2 22 22 22
TTT

u K uT
N NNNN1 1 2 2

T TTT
N N N NN1 1 2 2

TTT
N NN

U KUT

(4.16)

Finally, Equation (4.13) becomes 
T T( ) ( )dT)T U KUT) ( )d) (T

(4.17)

where K is theK global stiffness matrix in the form of

11 12 1

21 22
(2 2 )

2

N

N
22

N N NN1 2

K K K11 12

K K K21 22K

K K K1 2N N1 2

(4.18)

The dimension of the matrix K should be (2K N)×(2NN N), because nodal stiffnessNN
matrix KIJK is of 2×2, and the total number J of nodes in the problem domain is N.NN

In Equation (4.17), the vector U is the global displacement vector that t
collects the nodal displacements of all the nodes in the entire problem 
domain, which has the form of 

(2 1)

1u
1

1

v
1

11
1v1v

2
1v1

22

uNuu
NN

NNvN

U (4.19)
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The length of vector U should be (2N).NN

Substituting Equation (4.6) into the second term of Equation (4.4), and 
using the same arguments in deriving the stiffness matrix, we have 

T

d
n

I II I
I

I I
TT dT (4.20)

Using the same arguments given below Equation (4.11),  Equation (4.20) 
can be expressed as

T

d
N

I II I
I

I I
TT dT (4.21)

We now move the integration inside the summations to arrive at

T dT

b
I

N

I
II

dTT TT
I

T T

FI

T d
(4.22)

where ( )
IFI  is the nodal body force vector that is defined as

T db
I I

T dIFI b (4.23)

where b is the body force vector.   

The last summation in Equation (4.22) can be expanded and then grouped 
to produce of matrices as follows. 

T

b
I

N N
b

I I
I I

TT
I I

T dT
I I

FI

u FT
I Id

T
1 1 2 2

b b bT TT
N N

T TTT
1 1 2 2 u FT

N N
T
1 1 2 21 2

TTTT
1 1 2 21 2

b bbTTTT

(1 2 )

(2 1)

1
b

11

bb
N
b

111

N

T bU FT

(4.24)

where ( )F  is the global body force vector assembled using the nodal body

force vectors for all nodes in the entire problem domain, and ( )F is defined
as
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(2 1)

b
1
b

11

bb
N
b

111

F

N

(4.25)

The length of vector ( )F should be 2N.NN

The treatment for the last term in Equation (4.4) is exactly the same as  
that for the second term of Equations (4.20)~(4.25), except that the body 
force vector is replaced by the traction vector and the integrations are
replaced by the boundary integrations.  Hence, we can obtained

( )

T dT

t t

I

n

I
I

t
I

T TT
I

T

FI

T d

( )

T T T ( )

t

I

N

I
I

T
I

T T
I

T

FI

U FTTdd
(4.26)

where ( )
IFI  is the nodal traction force vector

( ) T
(2 1) dT( )( ) d(2 1)

t

I I(2 1)))(2 1) dT
(4.27)

In Equation (4.26), ( )F is the global traction force vector assembled using

the nodal traction force vectors.  The length of vector ( )F should be 2N.NN

Substituting Equations (4.17), (4.24) and (4.26) into Equation (4.4), we
have

T T ( )b t) T (T T (b) U F 0( )tT (TT T (T )b) ( )( ) (4.28)

or

T ( )[ ]( )b t) () (U KU F F 0T[ ]( ) ( )) ( ]( ) (4.29)

Because U  is arbitrary, the above equation can be satisfied only if  
( ) ( )) () (KU F F 0( ) ( )) () (( ) (4.30)

or
( ) ( )) () (KU F F( ))( )) (4.31)
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It can be re-written as

KU F (4.32)

where F is the global force vector given by
( ) ( )) () (F F F( )) (4.33)

Equation (4.32) is the final discretized system equations for the MFree 
RPIM.  The nodal displacements can be obtained by solving Equation (4.32)
after enforcing the displacement boundary conditions that will be introduced
in the following section.

After obtaining nodal displacements, the strain and stress components 
can be retrieved using Equations (4.8) and (4.10), respectively.  

4.2.2 Numerical implementation

4.2.2.1 Numerical integration

In the above discussion, all integrations are over the global problem
domain and the global traction boundary t.  In order to evaluate these
global integrals, the problem domain is discretized into a set of background 
cells (see Figure 4.1).  Hence, a global integration can be expressed as a
summation of integrals over these cells: 

c

k

n

k

d
k

d
c

d Gd (4.34)

where nc is the number of background cells, G represents the integrand, and 
k is the domain of thek kth background cell.kk

The Gauss quadrature scheme that is commonly used in the FEM is 
employed to perform the integrations numerically over these cells.  When ng
Gauss points are used in each background cell,  Equation (4.34) becomes 

1

( )
gc c

k

nn nc
D

i Qi ik( )
k k

k
ik

d
c

d G x J( )i QiQi( )widdd (4.35)

where iwi is the Gauss weighting factor for the ith Gauss point at xQi, and 
D
ikJ is the Jacobian matrix for the area integration of the background cell k , k

at which the Gauss point xQi located.

Similarly, we can obtain the formulation of the curve Gauss quadrature as
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1

( )
gtct ct

t tl

nn nct
B

i Qi il( )
l l

l
i

t
l

d
ct

d G x J( )i QiQi( )widdd (4.36)

where iwi is the Gauss weighting factor for the ith Gauss point xQi, B
ilJ is the

Jacobian matrix for the curve integration of the sub-boundary (a 1D curve 
for a 2D problem domain) l for the Gauss point at l xQi, nct is the number of t

the curve cells that are used to discretize boundary t, and ngt is number of t
Gauss points used in a sub-curve.

In order to obtain numerically the nodal stiffness matrix KIJK , theJJ
formulation of the numerical quadrature for Equation (4.14) can be written 
as

T
(2 2)

1 1

( ) ( ) ( )
g gc g

ik
IJ

n nn gc gng
D i(( k

IJ i I Qi J Qi ik( ) ( )) ( ) IJ
k i k i

wi
1

K

BT ( ))wi I ( ))wi ( ))i I ( ))wiK IJ ((( )( )( )( )( )( )( )( )( )( ) (4.37)

where ik
IJK  is defined as

T ( ) ( )ik D
IJ i I Qi J Qi ik( ) ( )) (K B x DB x JT ( ) ( )) (ik
IJ i I Qi J QiI Qi J Qi( ) ( )) () (wi (4.38)

and the dimension of ik
IJK  is 2 2 .

Note that Equation (4.37) means that the nodal matrix IJK  is obtained
numerically by the summation of contributions from all the quadrature 
points whose local support domains include both the Ith and theII Jth nodes. JJ
If node I and node I J are not in the local support domain for the quadratureJ
point at xQi , ik

IJK vanishes.
Similarly, we can obtained the nodal body force vector ( )

IFI  given in
Equation (4.23)

( )

( ) ( )

1 1

( ) ( )
g gc g

ik b(
I

n nn gc gng
DT ( ) ( )b) ik

I i I Qi Q) () ( i ik I
k i kk i

wi
1

(Iiwi

FI

FI FIJJ) ( )) ( J) ( ) D) ( )) () () (( ik) ( )) () () (( ik (4.39)

where ( )ik b(
IFI  is defined as

( ) T ( ) ( )ik b( D
I i I Qi I Qi ik( ) ( )) (wiFI J) ( )) () ( )) () ( (4.40)

and the lengeth of ( )ik b(
IFI is 2 .

The nodal traction force vector ( )
IFI  given in Equation (4.27)



4.  Meshfree methods based on global weak-forms 157

( )

( ) ( )

1 1

( ) ( )
gt gtct ct

il t(
I

n ntn ngtct ngt
B) T ( ) ( ) il

I i I Qi Q) () ( i il I
l i ll i

wi
1

(Iiwi

FI

FI FIJJ) ( )) ( B) ( )) ( J) ( )) () (( il) ( )) () () (( il (4.41)

where ( )il t(
IFI is defined as

( ) T ( ) ( )il t( B
I i I Qi I Qi il( ) ( )) (i (I (iwiFI J) ( )) () ( )) () ()) (4.42)

and the lengeth of ( )il t(
IFI is 2 .

In the RPIM method, the matrices are assembled based on the quadrature 
points.  Note that different quadrature points use different support domains.  
This means that the shape function matrix and the strain matrix B may be 
different for different quadrature points.  This is different from FEM where
all Gauss points in one element use the same nodes (of the same element) to
perform the interpolation.   

The numerical integration in an MFree global weak-form method is one 
of the most important numerical issues, and has been studied by many 
researchers (Dolbow and Belytschko, 1999; GR Liu and Yan, 1999; GR Liu, 
2002).  Two conclusions may be drawn from their studies.   

1)  The total number of quadrature points nQ should be at least 2/3 of the
total number of the unfixed field nodes, N , in the problems domain, i.e., 

3 2Q un N N2Q u or 2
3Qn N2

Q for 2D problems (4.43)

Note that this rule is a necessary, not a sufficient requirement.   

2) Other aspects (e.g., accuracy and convergence) should also be considered 
to select a proper number of quadrature points.  We have studied this 
issue using benchmark problems.  It has been found that the sufficient 
requirement on the total number of quadrature points is (GR Liu, 2002)

(3 ~ 9)Qn N(3 ~ 9)Q for 2D problems (4.44)

Note that these studies were performed for the EFG method, but the 
conclusions are largely applicable to RPIM. 

4.2.2.2 Properties of the stiffness matrix

Since D is sysmmetric, we can get
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T T T T[ ] [ ]T T T TT
I J J I] [] [] [] [T T T TTT T] [] [ (4.45)

Hence, we have
T[ ]IJ JI]II KT]] (4.46)

which means that the global stiffness matrix K isK symmetric.

The global stiffness matrix K is assembled using the corresponding nodal 
matrices, and 0IJKI only when the nodes I and I J are covered by theJ
support domain of at least one quadrature point.  If nodes I and I J are far J
apart and they do not share the same support domain of any quadrature point,
KIJK vanishes.  Therefore, as long the support domain is compact and does not J
cover too widely the problem domain, many KIJK will be zero, and the global 
stiffness matrix K will beK sparse.  If the nodes are properly numbered, K
will be also banded.

In summary, the global stiffness matrix K in the MFree RPIM method isK
banded, symmetric and sparse. 

4.2.2.3 Enforcement of essential boundary conditions  

This RPIM formulation, the traction boundary conditions (see Equation 
(4.2)) has been naturally formulated into the discretized system equation 
using the Galerkin weak-form.  Therefore, the traction boundary condition is
often called the natural boundary condition.  However, the displacementl
boundary conditions (see Equation (4.3)) are not treated in the formulation 
process.  It is, therefore, essential to impose them separately before or after l
Equation (4.32) is established.  Hence, the displacement boundary condition
is termed as the essential boundary condition.  Because RPIM shape 
functions possess the Kronecker delta function property, the essentiala
boundary conditions can be easily enforced as in the FEM (see, e.g., GR Liu d
and Quek, 2003).  The following two methods that are widely used in FEM
to enforce essential boundary conditions can be used in RPIM.

a)  Direct method

The ith displacement component is prescribed by setting

i iu ui (4.47)

Such an essential boundary condition can then be enforced directly into the 
system Equation (4.32) through the following modifications to the stiffness 
matrix and the global force vector.

The global stiffness matrix, K, is changed to
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11 1( 1(2 )0 1) 1(2K K K K11 1( 1) 1( 1) 10 ii1) 1( 1) 101) 1(01) 1(011 1( 1) ( ) 1(2 )i1) 1( 1) 1(21) 1( )1) 1(211 1( 1) 1(

( 1)(2 )0 (K K K K( 1)1 ( 1)( 1) ( 1)( 1)01)1 ( 1) (1) ( 1) (1)( 1)1 ( 1)( 1) ( 1)( 1) ( 1)(2 )

0 0 1 0 0
1)1 ( 1) (1) ( 1) (1)1 ( 1) ( 1) ( 1)(2 )( 1)( 1) ( 1)(1)1 ( 1) (1) (K( 1)( 1) ( 1)(1)1 ( 1) (1) ( 1) (1)

0 0 1 0 000
0K K K K0( 1)1 ( 1)( 1) ( 1)( 1) ( 1)(2 )1)1 ( 1) ( 1) (K K K K( 1)1 ( 1)( 1) ( 1)( 1)01)1 ( 1) (0 1)1)1 (1)1 ( 1) (01) (0 1) (1) ( 1)(2 )K K K K( 1)1 ( 1)( 1) ( 1)( 1)0

0K K K K0( ) ( )( ) ( )( ) ( )( )(2 )1 (2 )( 1) (2 )( 1) (2 )(2 ))1 (2 1) (2 1) (2K K K K(2 )1 (2 )( 1) (2 )( 1)0)1 (2 1) (20 1))(1) (20 )(1) (20K K K K0

K

K KK K0

K KK K0
0 1 00 1 00 1 00 1 0
K KK K0

K KK K0K KK K0

(4.48)

The components in the global force vector are changed to 

i
j

j ji i

u i jiFj Fj K u i jji iK u iji iji
(4.49)

Solving Equation (4.32) using the modified stiffness matrix and the force 
vector, we can obtain all the displacement components, and Equation (4.47) 
is satisfied exactly.   

The direct method can exactly enforce essential boundary conditions, but 
changing matrices and vectors needs additional computational operations.  In 
addition, the algorithm of the direct method is also complicated.  

b) Penalty method

The penalty method is a convenient alternative for enforcing the essential
boundary conditions, in which the diagonal entry, KiiKK , in the stiffness matrix,
is changed to

ii iiK Kii i (4.50)

where is the penalty coefficient that is the much larger number than the
components of the stiffness matrix K.  The stiffness matrix, K, is then 
changed to

K
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(4.51)

In the global force vector F, only the component FiFF is changed as follows 
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ii i
j

j

K u i jii iFj Fj i j
K

(4.52)

We now solve Equation (4.32) using the modified stiffness matrix and
the force vector, all the displacement components can be obtained, and
Equation (4.47) is satisfied approximately.  

The penalty method has some advantages: there are only two changes of
matrices, and the algorithm is very simple.  However, the penalty method
can only approximately satisfy the essential boundary conditions.  In 
addition, the accuracy is affected by selection of the penalty coefficient; it 
can be difficult to select a proper penalty coefficient.  Ways of choosing the 
penalty coefficient will be presented in Section 4.4.  

4.2.2.4 Conformability of RPIM 

The compatibility requirement is common to all the methods based on the
global energy principles, because a possible gap or overlap (incompatibility) 
may affect the energy in the system and destroy the balance of the equation
of the energy principle.  The remedy is to use the constrained form of energy 
principles that takes into account the energy caused by incompatibility.
Because the RPIM interpolation is not always compatible in the global
domain (GR Liu and Gu, 2004a), the enforcement of the compatibility is
needed on the incompatible curve c in the problem domain to produce
the conforming RPIM (CRPIM).  The constrained variational (weak) form of 
CRPIM for two-dimension elasto-static problems is posed as follows using 
the penalty method to ensure the compatibility.

T dT

t

dTT TT( ) ( )d dT TTT) ( )d d) ( )d dT TTTTTT T) ( )d d) ( )d d) ( )dT dddTTTT

( ) ( )d 0
c

( ) () (( ) ( )d) () (
(4.53)

where  is the matrix of the penalty constants, and u+ and u are the
displacements on the two sides of the incompatible interface,f c .  Hence,
the compatibility on the interfaces c of the neighboring integration cells is
enforced by the penalty term.  If the last term in the left-hand-side of
Equation (4.53) is excluded, the formulation leads to the conventional non-
conforming RPIM (NRPIM). 

The so-called CRPIM was proposed by GR Liu and Gu (2004b), and 
further studies of CRPIM and NRPIM have concluded that CRPIM leads to
slightly more accurate results than the NRPIM.  However, the NRPIM has 
also been found to be convergent and lead to satisfactory results.  The
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NRPIM is simpler than the CRPIM.  Hence, only the conventional RPIM or
NRPIM has been discussed in detail in this book.

4.3 ELEMENT FREE GALERKIN METHOD

4.3.1 EFG formulation

Consider a two-dimensional problem of solid mechanics in a domain
bounded by .  The strong-form of system equation is given by Equations
(4.1)~(4.3).  The element-free Galerkin (EFG) method uses the moving least 
squares (MLS) shape functions (see Section 3.3).  Because the MLS
approximation lacks the Kronecker delta function property, the constrained 
Galerkin weak-form should be posed as follows. 

  d

1 d 0
2

t

u

d

d

d Tdd

T

d     d     d   d    d     d   d

(4.54)

where 1 2 k1 2  is a diagonal matrix of penalty factors, where 
k=2 for 2D, and kk k=3 for 3D.  The penalty factorskk i (i=1, 2,…,k) can be akk
function of coordinates and can be different from each other, but must be 
given.  In practice, we often assign them the same constant of large positive 
number.

Note that in using EFG, the global compatibility of the shape function is 
ensured by the weight functions appropriately chosen in the MLS
approximation.  Hence, the constrained term to ensure compatibility is not 
required in the weak-form of Equation (4.54). 

Using the MLS shape functions constructed using n nodes in the local 
support domain (see Section 3.3), we have  

(2 1) (2 2 ) (2 1)
h

) (2) (2(21)

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u u (4.55)

where is a matrix of the MLS shape functions arranged in the form of  
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0n1 01

0 0
n1 n1

10 01 n110 0 (4.56)

In Equation (4.55), uI and I vIv are the parameters of displacements (not theI
nodal displacement, see Figure 3.16) for the Ith node, because the MLSII
shape functions do not have the Kronecker delta function property.  It is 
different from RPIM, in which uI and I vIv  are the nodal displacements becauseI
RPIM shape functions have the Kronecker delta function property.

Substituting the foregoing expression for all the displacement
components of u into the weak-form Equation (4.54), and following the
exact procedure detailed in Subsection 4.2 yield the following global
discretized system equations of the EFG method.

U F F (4.57)

where U is the vector of nodal parameters of displacements for all nodes in 
the entire problem domain, K is the global stiffness matrix assembled usingK
the nodal stiffness matrices, and F is the global external force vector
assembled using the nodal force vectors, Equations (4.23) and (4.27).  The 
additional matrix K is the global penalty stiffness matrix assembled in the
same manner as for assembling K using theK nodal penalty stiffness matrix
defined by 

T d
u

IJ I JK T
II (4.58)

Note that IJIIK is a 2 2  matrix.
In Equation (4.57), the additional force vector F  is caused by the 

essential boundary conditions; it is formed in the same way as F, but using
the nodal penalty force vector IFI defined by

T d
u

I IFI
T
I u (4.59)

The length of IFI  is 2.
Similar to Equations (4.37) and (4.41), the integrations in the penalty 

stiffness matrix and the penalty force vector can also be obtained using the 
standard Gauss quadrature.  Note that, in Equations (4.58) and (4.59), 
integrations are curve integrations for 2D problems.  The integration is 
performed along the essential boundary, and hence matrix K will have
entries only for the nodes near the essential boundaries u, which are
covered by the support domains of the Gauss quadrature points on u.
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Equation (4.57) is the final discretized system equation for the EFG
method with the penalty method to enforce essential boundary conditions.  
The Galerkin procedure makes the stiffness matrices K andK K symmetric. 
If the problem domain is sufficiently supported without rigid body
movement, [K+ K ] will be positive definite; a standard linear algebra 
equation solver can be used to solve Equation (4.57) for the nodal 
displacement parameters.   

In order to obtain the integrals in the EFG method, a global background
mesh of cells is required, as in RPIM.  The background mesh of cells can be 
independent of the field nodes that are used for the field variable
approximation.  In each cell, Gauss quadrature can be employed, and the
number of quadrature points depends largely on the nodal density, as
discussed in Sub-section 4.2.2.1.

In the present EFG formulation, the penalty method is used to enforce 
essential boundary conditions.  The advantage of using the penalty method is 
that the dimension, symmetry and positive definite properties of the stiffness
matrix are achieved, as long as the penalty factors chosen are positive.  In 
addition, the symmetry and the bandness of the system matrix are preserved.

However, the penalty method has the following shortcomings. 

Essential boundary conditions are imposed only approximately,
depending on the magnitude of the penalty coefficients.  Theoretically,
the larger the penalty coefficients, the more accurate the enforcement 
of the essential boundary conditions.

It is difficult to choose a set of penalty factors that are universally
applicable for all kinds of problems.  One hopes to use large possible 
penalty factors, but too large penalty factors often give numerical 
problems, as we experienced in the imposition of multi-point
boundary condition in the finite element methods.  Trials may be 
needed to choose a proper penalty factor.  

The results obtained are generally less accurate than those obtained
from the method of Lagrange multipliers (to be discussed in the 
following sub-section).

Despite these disadvantages, the penalty method is widely used. 

4.3.2 Lagrange multiplier method for essential boundary 
conditions

The penalty method provides an efficient way to implement essential
boundary conditions, and is used by many researchers e.g., Zhu and Atluri 
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(1998).  Several other strategies have also been developed for alleviating its 
defects, such as, the Lagrange multiplier method (Belytschko et al., 1994a),
the method using the modified variational principle (Lu et al., 1994), the 
method coupling with the finite elements (Krongauz and Belytschko,1996), 
the orthogonal transform technique (Atluri et al., 1999b), the constrained 
MLS method (Yang, 1999), and so on.  The Lagrange multiplier method is
introduced in this section.

The Lagrange multiplier method was used to enforce the essential 
boundary condition in the EFG method by Belytschko et al. (1994a).  The
functional related to the essential boundary condition, Equation (4.3), is
written in an integral form using the Lagrange multiplier :

T ( )d
u

)d (4.60)

The weak-form Equation (4.54) can then be re-written as 
T
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dT d
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The last two terms in Equation (4.61) are produced by the method of 
Lagrange multipliers for handling essential boundary conditions for cases
when 0u u that violates the condition of Equation (4.3).  The Lagrange 
multipliers can be viewed as smart forces that force 0u u .

In order to obtain the discretized formulation, the Lagrange multipliers
in Equation (4.61), which are unknown functions of the coordinates, need to
be interpolated using their nodal values and shape functions for nodes on the
essential boundaries.

(2 2 ) (2 1)( )h
) (2) (2) (2) (2) (2

1u1u1u

1v
1 0 0nN N1 0 n

1v
1 n1 nuu

0 N00 0 N0v 10 nN N1 01 n
un

vnvn

N (4.62)

where n  is the number of nodes used for this interpolation,  NINN  is the shapeI
function for the Ith node on the essential boundary,II s is the arc-length along 
the essential boundary,  is the vector of the nodal Lagrange multipliers of 
field nodes on the essential boundary.  Equation (4.62) can also be written in
the following nodal matrix form. l
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(2 1)

n n

I I
I I

0N uu

0 I0 INII IIIvI

0INI IuIuIuII

0 N0 N0 N
N (4.63)

where NI is the matrix of shape functions for node I on the essentialI
boundary. 

In Equations (4.62) and (4.63), the shape function NINN (II s) can be the 
Lagrange interpolants used in the conventional FEM.  The Lagrange
interpolant of order n can be given in the general form of 
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If we choose to use the first order Lagrange interpolant (the linear
interpolation), we have n=1 and the Lagrange interpolants at point s=s0 and
s=s1 becomes

0
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In a simple case, the essential boundaries are discretized using line segments. 
The Lagrange multiplier at s is interpolated using two nodes at the two ends of 
this line segments.  

Equation (4.62) gives the variation of the Lagrange multiplier as  
h N (4.66)

Hence, Equations (4.55) and (4.66) give the fourth term in Equation (4.61):  
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where  is a vector that collects the nodal Lagrange multipliers for all field 
nodes on essential boundaries, n t is the total number of nodes on thet

essential boundary, and the nodal matrix IJIIG is defined as
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T T d
u

IJ I J
T dI JG NT

IJ (4.68)

which has the dimension 2 2.  In Equation (4.67), qI is a vector defined as,I

T d
u

I I ddq I uI
T
I (4.69)

In Equation (4.67), G is the global matrix formed by assembling IJIIG
defined in Equation (4.68), and Q is the global vector formed by assembling 
qI defined in Equation (4.69).

Similarly, the last term in Equation (4.61) becomes
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As in Equations (4.37) and (4.41), the integrations in the nodal matrix GIJG
and the nodal vector qI can also be obtained using the standard GaussI
quadrature scheme.

Substituting Equations (4.67) and (4.70) into Equation (4.61), we obtain 
T T T[ ] ( ) 0TT [ ] ( )( )T TT (T[T T))T ))) T))T (4.71)

or
T T[ ] ( ) 0T TT [ ][ ]T ( )T][T TT (4.72)

where K is the global stiffness matrix andK F is the global force vector, both
of which have been discussed in Sub-section 4.3.1. 

Because both U  and  are arbitrary, this equation can be satisfied 
only if 

T

0
0

KU G F
G U QT (4.73)

The above two equations can be written in the following matrix form of  
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Equation (4.74) is the final discretized system equations for the EFG
method using the Lagrange multiplier method.  Solving Equation (4.74) 
gives the results of nodal parameters of the displacements for this problem,
and the displacements at any point including at the field nodes in the 
problem domain can be obtained from Equation (4.55).

The Lagrange multiplier method is accurate in imposing the essential 
boundary conditions.  However, it will increase the number of variables by

and the dimension of the system matrix.  Depending on the number of the
nodes on the essential boundaries, the solution efficiency can be drastically
reduced.  It also leads to an un-banded and non-positive definite stiffness
matrix, which reduces the efficiency significantly in solving the discretized 
equations.  Note that the enlarged system matrix is still symmetric.   

4.4 SOURCE CODE

In this section, a computer source code, MFree_Global.f90, of these two
MFree global weak-form methods, RPIM and EFG, is provided.  This code 
is developed in FORTRAN 90 for easy comprehension.  Combined with
subroutines RPIM_ShapeFunc_2D and MLS_ ShapeFunc_2D given in 
Chapter 3, this source code performs computations with either the RPIM or
the EFG method.  

4.4.1 Implementation issues 

4.4.1.1 Support domain and the influence domain  

In the construction of meshfree shape functions, one of the most
important issues is to determine the local support domain mentioned in Sub-
section 3.1.2.  The concept of the influence domain is also used in the MFree 
methods to construct the shape functions.

The influence domain is defined as a domain for a field node that it has
an influence upon.  The centre of the influence domain is the field node. In
contrary, the support domain is the area chosen for the meshfree
interpolation for a point of interest at x (which is often a quadrature point xt Q).
The centre of the support domain is usually a quadrature point that can also 
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be a field node.  Figure 4.2(a) clearly shows the difference between an
influence domain and a support domain.   

The influence domain, as shown in Figure 4.2(b), is used in the following 
manner for selecting nodes for interpolation.  To construct the MFree shape
function for a point of interest, a field node will be involved in the shape 
function construction for this point when this point is in the influence 
domain of this field node.  In other words, if the influence domain of a field 
node covers the point of interest, this field node will take part in the
construction of shape functions for this point.  Using the influence domain to 
replace the support domain has several advantages.  

The influence domain works well for domains with irregularly
distributed nodes.
The influence domain is defined for every field node in the problem 
domain, and it can be different from node to node to represent the area 
of influence of the node.  Since the dimension of the influence domain
can be different from node to node, some nodes can have more 
influence than others, and to prevent unbalanced nodal distribution for 
constructing shape functions.
Because the number of field nodes is usually much less than the 
number of quadrature points, there are fewer influence domains than
support domains.  This makes the procedure computationally more 
efficient.

For these reasons, the influence domain is used in this book in the 
development of computer code.   

The influence domain for a field node can be arbitrary in shape, and its
dimensions of the influence domain can be determined using a similar 
procedure described in Chapter 3. For a two-dimensional domain and when
a rectangular influence domain is used, the size of the influence domain is
determined by dixdd and diydd in the x and y directions, respectively, i.e.

ix ix cx

iy iy cy

d dix ix c

d diy iy c
(4.75)

where dcxdd and dcydd are, respectively, the nodal spacing in the x and y directions,
have been defined in Sub-section 3.1.2, and ix and iy are the dimensionless
sizes of the influence domain in x and y directions, respectively.  They 
control the actual sizes of the influence domain in relation to the nodal
spacing.  If ix=2.5, for example, the size of the influence domain in the x-
direction is 2.5 times the nodal spacing.   

Note that selecting nodes for the interpolation/approximation can be time 
consuming for large scale problems, and hence special algorithm, such as the



4.  Meshfree methods based on global weak-forms 169

bucket algorithm (GR Liu, 2002) and the tree algorithm (see, e.g., GR Liu 
and Liu, 2003) should be used. 

4.4.1.2 Background cells 

To perform the numerical integrations in the MFree global weak-form 
method, the global background cells, as shown in Figure 4.1 and Figure 4.2, 
are needed.

The background cells can be rectangular or triangular for a two-
dimensional domain.  Triangular background cells are well suited to 
problems with complex geometry.  For simplicity, the rectangular
background cells are, however, used in the book. 

4.4.1.3 Method to enforce essential boundary conditions 

The methods to enforce essential boundary conditions in the EFG method 
have been discussed in Sub-sections 4.3.1 and 4.3.2.  The penalty method is 
used for the EFG method in the attached code.  

Because the RPIM shape functions possess the Kronecker delta function 
property, the essential boundary conditions can be enforced directly and
accurately without any additional treatment.  For uniformity, the penalty
method that has been presented in Sub-section 4.2.2.3 is used in the RPIM to 
enforce the special nodal displacements. 

One major issue in using the penalty method is how to properly choose 
the penalty coefficient.  Based on the practice in FEM, the penalty
coefficient can be determined by

4 8
max10 ~ 10 ( )4 8

II10 ~ 104 8 (4.76)

where max( )II  is the maximum diagonal element of the global stiffness 
matrix.

4.4.1.4 Shape parameters used in RBFs

In the RPIM method, the radial basis functions are used to construct
MFree shape functions.  In the subroutine of RPIM_ShapeFunc_2D, the 
Multi-quadrics (MQ) RBF, Gaussian (EXP) RBF, and Thin Plate Spline 
(TPS) RBF are used.  For simplicity, only results of MQ-RBF are discussed
here.  Results for other RBFs can be obtained similarly.   

In the MQ-RBF, there are two shape parameters: c and q (see Sub-
section 3.2.2).  Choices of these two shape parameters will affect the
performance of the RPIM.  The parameters are studied by numerical
examinations because there are still no successful rigorous methods to
determine theoretically their best values. 
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(a) The centre of the support domain is a quadrature or sampling point

(b) The centre of the influence domain is the field node

Figure 4.2. The background cells, the support domain, and influence domains used in the 
MFree global weak-form methods.
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4.4.2 Program description and data structures
The flowchart of the source code, MFree_Global.f90 is shown in Figure

4.3.  The procedure of an analysis using MFree methods is as follows. 

The geometry of the problem domain is created and a set of field
nodes is generated to represent the problem domain.  
The global background cells are used for numerical integrations.
The system matrices are assembled through two loops.  The outer 
loop is for all the cells of the background mesh, and the inner loop is 
for all the Gauss quadrature points in a cell.
The boundary conditions are enforced. 
The system equation is solved using the standard Gaussian 
elimination equation solvers.
The post-processing is performed to analyze the final results
(displacements and stresses) of the problem considered.   

The procedure is similar to that in the conventional FEM.  The head files
and main program of MFree_Global.f90 are listed in Program 4.1~Program ff
4.3, respectively.

The main program of the MFree_Global.f90 calls several subroutines.  
The macro flowchart for the program is presented in Figure 4.4.  The 
functions performed by these subroutines are listed in Appendix 4.1.   

1) Programs for the RPIM and EFG

The attached programs call the subroutine RPIM_ShapeFunc_2D for the
construction of RPIM shape functions.  It can be easily changed to the
program of the EFG method by calling the subroutine MLS_ShapeFunc_2D
instead.  Both subroutines, RPIM_ShapeFunc_2D and MLS_ShapeFunc_2D, 
have been given in Chapter 3.  It should be noted that RPIM_ShapeFunc_2D 
is not only called in the main program of MFree_Global.f90 but also in some 
other subroutines.  Hence, to perform the computation using the EFG, all the
calls for RPIM_ShapeFunc_2D should be replaced. 

2) Major variables

There are some major variables used in the main program and 
subroutines.  These variables are listed in Appendix 4.2; they can be largely
classified as follows:

Variables for describing the problem, for example, the material 
constants, coordinates of field nodes, boundary conditions, 
background cells, and so on; 
Variables for computing system matrices, for example, the Gauss
points, influence domains, shape parameters, penalty coefficients, 
shape functions and its derivatives, and so on; 
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Input data  

Search all influence domains to determine nodes involved in the
interpolation 

Compute the stiffness matrix at the quadrature point

End of the loop for the quadrature points

End

Loop over
quadrature points 

Loop over
background cells 

Compute the MFree shape functions for the quadrature point 

Assemble the global stiffness matrix

End of the loop for the background cells 

Enforce boundary conditions 

Solve the system equation for displacements and 
then retrieve the stresses

Compute and assemble the distributed forces 

Figure 4.3. Flowchart of the program of MFree_Global.f90
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Figure 4.4.  Macro flowchart of MFree_Global.f90 

Variables for system matrices and vectors, for example, the global 
stiffness matrix, the global force vector, and so on;
Variables related to the solutions, for example, nodal displacements, 
nodal stresses, error in the energy norm, and son on. 

As these global variables will be used in main program and subroutines, 
they will not be explained again in the descriptions for the following
subroutines.

3) Subroutine Input

Source code location: Program 4.4. 
Function: This subroutine is to input data from external file.  In this

subroutine, the stress-strain matrix, D, is also computed.

4) Subroutine GaussCoefficient

Source code location: Program 4.5. 
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Dummy arguments: Appendix 4.3.   
Function: This subroutine is to set all coefficients of standard Gauss

quadrature.

5) Subroutines CellGaussPoints

Source code location: Program 4.6. 
Dummy arguments: Appendix 4.4.   
Function: This subroutine is to set the Gauss points in a background cell 

and to calculate the Jacobian values at the Gauss points.  In the 
present program, quadrilateral background cells are used.  The 
background cells for other shapes (e.g.  triangular and circular) 
can also be used.  Readers can modify this subroutine slightly
for other shapes of background cells. 

6) Subroutine SupportDomain

Source code location: Program 4.7. 
Dummy arguments: Appendix 4.5. 
Function: This subroutine is to determine the support domain for an

interpolation point for the construction of MFree shape 
functions.  The influence domains are used in this book(Sub-
section 4.4.1.1).  In the beginning of the computation (in the 
main program), an influence domain is assigned to each field
node.  The nodes involved in the interpolation are then found 
through checking all influence domains for all field nodes.  If 
the interpolation point is located in the influence domain of a
field node, the field node will be recorded and used in the 
interpolation for the construction of shape functions.  Note that 
rectangular influence domains are used in this code.

7) Subroutine PointStiffnessMatrix

Source code location: Program 4.8. 
Dummy arguments: Appendix 4.6. 
Function: This subroutine is to compute the stiffness matrix of a

quadrature point using Equation (4.37). 

8) Subroutine EssentialBC

Source code location: Program 4.9. 
Dummy arguments: Appendix 4.7. 
Function: This subroutine is to enforce essential boundary conditions.  In 

the present program, the penalty method, which has been
discussed in Sub-sections 4.2.2.3 and 4.3.1, is used. 

9) Subroutines NaturalBC_concentrated andd NaturalBC_distributed

Source code location: Program 4.10 and Program  4.11. 



4.  Meshfree methods based on global weak-forms 175

Dummy arguments: Appendix 4.8 and Appendix 4.9. 
Function: These two subroutines are used, respectively, to implement 

concentrated and distributed natural boundary conditions. 
Readers can easily modify it for other types of natural
boundary conditions.  In the subroutine NaturalBC_distributed, 
the distributed natural boundary conditions used in Section 4.5 
(Equation (4.84)) are used to compute the nodal force vector
using Equations (4.23) and (4.27).  The global force vector is 
obtained by assembling all nodal vectors. 

10) Subroutine SolverBand

Source code location: Program 4.12. 
Dummy arguments: Appendix 4.10. 
Function: This subroutine is to solve the linear algebraic system

equation with an asymmetric banded matrix (e.g., Xu, 1995).  
In fact, the stiffness matrix in an MFree global weak-form
method is symmetric (see Sub-section 4.2.2).  However, an
asymmetric banded stiffness matrix has to be used in the
Chapter 5.  To avoid listing too many standard routines that 
are available in standard libraries, only the equation solver
for an asymmetric banded matrix is presented in this book.  
Readers can replace this solver by simply calling other more 
effective solvers in the computer system for symmetric
matrices.

Note that for easy comprehension of the program, the one-dimensional 
storage technique that is also commonly available is not used in the present 
program.  The global stiffness matrix stored in a 2D array is formed in
exactly the same way as shown in the formulation, and the 2D stiffness
matrix is fed into the subroutine of the equation solver.  In this subroutine,
the 1D stored banded matrix is first obtained from the original matrix.  The 
standard equation solver using the Gaussian elimination is used to obtain the
results.  Readers can replace this solver with other more powerful solvers, 
once the procedure is understood.

11) Subroutine GetDisplacement

Source code location: Program 4.13. 
Dummy arguments: Appendix 4.11. 
Function: This subroutine is to compute the actual displacements for any

point (including field nodes) of interest.

If only the field nodes are considered, this subroutine is useful only in the 
EFG method.  As discussed in Chapter 3, the MLS approximation does not 
pass through the nodal function values.  Hence, U that solved from Equation
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(4.57) are only the nodal parameters for displacements.  In order to get the 
actual displacements at any point (including the field nodes) in the problem
domain, we need to use the MLS approximation again, i.e. 
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where u(x) is the displacement vector of a point x, ii is the MLS shape
functions, iu is the nodal parameters obtained from Equation (4.57).  The 
presented subroutine computes the final nodal displacements for all the field 
nodes.

This subroutine is unnecessary for the RPIM method to compute the
displacements for field nodes.  Because the RPIM shape functions have the 
Kronecker delta function property, U obtained from Equation (4.32) gives
already the actual nodal displacements.  However, this subroutine is
necessary to obtain the displacements at a point that is not a field node.  

12) Subroutine GetStress

Source code location: Program 4.14. 
Dummy arguments: Appendix 4.12. 
Function: This subroutine is to compute stress components for the point

of interest using Equation (4.10).

For the error analysis, we define the following energy norm as an error
indicator, as the accuracy in strains or stresses is much more critical than that
in the displacements. 

Num Exact T Num Exact1 ( ) ( )dNum Exact T Num ExactT

2eee ( ) ( )d) (Num Exact T Num ExactT1 (4.78)

where Num andm Exact are strain vectors obtained by the numerical method and 
the analytical method, respectively.  In the presented subroutine, stress
components at all Gauss points and field nodes are computed.  

In the subroutine GetStress, a subroutine to perform the inversion of a 
matrix is used.  The subroutine GetInvasy is presented in Program 4.15.  In 
this subroutine, the Gauss-Jordan method is adopted.
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4.5 EXAMPLE FOR TWO-DIMENSIONAL SOLIDS – A 
CANTILEVER BEAM

Numerical studies are conducted for a cantilever beam that is often used
for benchmarking numerical methods because the analytic solution for this
problem is known.  The studies for this example have following purposes:

a) To demonstrate the standard analysis procedure using MFree global 
weak-form methods;

b) To show the usage of the present programs of RPIM and EFG;
c) To study the effects of shape parameters of RPIM;
d) To investigate the effects of the size of support (influence) domain;
e) To examine the numerically the convergence of RPIM and EFG;
f) To study the efficiency of RPIM and EFG;

To provide a quantitative analysis, a cantilever beam subjected to a
parabolic traction at the free end as shown in Figure 4.5 is considered.  The 
beam has a unit thickness (t=1.0) and a plane stress problem is considered.  t
The exact solution of this problem is available and listed as follows
(Timoshenko and Goodier, 1970).

Figure 4.5. Cantilever beam subjected to a parabolic traction at the free end.

The displacement in the x direction is given by: 
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where the moment of inertia I , for a beam with rectangular cross-section andI
unit thickness is given by  
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3
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DI (4.80)

The displacement in the y direction:
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The normal stress on the cross-section of the beam

( )( , )xx
P L x y)y,, I (4.82)

The normal stress in the y direction

0yy (4.83)

The shear stress on the cross-section of the beam
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In this book, the units used are the standard international (SI) units unless 
specially mentioned.  In this example, the parameters for this cantilever
beam are

Loading (integration of the distributed traction): 1000
Young’s modulus: 73 10E 3
Poisson’s ratio: = 0.3 
The height of the beam: 12
The length of the beam: 48
The thickness of the beam: unit.

On the right boundary (x=L(( ), the applied external traction force is 
computed from the analytical formula Equation (4.84).  The force is
distributed in the form of a parabola on the cross-section at the right end of 
the beam

2xy x L

Pt
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2D 2y2D

44
y

4
(4.85)

At the left boundary (x=(( 0), the essential boundary conditions are given using
the analytic formulae Equations (4.79) and (4.81).  i.e.,  
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4.5.1 Using MFree_Global.f90 

In order to illustrate the present code, MFree_Global.f90, the above 
mentioned two-dimensional beam is analyzed following the steps given 
below:

Step 1: Preparation of the input data

The problem considered should be modelled in this step, which includes:  
(1) Defining the geometry of the problem domain;  
(2) Creating field nodes to represent the problem domain; 
(3) Creating background cells for the numerical integration;  
(4) Setting essential boundary conditions; 
(5) Determining parameters, such as the number of Gauss points, the size 

of influence domains, shape parameters of RPIM, penalty coefficients,
and so on.

This step prepares the input data file.  For the cantilever beam problem, 
the problem domain is simple.  Hence, the geometry data file can be easily 
obtained.  For a complex practical problem, a pre-processor may be needed
to generate the input data file (e.g.  field nodes, background cells, and so on).  
MFree2D (introduced in Section 4.8) has a convenient pre-processor:
MFreePro that can be used for a generating the geometry data for complex 
2D domain.

An example of the input data file is shown in Appendix 4.13.  The 
domain of the beam is represented by regularly distributed 175 ( 25 7 ) field
nodes as plotted in Figure 4.6.  A total of 40 (10 4 ) regularly rectangular
background cells are used for the numerical integrations.  Note that the 
background cells are independent of the field nodes. 

This data file contains largely three parts.

The parameters of problem description.  

Data related field nodes and background cells.

Definition of the boundary conditions. 

For this beam problem, the exact boundary conditions are the essential 
boundary conditions on the left end obtained using Equations (4.86) and 
(4.87), and the natural boundary conditions on the right end of this beam
obtained using Equation (4.85).  There is no concentrated nodal force in this 
example.
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Figure 4.6. Nodal arrangement and the background cells for the cantilever beam.  A total of 
175 ( 25 7 ) regular field nodes and 40 (10 4 ) background cells are used.

Step 2: Execution of the program.

The output results of RPIM and EFG are listed in Appendix 4.14~ 
Appendix 4.17.  The error in the energy norm given in Equation (4.78) is 
also presented.

Step 3: Analysis of the output data.

This step can be performed using a post-processor like MFree Post (GR
Liu, 2002).  Since this example problem is simple, and the output date file is 
small, any other commercial program, such as Matlab, MS-Excel, etc., can
be used to produce the drawing of the results.

Results obtained using the RPIM method are plotted in Figure 4.7~Figure 
4.9.  The deflection of the beam is plotted in Figure 4.7 and Figure 4.8.  For
comparison, the analytical results of displacements computed using 
Equations (4.79) and (4.81) are also plotted in the same figure.  There is 
good agreement between the RPIM method results and the analytical results. 
The results of stress, xx , and shear stress, xy , are plotted in Figure 4.9.  
Compared with the analytical results, the RPIM method produces very good
results even for stresses.

Results of the EFG method are plotted in Figure 4.10 and Figure 4.11. 
The deflection of the beam is plotted in Figure 4.10.  For comparison, the
analytical results of displacements given by Equation (4.79) and (4.81) are 
also plotted in the same figure.  The results of stress, xx , and shear stress,

xy , are plotted in Figure 4.11.  Compared with the analytical results, the 
EFG method has also produced very accurate stresses.   
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Two models with nodal distributions of 189 regular nodes and 189 
irregular nodes shown in Figure 4.12 are used to test the present code. 
Stresses xx and  xy are first obtained using the RPIM method and plotted in 
Figure 4.13.  Stresses xx and  xy are also obtained using the EFG method
and plotted in Figure 4.14; the nodal irregularity has little effect on the
results, and this is true for both the RPIM method and the EFG method.   

For comparison, the conventional FEM results using bi-linear elements 
are computed and results are plotted in Figure 4.15 and Figure 4.16.  For the
regular nodal distribution of 189 nodes (160 bi-linear FEM elements), FEM 
obtains less accurate but still acceptable results.  However, for the irregular
nodal distribution of 189 nodes, the FEM results are very bad.  This example 
clearly demonstrates the advantage of MFree methods over the conventional
FEM on the robustness of using irregular field nodes in computing the 
stresses.

Note that, in the conventional FEM, stresses at the field nodes are 
obtained by simply averaging the nodal stresses of the surrounding elements.  
Better stress results can, of course, be obtained by interpolation of the 
stresses at the Gauss points or the so-called super-convergent points. 

Note also that the performance of an MFree method is usually affected by
the parameters.  In the following sections, the effects of some important
parameters used in both RPIM and EFG methods are studied using the
present code.

Analytical solutions RPIM solutions

Figure 4.7. Deflection of the beam obtained using RPIM  and 175 field nodes.  The 
MQ-RBF is used in RPIM and the parameters used areaa c=1.0, q=1.03 and 3.0i .

The linear polynomial terms are added in the RPIM-MQ.  Note that the
displacements plotted are magnified by 500 times.



182 Chapter 4

0 5 10 15 20 25 30 35 40 45 50
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
x 10

-3

RPIM result     
Analytical result

x

D
ef

le
ct

io
n

Figure 4.8. Deflections v along the central axis at 0y  of the beam obtained using 
RPIM-MQ and 175 field nodes.

-140

-120

-100

-80

-60

-40

-20

0

-6 -4 -2 0 2 4 6

RPIM result
Exact result

St
re

ss
xy

y

Figure 4.9. Shear stress distributions on the cross-section of the beam at  / 2
obtained using RPIM and 175 field nodes. The MQ-RBF is used in the RPIM andd
the parameters used are 1.0,c  1.03,q  and 3.0i .  The linear polynomial 

terms are added in RPIM-MQ.
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Figure 4.10. Deflections v along the central axis at 0  of the beam obtained using 
EFG and 175 field nodes.  The parameter used is 3.0i .  The linear polynomial basis

is used in MLS.
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Figure 4.11. Shear stress distributions on the cross-section of the beam at  / 2
obtained using EFG and 175 field nodes.  The parameter is 3.0i .  The linear

polynomial basis is used in MLS.   



184 Chapter 4

(a)

(b)

Figure 4.12. Nodal arrangements used to model the cantilever beam.  (a) 189 regular
nodes; (b) 189 irregular nodes.
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Figure 4.13. Shear stress distributions on the cross-section of the beam at  / 2
obtained using RPIM and 189 field nodes.  The MQ RBF is used in RPIM and thed

parameters used are 1.0,c  1.03,q  and 3.0.i   The linear polynomial terms
are added in RPIM-MQ.
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Figure 4.14. Shear stress distributions on the cross-section of the beam at  / 2
obtained using EFG and 189 field nodes.  The parameter used is 3.0i .  The linear

polynomial basis is used in MLS.  
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Figure 4.15. Shear stress distributions on the cross-section of the beam at / 2
obtained using different methods and 189 regular field nodes (bi-linear elements

for FEM,  for RPIM and EFG).3.5i =
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Figure 4.16. Shear stress distributions on the cross-section of the beam at / 2
obtained using different methods and 189 irregular field nodes.  The mesh distortion

effects on the FEM solution (using bi-linear elements) are obvious.   

4.5.2 Effects of parameters

In the following studies, we consider the same cantilever beam problem 
because we know the analytical solution.  The problem domain is 
represented by 189 ( 21 9 ) regularly distributed nodes, and 160 ( 20 8 )
rectangular background cells are used for numerical integrations.  In each
background cell, 4 4  Gauss points are employed.  As the number of Gauss
points used satisfies the sufficient requirement given in Equation (4.44), we 
considered the numerical integration to be sufficiently accurate.  For
quantitative and accurate analysis, the exact essential boundary conditions
and exact natural boundary conditions are also used.  In the exact natural
boundary conditions, the distributed traction is employed at the right end of
the beam.  Hence, the curve integration is required on the boundary of the 
right end of the beam.    The error in the energy norm defined by Equation 
(4.78) is used as an error indicator.  In the RPIM method, the linear
polynomial terms are added in the RPIM-MQ.  In the EFG method, the 
linear basis and the cubic spline weight function (W1) are employed in the 
MLS approximation. 
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4.5.2.1 Parameter effects on RPIM method 

a) Shape parameters used in RPIM

Only MQ-RBF is studied in this sub-section.  More detailed discussions
on the parameters of other RBF are presented in the paper by Wang and GR 
Liu (2002c).  In the MQ-RBF, there are two shape parameters (see Table 3.2) 
to be investigated.  The nodal spacing is a constant of / 20 2.4cd .

GR Liu (2002) and co-workers have found that parameter q has great
influence on the performance of RPIM than that of parameter c.  Therefore,
q is investigated first with c fixed at 1.0, 2.0 and 4.0.  Errors in the energy 
norm defined by Equation (4.78) for five different values of q ( 0.5q , 0.5,
0.98, 1.03 and 1.2) are computed and plotted in Figure 4.17.  When 0.5
and 0.5, they are the classical MQ-RBFs.  Wang and Liu (2002c) have
discovered that when q=0.98 and 1.03 the RPIM-MQ performs the best.  
From Figure 4.17, it can be confirmed that q=0.98 and 1.03 give good 
results.  GR Liu (2002) also found that the RPIM results become better when
q is near the integers (e.g. 1.0) and the condition number of the RPIM 
moment matrix is large.  However, when q equals an integer (e.g., q=1), the
moment matrix is singular and the computation fails.  We state without 
showing the data that when q is too large the error will significantly increase 
because of the too large condition number of the moment matrix. 
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Figure 4.17. Influence of q on the RPIM-MQ, in which 1.0c , 2.0 and 4.0 are used.  It 
can be found that q=0.98 and 1.03 give accurate results.
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Figure 4.18. Influence of c on the RPIM-MQ in which q=0.98 and 1.03 are used.  It can be 
found that the results for 3.0 ~ 7.0c are more accurate.

GR Liu (2002) has found that c should be in the range of 1.0~6.0.  In 
this study, c is further studied for a wider range of 0.5~7.0.  Errors in the 
energy norm for different values of c are plotted in Figure 4.18.  It is found 
that all c in the range studied can lead to satisfactory results,  3.0 ~ 7.0c

are preferred.
Hence, q=1.03 and 4.0c  are used in the following studies.

b) Dimension of the influence domain  

The dimension of influence domains is defined in Equation (4.75), where 
dcxdd and dcydd are nodal spacing in x and y directions near the field node i.  In
this study, / 20 2.4cx / 20  and /8 1.5cx /8 are used.  The actual
dimension of influence domains will be determined by changing ix and iy,
which are dimensionless sizes in x and y directions.  For simplicity,

ix= iy= i is used in this study.   

Errors in the energy norm computed using different i are plotted in 
Figure 4.19.  The shape parameters of MQ-RBF are 1.03 and 4.0c .
It can be found that the error changes with i, and the results of i 2.0, 3.0
and 4.0 are all very accurate.  The error for 1.5i and i 2.5, 3.5 or 4.5 
are relative large.  The reason of bad results of 1.5i  is that the influence
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domain is too small, and there are not enough field nodes included for 
interpolation.  Although the influence domains of i 2.5, 3.5 or 4.5 are big 
enough, the accuracy is also not very good.  We suspect the reason is that

i 2.5, 3.5 or 4.5 cannot match well with shape parameters.  A more 
detailed study is needed.

Errors in the energy norm obtained using the RPIM with the parameters 
of 1.03q and 1.0c  are plotted in Figure 4.20.  It can be found that  the 
error ee is more stable for this set of shape parameters and results of 3.0i

are very good.  The aim of these studies is to show that some parameters 
must be carefully selected in RPIM-MQ to obtain good results.  It is 
fortunate that the range of parameters is usually quite wide.

From the results of Figure 4.19 and Figure 4.20, 3.0i are used in the
following studies.  In addition, considering the results presented in Figure 
4.17~Figure 4.20 and the conclusions obtained by GR Liu (2002), q=1.03
together with 4.0c is generally stable and accurate for many problems
considered.  Hence, q=1.03 and 4.0c are used in the following studies.
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Figure 4.19.  The effects of the dimension of influence (support) domain i on the
RPIM-MQ (q=1.03, 4.0c ).
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Figure 4.20. The effects of the dimension of influence (support) domain i on the
RPIM-MQ ( 1.0c  and q=1.03).

c) Convergence

The convergence of RPIM is numerically studied using regularly
distributed 18 (3 6), 55(5 11), 112(7 16), 189(9 21), 403(13 31) and 697 
(17 41) field nodes.  The convergence curves are shown in Figure 4.21.  For 
comparison, the convergence curve for FEM that uses the bi-linear elements
is also plotted in the same figure.  In this figure, h is in fact the nodal
spacing, dcdd , and it is equivalent to the element size (in x direction) in the 
FEM analysis in this case.  The convergence rates, R, computed by linear
regression are given in Figure 4.21.  Note that the method of calculating the 
convergence rate can affect very much the values of the convergence rate 
due to the nature of the convergence process.  In the early stage, the error
reduces much faster than in a later stage, where the results are very close to
the exact solution that is in polynomial form.  For example, if only the right-
most two points are used to calculate the convergence rate, the R value can
be much higher.  This is probably one of the reasons why different 
convergence rates are reported in different references.

Figure 4.21 shows the following conclusions:

The accuracy of the RPIM method is much higher than that of FEM.
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The convergence rates of the RPIM are much higher than that of the
Galerkin FEM, which is 1.0 for bi-linear elements.

Note again that the shape parameters chosen in the MQ-RBF will affect
the convergence rate and the accuracy of the RPIM method.

Figure 4.21.  Numerical convergence of RPIM-MQ in error er e in energy norm.  The 
parameters used are 4.0,c and 3.0i .  Linear polynomial terms are added in RPIM-

MQ. R is the convergence rate computed by linear regression using all points in the figure.r

4.5.2.2 Parameter effects on EFG method 

1) Dimension of the influence domain 

The size of influence domains is defined in Equation (4.75) where  
/ 20 2.4cxd Lcx / 20L and /8 1.5cx /8 for this problem.  Errors of the energy

norm for different i are plotted in Figure 4.22.  It can be found that the error 
changes with i and the results for  2.0 4.0i are very good.  When the
influence domain is too small ( 2.0i ) or too big ( 4.0i ), the error of 
EFG results increases.

When the influence domain is too small ( 2.0i ), there are not enough
nodes used to perform the function approximation for the field variables.  
The smoothness of MLS shape functions reduces.  When the influence 
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domain is too large ( 4.0i ), the MLS shape functions become too smooth 
to represent the local properties of the field variables.  In addition, large
influence domains will also increase the computational cost.  Hence, a
proper influence domain should be used in the EFG method, and 2.5i is
found by this and other studies to be very good for many problems, and will
be used in the following studies of the EFG method. 

1 1.5 2 2.5 3 3.5 4 4.5
10-2

10-1

100

i
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er

gy
er
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r

Figure 4.22.  Effects of the dimension of influence (support) domain i  on EFG.

2) Convergence

The convergence of EFG is numerically studied using regularly
distributed 18 (3 6), 55(5 11), 112(7 16), 189(9 21), 403(13 31) and 697 
(17 41) nodes, and the convergence curves are plotted in Figure 4.23.  The 
convergence rate, R, is computed via linear regression.  From Figure 4.23, it 
is observed that convergence rates of the EFG method is about 1.45 and is 
higher than that of the Galerkin bi-linear FEM.  It should be mentioned here 
that only the linear basis is used in MLS to obtain the EFG results of Figure
4.23.  The higher convergence rate of EFG is due to the fact that the MLS
shape functions possess higher order smoothness inherited from the weight
function used.  Note also that the accuracy of the EFG method is much
higher than that of the FEM.
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Figure 4.23. Numerical convergence of EFG results.  The parameter used is 2.5i .  The
linear polynomial basis is used in the MLS approximation. R is the convergence rate 

computed by linear regression using all the points in the figure.

4.5.3 Comparison of convergence  

For comparison, the numerically obtained convergence curves of RPIM, 
EFG and FEM are computed and plotted in Figure 4.24.  From this figure, 
the following remarks can be made:

a) Both the convergence rates and the accuracies of RPIM and EFG are
better than those of the bi-linear FEM.  This is because the MFree shape 
functions have higher interpolation accuracy than the bi-linear FEM
shape functiond, due to the use of more nodes in the construction of 
MFree shape functions. 

b) The convergence rate and accuracy of the RPIM method are slightly
better than those of the EFG method.  

It should be mentioned here that the convergence is studied numerically
based on regularly distributed nodes.  If the irregularly distributed nodes are 
used, the convergence and accuracy of RPIM method and the EFG method 
will be much better than those of FEM, as shown, for example, in Figure
4.24.



194 Chapter 4

Figure 4.24. Comparison of numerical convergences of RPIM, EFG and linear FEM in 
error er e of energy norm.  R is the convergence rate.

4.5.4 Comparison of efficiency  

The computational cost vs. the accuracy is a fair indicator to evaluate 
numerical methods.  A successful numerical method should obtain high
accuracy at a low computational cost.  Regularly distributed 18, 55, 189 and
403 nodes are used to calculate the curves of error against the CPU time of 
RPIM, EFG and FEM.  These curves obtained and plotted in Figure 4.25, 
where 3.0i  and 2.5i are used in RPIM and EFG, respectively.

It should be noted that the computational cost of an MFree method 
mainly comes from two parts: 

1) The first part is the cost of the interpolation, which mainly comes
from computing the inverse of the moment matrix.  Therefore, the
cost of the interpolation is mainly determined by the dimension of the 
moment matrix.  The dimensions of the moment matrices of RPIM 
are n n (n is the number of the field nodes in the support domain), 
and the dimension of the moment matrix of EFG is m m (m is the
number of basis, 3  for the linear basis).  Because of n m , the
interpolation cost of RPIM is usually much higher than that of EFG.   

2) The second part is the cost to solve the final discretized system 
equation, which depends on the maximum bandwidth of the global 
stiffness matrix.  The maximum bandwidth of the final stiffness
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matrix increases with the number of nodes chosen in the support 
domains, for a given numbering system.  The support domains used 
in RPIM is usually bigger than those used in EFG.  The
computational cost of RPIM in solving the final system equation is
therefore higher.

The RPIM is first compared with the EFG method, in which the penalty
method is used to enforce the essential boundary conditions.  From Figure
4.25, the following remarks can be observed: 

a) For a desired accuracy (such as 10-1 error in the energy norm), the cost 
of EFG (with penalty method) is the lower than that of RPIM.

b) For a given cost (say 20 s), the accuracy of EFG is better than that of 
RPIM.

For this discussion, one can conclude that the efficiency of the EFG
method (using penalty method to enforce essential boundary conditions) is
better than that of the RPIM method.

Figure 4.25.  Comparison of the computational efficiencies of RPIM, EFG and FEM in
error er e in energy norm.  In RPIM-MQ, the parameters are 4.0,c 1.03,q 3.0i ,

and m=3.  In EFG, the parameter is 2.5i , the weight function W1 and the linear 
polynomial basis are used in the MLS approximation.  In FEM, bi-linear elements are used. 

If the Lagrange multiplier method is used, the dimension of the global 
stiffness matrix will increase, and the stiffness matrix will become an 
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unbanded matrix as shown in Equation (4.74).  This will significantly 
increase the computational cost of the EFG method especially for large
systems.  To prove this point, the curves of error against the CPU time of the
EFG method using the Lagrange multiplier method is also plotted in Figure
4.25.  It is found that the EFG method using the Lagrange multiplier method 
is less efficient than RPIM.

For comparison, the curves of error against the CPU time of the
conventional FEM using bi-linear elements are also plotted in Figure 4.25.  
It is found that FEM needs more CPU time to obtain the desire
computational accuracy than both RPIM and EFG; the conventional FEM is
less efficient than RPIM or EFG.

4.6 EXAMPLE FOR 3D SOLIDS

Because of the robustness and effectiveness of the MFree RPIM method,
the RPIM has successfully been applied to many types of problems (see, e.g.,
Chapter 2).  In this section a simple example problem of a three-dimensional 
(3D) solid is solved using the RPIM.  The materials used in this section are
largely from the work by GR Liu and Zhang et al. (2003), where more
examples can be found.

The standard basic equations of 3D elastic solids were given in Sub-
section 1.2.1.  The procedures used in Section 4.2 gives the discretized
system equations of the RPIM for 3D elastic solids.  Detailed discussions are
omitted because it is largely similar to the 2D case.  Readers may derive 
these formulations following the procedures given in Section 4.2.  Note that 
the construction of RPIM shape functions for 3D domain is very similar to
the 2D RPIM shape functions, and the RBFs are distance functions; need 
only change the formula for calculating the distance.  

Consider a 3D cantilever beam (shown in Figure 4.26) with a circular
hole subjected to a uniformly distributed load of  f =125.  The left end of the
beam is fixed, and the right end of the beam is a half circle.  The geometric 
and material constants for the beam are: length (to the centre of the internal
circle): L=48;  height: D=12; width: T=8; radius of the outer half-circle:TT R=6;
radius of the internal circle: r =2; Young’s modulus: 73 10E 3 , and 
Poisson’s ratio:  = 0.3. 

The results of displacements and stresses are computed for all field nodes
using both RPIM and the FEM.  For simplicity, only the results of the 
vertical displacement at point A at (48, 4, 8) (see, Figure 4.26) are presented
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here.  The FEM results, obtained using the commercial software package 
ANSYS with a very fine mesh of 11109 elements (Solid92-type 10-node 
tetrahedral element) shown in Figure 4.27, are taken as the reference solution 
for the comparison study.  The FEM reference solution is found as 

Ref 2
A 0.11211 10vA 0.11211 .

Figure 4.26.  A 3D cantilever beam subjected to a uniformly distributed load.

Figure 4.27.  FEM mesh for the 3D cantilever beam.

The RPIM-MQ is used to solve this problem.  In the MQ-RBF, the shape
parameters used are q=1.03 and c=4.0.  Irregularly distributed nodes shown
in Figure 4.28 are used.  The tetrahedral background cells are used for the
numerical integrations.  In each tetrahedral background cell, 4 Gauss points 
are employed.   

Figure 4.28.  Irregular nodal arrangements for the 3D cantilever beam.
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Results of displacements obtained using RPIM are listed in Table 4.1. 
The FEM results obtained using ANSYS (using 4-node elements) with the 
same nodes as those used in RPIM are also listed.  From this table, it can be 
found that the RPIM gives much better results than that of the FEM.  

Table 4.1.  Vertical displacement at point A, vA, obtained using the RPIM and FEM
using exactly the same sets of nodes  

     RPIM(1)       RPIM(2)             ANSYS
Number of

nodes
(number of

cells)
vAv Error

(%)
vAv Error

(%)
vAv Error

(%)
196

(538) -0.1109E-2 1.07  -0.1125E-2 0.40  -0.8307E-3 25.89
1146

(4685) -0.1133E-2 1.06  -0.1137E-2 1.46  -0.1046E-2 6.63
1596

(6815) -0.1125E-2 0.41  -0.1134E-2 1.16  -0.1060E-2 5.41
1999

(8771) -0.1125E-2 0.38  -0.1137E-2 1.43  -0.1067E-2 4.78

(1): 70 nearest nodes are used to construct RPIM shape functions;
(2): 50 nearest nodes are used to construct RPIM shape functions. 

(3) Ref Ref
A A AError v v vv e
A A AAvA .

(4) Reference solution: Ref 2
A 0.11211 10v 0.11211 obtained using ANSYS and very fine 

mesh (11109 elemets).

4.7 EXAMPLES FOR GEOMETRICALLY NONLINEAR 
PROBLEMS

The purpose of this section is to show some simple examples of the
applications of the RPIM to geometrically nonlinear solid mechanics 
problems.  The detailed description of this work can be found in a paper by 
Dai et al. (2003).  For applications to material non-linear problems, readers 
may refer to the recent work by Dai et al. (2004). 

The standard Newton-Raphson iteration procedure and the formulation in
material description are used in the study. The standard basic equations and 
formulation procedures are largely the same as those used in the FEM (e.g.,
Zienkiewicz and Taylor, 2000).  The difference is mainly in the creation of
the shape functions.  Hence, detailed discussions are omitted here.  Readers
are recommended to refer to the books on nonlinear FEM (see, e.g.,
Zienkiewicz and Taylor, 2000).
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In these examples, compressible hyperelastic neo-Hookean materials are
used with Lame constants of 4 20.5 104 N cm/0.5 and 24 /10)3/1( 4 cm/)3/1( .
The plane strain state is considered in this section.

The RPIM-MQ shape functions are computed with q = 1.03 and c=1.0
augmented with six (2nd order) monomials.  In the following studies, 

5.1s is used for the local support domains.  Gauss quadrature using
44 Gauss points is employed in each background cell.

4.7.1 Simulation of upsetting of a billet

A two-dimensional billet subjected to deep compression is studied using
RPIM.  The initial dimensions of the billet are 4cm wide and 6cm high
shown in Figure 4.29.  The domain is initially represented by 6 uniform
nodes, and  5 rectangular background cells are used for the integration.  
The billet is loaded via displacement control on the upper surface with the
bottom surface fully fixed.  A Newton-Raphson iteration procedure is used
with increments of vertical displacement equal to 0.2cm.  Figure 4.30 shows
the progression of deformation at different steps. It is seen that the billet is
compressed as much as 56% compared to its original height. The same
problem is also analyzed using the conventional non-linear FEM.  It is found 
that when the FEM is used (Zienkiewicz and Taylor, 2000), the convergence
stops at the amount of 50% of compression.  An irregular node distribution 
is also used in the RPIM for the simulation, and results are plotted in Figure
4.31.

Figure 4.29. Schematical drawing of the initial and deformed billet subjected to deep 
compression.
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(a) d = 2.0 cm (b) d = 2.8 cm

Figure 4.30. Deformed profile of a compressed billet simulated using RPIM and 6 6 regular
nodes.

Figure 4.31. The deformed profile of a compressed billet simulated using RPIM and 
irregular nodes. Circles: initial positions of the nodes; Diamonds: positions of nodes in the 

deformed billet.

4.7.2 Simulation of large deflection of a cantilever beam 

In this example, a large deformation analysis is performed for a
cantilever beam subjected to a progressively increasing load at the middle
point on the cross-section at the free end with each load step of F = 16.0 F N.NN
The dimensions of the beam are ( cmcm 210cm ) and it is initially represented 
using ( 3 ) regularly distributed nodes (see Figure 4.32).  The analysis is 
carried out using twenty load incremental steps (n = 20). The simulation
converges very fast, and less than 4 iterations are needed in each load
increment.
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Figure 4.33 illustrates different stages of deformation for the beam
obtained using RPIM. The tip deflections at different load steps are plotted
in Figure 4.33. It can be seen that, the nonlinear analysis reveals the stiffer
effect of the beam compared to the linear behavior.

4.7.3 Simulation of large deflection of a fixed-fixed beam

This example analyzes the large deformation of a beam with both left and
right sides fully fixed.  The beam is subjected to a uniformly distributed and 
progressively increasing load with each load step of f = 80.0f N/cm.  After
twenty steps of loading, the final profile of the beam is shown in Figure 4.34. 
The deflections at the mid-node at different load steps are plotted in Figure
4.35. Geometrically non-linear effects similar to the case of the cantilever
beam are observed.

Figure 4.32. Large deformations of a cantilever beam at different steps simulated usingm
RPIM.

4.8 MFREE2D

MFree2D  is an adaptive stress analysis software package developed by
GR Liu and co-workers (GR Liu and Tu, et al., 2000) based on EFG and 
RPIM.  It was showcased in 1999 in the APCOM’99 conference. 
MFree2D is designed for 2D stress and strain analysis in solid mechanics
and structural mechanics subjected to static loadings.  The software consists
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of three major processors: MFreePre, MFreeApp and MFreePost.
MFreePre is a preprocessor to formulate the input required by MFreeApp;
the latter performs computations and yields results which are then fed to
MFreePost for post processing.t

Figure 4.33. Deflections at point A at the middle of the cross-section at the free end of a 
cantilever beam simulated using RPIM.  

Figure 4.34. Initial and final profiles of a fixed-fixed beam subjected to a uniformly 
distributed load.  RPIM is used and the loading keeps vertical in the loading process.

A

f
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Figure 4.35. Deflections at point A at the middle of the central axis of the fixed-fixed beam
simulated using RPIM. 

These three processors can work either in an integrated manner or
independently.  One salient feature of MFree2D is that it is designed to be 
user-friendly and thus, has few input requirements from users.  The main 
features of MFree2D  include:

The problem domain is discretized using scattered nodes and the
discretization is fully automatic.   
Adaptive refinement techniques are implemented to ensure the results 
have a desired accuracy. 
User-friendly graphical-user-interface (GUI).

In the current version of MFree2D , the RPIM method and the EFG
method are available, and Visual C++ is used as the programming language.  
MFree2D can be downloaded from the website
(http://www.nus.edu.sg/ACES).

The source codes provided in this book are largely consistent with the
MFree2D .  However, for easy understanding and comprehension, only 
FORTRAN source codes are provided in this book for simple problems. 
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4.9 REMARKS

MFree global Galerkin weak-form methods are discussed in this chapter.
The MFree RPIM method based on the radial point interpolation and the
EFG method based on the MLS approximation are detailed.  A computer
code of RPIM and EFG for linear elasticity is provided.  Numerical studies
are presented to show the implementation of the present code.  The 
performance and convergence of RPIM and EFG are studied numerically 
and compared.  It may be concluded that the accuracy, convergence, and
efficiency of RPIM and EFG are better than the conventional FEM. 

From the studies in this chapter, we can make the following important 
remarks:

a) The compatibility of the trial (shape) functions in the whole domain 
is required in MFree global weak-form methods.  

b) In RPIM, the recommended shape parameters for the MQ-RBF are
q=1.03 and c=4.0.

c) The accuracy of solutions changes with the sizes of the influence
domains i.  In RPIM, i =3.0 is recommended.  In EFG, we
recommend i =2.5.

d) The convergence rates of both the RPIM and EFG methods are good.
The convergence rate of the RPIM is better than that of EFG.

e) The efficiency of the EFG method (using penalty method to enforce 
essential boundary conditions) is better than that of RPIM.   

f) The EFG method with the Lagrange multiplier method for enforcing
the essential boundary conditions is much less efficient than RPIM.

g) The bi-linear FEM is less efficient than RPIM or EFG.

Note that as the solution for the cantilever beam has polynomial form, 
methods using MLS shape functions (with polynomial basis) perform better 
than methods using RPIM shape functions (with RBF basis).  For more 
complex problems whose solutions are not in the polynomial form, the 
situation can change, as observed in the surface fitting tests presented in
Chapter 3.
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APPENDIX

Appendix 4.1. Major subroutines used in MFree_Global.f90 and their functions 

Subroutines Functions 

Input Input data from an external input file

GaussCoefficient Obtain coefficients of Gauss points 

CellGaussPoints Set Gauss points for a cell

SupportDomain Determine the support domain for an
interpolation point

MLS_ShapeFunc_2D 
(or RPIM_ShapeFunc_2D) 

Compute shape functions and their derivatives at 
an interpolation point

PointStiffnessMatrix Compute the stiffness matrix for a quadrature 
point

EssentialBC Enforce essential boundary conditions 

NaturalBC Implement natural boundary conditions 

SolveBand Solve system equation 

GetDisplacement Obtain the final displacements using the RPIM or
the MLS shape functions

GetStress Retrieve the strain, stress, and compute error in
the energy norm

Appendix 4.2. The major variables used in MFree_Global.f90 

Variable Type Usage   Function 

Young, anu Long real Input Young’s modulus and Poisson ratio

Dmat (3,3) Long real Compute  The matrix of elastic constants 

nx Integer Parameter Dimension of this problem; nx=2 for
2D problem

ng Integer Parameter Shape of the background cells, and 
ng=4 is used for a rectangular cell 

numnode Integer Input Number of field nodes 
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x(nx,
numnode)

Long real Input Coordinates x and y for all field nodes: y
x(1,i)=x= i; x(2,i)=y= i

numq Integer Input Number of background points to form
background cells

xc(nx,
numnode)

Long real  Input Coordinates x and y for background 
points: xc(1,i)=x= i; xc(2,i)=y= i

numcell Integer Input Number of background cells

noCell(ng,
numcell)

Integer Input Node ID for background cells 

nquado Integer Input Number of Gauss points used in one 
dimension in a background cell.  For 
rectangular background cell, the total 
Gauss points used for a 2D cell is 
nquado nquado.

npEBCnum Integer Input Number of nodes with essential
boundary conditions

npEBC,
pEBC

Integer
long real 

Input npEBC(1,i): ID of field nodes with
the essential boundary condition; 
if npEBC(2,i)=1 then ux is prescribed x
in pEBC(1,i); if pEBC(3,i)=1 then uyu
is prescribed in pEBC(2,i)

npNBCnum Integer Input Number of nodes with natural
boundary conditions

npNBC,
pNBC

Integer
long real 

Input npNBC(1,i): ID of field nodes with
the natural boundary condition: 
if npNBC(2,i)=1 then fxff is prescribed 
in pNBC(1,i); if pNBC(3,i)=1 then fyff
is prescribed in pEBC(2,i)

alfs Long real  Input Dimensionless size of support 
(influence) domain 

pAlf Long real Input Penalty coefficient 

Ds(nx,
numnode)e

Long real  Compute The size of the influence domain: 
ds(1,i)=dsxid , ds(2,i)=dsyid

ndex Integer Compute Number of field nodes in the support 
domain for an interpolation point 

Ph(10, ndex) Long real Compute Meshfree shape functions and their 
derivatives.

Ak Long real Compute Global stiffness matrix 
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Force Long real Compute Global force vector 

disp Long real Compute Displacement vector,
disp(2*i-1)=ui; disp(2*i-1)=vi

Stress Long real Compute The array to store the stress 
components for all field nodes 

Appendix 4.3. The dummy arguments used in the subroutine GaussCoefficient

Variable Type Usage   Function

k Integer Input Number of Gauss points in 1D 

v(2,k)kk Long
real

Output The array for the coefficient of Gauss 
points,
v(1, i): coefficient for the coordinate of a 
Gauss point; v(2, i): Gauss weight for this
Gauss point

Appendix 4.4. The dummy arguments used in the subroutine CellGaussPoints 

Variable Type Usage   Function 

ibk Integer Input ID of the background cell considered 

numgauss Integer Input Number of Gauss points in a cell

Gauss
(nx,nquado)

Long
real

Input The array for the coefficients of Gauss 
points; Gauss(1, i): coefficient for the
coordinate of a Gauss point; Gauss (2, i):
Gauss weight for this Gauss point 

gs(4,numg) Integer Output Array storing information of Gauss points 
for a cell:
gs(1, i): coordinate x for Gauss point i;
gs(2, i): coordinate y for Gauss point i;
gs(3, i): Gauss weight for Gauss point i;
gs(4, i): Jacobian value for this cell 
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Appendix 4.5. The dummy arguments used in the subroutine SupportDomain 

Variable Type Usage   Function 

Gpos(nx) Long real Input Coordinates of a point of interest 

ndex Integer Output Number of field nodes used in the 
support domain 

nv(ndex) Integer Output Node ID of field nodes selected for the
construction of shape functions

Appendix 4.6. The dummy arguments used in the subroutine PointStiffnessMatrix

Variable Type Usage   Function 

ndex Integer Input Number of field nodes used in 
the local domain for the
construction of shape functions 

Weight Long real Input Gauss weight for a Gauss point 
ajac Long real Input Jacobian value for the cell 
Ph(10, ndex) Long real Input Shape functions and their

derivatives.
GSPk(2*ndex,2*ndex) Long real Output Stiffness matrix for the Gauss

point

Appendix 4.7. The dummy arguments used in the subroutine EssentialBC

Variable Type Usage   Function 

numnode Integer Input Total number of field nodes 
pAlf Long real Input Penalty coefficient 
alfs Long real  Input Dimensionless size for support 

(influence) domain
Ds(nx, numnode) Long real  Input The size of the influence 

domain 
npEBCnum Integer Input Number of nodes with essential

boundary conditions
npEBC(3,100),
pEBC(nx,100)

Integer,
long real 

Input Essential boundary condition
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Ak(2*numnode,
2*numnode)

Long real Input and 
output

Global stiffness matrix 

Force(2*numnode) Long real Input and 
output

Global force vector 

Appendix 4.8. The dummy arguments used in subroutine NaturalBC_concentrated

Variable Type Usage   Function 

numnode Integer Input Total number of field nodes 
alfs Long real  Input Dimensionless size for

support (influence) domain 
Ds(nx, numnode) Long real  Input The size of the influence 

domain 
npNBCnum Integer Input Number of nodes with 

natural boundary conditions.

npNBC,
pNBC

Integer
long real

Input Natural boundary condition 

ep Long real Input Tolerance 
Force(2*numnode) Long real Input and 

output
Global force vector

Appendix 4.9. The dummy arguments used in subroutine NaturalBC_distributed 

Variable Type Usage   Function 

numnode Integer Input Total number of field nodes 
alfs Long real  Input Dimensionless size for

support (influence) domain 
Ds(nx, numnode) Long real  Input The size of the influence 

domain:
ds(1,i)=dsxid , ds(2,i)=dsyid

x(nx, numnode) Long real Input Coordinates x and y for all
field nodes

numq Integer Input Number of background 
points to form background 
cells

xc(nx, numnode) Long real  Input Coordinates x and y for
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background points
nquado Integer Input Number of Gauss points

used in one dimension in a
background cell.

Gauss
(nx,nquado)

Long real Input The array for the 
coefficients of Gauss points: 

in, jn Integer Input Two ends of the sub-
boundary t

Force(2*numnode) Long real Input and 
output

Global force vector

Appendix 4.10. The dummy arguments used in the subroutine SolverBand

Variable Type Usage   Function 

neq Integer Input Number of equations
nmat Integer Input Number of rows of the array Aky
Ak(neq, neq) Long real Input  Coefficient matrix of the

equation

fp Long real Input,  output Input: the right hand side of the 
equations;Output: the solution
of the equations 

Appendix 4.11. The dummy arguments used in the subroutine GetDisplacement 

Variable Type Usage   Function

nx Integer Input nx=2 for 2D problem

numnode Integer Input Total number of field nodes 
x(nx, numnode) Long real  Input Coordinates x and y for

 all field nodes
alfs Long real  Input Dimensionless size for support 

(influence) domain
Ds(nx, numnode) Long real  Input The size of the influence 

domain  
u2(nx, numnode) Long real  Input Nodal parameters of 

displacements for field nodes
Disp(nx,numnode) Long real  Output Actual nodal displacements for

field nodes
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Appendix 4.12. The dummy arguments used in the subroutine GetStress 

Variable Type Usage   Function

nx Integer Input nx=2 for 2D problem

numnode Integer Input Total number of field nodes 

x(nx, numnode) Long real Input Coordinates x and y for  all field nodes.
x(1,i)=x= i; x(2,i)=y= i

alfs Long real Input Dimensionless size of support 
(influence) domain 

Ds(nx, numnode) Long real Input The size of the influence domain.   
ds(1,i)=dsxid , ds(2,i)=dsyid

Stress
(3,numnode)

Long real Output Array storing stress components of 
field nodes
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Appendix 4.13.  The iput data file: Input175_55.dat used in MFree_Global.f90.  As
shown in Figure 4.6, A total of 175 regular field nodes and 40
background cells are used 

*L,H,E,v,P,
    48.00000    12.00000 0.3000E+08 0.30000  1000.00000
*numnode, unuse 
        175 0
*ndivx,ndivy

24 6
*numq,numcell

55          40
*ndivxq,ndivyq
         10           4 
*nquado,alf
          4   100000000.000000
*Influ. domain: ALfs

3.0
*Field nodes: x[]

    1 0.00000 6.00000
2 0.00000   4.00000
3 0.00000 2.00000

    4 0.00000 0.00000
    5 0.00000  -2.00000

6 0.00000  -4.00000
    7 0.00000  -6.00000

8 2.00000 6.00000
9 2.00000   4.00000

   10 2.00000 2.00000
   11   2.00000   0.00000 
   12 2.00000  -2.00000
   13 2.00000  -4.00000
   14 2.00000  -6.00000
   15   4.00000 6.00000
   16   4.00000   4.00000
   17   4.00000 2.00000
   18   4.00000 0.00000
   19   4.00000  -2.00000

20   4.00000  -4.00000
   21   4.00000  -6.00000 

22 6.00000 6.00000
23 6.00000   4.00000
24 6.00000 2.00000
25 6.00000 0.00000
26 6.00000  -2.00000
27 6.00000  -4.00000
28 6.00000  -6.00000
29 8.00000 6.00000
30 8.00000   4.00000
31 8.00000 2.00000

   32   8.00000   0.00000 
33 8.00000  -2.00000
34 8.00000  -4.00000
35 8.00000  -6.00000
36  10.00000 6.00000
37  10.00000   4.00000
38  10.00000 2.00000
39  10.00000 0.00000

   40  10.00000  -2.00000
   41  10.00000  -4.00000

   42  10.00000  -6.00000
   43  12.00000   6.00000 
   44  12.00000   4.00000
   45  12.00000 2.00000
   46  12.00000 0.00000
   47  12.00000  -2.00000
   48  12.00000  -4.00000
   49  12.00000  -6.00000
   50  14.00000 6.00000
   51  14.00000   4.00000

52  14.00000 2.00000
   53  14.00000 0.00000
   54  14.00000  -2.00000 
   55  14.00000  -4.00000
   56  14.00000  -6.00000
   57  16.00000 6.00000
   58  16.00000   4.00000
   59  16.00000 2.00000

60  16.00000 0.00000
61  16.00000  -2.00000
62  16.00000  -4.00000
63  16.00000  -6.00000

   64  18.00000   6.00000 
65  18.00000   4.00000
66  18.00000 2.00000
67  18.00000 0.00000
68  18.00000  -2.00000
69  18.00000  -4.00000

   70  18.00000  -6.00000
   71 20.00000 6.00000
   72 20.00000   4.00000
   73 20.00000 2.00000
   74 20.00000 0.00000
   75  20.00000  -2.00000 
   76 20.00000  -4.00000
   77 20.00000  -6.00000
   78 22.00000 6.00000
   79 22.00000   4.00000

80 22.00000 2.00000
81 22.00000 0.00000
82 22.00000  -2.00000
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83 22.00000  -4.00000
84 22.00000  -6.00000
85 24.00000 6.00000
86 24.00000   4.00000
87 24.00000 2.00000
88 24.00000 0.00000
89 24.00000  -2.00000
90 24.00000  -4.00000
91 24.00000  -6.00000
92 26.00000 6.00000

    93  26.00000   4.00000 
94 26.00000 2.00000
95 26.00000 0.00000
96 26.00000  -2.00000
97 26.00000  -4.00000
98 26.00000  -6.00000
99 28.00000 6.00000

   100 28.00000   4.00000
   101  28.00000   2.00000 
   102 28.00000 0.00000
   103 28.00000  -2.00000
   104 28.00000  -4.00000
   105 28.00000  -6.00000
   106 30.00000 6.00000
   107 30.00000   4.00000
   108 30.00000 2.00000
   109 30.00000 0.00000
   110 30.00000  -2.00000
   111  30.00000  -4.00000 
   112 30.00000  -6.00000
   113 32.00000 6.00000
   114  32.00000   4.00000 
   115 32.00000 2.00000
   116 32.00000 0.00000
   117 32.00000  -2.00000
   118 32.00000  -4.00000
   119 32.00000  -6.00000
   120 34.00000 6.00000
   121 34.00000   4.00000
   122  34.00000   2.00000 
   123 34.00000 0.00000
   124 34.00000  -2.00000
   125 34.00000  -4.00000
   126 34.00000  -6.00000
   127 36.00000 6.00000
   128 36.00000   4.00000
   129 36.00000 2.00000

   130 36.00000 0.00000
   131 36.00000  -2.00000
   132 36.00000  -4.00000
   133  36.00000  -6.00000 
   134 38.00000 6.00000
   135 38.00000   4.00000
   136  38.00000   2.00000 
   137 38.00000 0.00000
   138 38.00000  -2.00000
   139 38.00000  -4.00000
   140 38.00000  -6.00000
   141  40.00000 6.00000
   142  40.00000   4.00000
   143  40.00000 2.00000
   144  40.00000   0.00000 
   145  40.00000  -2.00000
   146  40.00000  -4.00000
   147  40.00000  -6.00000
   148  42.00000 6.00000
   149  42.00000   4.00000
   150  42.00000 2.00000
   151  42.00000 0.00000
   152  42.00000  -2.00000
   153  42.00000  -4.00000
   154  42.00000  -6.00000
   155  44.00000 6.00000
   156  44.00000   4.00000
   157  44.00000   2.00000 
   158  44.00000 0.00000
   159  44.00000  -2.00000
   160  44.00000  -4.00000
   161  44.00000  -6.00000
   162  46.00000 6.00000
   163  46.00000   4.00000
   164  46.00000 2.00000
   165  46.00000   0.00000 
   166  46.00000  -2.00000
   167  46.00000  -4.00000
   168  46.00000  -6.00000
   169  48.00000 6.00000
   170  48.00000   4.00000
   171  48.00000 2.00000
   172  48.00000 0.00000
   173  48.00000  -2.00000
   174  48.00000  -4.00000
   175  48.00000  -6.00000

*Points for BK cells:xc[]
     1   0.00000   6.00000 

2 0.00000 3.00000
3 0.00000 0.00000

     4 0.00000  -3.00000
     5 0.00000  -6.00000

6   4.80000 6.00000
     7   4.80000 3.00000

8   4.80000 0.00000
     9   4.80000  -3.00000 
    10   4.80000  -6.00000
    11 9.60000 6.00000
    12 9.60000 3.00000
    13 9.60000 0.00000

29 24.00000  -3.00000
30 24.00000  -6.00000
31 28.80000 6.00000
32 28.80000 3.00000

    33  28.80000   0.00000 
34 28.80000  -3.00000
35 28.80000  -6.00000
36 33.60000 6.00000
37 33.60000 3.00000
38 33.60000 0.00000
39 33.60000  -3.00000

    40 33.60000  -6.00000
    41 38.40000 6.00000
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   14 9.60000  -3.00000
   15   9.60000  -6.00000
   16  14.40000 6.00000
   17  14.40000 3.00000
   18  14.40000 0.00000
   19  14.40000  -3.00000

20  14.40000  -6.00000
21  19.20000 6.00000
22  19.20000 3.00000
23  19.20000 0.00000
24  19.20000  -3.00000
25  19.20000  -6.00000

   26  24.00000   6.00000
27 24.00000 3.00000
28 24.00000 0.00000

   42  38.40000   3.00000
   43 38.40000 0.00000
   44 38.40000  -3.00000
   45 38.40000  -6.00000
   46  43.20000 6.00000
   47  43.20000 3.00000
   48  43.20000 0.00000
   49  43.20000  -3.00000
   50  43.20000  -6.00000
   51  48.00000 6.00000
   52  48.00000 3.00000
   53  48.00000 0.00000
   54  48.00000  -3.00000
   55  48.00000  -6.00000

*Background cells: noCell[ ] 
     1     1     2     7 6

2 2 3 8     7
3 3     4 9 8

     4     4 5    10 9
5 6     7    12    11
6     7 8    13    12

     7 8 9    14    13
8 9    10    15    14
9    11    12    17    16

    10    12    13    18    17
    11    13    14    19    18
    12    14    15 20    19
    13    16    17 22 21
    14    17    18    23    22
    15    18    19 24 23
    16    19 20 25 24
    17 21 22 27 26
    18 22 23 28 27
    19 23 24 29 28

20 24 25 30 29

21 26 27 32 31
22 27 28 33 32
23 28 29 34 33
24 29 30 35 34

   25 31 32 37 36
26 32 33 38 37

   27 33 34 39 38
28 34 35    40 39
29 36 37    42    41
30 37 38    43    42
31 38 39    44    43
32 39    40    45    44
33    41    42    47    46
34    42    43    48    47
35    43    44    49    48
36    44    45 50    49
37    46    47 52 51
38    47    48 53 52
39    48    49 54 53

   40    49 50 55 54
*Essential B.C.: numEBC

7
 *Node,iUx,iUy,Ux,Uy
     1    1    1    -0.00000E-25    -0.60000E-04

2    1    1    -0.70988E-05    -0.26667E-04
     3    1    1    -0.56790E-05    -0.66667E-05 
     4    1    1 0.00000E-25 0.00000E-25
     5    1    1 0.56790E-05    -0.66667E-05

6    1    1 0.70988E-05    -0.26667E-04
     7    1    1 0.00000E-25    -0.60000E-04
*Concentrated Natural B.C.: numFBC

7
 *Node,iTx,iTy,Tx,Ty
   169    1    1 0.00000 0.0
   170    1    1 0.00000 0.0
   171    1    1 0.00000 0.0
   172    1    1 0.00000 0.0
   173    1    1 0.00000 0.0
   174    1    1   0.00000   0.0
   175    1    1 0.00000 0.0
*RBF shape parameters: nRBF ALFc Dc and q
1 1.0 2.0 1.03
Number of basis
3
*End of input
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Appendix 4.14. A output sample for displacements obtained using RPIM-MQ 

No.  of field nodes u v
1
2
3
4
5
6
7
8
9

  10
11

  12
  13
14
15

 162
 163
 164
 165
 166
 167
 168
 169
 170
171
172
 173
174
 175

-0.14420E-12
-0.70988E-05
-0.56790E-05
0.27967E-25
0.56790E-05
0.70988E-05
0.14420E-12
0.13062E-03
0.80083E-04
0.37954E-04
-0.40548E-19
-0.37954E-04
-0.80083E-04
-0.13062E-03
0.25631E-03

0.15929E-02
0.10553E-02
0.52603E-03
0.15070E-16
-0.52603E-03
-0.10553E-02
-0.15929E-02
0.15958E-02
0.10573E-02
0.52704E-03
0.14420E-16
-0.52704E-03
-0.10573E-02
-0.15958E-02

-0.60000E-04
-0.26667E-04
-0.66667E-05
0.23162E-13
-0.66667E-05
-0.26667E-04
-0.60000E-04
-0.94703E-04
-0.61811E-04
-0.42925E-04
-0.36163E-04
-0.42925E-04
-0.61811E-04
-0.94703E-04
-0.17293E-03

-0.83322E-02
-0.83308E-02
-0.83301E-02
-0.83298E-02
-0.83301E-02
-0.83308E-02
-0.83322E-02
-0.88763E-02
-0.88767E-02
-0.88767E-02
-0.88772E-02
-0.88767E-02
-0.88767E-02
-0.88763E-02

* The parameters used are 1.03q , 1.0,c 2.0,cdc and 3.0s .  The linear
polynomial terms are added in the RPIM-MQ. 
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Appendix 4.15. A output sample for stress obtained using RPIM-MQ

No. of
field nodes

xx yy xy

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

0.10568E+04
0.75714E+03
0.37425E+03
-0.11539E-10
-0.37425E+03
-0.75714E+03
-0.10568E+04
0.10975E+04
0.73249E+03
0.37442E+03
0.21032E-11
-0.37442E+03
-0.73249E+03
-0.10975E+04
0.10131E+04
0.66202E+03
0.33873E+03
-0.47578E-10
-0.33873E+03
-0.66202E+03
-0.10131E+04
0.90478E+03
0.60570E+03
0.30801E+03
0.14495E-10
-0.30801E+03
-0.60570E+03
-0.90478E+03

-0.39596E+02
-0.10557E+01
-0.85657E+01
-0.25580E-10
0.85657E+01
0.10557E+01
0.39596E+02
-0.12785E+02
0.12724E+02
0.34166E+01
0.36380E-11
-0.34166E+01
-0.12724E+02
0.12785E+02
-0.12238E+02
0.13350E+02
0.35527E+01
-0.72987E-10
-0.35527E+01
-0.13350E+02
0.12238E+02
-0.17776E+02
0.64940E+01
0.16526E+01
-0.11369E-11
-0.16526E+01
-0.64940E+01
0.17776E+02

-0.29675E+02
-0.63827E+02
-0.10754E+03
-0.12147E+03
-0.10754E+03
-0.63827E+02
-0.29675E+02
-0.30017E+02
-0.62639E+02
-0.10795E+03
-0.12223E+03
-0.10795E+03
-0.62639E+02
-0.30017E+02
-0.31899E+02
-0.66944E+02
-0.11747E+03
-0.12724E+03
-0.11747E+03
-0.66944E+02
-0.31899E+02
-0.30125E+02
-0.69757E+02
-0.12693E+03
-0.13219E+03
-0.12693E+03
-0.69757E+02
-0.30125E+02

Energy error:= 0.9082E-01

* The parameters used are 1.03q , 1.0,c 2.0cdc and 3.0s .  The linear
polynomial terms are added in the RPIM-MQ. 
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Appendix 4.16. A output sample for displacements obtained using EFG

No.  of field
nodes

u v

1
2
3
4
5
6
7
8
9

   10
11
12

   13
14
15

  162
  163
  164
  165
  166
  167
  168
  169
  170
171
172

  173
174
175

-0.18141E-11
 -0.70988E-05
 -0.56790E-05
 -0.34940E-20
0.56790E-05
0.70988E-05
0.18141E-11
0.12862E-03
0.81176E-04
0.36948E-04

 -0.71820E-14
 -0.36948E-04
 -0.81176E-04
 -0.12862E-03
0.25717E-03

0.15972E-02
0.10576E-02
0.52674E-03
-0.13310E-13
-0.52674E-03
-0.10576E-02
-0.15972E-02
0.15999E-02
0.10594E-02
0.52766E-03
-0.13175E-13
-0.52766E-03
-0.10594E-02
-0.15999E-02

-0.60000E-04
-0.26667E-04
-0.66667E-05
0.41393E-12
-0.66667E-05
-0.26667E-04
-0.60000E-04
-0.93474E-04
-0.61905E-04
-0.43004E-04
-0.36360E-04
-0.43004E-04
-0.61905E-04
-0.93474E-04
-0.17076E-03

-0.83525E-02
-0.83511E-02
-0.83503E-02
-0.83500E-02
-0.83503E-02
-0.83511E-02
-0.83525E-02
-0.88983E-02
-0.88983E-02
-0.88983E-02
-0.88984E-02
-0.88983E-02
-0.88983E-02
-0.88983E-02

* The parameter used is 3.0s .  The linear polynomial basis ( 3mbasis ) and 
the cubic spline weight function are used in the MLS approximation. 
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Appendix 4.17. A output sample for stress obtained using EFGtt

No. of
field nodes xx yy xy

71
72
 73
74
75
 76
77
 78
 79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

0.11587E+04
0.78147E+03
0.39129E+03
-0.21668E-06
-0.39129E+03
-0.78147E+03
-0.11587E+04
0.10826E+04
0.72576E+03
0.36205E+03
0.19471E-06
-0.36205E+03
-0.72576E+03
-0.10826E+04
0.10055E+04
0.65869E+03
0.33011E+03
-0.15056E-06
-0.33011E+03
-0.65869E+03
-0.10055E+04
0.92005E+03
0.61740E+03
0.30798E+03
0.11759E-06
-0.30798E+03
-0.61740E+03
-0.92005E+03

0.61486E+00
-0.50179E+00
-0.23088E+01
-0.14721E-06
0.23088E+01
0.50179E+00
-0.61486E+00
0.32433E+01
-0.70275E+00
-0.10124E+00
0.12793E-06
0.10124E+00
0.70275E+00
-0.32433E+01
0.31019E+01
0.27783E+01
-0.18849E+01
-0.11161E-06
0.18849E+01
-0.27783E+01
-0.31019E+01
0.33212E+01
-0.44910E+00
0.24173E+00
0.90103E-07
-0.24173E+00
0.44910E+00
-0.33212E+01

-0.46400E+01
-0.69152E+02
-0.11362E+03
-0.12400E+03
-0.11362E+03
-0.69152E+02
-0.46400E+01
-0.11241E+02
-0.69979E+02
-0.11343E+03
-0.12696E+03
-0.11343E+03
-0.69979E+02
-0.11241E+02
-0.40273E+01
-0.67951E+02
-0.11189E+03
-0.12269E+03
-0.11189E+03
-0.67951E+02
-0.40273E+01
-0.18044E+01
-0.68726E+02
-0.11219E+03
-0.12345E+03
-0.11219E+03
-0.68726E+02
-0.18044E+01

Energy error:= 0.3280E-01

* The parameter used is 3.0s .  The linear polynomial basis ( 3mbasis ) and 
the cubic spline weight function are used in the MLS approximation. 
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COMPUTER PROGRAMS

Program 4.1. Source code  of Parameter.h

parameter(ninput=4,noutput=2, & 
                       nx=2,ng=4, &
                       numd=1000,ncn=1000, numdq=1000,numc=1000, &
                       nqc=4,numg=nqc*nqc, & 
                       ep=1.d-15)

Program 4.2. Source code of Variables.h

      dimension pEBC(2,100),npEBC(3,100),npNBC(3,100),pNBC(2,100)
      dimension Dmat(3,3)
      dimension x(nx,numd),noCell1(ng,ncn),ds(nx,numd)
      dimension xc(nx,numdq),noCell(ng,numc)
      dimension gauss(nx,nqc),gs(ng,numg)
      dimension gpos(nx),nv(numd),ph(10,numd)
      dimension ak(2*numd,2*numd),GSPk(4*numd*numd)
      dimension ne(2*numd),force(2*numd)
      dimension u2(nx,numd),disp(2*numd)
      dimension Stressnode(3,numd)
      common/para/xlength,ylength,p,young,anu,aimo
      common/rpim/ALFC,DC,Q,nRBF
      common /basis/mbasis

Program 4.3. The source code of the main program of MFree_Global.f90
!----------------------------------------------------------------------------
! main program--2D FORTRAN 90 CODE-MFree global weak-form methods
! Using square support domain and square background cells
! input file   -- input.dat
! output file  -- result.dat 
! include file -- parameter.h, variable.h
!----------------------------------------------------------------------------

implicit real*8 (a-h,o-z)
include 'parameter.h'
include 'variables.h'

      open(ninput,file='Input175_55.dat')
      open(noutput,file='result.dat',status='unknown')
! ************* Input data
      call input(x,numd,nx,numnode,ndivx,ndivy,ndivxq,ndivyq,&
             nconn2,nquado,pAlf,Dmat,ALFs,numcell,numq,noCell,ncn,xc,&
             npEBCnum,npEBC,pEBC,npNBCnum,npNBC,pNBC)
      numgauss=nquado*nquado  !total number of Gauss points in a cell 

! ************* Determine sizes of influence domains -- uniform nodal spacing
      xspace=xlength/ndivx
      yspace=ylength/ndivy
      do i=1,numnode
         ds(1,i)=alfs*xspace
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          ds(2,i)=alfs*yspace
enddo

! ************* Coefficients of Gauss points,Weights and Jacobian for a cell 
       call GaussCoefficient(nquado,gauss)
       do ik=1,ng
          do jk=1,numgauss

gs(ik,jk)=0
          enddo
       enddo
       do ik=1,2*numd
          force(ik)=0.
          do jk=1,2*numd
             ak(ik,jk)=0.

enddo
enddo

! ************* Loop for background cells
       do 10 ibk=1,numcell
          write(*,*)'Cell No.=',ibk
! ************* Set Gauss points for this cell
          call CellGaussPoints(ibk,numcell,nquado,numq,numgauss, & 
                               xc,noCell,gauss,gs)
! ************* Loop over Gauss points to assemble discrete equations
          do 20 ie=1,numgauss

gpos(1)=gs(1,ie)  ! Gauss point x 
gpos(2)=gs(2,ie)  ! Gauss point y

             weight=gs(3,ie)   ! weight coefficent
             ajac=gs(4,ie)     ! Jacobian 
! ************* Determine the support domain of Gauss point
             ndex=0
             call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
             do ik=1,3*ndex
                do jk=1,10
                   ph(jk,ik)=0.

enddo
enddo

! ************* Construct RPIM shape functions for a Gauss point
             call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
                                 alfc,dc,q,nRBF, mbasis)

             do ik=1,2*ndex
               ne(ik)=0

enddo
             do ine=1,ndex
                n1=2*ine-1 
                n2=2*ine
                ne(n1)=2*nv(ine)-1
                ne(n2)=2*nv(ine)
             enddo 
             mbdb=4*ndex*ndex
             do kbdb=1,mbdb
                GSPk(kbdb)=0.

enddo
! ************* Compute the stiffness matrix for a Gauss point
             call PointStiffnessMatrix(ndex,weight,ajac,ph,Dmat,GSPk)
             nb=2*ndex
             do ikk=1,nb
                do jkk=1,nb
                   m1=ne(ikk)
                   m2=ne(jkk)
                   nbdb=(jkk-1)*nb+ikk
                   ak(m1,m2)=ak(m1,m2)+GSPk(nbdb)
                enddo 
             enddo 
20        continue      ! end of loop for Gauss points
! ************* Implement natural BC 
          in=0

jn=0
          nn=noCell(3,ibk)

if(xc(1,nn).eq.xlength) in=nn
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         nn= noCell(4,ibk)
if(xc(1,nn).eq.xlength) jn=nn
if((in.ne.0).and.(jn.ne.0)) then

            call naturalBC_distributed(numnode,numq,in,jn, & 
                                alfs,x,xc,ds,gauss,nquado,force)

endif
10     continue      ! end of loop for cells

! ************* Boundary conditions: essential BC
      write(*,*)' Boundary conditions....' 
      nak=2*numd
      call EssentialBC(numnode,pAlf,alfs,x,ds,ak,force,npEBCnum,npEBC,pEBC)

! ************* Boundary conditions: concentrated natural BC 
      call NaturalBC_concentrated(x,nx,numnode,force,ds,alfs,npNBCnum,npNBC,pNBC)
      nak=2*numd

b=1.d-10
! ************* Solve equation to get the solutions
      write(*,*)' Solving....'
      call SolverBand(ak,force,2*numnode,2*numd)
      nnn=2*numd
      do ik=1,nx
         do jk=1,numnode
            u2(ik,jk)=0.
         enddo 
      enddo
      do ik=1,numnode

jk=2*ik-1
         u2(1,ik)=force(jk)
         u2(2,ik)=force(jk+1)

enddo
! ************* Get the final displacement
      call GetDisplacement(x,ds,u2,disp,alfs,nx,numnode)

! ************* Get stress
      call GetStress(x,noCell,ds,Dmat,u2,alfs,nx,numnode,numgauss,&
                      xc,gauss,nquado,ng,numq,numcell, ENORM,Stressnode)
STOP
END

Program 4.4. Source code  of Subroutine Input( )

  SUBROUTINE Input(x,numd,nx,numnode,ndivx,ndivy,ndivxq,ndivyq,&
                   nconn2,nquado,pAlf,Dmat,ALFs,numcell,numq,noCell,ncn,xc,&
                   npEBCnum,npEBC,pEBC,npNBCnum,npNBC,pNBC)
!------------------------------------------------------------------
! Input data from outside
! Output—all variables are output 
!------------------------------------------------------------------

implicit real*8 (a-h,o-z)
      common/para/xlength,ylength,p,young,anu,aimo
      COMMON/rpim/ALFC,DC,Q,nRBF
      common /basis/mbasis

CHARACTER*40 NAM 
      dimension npEBC(3,100),pEBC(2,100),npNBC(3,100),pNBC(2,100)
      dimension x(nx,numd),Dmat(3,3),noCell(4,ncn),xc(nx,numd)

      read(4,10)nam
      read(4,*) xlength,ylength,young,anu,p
      read(4,10)nam
      read(4,*)numnode,nconn2
      read(4,10)nam
      read(4,*) ndivx,ndivy
      read(4,10)nam



222 Chapter 4

       read(4,*)numq,numcell
       read(4,10)nam
       read(4,*)ndivxq,ndivyq
       read(4,10)nam
       read(4,*)nquado,pAlf
       read(4,10)nam
       read(4,*)ALFs
       numgauss=nquado*nquado
       read(4,10)nam
       do i=1,numnode
          read(4,*)j,x(1,i),x(2,i)

enddo
       read(4,10)nam
       do i=1,numq
          read(4,*)j,xc(1,i),xc(2,i)

enddo
       read(4,10)nam
       do j=1,numcell
          read(4,*)i,noCell(1,j),noCell(2,j),noCell(3,j),noCell(4,j)
       enddo
       read(4,10)nam
       read(4,*)npEBCnum
       read(4,10)nam
       do i=1,npEBCnum
          read(4,*)npEBC(1,i),npEBC(2,i),npEBC(3,i),pEBC(1,i),pEBC(2,i)

enddo
       read(4,10)nam
       read(4,*)npNBCnum
       read(4,10)nam
       do i=1,npNBCnum
          read(4,*)npNBC(1,i),npNBC(2,i),npNBC(3,i),pNBC(1,i),pNBC(2,i)

enddo
       read(4,10)nam
       READ(4,*)nRBF, alfc,dc, q
       read(4,10)nam
       READ(4,*)mbasis

! ************* Compute material matrix D[] for the plane stress 
you=young/(1.-anu*anu)

       aimo=(1./12.)*ylength**3
       Dmat(1,1)=you
       Dmat(1,2)=anu*you
       Dmat(1,3)=0.
       Dmat(2,1)=anu*you
       Dmat(2,2)=you
       Dmat(2,3)=0.
       Dmat(3,1)=0.
       Dmat(3,2)=0.
       Dmat(3,3)=0.5*(1.-anu)*you
 10    format(a40)

RETURN
END

Program 4.5. Source code  of Subroutine GaussCoefficient( )

   SUBROUTINE GaussCoefficient(k,v)
!----------------------------------------------------------------------------
! This subroutine returns a matrix with Gauss points and their weights
! input--k: k -- number of Gauss points;
! output--v(2,k): weight matrix of k Gauss points
!---------------------------------------------------------------------------
      implicit real*8 (a-h,o-z) 
      dimension v(2,k)
      SELECT CASE (k)
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         Case (2)
            v(1,1)=-.57735
            v(1,2)=-v(1,1)
            v(2,1)=1.00000
            v(2,2)=v(2,1)
         Case (3)
            v(1,1)=-.77459
            v(1,2)=-.00000
            v(1,3)=-v(1,1)
            v(2,1)=.55555
            v(2,2)=.88888
            v(2,3)=v(2,1)
         Case (4)
            v(1,1)=-.86113
            v(1,2)=-.33998
            v(1,3)=-v(1,2)
            v(1,4)=-v(1,1)
            v(2,1)=.34785
            v(2,2)=.65214
            v(2,3)=v(2,2)
            v(2,4)=v(2,1)
         Case (6)
            v(1,1)=-.93246
            v(1,2)=-.66120
            v(1,3)=-.23861
            v(1,4)=-v(1,3)
            v(1,5)=-v(1,2)
            v(1,6)=-v(1,1)
            v(2,1)=.17132
            v(2,2)=.36076
            v(2,3)=.46791
            v(2,4)=v(2,3)
            v(2,5)=v(2,2)
            v(2,6)=v(2,1)
         Case (8)
            v(1,1)=-.96028
            v(1,2)=-.79666
            v(1,3)=-.52553
            v(1,4)=-.18343
            v(1,5)=-v(1,4)
            v(1,6)=-v(1,3)
            v(1,7)=-v(1,2)
            v(1,8)=-v(1,1)
            v(2,1)=.10122
            v(2,2)=.22238
            v(2,3)=.31370
            v(2,4)=.36268
            v(2,5)=v(2,4)
            v(2,6)=v(2,3)
            v(2,7)=v(2,2)
            v(2,8)=v(2,1)

end select
   RETURN
   END 

Program 4.6. Source code of Subroutine CellGaussPoints

   SUBROUTINE CellGaussPoints(ibk,numcell,k,numq,numgauss,xc,noCell,gauss,gs)
!----------------------------------------------------------------------------
! This subroutine to set up Gauss points,Jacobian and weights for a cell
! input--ibk: the No.  of the consider cell; 
!        numq: number of points for background cells;
!        numcell: number of background cells;
!        numgauss: number of Gauss points in a cell;
!        k: number of Gauss points used, numgauss=k*k for 2D cell; 
!        xc(nx,numq): coordinates of points for background cells;
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!        noCell(ng,numcell): No.  of points to form this cell;
!        gauss(2,k): coefficients of Gauss points;
!        nx,ng: parameters are defined in file parameter.h. 
! output--gs(ng,numgauss): coordinate of the Gauss points, weight and Jacobian
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
include 'parameter.h'

      dimension xc(nx,numq),noCell(ng,numcell),gauss(nx,k),gs(ng,numgauss)
      dimension psiJ(ng),etaJ(ng),xe(ng),ye(ng),aN(ng),aNJpsi(ng),aNJeta(ng)

index=0
psiJ(1)=-1.
psiJ(2)=1.
psiJ(3)=1.
psiJ(4)=-1.

      etaJ(1)=-1.
      etaJ(2)=-1.
      etaJ(3)=1.
      etaJ(4)=1.

l=k
ie=ibk

      do j=1,ng
je=noCell(j,ie)

         xe(j)=xc(1,je)
ye(j)=xc(2,je)

enddo

      do 10 i=1,l
         do 10 j=1,l

index=index+1
            eta=gauss(1,i)

psi=gauss(1,j)
            do ik=1,ng
               aN(ik)=.25*(1.+psi*psiJ(ik))*(1.+eta*etaJ(ik))
               aNJpsi(ik)=.25*psiJ(ik)*(1.+eta*etaJ(ik))
               aNJeta(ik)=.25*etaJ(ik)*(1.+psi*psiJ(ik))
            enddo
            xpsi=0.
            ypsi=0.
            xeta=0.
            yeta=0.
            do jk=1,ng
               xpsi=xpsi+aNJpsi(jk)*xe(jk)

ypsi=ypsi+aNJpsi(jk)*ye(jk)
               xeta=xeta+aNJeta(jk)*xe(jk)

yeta=yeta+aNJeta(jk)*ye(jk)
enddo

            ajcob=xpsi*yeta-xeta*ypsi
            xq=0.

yq=0.
            do kk=1,ng
               xq=xq+aN(kk)*xe(kk)

yq=yq+aN(kk)*ye(kk)
            enddo

gs(1,index)=xq
gs(2,index)=yq
gs(3,index)=gauss(2,i)*gauss(2,j)
gs(4,index)=ajcob

10 continue
   RETURN
   END 

Program 4.7.77 Source code  of Subroutine SupportDomain
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   SUBROUTINE SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
!----------------------------------------------------------------------------
! This subroutine to determines nodes in the support domain of a Gauss point
! input--numnode: total number of field nodes; 
!        nx=2: for 2D problem;
!        x(nx,numnode): coordinates of all field nodes;
!        numgauss: number of Gauss points in a cell;
! gpos(2): x and y coordinate of a Gauss point;
!        ds(nx,numnode): sizes of support domain;
! input and output-- ndex: when input ndex=0;
!             when return ndex is the number of nodes in the support domain
! output--nv(ndex): No.  of field nodes in the support domain
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
      dimension gpos(nx),x(nx,numnode),ds(nx,numnode),nv(numnode)
      eps=1.e-16
      ndex=0
      do ik=1,numnode
         nv(ik)=0

enddo
      do ik=1,numnode
         dx=ds(1,ik)-dabs(gpos(1)-x(1,ik))
         dy=ds(2,ik)-dabs(gpos(2)-x(2,ik))

if((dx.ge.eps).and.(dy.ge.eps)) then
            ndex=ndex+1
            nv(ndex)=ik

end if
enddo

RETURN
END

Program 4.8. Source code of Subroutine PointStiffnessMatrix 

   SUBROUTINE PointStiffnessMatrix(ndex,weight,ajac,ph,Dmat,GSPk)
!----------------------------------------------------------------------------
! This subroutine to calculate sparse stiff matrix
! input--ndex: the number of nodes in the support domain;
!        weight: weight of Gauss quadrature;
!        ajac: Jacobian;
!        dphix: first dirivetive of x of shape function;
!        dphiy: first dirivetive of y of shape function;
!        Dmat(3,3): the matrix of strain-stress;
! output--GSPk(2ndex,2ndex): sub-stiffness matrix of the Gauss point
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
      dimension ph(10,ndex),Dmat(3,3),GSPk(2*ndex,2*ndex)
      dimension bmat(3,2*ndex),dphix(ndex),dphiy(ndex)
      nb=2*ndex
        do i=1,ndex
           dphix(i)=ph(2,i)
           dphiy(i)=ph(3,i)
        enddo
      do ib=1,3
         do jb=1,nb
            Bmat(ib,jb)=0.
         enddo 
      enddo 
      do in=1,ndex

j=2*in-1
         k=2*in
         Bmat(1,j)=dphix(in)
         Bmat(1,k)=0.
         Bmat(2,j)=0.
         Bmat(2,k)=dphiy(in)
         Bmat(3,j)=dphiy(in)
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         Bmat(3,k)=dphix(in)
      enddo 
      do ii=1,nb
         do jj=1,nb
            GSPk(ii,jj)=0.
         enddo 

enddo
      do ii=1,nb
         do jj=1,nb
            do kk=1,3
               do mm=1,3
                  GSPk(ii,jj)=GSPk(ii,jj)+weight*ajac*Bmat(kk,ii)* &
                              Dmat(kk,mm)*Bmat(mm,jj)

enddo
enddo

enddo
enddo

RETURN
END

Program 4.9. Source code  of Subroutine EssentialBC

   SUBROUTINE EssentialBC(numnode,pAlf,alfs,x,ds,ak,af,npEBCnum,npEBC,pEBC)
!----------------------------------------------------------------------------
! This subroutine to enforce point essential bc's using penalty method; 
! input--numnode: total number of field nodes; 
! pAlf: penalty Fac; npEBCnum: number of e.  b.c points
!        alfs: coefficient of support domain 
!        x(nx,numnode): coordinates of all field nodes;
! input and output-- ak[]: stiffness matrix;
!                    af{}:force vector. 
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
include 'parameter.h'

      COMMON/rpim/ALFC,DC,Q,nRBF
      common/basis/mbasis
      dimension npEBC(3,100),pEBC(2,100)
      dimension x(nx,numnode),ds(2,numnode),ak(2*numd,2*(numnode)),af(2*numnode)
      dimension nv(numnode),ph(10,numnode), x2(2) 

      maxak=0.
      do iebc=1,2*numnode
         if(abs(ak(iebc,iebc)).gt.maxak) maxak=abs(ak(iebc,iebc))
      enddo 

      do 10 iebc=1,npEBCnum
ie=npEBC(1,iebc)

         x2(1)=x(1,ie)
         x2(2)=x(2,ie)
         ndex=0
!         call support(x2,x,ds,nv(1),numnode,nx,ndex)
         call SupportDomain(numnode,nx,x2,x,ds,ndex,nv)
         do ik=1,ndex
            do jk=1,10

ph(jk,ik)=0.
enddo

enddo
         call RPIM_ShapeFunc_2D(x2,x,nv,ph,nx,numnode,ndex,&
                                 alfc,dc,q,nRBF, mbasis)

         do iee=1,ndex
            ine=nv(iee)
            do ii=1,ndex

jne=nv(ii)
               if(npEBC(2,iebc).eq.1) then
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                  ak((ine*2-1),(jne*2-1))=ak((ine*2-1),(jne*2-1))-pAlf*maxak* & 
ph(1,iee)*ph(1,ii)

endif
if(npEBC(3,iebc).eq.1) then

                  ak((ine*2),(jne*2))=ak((ine*2),(jne*2))-pAlf*maxak* & 
ph(1,iee)*ph(1,ii)

               endif
            enddo
            if(npEBC(2,iebc).eq.1) then 
               uu=pEBC(1,iebc)
               af(ine*2-1)=af(ine*2-1)-pAlf*uu*maxak*ph(1,iee)
            endif

if(npEBC(3,iebc).eq.1) then 
               uu=pEBC(2,iebc)
               af(ine*2)=af(ine*2)-pAlf*uu*maxak*ph(1,iee)

endif
enddo

 10 continue
   RETURN
   END 

Program 4.10.  Source code of Subroutine NaturalBC_concentrated

   SUBROUTINE NaturalBC_concentrated(x,nx,numnode,af,ds,alfs,npNBCnum,npNBC,pNBC)
implicit real*8 (a-h,o-z)

       dimension npNBC(3,100),pNBC(2,100)
       COMMON/rpim/ALFC,DC,Q,nRBF
       common/basis/mbasis 
       dimension af(2*numnode),x(nx,numnode),ds(nx,numnode)
       dimension ph(10,numnode),gpos(2),nv(numnode)
       do 10 iebc=1,npNBCnum

ie=npNBC(1,iebc)
          gpos(1)=x(1,ie)
          gpos(2)=x(2,ie)
          ndex=0
          call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
          do kph=1,3*ndex
             do ik=1,10

ph(ik,kph)=0.
enddo

enddo
          call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
                                 alfc,dc,q,nRBF, mbasis)
          do iee=1,ndex

ie=nv(iee)
             uu=pNBC(1,iebc)
             af(ie*2-1)=af(ie*2-1)+ph(1,iee)*uu
             uu=pNBC(2,iebc)
             af(ie*2)=af(ie*2)+ph(1,iee)*uu
          enddo
 10 continue
   RETURN
   END 

Program 4.11. Source code of Subroutine NaturalBC_distributed

   SUBROUTINE naturalBC_distributed(numnode,numq,in,jn,alfs,x,xc,ds, &
                                    gauss,nquado,force)
!----------------------------------------------------------------------------
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! This subroutine to enforce point natural bc's;
! input—numnode, numq, in,jn,alfs,x,xc,ds,gauss, nquado.
! input and output--  force{}:force vector.
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
include 'parameter.h'

      common/para/xlength,ylength,p,young,anu,aimo
      COMMON/rpim/ALFC,DC,Q,nRBF
      COMMON /basis/mbasis
      dimension xc(nx,numq),gauss(2,nquado),force(2*numnode),x(nx,numnode) 
      dimension ph(10,numnode),gpos(2),nv(numnode),ds(nx,numnode)
      ax=0.5*(xc(1,in)-xc(1,jn))
      ay=0.5*(xc(2,in)-xc(2,jn))
      bx=0.5*(xc(1,in)+xc(1,jn))
      by=0.5*(xc(2,in)+xc(2,jn))
      do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

         weight=gauss(2,il)
         ajac=0.5*sqrt((xc(1,in)-xc(1,jn))**2+(xc(2,in)-xc(2,jn))**2)
         aimo=(1./12.)*ylength**3
         ty=(-1000./(2.*aimo))*(ylength*ylength/4.-gpos(2)*gpos(2))
        call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
        do kph=1,ndex
           do ik=1,10
              ph(ik,kph)=0.

enddo
enddo

        call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
                               alfc,dc,q,nRBF, mbasis)
        do ie=1,ndex
           nn=nv(ie)
           force(2*nn)=force(2*nn)+weight*ajac*ph(1,ie)*ty

enddo
enddo

END

Program 4.12. Source code  of Subroutine SolverBand

   SUBROUTINE SolverBand(ak,fp,neq,nmat)
!------------------------------------------------------------------
! Sloving linear equations; it calls BandSolver & GaussSolver 
! input—ak,fp,neq,nmat
! output--fp
!------------------------------------------------------------------

       implicit real*8 (a-h,o-z)
       dimension ak(nmat,nEq),fp(nmat)
       real(8), allocatable :: tp(:,:)
       real(8), allocatable :: stfp(:,:)
       allocate (tp(1:neq,1:nmat)) 
       allocate (stfp(1:neq,1:neq))

       ep=1.d-10
       do i=1,nEq
          do j=1,nEq
             stfp(i,j)=0.
             tp(i,j)=0.

enddo
enddo

       do i=1,nEq
          do j=1,nEq
             stfp(i,j)=ak(i,j)
          enddo
       enddo
       ni=nEq
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      Lp=0 ! half band width
      do 20 i=1,ni
         do j=ni,i,-1

if(stfp(i,j).ne.0.) then ! stfp[,] stifness matrix
if(abs(j-i).gt.Lp) Lp=abs(j-i)

go to 21
            endif
         enddo 
21    continue 
      do j=1,i
         if(stfp(i,j).ne.0.) then
            if(abs(j-i).gt.Lp) Lp=abs(j-i)
               go to 20

endif
enddo

20 continue

ilp=2*lp+1  ! band width
      nm=nEq

if(ilp.lt.nEq) then
         call BandSolver(stfp,fp,tp,nm,lp,ilp,nmat) ! solver for band matrix

else
         call GaussSolver(nEq,nmat,ak,fp,ep,kkkk) ! standard solver

endif
      deallocate (tp)
      deallocate (stfp)
END

  SUBROUTINE BANDSOLVER(A,F,B,N,L,IL,nmat)
!------------------------------------------------------------------
! Slover for banded linear equations
!------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
      DIMENSION A(N,N),F(N)
      DIMENSION B(N,nmat),d(n,1)
      M=1 
      LP1=L+1
      DO I=1,N
         DO K=1,IL
            B(I,K)=0.
            IF(I.LE.LP1) B(I,K)=A(I,K)
            IF(I.GT.LP1.AND.I.LE.(N-L)) B(I,K)=A(I,I+K-LP1)
            IF(I.GT.(N-L).AND.(I+K-LP1).LE.N) B(I,K)=A(I,I+K-LP1)
         ENDDO
      ENDDO
      DO I=1,N
         D(I,1)=F(I)
      ENDDO
      IT=1
      IF (IL.NE.2*L+1) THEN
         IT=-1 
         WRITE(*,*)'***FAIL***'
         RETURN

END IF
      LS=L+1
      DO 100 K=1,N-1
         P=0.0 
            DO I=K,LS
               IF (ABS(B(I,1)).GT.P) THEN 
                  P=ABS(B(I,1))
                  IS=I

END IF
            ENDDO
         IF (P+1.0.EQ.1.0) THEN 
            IT=0
            WRITE(*,*)'***FAIL***'
            RETURN
         END IF
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          DO J=1,M
             T=D(K,J)
             D(K,J)=D(IS,J)
             D(IS,J)=T
          ENDDO
          DO J=1,IL
             T=B(K,J)
             B(K,J)=B(IS,J)
             B(IS,J)=T
          ENDDO
          DO J=1,M
             D(K,J)=D(K,J)/B(K,1)
          ENDDO
          DO J=2,IL
             B(K,J)=B(K,J)/B(K,1)
          ENDDO
          DO I=K+1,LS
             T=B(I,1)
             DO J=1,M
                D(I,J)=D(I,J)-T*D(K,J)
             ENDDO
             DO J=2,IL
                B(I,J-1)=B(I,J)-T*B(K,J)
             ENDDO
             B(I,IL)=0.0
          ENDDO
          IF (LS.NE.N) LS=LS+1
 100   CONTINUE
       IF (ABS(B(N,1))+1.0.EQ.1.0) THEN
          IT=0
          WRITE(*,*)'***FAIL***'

RETURN
END IF

       DO J=1,M
          D(N,J)=D(N,J)/B(N,1)
       ENDDO

JS=2
       DO 150 I=N-1,1,-1
          DO K=1,M
             DO J=2,JS
                D(I,K)=D(I,K)-B(I,J)*D(I+J-1,K)
             ENDDO
          ENDDO
          IF (JS.NE.IL) JS=JS+1
 150   CONTINUE

       if(it.le.0) write(*,*) "BandSolver failed"
       DO I=1,N
          F(I)=D(I,1)
       ENDDO
    RETURN
    END

   SUBROUTINE GaussSolver(n,mk,a,b,ep,kwji)
!------------------------------------------------------------------
! Stnadard Gauss elimination slover for linear equations that are
!    not suitably solved by BandSolver.
!------------------------------------------------------------------

       implicit real*8 (a-h,o-z)
       dimension a(mk,mk),b(mk)
       integer, allocatable :: m(:)
       allocate (m(2*mk))
       ep=1.0e-10
       kwji=0
       do i=1,n
          m(i)=i

enddo
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       do 20 k=1,n
          p=0.0
          do 30 i=k,n
             do 30 j=k,n

if(abs(a(i,j)).le.abs(p)) goto 30 
                p=a(i,j)

io=i
jo=j

  30 continue
if(abs(p)-ep) 200,200,300

 200      kwji=1
          return
 300 if(jo.eq.k) goto 400
          do i=1,n
             t=a(i,jo)
             a(i,jo)=a(i,k)
             a(i,k)=t
          enddo

j=m(k)
          m(k)=m(jo)
          m(jo)=j
 400 if(io.eq.k) goto 500
          do j=k,n
             t=a(io,j)
             a(io,j)=a(k,j)
             a(k,j)=t

enddo
          t=b(io)
          b(io)=b(k)
          b(k)=t
  500 p=1.0/p

in=n-1
          if(k.eq.n) goto 600 
          do j=k,in
             a(k,j+1)=a(k,j+1)*p
          enddo
600      b(k)=b(k)*p

if(k.eq.n) goto 20
          do i=k,in
             do j=k,in
                a(i+1,j+1)=a(i+1,j+1)-a(i+1,k)*a(k,j+1)

enddo
             b(i+1)=b(I+1)-a(i+1,k)*b(k)

enddo
 20 continue
       do i1=2,n

i=n+1-i1
          do j=i,in
             b(i)=b(i)-a(i,j+1)*b(j+1)
          enddo
       enddo
       do k=1,n
          i=m(k)
          a(1,i)=b(k)
       enddo
       do k=1,n
          b(k)=a(1,k)

enddo
       kwji=0

deallocate (m)
       return

END

Program 4.13. Source code  of Subroutine GetDisplacement 

   SUBROUTINE GetDisplacement(x,ds,u2,disp,alfs,nx,numnode)
!----------------------------------------------------------------------------
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! This subroutine to get the final displacements from
!         displacement parameters using the MFree interpolation;
! input--numnode: total number of field nodes; 
!        alfs: coefficent of support support
!        x(nx,numnode): coordinates of all field nodes;
!        u2(2*numnode): displacement parameters;
! input and output-- disp: final displacements.
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z)
       COMMON/rpim/ALFC,DC,Q,nRBF
       common/basis/mbasis
       dimension x(nx,numnode),ds(nx,numnode),gpos(nx),u2(nx,numnode) 
       dimension disp(2*numnode)
       dimension ph(10,numnode), nv(numnode) 

       write(2,*)'Displacements of field nodes'
       nn=2*numnode
       do i=1,nn
          disp(i)=0.
       enddo

ind=0
       do 50 id=1,numnode

ind=ind+1
gpos(1)= x(1,id)

          gpos(2)=x(2,id)
          ndex=0
          call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
          do kph=1,ndex
             do ik=1,10
                ph(ik,kph)=0.

enddo
enddo

          call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
                                 alfc,dc,q,nRBF, mbasis)
          nc1=2*ind-1
          nc2=2*ind
          do kk=1,ndex
             m=nv(kk)
             disp(nc1)=disp(nc1)+ph(1,kk)*u2(1,m)
             disp(nc2)=disp(nc2)+ph(1,kk)*u2(2,m)
          enddo
 50    continue
       do ii=1,numnode
          write(2,52) ii,disp(2*ii-1),disp(2*ii)

enddo
 52    format(1x,i5,2e20.5)

RETURN
END

Program 4.14. Source code  of Subroutine GetStress

   SUBROUTINE GetStress(x,noCell,ds,Dmat,u2,alfs,nx,numnode,numgauss,&
                     xc,gauss,nquado,ng,numq,numcell, ENORM,Stressnode)
!----------------------------------------------------------------------------
! This subroutine to get the stress and energy error;
! input--numnode: total number of field nodes; 
!        numcell: number of cells;
!        numq: total number of points for cells;
!        alfs: coefficent of support support;
!        x(nx,numnode): coordinates of all field nodes;
!        xc(nx,numcell): coordinates of all points for cells; 
!        u2(2*numnode): displacement parameters;
!        ds(nx,numnode): sizes of influence domain; 
!        Dmat(3,3): material matrix; 
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!        nquado: number of Gauss points in a cell;
! gauss(nx,nquado): coefficients of Gauss points;
!        numgauss: total number of Gauss points in all cells;
! output-- Enorm: energy error;
!          Stressnode:stress for field nodes;
! compute out--Stress: stress for Gauss points;
!             stressex, strne: exact stresse for beam problem.
!---------------------------------------------------------------------------
      implicit real*8 (a-h,o-z) 
      common/para/xlength,ylength,p,young,anu,aimo
      COMMON/rpim/ALFC,DC,Q,nRBF
      common/basis/mbasis
      dimension noCell(4,numcell),ds(nx,numnode),x(nx,numnode),u(2*numnode)
      dimension  xc(nx,numnode),gauss(nx,nquado)
      dimension Dmat(3,3),u2(nx,numnode)
      dimension Stressnode(3,numnode),strne(3,numnode)
      dimension stress(3),stressex(3),err(3),Dinv(3,3),der(3)

integer, allocatable :: nv(:)
integer, allocatable :: ne(:)

      real(8), allocatable :: ph(:,:)
      real(8), allocatable :: gpos(:)
      real(8), allocatable :: gs(:,:)
      real(8), allocatable :: bmat(:,:)
      allocate ( nv(1:numnode) )
      allocate ( ne(1:2*numnode) )
      allocate ( ph(1:10,1:3*numnode) ) 
      allocate ( gpos(1:nx) ) 
      allocate ( gs(1:ng,1:numgauss) )
      allocate ( bmat(1:3,1:2*numnode) )

      close(37)
      open(37, file='midstr.dat')
      do id=1,3
         do jd=1,3
            Dinv(id,jd)=Dmat(id,jd)

enddo
enddo
invd=3

      ep=1.d-10
      call GetINVASY(invd,invd,Dinv,EP)
      do iu=1,numnode

ju=2*iu-1
         ku=2*iu
         u(ju)=u2(1,iu)
         u(ku)=u2(2,iu)
      enddo 
      enorm=0.
!****************Compute energy error
      do 100 ibk=1,numcell

ind=0
         call CellGaussPoints(ibk,numcell,nquado,numq,numgauss,&
                              xc,noCell,gauss,gs)
         do 200 is=1,numgauss
              do i=1,3
               stress(i)=0.
               stressex(i)=0.

enddo
ind=ind+1
gpos(1)= gs(1,is)
gpos(2)=gs(2,is)

            weight=gs(3,is)
            ajac=gs(4,is)
              call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
            do kph=1,3*ndex
               do ik=1,10

ph(ik,kph)=0.
               enddo

enddo
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             call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
                                 alfc,dc,q,nRBF, mbasis)
             nb=2*ndex
             do in=1,nb
                ne(in)=0

enddo
             do ine=1,ndex
                n1=2*ine-1 
                n2=2*ine
                ne(n1)=2*nv(ine)-1
                ne(n2)=2*nv(ine)
             enddo 
             do ib=1,3
                do jb=1,nb
                   Bmat(ib,jb)=0.

enddo
enddo

             do inn=1,ndex
j=2*inn-1

                k=2*inn
                Bmat(1,j)=ph(2,inn)
                Bmat(1,k)=0.
                Bmat(2,j)=0.
                Bmat(2,k)=ph(3,inn)
                Bmat(3,j)=ph(3,inn)
                Bmat(3,k)=ph(2,inn)
             enddo 
             do ii=1,3
                do kk=1,3
                   do mm=1,nb
                      mn=ne(mm)
                      stress(ii)=stress(ii)+&
                                   Dmat(ii,kk)*Bmat(kk,mm)*u(mn)

enddo
enddo

enddo
!****************Exact stress for beam problem
             stressex(1)=(1./aimo)*p*(xlength-gpos(1))*gpos(2)
             stressex(2)=0.
             stressex(3)=-0.5*(p/aimo)*(0.25*ylength*ylength-gpos(2)*gpos(2))
             do ier=1,3
                err(ier)=stress(ier)-stressex(ier)

enddo
              do jer=1,3
                der(jer)=0.
                do ker=1,3
                   der(jer)=der(jer)+Dinv(jer,ker)*err(ker)
                enddo 
             enddo 

err2=0.
             do mer=1,3
                err2=err2+weight*ajac*(0.5*der(mer)*err(mer))

enddo
enorm=enorm+err2

 200 continue
 100 continue

!****************Compute nodal stresses
       write(2,*)'Stress of field nodes'
       do is=1,numnode

gpos(1)= x(1,is)
gpos(2)=x(2,is)

          do ii=1,3
             Stressnode(ii,is)=0.
          enddo
          ndex=0
          call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
          do kph=1,3*ndex
             do ik=1,10

ph(ik,kph)=0.
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enddo
enddo

          call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
                                 alfc,dc,q,nRBF, mbasis)

          nb=2*ndex
          do in=1,nb
             ne(in)=0

enddo
          do ine=1,ndex
             n1=2*ine-1
             n2=2*ine
             ne(n1)=2*nv(ine)-1
             ne(n2)=2*nv(ine)
          enddo
          do ib=1,3
             do jb=1,nb
                Bmat(ib,jb)=0.

enddo
enddo

          do inn=1,ndex
j=2*inn-1

             k=2*inn
             Bmat(1,j)=ph(2,inn)
             Bmat(1,k)=0.
             Bmat(2,j)=0.
             Bmat(2,k)=ph(3,inn)
             Bmat(3,j)=ph(3,inn)
             Bmat(3,k)=ph(2,inn)

enddo
          do ii=1,3
             do kk=1,3
                do mm=1,nb
                   mn=ne(mm)
                   Stressnode(ii,is)=Stressnode(ii,is)+&
                               Dmat(ii,kk)*Bmat(kk,mm)*u(mn)
                enddo 

enddo
enddo

          strne(1,is)=(1./aimo)*p*(xlength-gpos(1))*gpos(2)
          strne(2,is)=0.
          strne(3,is)=-0.5*(p/aimo)*(0.25*ylength*ylength-gpos(2)*gpos(2))

          write(2,220) is,Stressnode(1,is),Stressnode(2,is),Stressnode(3,is)
if(abs(gpos(1)-24).le.1.d-5) then

             write(37,240) is,gpos(2),Stressnode(1,is),Stressnode(2,is), & 
                        Stressnode(3,is),strne(1,is),strne(2,is),strne(3,is)

endif
enddo

       enorm=dsqrt(enorm)
       write(2,230) enorm
 220   format(1x,i5,3e20.5)
230   format(1x,'Energy Error=',e20.10)
 240   format(1x,i5,f8.3,6e15.5)
       deallocate ( nv)

deallocate ( ne)
deallocate ( ph)
deallocate ( gpos)
deallocate ( gs )
deallocate ( bmat)

  RETURN
END

Program 4.15. Source code  of Subroutine GetInvasy

   SUBROUTINE GetInvasy(N,MA,A,EPS)
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!----------------------------------------------------------------------------
! This subroutine to get INVARSION OF A(N,N) USING THE GAUSS-JODON METHOD.
!            MATRIX A MUST BE DEFINITE BUT MAY BE ASYMMETRIC. 
! input--N: dimension of A;
!        MA: max number of rows of A;
!        EPS: tolerance;
! Input and output--A[N,N]: the matrix in the input and invarsion in output; 
!---------------------------------------------------------------------------
       IMPLICIT REAL*8 (A-H,O-Z)
       DIMENSION A(MA,N)
       DO 10 K=1,N
          C=A(K,K)
          IF(DABS(C).LE.EPS)pause
          C=1.0/C
          A(K,K)=1.0
          DO J=1,N 
             A(K,J)=A(K,J)*C
          ENDDO
          DO 10 I=1,N
             IF(I.EQ.K)GOTO 10
             C=A(I,K)
             A(I,K)=0.0
             DO J=1,N
                A(I,J)=A(I,J)-A(K,J)*C
             ENDDO
 10 CONTINUE

RETURN
END



Chapter 5 

MESHFREE METHODS BASED ON LOCAL
WEAK-FORMS

5 MFree methods based on local weak-forms 

5.1 INTRODUCTION

In Chapter 4, the MFree methods (EFG and RPIM) based on global
Galerkin weak-forms were introduced. In these MFree methods, global
background cells are needed for numerical integrations in computing the 
system matrices. These MFree methods are, therefore, said not “truly”
MFree methods. The use of the global weak-form requires the system 
equation in the global integral form to be satisfied over the entire problem
domain, and hence, a set of background cells has to be used for the 
numerical integration. To avoid the use of global background cells, a so-
called local weak-form is used to develop the meshless local Petrov-Galerkin
(MLPG) method (Atluri and Zhu, 1998a, b; 2000a, b).  Some other
variations of MLPG are also proposed. MFree methods based on local weak-
forms are called MFree local weak-form methods in this book.

When a local weak-form can be used for a field node, the numerical 
integrations are carried out over a local quadrature domain defined for the
node, which can also be the local domain where the test (weight) function is 
defined.  The local domain can have a regular and simple shape (such as 
spheres, rectangulars, ellipsoids, etc.) for an internal node, and the 
integration can be done numerically within the local domain.  For a node on
or near the boundary of complicated geometry, only a local mesh is required.  
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Therefore, no global background mesh is required. As in the EFG method,
the MLS approximation is used to construct the shape functions in MLPG.

Atluri and Zhu (1998a) solved the Laplace equation, Poisson equation 
and potential flow problems using MLPG.  The MLPG method has been 
improved and extended by Atluri’s group (Atluri et al., 1999b) and other
researchers over the years.  MLPG has been applied to solve elastostatics 
and elastodynamics  problems of solids (Atluri and Zhu, 2000a,b; Gu and 
GR Liu, 2001c), 4th order ODEs (or PDEs) for thin beams (Atluri et al,
1999a) and thick beams (shear deformable beams)(Cho and Atluri, 2001),
plate structures (Gu and GR Liu, 2001f; Long and Atluri, 2002), linear 
fracture problems (Ching and Batra, 2001), fluid mechanics problems (Lin 
and Atluri, 2000; 2001; GR Liu and Wu et al., 2001, 2002), and so on.  An
error analysis of MLPG has been carried out by Kim and Atluri (2000). 

MLPG does not need a global mesh for either function approximation or
integration.  The procedure is quite similar to numerical methods based on 
the strong-form formulation, such as the finite difference method (FDM).
However, because the MLS approximation is used in MLPG, special 
treatments are needed to enforce the essential boundary conditions.

GR Liu and his co-workers applied the concept of MLPG and developed 
two variations of MFree local weak-form methods, the local point 
interpolation method (LPIM) (GR Liu and Gu, 2001b) and the local radial
point interpolation method (LRPIM) (GR Liu and Yan et al., 2002; GR Liu 
and Gu, 2001c).  In the LPIM, polynomial PIM shape functions (see, Sub-
section 3.2.1) that have the delta function property are used. However, as
polynomial basis functions are used, the interpolation moment matrix can be
singular and hence the matrix triangularization algorithm (MTA) (GR Liu
and Gu, 2001d, 2003a) has to be used.  The radial PIM (RPIM) shape
function (see, Sub-section 3.2.2) that also has the delta function property is 
another effective alternative, and has been used to formulate the local radial
point interpolation method (LRPIM) method (GR Liu and Gu, 2001c; GR Liu 
and Yan et al., 2002) that is very robust for domains with randomly distributed 
nodes because of the excellent interpolation stability of RBFs.

Note that in a local weak-form method, global compatibility is not 
required.

LRPIM has been successfully applied to solid mechanics (e.g., GR Liu 
and Gu, 2000b, 2001b,c,e, 2002a; Xiao et al., 2003a,b,c), soil mechanics 
problems (Yan, 2001), fluid mechanics (GR Liu and Wu 2002), 4th order
ODEs (or PDEs) for  beam structures (Gu and GR Liu, 2001d),
microelectronic mechanical system (MEMS) (Li and Wang et al., 2004), and 
so on.

In this Chapter, MLPG and LRPIM are discussed in detail. Formulations
are obtained for two-dimensional elastostatics.  A source code for these two
MFree local weak-form methods is provided with detailed descriptions. 
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Numerical examples are presented to examine the present code. The 
formulations of MLPG and LRPIM are quite similar, and the difference is
mainly in the type of MFree shape functions used, and the resultant 
differences in the formulation procedure (can consider LRPIM as a special
MLPG).  LRPIM is first discussed because it is simpler in the formulation
than MLPG and hence easier to understand.  Note that LRPIM was
developed after the MLPG by replacing MLS shape function with the RPIM 
shape function.

5.2 LOCAL RADIAL POINT INTERPOLATION
METHOD

5.2.1 LRPIM formulation

Consider a solid mechanics problem defined in the domain shown in 
Figure 5.1. For a field node I, the governing equation (Equation (4.1)) isII
satisfied using a locally weighted residual method, leading to a weak form
equation for this node.  The local weighted residual form defined over a local 
quadrature domain q bounded by q, (shown in Figure 5.1) has the 
following form.

)d 0
q

I ij j i,( ,W b(I ( )d (5.1)

where IWI  is the weight or test function centred usually at node I.  EquationII
(5.1) is applied to all the nodes in the problem domain. 

When the local weighted residual formulation rather than the global
energy principle is used to create the discretized system equations node by 
node, the compatibility of the shape functions in the whole domain is not
required. As long as the field approximation is continuous at any point in the 
local quadrature domain, the shape function is differentiable (for an 
integration by parts) and the resultant integrand is integrable, the solutiont
will exist†. In other words, the MFree local weak-form method only requires 
the local compatibility in the local quadrature domain. The RPIM shape
function satisfies all these requirements, in addition to its delta function 
property.  This feature of the local weighted residual formulation was 

† Stabilization measures may be required depending on the type of problem. See, for
example, Section 6.4.
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follows the fact that the MFree local weak-form method using shape 
functions of at least linear consistency can easily pass the standard patch
tests.

Figure 5.1. A problem domain and boundaries modeled using the MFree local weak-form 
methods. Weight function domain w and quadrature domain q for field nodes, and the

support domain s for a Gauss quadrature point xQ.

The first term on the left hand side of Equation (5.1) can be integrated by 
parts to arrive at 

d
q q q

I j ij,I jI

q qq

dd ddI ij j I j ijI j ij,W dI ij j I j ijdij j I j ijij j I jI j ijd dddddddddddddd (5.2)

where jn is the jth component of the vector of the unit outward normal on 
the boundary (see Figure 1.4 and Figure 5.1). Substituting Equation (5.2)
into Equation (5.1), we can obtain the following local weak-form.

d 0
q qq

dI j ij I i,I j ij I iWI jI ij jW n dI ij jn dij j (5.3)

Figure 5.1 shows that the boundary q for the local quadrature domain,
q has composed by three parts, i.e., q qi qu qtii , where
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t

u
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t
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qi is the internal boundary of the quadrature domain, which does not 
intersect with the global boundary ;

qt is the part of the natural boundary that intersects with the quadrature 
domain;

qu is the part of the essential boundary that intersects with the quadrature 
domain.

Therefore, Equation (5.3) can be re-written as

d

d 0

qi qu qt

q

I ij jI ijI ijI

qi qu

d

b dW W bI j ij I i,WI j ij I iI iij I iIWI j iW W bI j ij I iI

d ddI ij j I ij jW n dI ij jn Wdij j I ij jdddddddd

(5.4)

For a local quadrature domain located entirely within the global domain,
there is no intersection between q and the global boundary . We then have 

qi= q and there is no integral over qu and qt. In such a case, Equation (5.4) 
becomes

d 0
qi qqi

dI j ij I i,I j ij I iIWI jI ij jW n dI ij jn dij j (5.5)

In this local weak-form, Equations (5.4) and (5.5), the Petrov-Galerkin
method can be used, in which the trial and test functions are selected from 
different spaces. The weight function IWI is purposely selected so that it 
vanishes on qi to simplify the local weak-form. Note that the weight 
functions mentioned in Chapter 3, e.g. the cubic or quartic spline (W1 and 
W2), can be chosen to be zero along the boundary of the internal quadrature 
domains, hence they can be used as the weight functions in LRPIM. If the 
weight function satisfies this property, the local weak-forms of Equations 
(5.4) for a node whose local quadrature domain intersects with the global 
boundaries can be re-written as

d 0
qu qt qqu qt

dI j ij I i,I j ij I iIWI jI ij j I ij jW n W nd ddI ij j I ij jn W nd dij j I ij jj I ijij j Id dddddd (5.6)

Equation (5.5) that is for a node whose local quadrature domain does not 
intersect with the global boundaries can be re-written as

d 0
q

b dW W bI j ij I i,WI j ij I iI iij I iIWI j iW W bI j ij I iI (5.7)

We note the relation between the stress and the traction on the boundary

ij j in tjj (5.8)
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Imposing Equation (5.8) and the natural boundary condition Equation (4.2)
into Equation (5.4), we obtain:

d
q qi qu qt q

I iWI i

q qi qu qt

dI j ij, I i I i I iW W t W t W tW t W t W td d d dd dd d dI j ij I i I i I id d dd dd d dd d d (5.9)

Equation (5.9) suggests that the strong-form of the system equation given in 
Equations (4.1) is changed to a relaxed weak-form with integrations over a 
small local quadrature domain. This integral operation can smear out the 
numerical error, and therefore make the discretized system more accurate
than the MFree procedures that operate directly on the strong-forms of
system equations. The LRPIM ensures the satisfaction of the equilibrium
equation at a node in an integral sense over a local quadrature domain, but it 
does not ensure the satisfaction of the strong system equation exactly at the 
node. The size of the local quadrature domain determines the extent of the 
‘relaxation’.

In order to obtain the discretized system equations, the global problem 
domain is represented by properly distributed field nodes. Using the RPIM 
shape functions (see sub-section 3.2.2), we can approximate the trial 
function for the displacement at a point x as

(2 1) (2 2 ) (2 1)( )h
) (2) (21) (2( )

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u(2 1) (h
1) ( u (5.10)

where n is the number of nodes in the support domain of a sampling point at 
x, and is the matrix of RPIM shape functions constructed using these 
nodes.  Note that these n field nodes are numbered from 1 to n, and it is a
local numbering system for the support domain. The field node also has a
global number that is uniquely given to all field nodes from 1 to N. ThisNN
global numbering system is used to assemble all the local nodal matrices to
form the global matrix. Hence, an index is needed to record the global 
number for a field node used in the support domain for the purpose of 
assembling the global matrixes.  

As in Equations (4.8)~(4.10), we can obtain the strain and stress as

(3 1) (3 2 ) (2 1)) (2) (22 ) (22 ) (2) (2) (2B u(3 2 )(3 2 )2 )) (5.11)

(3 1) (3 3)1) (31) (3D (3 1) (3 3) (3 2 ) (2 1)) (2) (21) (3 3) (3 2 ) (21) (3 3) (3 2 ) (2) (2) (2D B u(3 3) (3 2 )(3 3) (3 2 )(3 3) (3 2 )3) (3(3 3) (3 2 )) (5.12)
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where D is the matrix of elastic constants of defined in Equation (2.27) or
(2.28), and B is the strain matrix given in Equation (4.8), i.e. 

(3 2 )

1 0 01

xx xx x
110 01 nn1 010

y yy yy y

1111 1 n n1 11 n11

y yy x y xy x y xy x y x

B (5.13)

We now change Equation (5.4) to the following matrix form to derive the 
discretized system equations in a matrix form.   

d
q qi qu qt q

I

q qi qu qt
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where W is a matrix of weight functions given by
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In Equation (5.14), IVI  is a matrix that collects the derivatives of the weight
functions:
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(5.16)

It is in fact the strain matrix caused by the variation of the weight (test) 
functions.

The tractions t at a point x can be written as
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in which ),( yx ,,,,, is the vector of the unit outward normal on the boundary 
(see Figure 1.4).

0x yn n0x 0
0
x yx y

0 y xn ny0 n n
n (5.18)
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Substitution of Equations (5.16)~(5.18) into Equation (5.14) leads to the
following discretized systems of equations for the Ith field node.II

T

T

dT

dT

q qi qu

qt q

I

I

q qi

qt

dT
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I II

T
I
T

uT
IddTTTT dI IIId dd

bI
T

I dT dI d

T

T
(5.19)

The matrix form of Equation (5.19) can be written as 

2 1( ) ( ) ( )I n n I2 2 2 12 1)2 2 22 211 2 1) ( ) ( )) ( ) (2 2 2 12 12 1)2 2 2 12 12 12 1 21 (5.20)

where KIK  is a matrix called I nodal stiffness matrix for the Ith field node, II
which is computed using 

T dT

q qi qu

I I

q qi

dTT TTTTTT TTTT
I II WI

TK I dI III dT d dddTTTTT
II d T

(5.21)

In Equation (5.20), fIf  is aI nodal force vector with contributions from body r
forces applied in the problem domain, and tractions applied on the natural
boundary.
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T
III dT dII d (5.22)

In Equation (5.20), u is the vector collecting displacements for the field 
nodes that are included in any of the support domains of the quadrature
points in the quadrature domain of the Ith field node. II

Equation (5.20) gives the general form of system equations for a field 
node. For the local quadrature domain of a field node located entirely within 
the global domain, there is no intersection between q and the global
boundary, , and the weak-form is given in Equation (5.5). In this case, KIK
and fIff  can be obtained using, respectively,I

T dT

q qi

I I I

q

dTT
II
TK I I

T
III dT dII d (5.23)

and
T d

q

I I df W bI I
T
I (5.24)

We use Gauss quadrature to obtain the integrals in Equations (5.21) and 
(5.22).  Note that in the formulation for IK  and IfI , there are area integrals,
and curve integrals. Consider a rectangular local quadrature domain, in the
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standard Gauss quadrature, Equations (5.21) and (5.22) can be expressed as
follows.
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where gn  is the total number of Gauss points in the quadrature domain,  ngt is t

number of Gauss points used in a sub-curve, kwk  is the Gauss weighting factor
for Gauss point xQk, D

qJ is the Jacobian matrix for the area integration of the

local quadrature domain, and B
qiJ , B

quJ and B
qtJ are, respectively, the Jacobian 

matrices for the curve integration of the sub-boundaries qi , qu and qt .
Note that different Gauss points in the same local quadrature domain may

use different support domains. This means that the matrices in Equations 
(5.25) and (5.26) could be different for different Gauss points.

Equation (5.20) presents two linear equations for the Ith field node. II
Using Equation (5.20) for all the N field nodes in the entire problem domain,N
we obtain a total of 2N independent linear equations. Assemble all these 2N N
equations based on the global numbering system to obtain the final global 
system equations in the form of 
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or

Ith nodeII
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2 2 2 1 2 1N N N N2 2 1 22 2 1 21 2K U F2 2 2 1 22 12 2 1 22 22 11 2 (5.28)

Equation (5.27) shows that the two nodal equations for the Ith node haveII
been assembled into the (2I-1)th and 2II Ith rows in the global equations.II

Note that the assembling to form Equation (5.28) is different from that in 
the conventional FEM and the MFree global weak-form methods, such as 
EFG. In the FEM and EFG, the element or nodal matrices are stamped 
symmetrically into the global matrix. In the MFree local weak-form methods, 
however, the nodal matrix is stacked together row-by-row to form the global 
matrix.  This stacking procedure is similar to that in the finite difference
method (FDM).

Equation (5.28) is the final discretized system equation of LRPIM. Note
that the essential boundary conditions, Equation (4.3), are not considered in 
the LRPIM formulations. Because the RPIM shape functions have the
Kronecker delta function property, the essential boundary conditions can be
enforced in LRPIM as easily as in the RPIM or the conventional FEM.  The
procedure has also been detailed in Sub-section 4.2.2. After enforcing
essential boundary conditions, we can solve the modified system equation
for displacements for all field nodes and then to compute the stresses using 
Equations (4.10) and (5.12).

5.2.2 Numerical implementation

5.2.2.1 Type of local domains

Gauss quadrature is needed to evaluate the integrations in Equations
(5.21) and (5.22).  As shown in Figure 5.1, for a field node xIx , a local 
quadrature cell q is needed for the Gauss quadrature. For each Gauss
quadrature point xQ, the RPIM shape functions are constructed to obtain the
integrand. Therefore, for a field node xi, there exist three local domains:

a) the local quadrature domain q (size rqr );

b) the local weight (test) function domain w where wi 0 (size rwrr );

c) the local support domain s for xQ (size rsr ).

These three local domains are arbitrary as long as the condition rqr rwrr is
satisfied. It has been noted that when an appropriate weight function is used, 
the local weak-form, Equation (5.9), can be simplified because the
integration along the internal boundary qi vanishes. Hence, for simplicity in
this book, we always use rqr =rwrr .

The size of the local quadrature domain (rqr ) for node I and the size of theI
support domain (rsr ) are defined as 
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rqr = q dcIdd (5.29)

rsr = s dcIdd (5.30)
where dcIdd is the nodal spacing near node I I, which is defined in Sub-section II
3.1.3, q and s are dimensionless sizes chosen to control the actual domain
sizes.  The effects of q and s will be investigated later.

5.2.2.2 Property of the stiffness matrix

The system stiffness matrix K in the present LRPIM is sparse as long as K
the support domain of RPIM is compact.  If the field nodes are properly 
numbered, K is banded. Note also that K is usually asymmetric (Atluri andK
Shen, 2002). The asymmetry has two causes:

1) The Petrov-Galerkin formulation uses different functions for the trial and
test functions. Furthermore, the sizes and/or the shapes of the local 
support domains for constructing the trial and test functions can also be
different. In addition, the sizes and/or the shapes of the local quadrature
domain may differ for different field nodes. Hence, the domain 
integration in Equation (5.21) is, generally, asymmetric, i.e. 
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where ( )
q and ( )

q  are local quadrature domains for the kth and thekk lthll

field nodes, respectively, and kVk  and lVl  are matrices of derivatives of
the weight functions used for the kth and thekk lth field nodes, respectively.  ll
Bl and l Bk are the strain matrices of thek lth and thell kth field nodes.kk

2) The part of K from the boundary integrations in Equation (5.21) isK
asymmetric.  The sizes and/or shapes of the local quadrature domains
may be different for different field nodes; this means that boundary 
integrations in Equation (5.21) are, in general, asymmetric, i.e.
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Therefore, K is asymmetric, i.e., K

kl lkK Kkl l (5.33)
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In conclusion, the stiffness matrix K in the LRPIM is generally sparse, K
banded and asymmetric. 

Note that in LRPIM, the essential boundary conditions can be directly 
implemented as in the RPIM and FEM due to the fact that the RPIM shape
functions possess the Kronecker delta function property. Because the system
equation of LRPIM is assembled based on nodes as in the finite difference
method (FDM), the rows in the matrix K for the nodes on the essentialK
boundary need not be computed. This can save some computational costs. 
This simple treatment is possible because 1) the RPIM shape functions have
the delta function property and 2) the rows of the K are based on nodes.K

5.2.2.3 Test (weight) function

As LRPIM can be regarded as a local weighted residual method, the test 
(weight) function plays an important role in the performance of this method.
Theoretically, any test function is acceptable as long as the condition of 
continuity is satisfied. However, the local weak-form is based on a local
quadrature domain of a field node with the node at the centre. It can be 
shown that test functions which decrease in magnitude with increasing 
distance from the centre yield better results. We use the test functions that
depend only on the distance between the two points: the cubic spline 
function (W1), the 4th-order spline weight function (W2) and other weight 
function given in Sub-section 3.3.2.

To simplify Equation (5.9), we can deliberately select the test functions 
so that they vanish over qi. This can be achieved using, for example, the 
4th-order spline weight function (W2) with rqr =rwrr (see Sub-section 3.3.2)
because ( )((  is zero when r= rqr .

There is a wide range of weight functions that can be used in LRPIM, 
including all weight functions that are used to form different weighted
residual methods (see, Section 1.4).  Atluri and Shen (2002) used six weight 
functions in MLPG.  These weight functions can also be used in LRPIM.

Although there are many types of weight functions, the spline weight 
functions (e.g., W1 or W2) are the most popular; it is the most convenient to 
use and accurate.  Hence, in this book, we focus on the use of these spline
weight functions.

5.2.2.4 Numerical integration

The integrations in LRPIM can be performed over regularly-shaped local 
quadrature domains for internal nodes; circles, ellipses, rectangles, or
triangles in two-dimensional problems; spheres, rectangular parallelepipeds,
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or ellipsoids in three-dimensional problems. These local domains can be 
automatically generated during computation.

Issues of numerical integrations in MFree methods have been discussed
in detail in the existing publications (Atluri et al.,1999b; Dolbow and 
Belytschko,1999; GR Liu, 2002). Insufficiently accurate numerical 
integration may cause deterioration in the numerical solution and rank-
deficiency in the stiffness matrix. The difficulty of the numerical integration
for LRPIM comes mainly from the complexity of integrands. First, the shape 
functions constructed are complicated, and have different forms in each
integration region. The derivatives of shape functions can even have 
oscillations. Second, the overlapping of local support domains complicates f
the integrands further. In order to ensure the accurate numerical integration,

q should be further divided into small regular partitions (see Figure 5.8). In 
each small region, the number of Gauss quadrature points should be chosen
to ensure sufficient accuracy (Atluri et al. 1999b).  

If the rectangular quadrature domain is used, the standard Gauss 
quadrature can easily be performed.  Circles centred on the field node are 
often used; they have no directional bias, and have simple weight functions.  

To obtain the numerical integration for a circular quadrature domain, a
mapping technique has been used, as shown in Figure 5.2. 

The circular quadrature domain is divided into four quarters. 
The quarter is mapped into a rectangle region.  
The rectangle region is mapped to a standard square for Gauss quadrature.  
The standard Gauss quadrature is used.

For simplicity, the rectangular quadrature is used in the following study.  

Figure 5.2. Transformation of a quarter circular  domain into a standard square.
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5.3 MESHLESS LOCAL PETROV-GALERKIN  METHOD

The MLPG is developed by Atluri et al. (Atluri and Zhu, 1998a,b; Alturi
and Shen, 2002); this section provides a concise introduction; the complete
record of MLPG is given in Atluri and Shen (2002).

5.3.1 MLPG formulation 

Consider a two-dimensional problem of solid mechanics in domain 
bounded by  whose strong-form of governing equation and the essential 
boundary conditions are given in Equations (4.1) to (4.3). In the MLPG, the 
local weak-form can be obtained from the following weighted residual 
method.

d 0
q qu

I i i

q

d)I ij j i,( ,W b( )dI ( )d)d)d)d)d)d (5.34)

where W  is the weight or test function. Note that the second integral in 
Equation (5.34) is the curve integral to enforce the essential boundary
conditions, because the MLS shape functions used in MLPG lack the
Kronecker delta function property. In Equation (5.34), the penalty method is
used to enforce the essential boundary conditions. q is the local domain of
quadrature for node I,II qu is the part of the essential boundary that intersect 
with the quadrature domain q, and  is the penalty factor used in Chapter 4.
Here we use the same penalty factor for all the displacement (essential) 
boundary conditions.   

The displacements at a sampling point x are approximated using the MLS 
shape functions (see, Section 3.3) in the following form
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u(2 1) (h
1) ( u (5.35)

where I is the MLS shape function, and I is the matrix formed with MLS 
shape functions.
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Substituting the foregoing expression for all the displacement 
components of u into the local weak-form Equation (5.34), and following the
exact procedure detailed in Sub-section 5.2.1 yield the following nodal 
discretized system equations of MLPG for the Ith field node.II

KIK uI =fIf (5.36)I

where KIK  is a matrix called theI nodal stiffness matrix for the Ith field node,II
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and fIf  is aI nodal force vector with contributions from body forces applied in r
the problem domain, tractions applied on the natural boundary, as well as the 
penalty force term.
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(5.38)

Compared with Equations (5.21) and (5.22), the last terms in Equations 
(5.37) and (5.38) are new. They are required for imposing the essential
boundary conditions. For a field node whose local quadrature domain lies 
entirely within the global domain, there is no intersection between q and the
global boundary , and the local weak-form is given in Equation (5.5). In 
this case, KIK  and I fIff  have the same formulations as Equations (5.22) and I
(5.23).

We use Gauss quadrature to obtain the integrals in Equations (5.37) and 
(5.38); the algorithm is the same as that used in Equations (5.25) and (5.26) 
for LRPIM.

Equation (5.38) presents two linear equations for the Ith field node.II
Using Equation (5.38) for all N field nodes in the entire problem domain and N
assembling all these 2N equations, we can obtain the final global system N
equations in the discretized linear algebraic form for MLPG, i.e. 

2 2 2 1 2 1N N N N2 2 1 22 2 1 21 2K U F2 2 2 1 22 12 2 1 22 22 11 2 (5.39)

Solving the above equation, we can obtain the nodal parameters of 
displacements and then compute the actual displacements at any point 
(including field nodes) in the problem domain using Equation (5.35). Finally 
the strains and stresses can be obtained using Equations (5.11) and (5.12).
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5.3.2 Enforcement of essential boundary conditions 

In Sub-section 5.3.1, the penalty method has been used to enforce 
essential boundary conditions in MLPG. In fact, other methods for enforcing 
essential boundary conditions in EFG, which have been discussed in Section
4.3, can also be used in MLPG.

Note that, in MLPG, the system equation is constructed node by node.
There are only two rows in the global stiffness matrix and the global force 
vector that are related to each field node. With this structural feature of the 
system equation of MLPG, the following direct interpolation method can bed
used to enforce essential boundary conditions.  

Assume the displacements at the Ith field node on the essential boundaryII
are prescribed as

h
I I
h
I I

u uh
I

v vI I

(5.40)

Using the MLS approximation, one has 
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Equation (5.41) produces two linear equations for the Ith field node, and canII
be re-written explicitly as 

1 1 2 2

1 1 2 2
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v vn n In
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1 1 2 21 1v v1 2 21 2

un nuuu2 22

vn nvvv2 22
(5.42)

In Equation (5.40), both u and v of thev Ith node are prescribed. For someII
field nodes, it could be that only one of the two displacement components (u
or v) is prescribed. Therefore, only one of the linear equations in Equation 
(5.42) can be obtained from the essential boundary condition for the 
prescribed displacement component at this field node.  The other equation
for the unprescribed displacement should still be obtained as in Equation
(5.4).

Equation (5.42) is assembled (stacked) directly into the system equations 
for field nodes to obtain the modified global system equations of 

2 2 2 1 2 1N N N N2 2 1 22 2 1 21 2K U F2 2 2 1 22 12 2 1 22 22 11 2 (5.43)

where the modified global stiffness matrix K isK
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11 12 1(2 1) 1(2 )1) 1(21) 1(2K K K K11 12 1(2 1) 11) 111 12 1(2 1) 1(2 )1) 1(21) 1(211 12 1(2 1) 1(2 )1) 1(21) 1(2

011 01 0
0

N1 0
0

01 0

10 N1 011 NN0 0

K K K K( ) ( ) ( )( ) ( )( )(2 )1 (2 )2 (2 )(2 1) (2 )(2 ))1 (2 )2)1 (2 (2 )(2 1) (2 )(2)(2 1) (2 )(2K K K K(2 )1 (2 )2 (2 )(2 1))1 (2 )2)1 (2 (2 )(2 1))(2

K (5.44)

The modified global force vector F is

(2 1)

1xf11xf11xf1
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For simplicity and without losing generality, 111 ~ NNN  are used in Equation
(5.44). Note that because the MLS shape functions are constructed in a
compact support domain, the number of field nodes, n, selected in the 
support domain for the Ith node will usually be much smaller than the totalII
number of field nodes, N (i.e.,N n N ). Therefore, many of 111 ~ NNN will be
zero.

This direct interpolation method for the treatment of essential boundary 
condition is straightforward and very effective. It was used in the boundary 
node method (BNM) by Mukherjee and Mukherjee (1997), suggested for
MLPG by Atluri et al. (1999b), and implemented in the MLPG for 2D solids 
by GR Liu and Yan (2000). 

5.3.3 Commons on the efficiency of MLPG and LRPIM 

There are many advantages in using MFree local weak-form methods, e.g.
LRPIM and MLPG.

1) No global background cell is needed for the integrations.

2) The implementation procedures are as simple as numerical methods
based on the strong-form formulation, such as the FDM. 

3) No global compatibility of the shape functions is required, because no
global energy principle is used in the formulation. 

(2I-1)th row II
2Ith row II

(2I-1)th rowII

2Ith rowII
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However, these advantages of MFree local weak-form methods do not
come without some cost. The following study shows the fact that the MFree 
local weak-form method is generally less efficient than the MFree global
weak-form method, and of course the FEM.

5.3.3.1 Comparison with FEM 

Compared with FEM, the LRPIM and MLPG are computationally more 
expensive if the same field nodes are used. The additional computational
computation cost mainly comes from: 1) the MFree interpolation, 2) the 
numerical integrations, and 3) solving the asymmetric stiffness matrix. A
detailed study on the efficiency is conducted by comparing with FEM, and 
the results are presented using the numerical examples given in Sub-section
5.5.4.

5.3.3.2 Comparison with MFree global weak-form methods

Compared with MFree global weak-form methods, such as EFG and
RPIM, discussed in Chapter 4, the major disadvantages of LRPIM and 
MLPG are the additional parameters introduced and the asymmetric system
matrix. The additional parameters in LRPIM and MLPG include the sizes of 
local quadrature domains and the choice of the test function, etc. The 
asymmetric matrix will increase the computational cost in LRPIM and 
MLPG, as will be shown in the example problems given in Sub-section 5.5.4. 

5.4 SOURCE CODE

In this section, a standard source code, MFree_Local.f90, of the MFree
local weak-form method is provided and described in detail.  This code is
developed using FORTRAN 90. Combined with some of the subroutines 
given in Chapter 3 and Chapter 4, the code functions as either LRPIM or
MLPG, respectively.  

5.4.1 Implementation issues 

1) Local quadrature domains

To perform the integrations for the local weak-form, local quadrature
domains are needed. The local quadrature domain can be as simple as
possible for the internal nodes. Rectangular domains are simple and easy to
use, and they are used in this book.  
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For a rectangular quadrature domain, the dimension of the quadrature 
domain can be determined by rqxr and rqyr in x and y directions, respectively. 

qx qx cx

qy qy cy

r dqx qx c

r dqy qy c (5.46)

where qx and qy are dimensionless sizes of the quadrature domain in x and
y direction, respectively, and dcxdd andx dcydd are the local nodal spacings in x and
y directions, which have been defined in Sub-section 3.1.3.

2) Method to enforce essential boundary conditions 

The methods of enforcing essential boundary conditions in the LRPIM 
and MLPG have been discussed in Sections 5.2 and 5.3. The direct 
interpolation method is one of the most efficient methods for MLPG; it is 
used in this code.

3) Global error in energy norm

For the error analysis, the energy norm defined in Equation (4.78) is used 
as an error indicator, as the accuracy in strains or stresses is much more
critical than the displacements. Note that the integration in Equation (4.78) ist
over the global domain. Hence, in order to get the global error in energy 
norm, global background cells, that can be the same as those used in the
RPIM (or EFG), have to be used purely for the error assessment. 

4) Flowchart of the subroutine 

The flowchart of the computer code, MFree_Local.f90, is plotted in 
Figure 5.3. The procedure of LRPIM is very different from that of FEM and 
RPIM (EFG).

The major steps in a LRPIM analysis are as follows
The geometry of the problem domain is modelled and a set of field 
nodes is generated to represent the problem domain;  
The influence domains are set for all field nodes;
The system matrices are assembled through two loops; 

o The outer loop is for all the field nodes. At the beginning of 
this loop, a local quadrature domain is first constructed. 

o The inner loop is for all the Gauss quadrature points in the
quadrature domain.  

The boundary conditions are enforced; 
The system equation is solved using the standard equation solver;  
The post-processing is performed to plot the final results including 
displacements, stresses, etc.



256 Chapter 5

5.4.2 Program description and data structures 

The main program of MFree_Local.f90 calls several subroutines. The 
macro chart for the program is given in Figure 5.4. The functions of these 
subroutines used in the main program are listed in Appendix 5.1.  The main 
program is listed in Programs 5.1 and 5.2. 

1) Programs for LRPIM and MLPG

The present program listed in the following Program calls the subroutine 
RPIM_ShapeFunc_2D that is for the construction of RPIM shape functions. 
Hence, the present program is for LRPIM. This program can be easily
changed to the program for MLPG by replacing all the subroutine 
RPIM_ShapeFunc_2D with the subroutine MLS_ShapeFunc_2D. These two 
subroutines, RPIM_ShapeFunc_2D and MLS_ShapeFunc_2D, have been
described in Chapter 3. 

The source code of the main program is listed in Program  5.2.  

2) Major variables 

The major variables used in the program are listed in Appendix 5.2. The
include file of variables, variableslocal.h, is listed in Program  5.1. 

a. Most global variables are similar to the global variables that are
presented in the program MFree_Global.f90 in Chapter 4.  

Note that some of subroutines used in MFree_Local.f90 are the same as
those used in the program MFree_Global.f90 (see Appendix 5.1). Therefore, 
the descriptions for these subroutines are not repeated here. 

3) Subroutine  Input

Source code location: Program  5.3.  
Function: This subroutine performs simple operations of inputting data 

from a given external data file, and hence is self-explanatory,
and easy to understand. 

4) Subroutine Qdomain

Source code location: Program 5.4. 
Dummy arguments: Appendix 5.3.
Function: This subroutine is to construct the local quadrature domain for

a field node, and it is designed to construct a rectangular 
quadrature domain. Coordinates of four vertexes of the local 
quadrature domain are stored in the array xc. Readers can
modify this subroutine slightly for creating other shapes of 
quadrature domains. 

Note here that one of major challenges in MFree local weak-form
methods is to develop an efficient algorithm for automatically forming the 
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local quadrature domains, especially for nodes on or near boundaries of a
problem domain of a complex shape.

Input data  

Search all influence domains to determine nodes involved in interpolation

Compute sub-stiffness matrix of the quadrature point 

End of the loop for the quadrature point

End

quadrature points

Loop over 
field nodes

Compute meshfree shape functions for the quadrature point 

Assemble the nodal stiffness matrix into the global stiffness matrix

End of the loop for the field nodes 

Enforce essential boundary conditions

Solve the system equation to obtain displacements and then the stresses, etc.  

ain for this field node

Figure 5.3. Flowchart of the program of MFree_Local.f90.
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Figure 5.4. Macro flowchart of the program of MFree_Local.f90.

5) Subroutine  DomainGaussPoints

Source code location: Program 5.5. 
Dummy arguments: Appendix 5.4.
Function: This subroutine is to set the Gauss points and calculate the 

Jacobian for a local quadrature domain.  In the present
program, rectangular local quadrature domains are used. 
Hence, the subroutine is designed to set Gauss points for a
quadrilateral quadrature domain. 

6) Subroutine  TestFunc

Source code location: Program 5.6 
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Function: This subroutine is to compute test or weight functions (the
quartic spline function) and their derivatives. The field node is 
at the center of the weight functions. Note that the weight
function domain is the same as the quadrature domain (rqr =rwrr )
defined in Equation (5.46).

7) Subroutine  Integration_BCQuQi

Source code location: Program 5.7. 
Dummy arguments: Appendix 5.5.
Function: This subroutine is to compute the integrations on the 

boundaries, qu and qi, of the quadrature domain that intersect 
with the global boundary.  The integration is defined in the last 
two terms in Equation (5.21).  Because the rectangular
quadrature domains are used and the problem domain 
considered is also a rectangle, the integrations on these sub-
boundaries are curve integrations along a line. These 
integrations can be obtained using the standard curve Gauss 
quadrature scheme. The main flowchart of this subroutine is
shown in Figure 5.5.

8) Subroutine  Integration_BCQt

Source code location: Program  5.8. 
Dummy arguments: Appendix 5.6.
Function: This subroutine is to compute the integrations on the boundary,

qt, of the quadrature domain that intersects with the global
force boundary.  The integration is defined in the first term in
Equation (5.22). Because the rectangular quadrature domains 
are used and the problem domain considered is also
rectangular, the integration on the sub-boundary  qt  is a curve
integration scheme. The flowchart of this subroutine is shown
in Figure 5.6.

Note here that subroutines of Integration_BCQu and Integration_BCQt 
are two important subroutines used in MFree local weak-form methods. How 
to efficiently achieve these boundary integrations is another major challenge 
in MFree local weak-form methods, especially for a problem domain with a 
complex geometry.

9) Subroutine  EssentialBC

Source code location: Program 5.9.  
Dummy arguments: Appendix 5.7.
Function: This subroutine is to implement the essential boundary 

conditions.
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Input data

Determine local boundaries of qu and qi

Set Gauss points on qu and qi

Assemble the nodal stiffness
matrices into the global stiffness

matrix

Return

Loop over Gauss
points

Compute nodal matrices W, n and B for this
Gauss point

Figure 5.5. Flowchart of the subroutine Integration_BCQuQi.

10) Subroutine GetDisplacement

Source code location: Program 5.10. 
Dummy arguments: Appendix 4.10.  
Function: This subroutine is used only in MLPG to obtain the final

displacements. This subroutine is unnecessary for LRPIM if 
only nodal displacements are interested, as the RPIM shape
functions possess the delta function property (Sub-section 
3.2.2).

11) Subroutine GetNodeStress

Source code location: Program 5.11. 
Dummy arguments: Appendix 5.8.  
Function: This subroutine is to compute stress components at all field 

nodes using Equations (4.10) and (5.12).

12) Subroutine Output

Source code location: Program 5.12. 
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Function: This subroutine performs the simple task of outputting the 
results. The source code of this subroutine is listed.

Input data

Compute the intersection between q and the global
boundary t

Set Gauss points on qt

Compute the nodal force vector

Return

Loop over Gauss
points

Figure 5.6. Flowchart of the subroutine Integration_BCQt.

13) Subroutine TotalGaussPoints
Source code location: Program 5.13. 
Function: This subroutine is to obtain Gauss points for a global

background mesh. 

14)  Subroutine  GetEnergyError

Source code location: Program 5.14. 
Function: This subroutine is to compute the global error in energy norm 

of the solution using Equation (4.78).

15)  Subroutine Dobmax  andx GetInvasy

The source code of the subroutine Dobmax for computing multiplication 
of two matrices is listed in Program  5.15. The subroutine GetInvasy that is 
listed in Program 4.14 is used to compute the inversion of a matrix.
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5.5 EXAMPLES FOR TWO DIMENSIONAL SOLIDS – A
CANTILEVER BEAM 

To provide a quantitative analysis, a cantilever beam subjected to a 
parabolic traction at the free end as shown in Figure 4.5 is considered. The 
beam has a unit thickness and is in a plane stress. The exact solution of this
problem is listed in Equations (4.79)~(4.84). The study of this simple
example has the following purposes. 

a) To demonstrate the standard procedure of an MFree local weak-
form method;

b) To show the usage of the present programs, MFree_Local.f90, of 
LRPIM and MLPG;

c) To investigate the effects of the shape parameters of MQ-RBF in 
LRPIM;

d) To investigate the effects of the size of local domains;
e) To study numerically the convergence of LRPIM and MLPG; 
f) To study the efficiency of LRPIM and MLPG. 

5.5.1 The use of the MFree_local.f90

To use this program of MFree_local.f90, three steps, which are similar to 
that discussed in Chapter 4, may be followed: 

Step 1: Preparation of input file

The problem should be modeled in this step. The aim of this step is to 
prepare the input data file for the program.  

An example of input data file for the beam problem is listed in Appendix
5.9. The field nodes used in this file is plotted in Figure 5.7. The domain of 
the beam is represented by regularly distributed 55 (11 5 ) field nodes. This
data file can be largely divided into five parts. 

Part 1: this part includes the parameters of description of the problem 
including: Length and Width of the problem domain; Young’s modules; 
Poisson’s ratio; The distributed traction; Total number of field nodes; Global
boundary information ( maxx , minx , miny , maxy ).

Part 2: this part provides the parameters for determination of sizes of the
local domains, including: Sizes of the local quadrature domain (in x, y
directions); Number of sub-partitions used to divide the quadrature domain 
(in x, y directions); Number of Gauss points used in each partition; Size of 
the local influence domain.
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Figure 5.7. An MFree model with 55 regular field nodes used to represent the problem
domain and boundaries.

Part 3: this part contains the detailed coordinates of field nodes: Number
of node, xi and yi.

Part 4: this part defines the essential boundary conditions and the natural 
boundary conditions. The exact essential boundary conditions (see Equations
(4.79) and (4.81)) and natural boundary conditions (see Equation (4.84)) are 
used to compute these values.

Part 5: this part includes the global background cells and the coordinates 
of the vertexes of the background cells that are used only to compute the 
global error in energy norm in the solution.

Step 2: Execution of the program

After the preparation of the input data file, the program can be executed
to obtain the results. LRPIM is first used, and results are listed in Appendix
5.10 and Appendix 5.11. In Appendix 5.10, the displacements at field nodes 
are listed, and the stresses at the field nodes are listed in Appendix 5.11. In 
the output, the error in energy norm is also presented in Appendix 5.11.

The MLPG method is also used, and results are listed in Appendix 5.12
and Appendix 5.13. The displacements at field nodes are listed in Appendix 
5.12, and the stresses at field nodes are listed in Appendix 5.13 together with
the error in energy norm. 

Step 3: Analysis of the output data

The task of this step can be performed using any post-processor like 
MFree Post in the sofyware of MFree 2D (GR Liu, 2002).

Results of LRPIM are plotted in Figure 5.9~Figure 5.10.  The MQ-RBF
with linear polynomial terms is used in LRPIM, and the parameters used are n

1.0,c  1.03,q  and 3.0c . For the local influence domains, 4.8,cx

3.0,cydc and 3.0i  are used. For local quadrature domains, 2.0q  is
used.  To ensure the accuracy of numerical integration, the local quadrature 
domain is further divided into ndx ndy small sub-partitions, as shown in 
Figure 5.8. In this study, we let dx dy dn n ndx dydynndd and 2d .  In each sub-
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partition, a total of 16 (4 4) Gauss points are used.  The cubic spline function
is used as the test function for the local Petrov-Galerkin weak-form.  

Figure 5.8. A local quadrature domain is divided to dx dyn ndx  sub-partitions. A total 4 4
Gauss points are used in each partition.

The deflection results are plotted in Figure 5.9. For comparison, the 
analytical results of displacements are also plotted in the same figure.  A
very good agreement can be found between LRPIM results and the analytical 
results. The results of shear stress, xy , are plotted in Figure 5.10. Compared
with the analytical results, LRPIM gives a reasonably good result even for
stresses.

Results of MLPG are analyzed in Figure 5.11~Figure 5.12.  In computing 
the results shown in these figures, the linear polynomial basis and the cubic 
spline weight function are used in the MLS approximation. For the local 
influence domains, 4.8,cx  3.0,cyd and 3.0i  are used. For local
quadrature domains, 1.5q ,  4(2 2)  sub-partitions, and 16 (4 4) Gauss
points in each partition are used. The cubic spline function is used as the test 
function for the local weak-form. The deflection results are plotted in Figure
5.11.  For comparison, the analytical results of displacements are also plotted 
in the same figure. A very good agreement between MLPG result and the
analytical result is found. The results of the shear stress, xy , are plotted in
Figure 5.12. Compared with the analytical results, the results given by 
MLPG are very good. 

Two nodal distributions of 189 regular nodes and 189 irregular nodes 
shown in Figure 5.13 are used to test the present code further. Shear stresses

xy are computed using LRPIM and plotted in Figure 5.14. The same stresses

ndx=2

ndy=2
IthII node

Quadrature
domain

Sub-partitions

Field nodes

Gauss points
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xy are also obtained using MLPG and plotted in Figure 5.15. Compared with
analytical results, results of both LRPIM and MLPG are very good. It is seen
that the nodal irregularity has little effects on the results, and this is true for 
both LRPIM and MLPG.

Figure 5.9. Deflections of the beam obtained using LRPIM and 55 regularly
distributed field nodes.  Note that the displacements plotted are magnified by 500

times.
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Figure 5.10. Shear stress xy distribution on the cross-section at x=L= /2 of the beam 
obtained using  the LRPIM and 55 regular field nodes.

: Analytical solution; : Numerical solution.
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Figure 5.11. Deflections at the central axis at 0y of the beam obtained using the 
MLPG and 55 regular field nodes. 
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Figure 5.12. Shear stress distribution on the cross-section at x=L= /2 of the beam obtained
using  the MLPG and 55 regular field nodes.
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(a) (b)

Figure 5.13. Nodal arrangements for the cantilever beam.  (a) 189 regular nodes; (b) 189
irregular nodes.

Figure 5.14. Shear stress distributions on the cross-section at / 2 of the beam
obtained using the LRPIM and 189 field nodes.

5.5.2 Studies on the effects of parameters

In the following studies, the problem domain is represented using 189
( 21 9 ) regular nodes. For quantitative and accurate analyses, the exact 
essential boundary conditions and natural boundary conditions are used. The
error in energy norm, Equation (4.78), is used as an accuracy indicator. In
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LRPIM, the linear polynomial terms are added in the RPIM-MQ. In MLPG, 
the linear basis is used in the MLS approximation.

Figure 5.15. Shear stress distributions on the cross-section at  / 2 of the beam
obtained using  the MLPG and 189 field nodes. 

5.5.2.1 Parameters effects on LRPIM 

a) Shape parameters of RBF

The shape parameters of the MQ-RBF are studied. More detailed 
discussion on the effects of RBF parameters for other RBFs are presented in
the paper by Wang and GR Liu et al. (2002c) and a book by GR Liu (2002).
Readers can also slightly modify the present codes and input data file to
conduct their own study on other RBFs.

In MQ-RBF, there are two shape parameters, c and q, that have been
discussed in Section 3.2. Because the regular nodes are used, dcdd  that is a
parameter of the nodal spacing is a constant of / 20 2.4c .  In this
study, 3.0i  is used for the construction of support (influence) domains. 

First, q is investigated, while c is fixed at 1.0, 2.0 and 4.0. Errors in energy
norm for five different values of q ( 0.5q , 0.5, 0.98, 1.03 and 1.2) are plotted 
in Figure 5.16. From Figure 5.16, it can be confirmed that q=0.98 and q=1.03 
with c=4.0 give better results for this problem. According to the conclusions of 
the study by GR Liu (2002), q=1.03 is generally stable and accurate for many 
problems. Hence, q=1.03 is used in the following studies.
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Figure 5.16. Influence of q on the accuracy of the results obtained using the LRPIM-
MQ.  It can be found that 4.0c , q=0.98 and 1.03 give accurate results.

Figure 5.17. Influence of c on the accuracy of the results obtained using LRPIM-MQ 
(q=1.03).  It can be found that the results of 3.0 ~ 5.0c are more accurate.
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In the study on c, the range of 0.5~7.0 with q fixed at 1.03 is now
considered.  Errors in energy norm for different values of c are plotted in 
Figure 5.17. From this figure, we can find that all c in the considered range 
can lead to satisfactory results. The results of 3.0 ~ 7.0c  are slightly 
better. For convenience, 4.0c  will be used in the following studies.

Comparing with those in Section 4.5, the findings from this study are
very much the same, and hence the same shape parameters are used for both
RPIM and LRPIM.

b) Effects of the size of local quadrature domain

The size of the local quadrature domain affects the accuracy of the 
LRPIM solutions. The sizes of quadrature domains are defined in Equation
(5.29), in which / 20 2.4cx / 20 and /8 1.5cy /8 are used in this study. 
The sizes of quadrature domains will be, therefore, determined by qx and qy,
which are dimensionless coefficients in x and y directions, respectively. For 
simplicity, qx= qy= q is used. The errors in energy norms for different q
are obtained and plotted in Figure 5.18; the accuracy for solutions generally
is improved by increasing the size of the quadrature domain.  

When the quadrature domain is too small ( q 1.0), the error in results will 
become unacceptably large. This is because a local residual formulation with a 
very small quadrature domain for the weight function behaves more like a 
purely  strong-form formulation (a collocation method). Strong-form
formulation is usually less accurate than a weak integral form formulation, in
which the integration smears the error over the integral domain (Liu and Han,r
2003). More detail on this topic will be given in Chapter 6. 

When the quadrature domain is large enough ( q 1.5), results obtained
are very good. However, it is difficult to obtain accurate numerical 
integrations for a large local quadrature domain (see Sub-section 5.2.2.4).
Because more regular small partitions and Gauss quadrature points are
needed, the numerical integration in a large quadrature domain becomes
computationally expensive and is not really necessary.  Figure 5.18 shows
that a too large local quadrature domain is not necessary to give a significant 
improvement in the accuracy. Hence, q=1.5-2.5 is an economical choice
that gives good results. In the following studies of LRPIM, q=2.0 is used.

c) Effects of numerical integration

As discussed above, there are difficulties in obtaining accurate numerical
integration because of the complexities of integrands (see Sub-section
5.2.2.4). To study effects of numerical integrations in more detail, a local
quadrature domain q withq q=2.0 is used. The local quadrature domain is 
further divided into ndx ndy small partitions, as shown in Figure 5.8. In this 
study, we let dx dy dn n ndx dydynndd . In each partition, 4 4 Gauss points are used.
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Figure 5.18. Influence of the sizes of local quadrature domain on the accuracy 
of the results obtained using LRPIM.
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Figure 5.19. Influence of the number of sub-partitions on the accuracy of the 
results obtained using LRPIM-MQ (q=1.03, c=4.0).
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Results of errors in energy norms for different nd are obtained and plottedd
in Figure 5.19. It can be observed that the accuracy of solutions improves
with the increase of nd due to the improvement of the accuracy of numericald

integrations. Hence, in order to ensure an accurate numerical integration, q
should be divided into some regular sub-partitions. In each sub-partition,
sufficient Gauss quadrature points should be used.  

However, the increase of the number of sub-partitions and Gauss points 
will increase the computational cost. A good and economical choice is nd=2.dd

d) Effects of the size of the influence domain 

The size of influence domains is defined in Equation (4.75), dcxdd  and x dcydd
are the nodal spacings in x and y directions near the field node I. In this study,II

/ 20 2.4cxd Lcx / 20L and /8 1.5cy  are used. The size of influence
domains is determined by ix and iy, which are dimensionless coefficients 
in x and y directions. For simplicity, we use ix= iy= i.

Errors in energy norms for different i are plotted in Figure 5.20 for two
cases. The shape parameters of MQ-RBF are 1.03  and 4.0c for case
1;  1.03q and 1.0c for case 2. It can be found that the accuracy 
changes with i, and the results of 2.0i are very good. The reason of the
bad results obtained using 1.5i  is that the influence domain is too small.
There are not enough field nodes included for interpolation. For a too large 
influence domain, e.g. 4.0i , the accuracy is good, but the computational
cost will also increase accordingly for the inclusion of large number of nodes 
in the interpolation. An economical choice is s=2.0~3.0 for reasonably
good results. In the following studies on LRPIM,  2.5i will be used.

e) Convergence 
In the numerical convergence study, regularly and evenly distributed 18

(3 6), 28 (4 7), 55(5 11), 112(7 16), 189(9 21), and 403(13 31) field 
nodes are used. The convergence curves obtained numerically are shown in
Figure 5.21, where h is equivalent to the element size (in x direction) in the 
FEM analysis in this case. The convergence rate, R, that is computed via
linear regression is also given in Figure 5.21. From Figure 5.21, it is
observed that convergence rate of LRPIM is about 1.5. However, the
convergence is not a straight line.

It should be mentioned again that the shape parameters chosen in the
MQ-RBF will affect the convergence rate and the accuracy of the LRPIM.
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Figure 5.20. Influence of the sizes of local influence domain on the accuracy of the results
obtained using the LRPIM (q=1.03). The size of local influence domain is defined as:
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Figure 5.21. Numerical convergence of LRPIM-MQ in error er e of energy norm. R is the
convergence rate computed by linear regression.



274 Chapter 5

5.5.2.2 Parameter effects on MLPG

1) Effects of the size of local quadrature domain

In this study, / 20 2.4cx / 20 , /8 1.5cy /8 , and qx= qy= q are
used.  Several quadrature domains with different q are investigated, and the 
errors in the energy norm in the solution of the cantilever beam problem have been
plotted in Figure 5.22. From this figure, it can be found that the accuracy for
solutions generally improves with the increase of the size of the quadrature
domain. When the quadrature domain is too small ( q<1.0), the error of the
results will become unacceptably large. When the quadrature domain is large
enough ( q 1.5), results obtained are very good. The reasons are similar to 
the discussions in LRPIM. However, a too large local quadrature domain
( q 3.0) does not necessarily lead to a significant improvement in the
accuracy. Hence, q=1.5-2.5 is an economical choice in MLPG for a 
reasonably accurate solution. In the following studies on MLPG, q=1.5 is
used.

2) Effects of numerical integration

As discussed above in LRPIM, to obtain accurate numerical integrations,
the local quadrature domain is divided into ndx ndy small sub-partitions, as 
shown in Figure 5.8. In this case, dx dy dn n ndx dydynndd is used, and there are 4 4
Gauss points in each partition. Results of errors in energy norms for different 
nd are obtained and plotted in Figure 5.23. This figure shows that thed
accuracy of solutions improves with the increase of nd due to thed
improvement of the accuracy in the numerical integrations. However, the
increase of the number of sub-partitions and Gauss points will increase the
computational cost. In the following studies on MLPG, nd=2 is used.dd

3) Size of the influence domain 

In the study of the effects of the influence domains, / 20 2.4cx ,
/8 1.5cyd Dcy /8D , and ix iy iiyiy  are used. Errors in energy norm for 

different i are plotted in Figure 5.24. It can be found that the accuracy 
changes with i and the results for  2.0 4.0i are very good.  

It is found that a too small influence domain ( 2.0i ) leads to large
errors. The inaccuracy of a too small influence domain is caused by the fact 
that there are not enough nodes to perform accurate approximation for the
field variables.

A too large influence domain ( 4.0i ) will considerably increase the
computational cost. Hence, a proper influence domain should be used in
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MLPG. Our studies have found that 2.5i  is a good choice and will be 
used in the following studies on MLPG.
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Figure 5.22. Influence of the sizes of local quadrature domain on the accuracy of the results
obtained using MLPG.
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Figure 5.23. Influence of the number of sub-partitions for numerical integrations on the 
accuracy of the results obtained using the MLPG.
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Figure 5.24. Influence of the sizes of local influence domain on the accuracy of the 
results obtained using the MLPG. 

4) Convergence 
The convergence of MLPG is studied numerically using regularly and 

evenly distributed 18 (3 6), 28 (4 7), 55(5 11), 112(7 16), 189(9 21), and 
403(13 31) field nodes. The convergence curve of MLPG results obtained 
numerically is shown in Figure 5.25. The convergence rates, R, computed 
via linear regression are also given in Figure 5.25.  It is observed that the
convergence rate of MLPG is about 1.67. Note that only the linear basis is 
used in the MLS approximation to obtain the MLPG results shown in Figure
5.25.

5.5.3 Comparison of convergence 

For comparison between methods, an intensive numerical study has been 
carried. The convergence curves of LRPIM, MLPG, RPIM, EFG and FEM 
computed for the same cantilever beam under exactly the same conditions,
and are plotted together in Figure 5.26. The same results for RPIM, EFG and
FEM have already been presented in Sub-section 4.5.3. From Figure 5.26,
the following remarks can be made: 

a) Both the convergence rates and the accuracies of LRPIM and MLPG
are much better than those of FEM using bi-linear elements.
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Figure 5.25. Numerical convergence of MLPG in error er e of energy norm. R is the
convergence rate computed by linear regression. 

Figure 5.26. Comparison of convergence curves of LRPIM, MLPG, RPIM, EFG and bi-f
linear FEM in error er e of energy norm. R is the convergence rate. 
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b) The convergence rate of MLPG is slightly better than that of LRPIM.
In addition, the convergence rate of MLPG is better than that of EFG
and their accuracies are very close. 

c) Both accuracy and convergence rate of LRPIM are slightly worse 
than those of RPIM. In addition, although the convergence rate and
the accuracy of LRPIM are very good, the convergence process of the 
LRPIM slows down at finer nodal distributions.

5.5.4 Comparison of efficiency

A successful numerical method should obtain high accuracy at a lowerd
computational cost. For a fair comparison, both the accuracy in results and 
the cost to get the results are investigated. Regularly distributed 18, 55, 189
and 403 nodes are used to calculate the error against the computation time 
curves for LRPIM, MLPG, RPIM, EFG and bi-linear FEM. These curves are
plotted in Figure 5.27 for easy comparison. In this efficiency study, 2.5i

is used in LRPIM, RPIM, EFG, and MLPG.

Figure 5.27. Comparison of the computational efficiencies of LRPIM, MLPG, RPIM,
EFG and bi-linear FEM in error er e  of energy norm. 

It can be found form Figure 5.27 that
1) The efficiencies of MFree methods are better than that of FEM. 
2) The EFG method shows the best performance. 
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3) LRPIM needs more computational time than MLPG. In other words, 
the efficiency of MLPG is better than that of LRPIM. This is because
of their difference in the interpolations. RPIM shape functions need 
more computation than the MLS shape functions. 

4) The efficiencies of the MFree local Petrov-Galerkin weak-form 
methods (LRPIM and MLPG) are lower than the corresponding
counter-part of the MFree global Galerkin weak-from methods 
(RPIM and EFG). It is because the system matrices in the LRPIM
and MLPG are asymmetric.  There seems to be a trade off between
the efficiency and the use of background mesh.

Note that when the Lagrange multiplier method is used in EFG or MLPG,
their efficiency will drop, as discussed in Section 4.5 and shown in Figure
4.24.

5.6 REMARKS

MFree local weak-form methods, LRPIM and MLPG, are presented in
this chapter. The numerical implementations of both LRPIM and MLPG
discussed.  A computer code is provided. The present code is examined
using numerical examples. LRPIM and MLPG are studied to reveal the 
effects of different parameters, convergence, performances, etc. From these 
studies in this chapter, we can make the following important remarks: 

a) The compatibility of the trial (shape) functions in the whole domain
is not required in MFree local weak-form methods. 

b) For local weak-forms, the global background cells are successfully
avoided. The integration in the MFree local weak-form methods is
performed in a local quadrature domain with simple shapes for
internal nodes.

c) In LRPIM, the shape parameters of MQ-RBF are recommended with
the shape parameters fixed at q=1.03 and c=4.0.

d) When the local quadrature domains used in LRPIM and MLPG are 
large enough ( q 1.5), results obtained are very good, and q=2.0 is
recommended. In order to ensure accurate numerical integration, q

should be divided into some regular sub-partitions, and 2 2 is
recommended.  In each sub-partition, sufficient Gauss quadrature points 
should be used, and 16 (4 4) Gauss points are recommended. 
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e) The accuracy of solutions change with the sizes of the influence
domains i and the results obtained using 2.0 4.0i are very 
good.  We recommend i=2.5.

f) The convergence rates of both the LRPIM and MLPG are very good.
They are all about 1.5. The convergence rate and the efficiency of 
MLPG are slightly better than these of LRPIM.  

Note that these remarks are based on the simple cantilever beam problem,
whose solution is of simple polynomial forms. 

The present MFree local Petrov-Galerkin weak-form methods (e.g.
LRPIM and MLPG) possess the following advantages over their counterpart 
of the MFree global Galerkin weak-form methods (e.g. RPIM and EFG). 

1) No global background integration cells is needed, which is one step
closer to truly meshfree.  

2) The implementation procedure is node based. It is similar to the
methods based on strong-forms, yet possesses high accuracy as long
as the local quadrature domains are sufficiently large. 

However, MFree local weak-form methods possess some disadvantages.  

1) Some parameters need to be determined via numerical tests, as these 
parameters usually do not have theoretical optimum values.

2) The system matrix is usually asymmetric, which affects the
efficiency of the method. 

Much more research work is needed to improve MFree local weak-form
methods, especially in dealing with the integrations for nodes near and on 
the boundaries, and the asymmetry of the discretized system equations. 
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APPENDIX

Appendix 5.1. Major subroutines used in MFree_Local.f90 and their functions

Subroutines Functions Location
Input Input data from the external 

data file
Program 5.3

Qdomain Set quadrature domain for a
field node

Program 5.4

GaussCoefficient  Obtain coefficients of Gauss
points

Program 4.5

DomainGaussPoints Set Gauss points for a
quadrature domain 

Program 5.5

SupportDomain Determine the support domain
for a quadrature point

Program 4.7

RPIM_ShapeFunc_2D
(or MLS_ShapeFunc_2D)

Compute shape functions and 
their derivatives of an 
interpolation point 

Program 3.1
(Program 3.9) 

TestFunc Compute the cubic spline
weight function

Program 5.6

Integration_BCQuQi Compute boundary
integrations on qu and qi

Program 5.7

Integration_BCQt Compute boundary integration
on qt

Program 5.8

EssentialBC Enforce essential boundary
conditions

Program 5.9

SolverBand Solve system equations  Program 4.12
GetDisplacement Obtain the actual

displacements using the RPIM 
or the MLS shape functions 

Program 5.10

GetNodeStress Retrieve the strain and stress
for field nodes

Program 5.11

Output Output results Program 5.12
TotalGaussPoints Set Gauss points for global

cells
Program 5.13

GetEnergyError Compute error in energy norm Program 5.14
GetInvasy Obtain the inversion of a

matrix
Program 4.14

Dobmax Compute multiplication of
two matrices

Program 5.15
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Appendix 5.2. The global variables used in MFree_Global.f90

Variable Type Usage   Function

numnode Integer Input Number of field nodes
x(nx, numnode) Long

real
Input Coordinates x and y for all field

nodes: x(1, i)=x= i; x(2, i)=y= i

xc(nx, 4) Long
real

Work
array

Coordinates x and y for a 
rectangular quadrature domain:
xc(1,i)=x= i; xc(2,i)=y= i

ngx,ngy Integer Input Number of sub-partitions for a
quadrature domain in x and y
directions

nquado Integer Input Number of Gauss points used in 
one dimension in a partition.  

npEBCnum, Integer Input Number of field nodes with
essential boundary conditions

npEBC(3,100),
pEBC(nx,100)

Integer
long real 

Input Essential boundary condition. 

npNBCnum, Integer Input Number of field nodes with
natural boundary conditions

npNBC(3,100),
pNBC(nx,100)

Integer
long real

Input Natural boundary condition

alfs Long
real

Input Dimensionless sizes of support 
(influence) domains

Ds(nx, numnode) Long
real

Work 
array

The size of the influence domain:
ds(1,i)=dsxid , ds(2,i)=dsyid

ndex Integer Input Number of field nodes in the
local domain 

Ph(10, ndex) Long
real

Output Shape functions and their
derivatives:

Ak(2*numnode,
2*numnode)

Long
real

Work 
array

Global stiffness matrix

Force(2*numnode) Long
real

Work 
array

Global force vector

disp(2*numnode) Long
real

Work 
array

Displacement vector:
disp(2*i-1)=ui; disp(2*i-1)=vi

Stress(3, numnode) Long 
real

Work
array

The array to store the stress 
components for all field nodes



5. Meshfree methods based on local weak-forms 283

Appendix 5.3. Dummy arguments used in the subroutine Qdomain

Variable Type Usage   Function

rqx, rqy Long real Input Sizes of the quadrature domain  

xn,yn Long real Input Coordinates of the field node considered 

xm(4) Long real  Input Geometrical description of the global
boundary (designed for a rectangular
domain): xm(1)=x= min; xm(2)=x= max,
xm(3)=y= max; xm(4)=y= min

xc(nx, 4) Long real  Output Coordinates x andx y for a rectangular 
quadrature domain:
xc(1,i)=x= i; xc(2,i)=y= i

Appendix 5.4 Dummy arguments used in the subroutine DomainGaussPoints 

Variable Type Usage   Function

xc(nx, 4) Long real Input Coordinates x and y for a
rectangular quadrature domain: 
xc(1,i)=x= i; xc(2,i)=y= i

Gauss(nx,nquado) Long real Input Coefficients of Gauss point 
nquado Integer Input Number of Gauss points used in 1D

in the domain considered. For a 
rectangular partition, total Gauss 
points is nquado nquado.

numgauss Integer Input Total number of Gauss points for a 
domain. It is nquado nquado.

nxc Integer Input nxc=4 for a rectangular quadrature
domain 

gs(4, numgauss) Integer Output Gauss points for a cell: 
gs(1,i): x for Gauss point i;
gs(2,i): y for Gauss point i;
gs(3,i): Gauss weighting factor;
gs(4,i): Jacobian value for this cell
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Appendix 5.5. Dummy arguments used in the subroutine Integration_BCQuQi

Variable Type Usage   Function

nod Integer Input ID of the field node considered 
numnode Integer Input Total number of field nodes 
x(nx, numnode) Long real  Input Coordinates x and y for all field

nodes. x(1,i)=x= i; x(2,i)=y= i

xc(nx, 4) Long real  Output Coordinates x and y for a 
rectangular quadrature domain:
xc(1,i)=x= i; xc(2,i)=y= i

nquado Integer Input Number of Gauss points used in
the domain considered.

xspace,yspace Long real Input Sizes of the quadrature domain
(e.g. rqx, rqy )

xm(4) Long real  Input Geometrical description of the
global boundary (designed for a
rectangular domain):  
xm(1)=x= min; xm(2)=x= max,
xm(3)=y= max; xm(4)=y= min

Ds(nx, numnode) Long real  Input The size of the influence domain. 
ds(1,i)=dsxid , ds(2,i)=dsyid

alfs Long real  Input Dimensionless coefficient for
support (influence) domain

mk Integer Input Maxium number of rows of Ak
Ak Long real Input 

output
Global stiffness matrix

Appendix 5.6. Dummy arguments used in the subroutine Integration_BCQt 

Variable Type Usage   Function

nod Integer Input ID of the field node considered 
numnode Integer Input Total number of field nodes
x(nx, numnode) Long real  Input Coordinates x and y
xc(nx, 4) Long real  Output Coordinates x and y for a 

rectangular quadrature domain
nquado Integer Input Number of Gauss points used in the

domain considered.
xspace,yspace Long real Input Sizes of the quadrature domain (e.g. 

rqx, rqy )
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xm(4) Long real  Input Geometrical description of the
global boundary

Xcent(2) Long real  Input x and y coordinates for the field
node considered

f(2)ff Long real output Nodal force vector

Appendix 5.7. Dummy arguments used in the subroutine EssentialBC 

Variable Type Usage   Function

numnode Integer Input Total number of field nodes 
alfs Long real  Input Dimensionless size for a 

support (influence) domain
Ds(nx, numnode) Long real  Input The size of the influence

domain
npEBCnum Integer Input Number of field nodes with

essential boundary conditions
npEBC(3,100),
pEBC(nx,100)

Integer, 
long real 

Input Essential boundary condition 

mk Integer Input Maxium number of rows of Ak
Ak(2*numnode,

2*numnode)
Long real Input and 

output
Global stiffness matrix

Fk(2*numnode) Long real Input and 
output

Global force vector

Appendix 5.8. Dummy arguments used in the subroutine GetNodeStress 

Variable Type Usage   Function

nx Integer Input nx=2 for 2-D problem
numnode Integer Input Total number of field nodes 
x(nx, numnode) Long real  Input Coordinates x and y for

all field nodes
alfs Long real  Input Dimensionless size for the

support (influence) domain 
Ds(nx, numnode) Long real  Input The size of the influence

domain
U2(2, numnode) Long real Input Displacement vector
Stress Long real  Output Stress matrix 
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Appendix 5.9. The data file:Local_Input55.dat used in MFree_Local.f90. A total of 
55 regular field nodes is used 

*L,H,E,v,P,
48. 12. 3.e7 .3 1000.
*numnode
55
* Global BC: Xmin,Xmax,Ymax, Ymin
0. 48. 6. -6.
* Nodal spacing: Dcx,Dcy
4.8 3.0
* Local quadrature domain: Aqx,Aqy
2. 2. 
* Num. of sub-partitions: Nsx,Nsy
2 2
*Influence domain
3.
*Num. of Gauss Points
4
*RBF shape parameters: nRBF ALFc, dc and q
1 1.0 3.0 1.03
*Num. of Basis
3
*Field nodes: x[xi,yi]

   1 0.0000 6.0000
2 0.0000 3.0000
3 0.0000 0.0000

   4 0.0000     -3.0000
5 0.0000     -6.0000
6      4.8000 6.0000

   7      4.8000 3.0000
8      4.8000 0.0000
9      4.8000     -3.0000

  10      4.8000     -6.0000 
  11 9.6000 6.0000
  12 9.6000 3.0000
  13 9.6000 0.0000
  14 9.6000     -3.0000
  15 9.6000     -6.0000
  16     14.4000 6.0000
  17     14.4000 3.0000
  18     14.4000 0.0000
  19     14.4000     -3.0000
  20     14.4000     -6.0000 

21     19.2000 6.0000
22     19.2000 3.0000
23     19.2000 0.0000
24     19.2000     -3.0000
25     19.2000     -6.0000
26 24.0000 6.0000
27 24.0000 3.0000
28 24.0000 0.0000

29 24.0000     -3.0000
  30     24.0000     -6.0000 

31 28.8000 6.0000
32 28.8000 3.0000
33 28.8000 0.0000
34 28.8000     -3.0000
35 28.8000     -6.0000
36 33.6000 6.0000
37 33.6000 3.0000

  38     33.6000      0.0000 
39 33.6000     -3.0000

  40 33.6000     -6.0000
  41 38.4000 6.0000
  42 38.4000 3.0000
  43 38.4000 0.0000
  44 38.4000     -3.0000
  45 38.4000     -6.0000
  46     43.2000 6.0000
  47     43.2000 3.0000
  48     43.2000 0.0000
  49     43.2000     -3.0000
  50     43.2000     -6.0000
  51     48.0000      6.0000 

52     48.0000 3.0000
  53     48.0000 0.0000
  54     48.0000     -3.0000
  55     48.0000     -6.0000

*Num. of Essential BC: numFBC
5
*Node,iUx,iUy,Ux,Uy
  1    1   1 0.000000000000E+00 -0.599999982119E-04

2    1   1  -0.718749978580E-05 -0.149999995530E-04
  3    1   1   0.000000000000E+00  0.000000000000E+00 
  4    1   1 0.718749978580E-05 -0.149999995530E-04
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   5    1   1   0.000000000000E+00 -0.599999982119E-04 
*Num. of concentated loading: numFBC
5
*Node,iTx,iTy,Tx,Ty
51 1 1 0 0.0   52 1 1 0. 0.0
53 1 1 0. 0.0   54 1 1 0. 0.0
55 1 1 0. 0.0
* Num. of nodes and cells(for en. error)
55 40
*Nodes for cells: xc[ ]

    1 0.0000 6.0000
2 0.0000 3.0000
3 0.0000 0.0000

    4 0.0000     -3.0000
5 0.0000     -6.0000
6      4.8000 6.0000

    7      4.8000 3.0000
8      4.8000 0.0000
9      4.8000     -3.0000

   10      4.8000     -6.0000
   11 9.6000 6.0000
   12 9.6000 3.0000
   13 9.6000 0.0000
   14 9.6000     -3.0000
   15 9.6000     -6.0000
   16     14.4000 6.0000
   17     14.4000 3.0000
   18     14.4000 0.0000
   19     14.4000     -3.0000
   20     14.4000     -6.0000 

21     19.2000 6.0000
22     19.2000 3.0000
23     19.2000 0.0000
24     19.2000     -3.0000
25     19.2000     -6.0000
26 24.0000 6.0000
27 24.0000 3.0000

   28     24.0000      0.0000 

29 24.0000     -3.0000
30 24.0000     -6.0000
31 28.8000 6.0000
32 28.8000 3.0000
33 28.8000 0.0000
34 28.8000     -3.0000
35 28.8000     -6.0000
36 33.6000 6.0000
37 33.6000 3.0000

   38     33.6000      0.0000 
39 33.6000     -3.0000

   40     33.6000     -6.0000 
   41 38.4000 6.0000
   42 38.4000 3.0000
   43 38.4000 0.0000
   44 38.4000     -3.0000
   45 38.4000     -6.0000
   46     43.2000 6.0000
   47     43.2000 3.0000
   48     43.2000      0.0000 
   49     43.2000     -3.0000
   50     43.2000     -6.0000
   51     48.0000 6.0000
   52     48.0000 3.0000
   53     48.0000 0.0000
   54     48.0000     -3.0000
   55     48.0000     -6.0000

*No. of nodes in cells[1,2,3,4]
    1   1 2   7 6
    2   2 3 8   7 

3 3   4 9 8
    4   4 5  10 9

5 6   7  12  11 
6   7 8  13  12

    7 8 9  14  13
8 9  10  15  14 
9  11  12  17  16

   10  12  13  18  17 
   11  13  14  19  18
   12  14  15 20  19
   13  16  17 22 21
   14  17  18 23 22
   15  18  19 24 23
   16  19 20 25 24
   17 21 22 27 26
   18 22 23 28 27
   19 23 24 29 28

20 24 25 30 29

21 26 27 32 31
22 27 28 33 32
23 28 29 34 33
24 29 30 35 34
25 31 32 37 36

   26 32 33 38 37
27 33 34 39 38

   28 34 35  40 39
29 36 37  42  41
30 37 38  43  42
31 38 39  44  43
32 39  40  45  44
33  41  42  47  46
34  42  43  48  47
35  43  44  49  48
36  44  45 50  49
37  46  47 52 51
38  47  48 53 52
39  48  49 54 53

   40  49 50 55 54
*END of data file 
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Appendix 5.10. A output sample for displacements obtained using MQ LRPIM

No. of field nodes u v

1
2
3
4
5
6
7
8
9
10
……
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0.56898E-13
-0.71875E-05
-0.19977E-13
0.71875E-05
0.23840E-13
0.31081E-03
0.15043E-03
-0.11083E-13
-0.15043E-03
-0.31081E-03
……
0.13105E-02
0.64903E-03
0.29249E-14
-0.64903E-03
-0.13105E-02
0.14157E-02
0.70169E-03
0.27869E-14
-0.70169E-03
-0.14157E-02
0.14905E-02
0.73916E-03
0.28311E-14
-0.73916E-03
-0.14905E-02
0.15364E-02
0.76229E-03
0.28175E-14
-0.76229E-03
-0.15364E-02
0.15513E-02
0.76992E-03
0.28155E-14
-0.76992E-03
-0.15513E-02

 -0.60000E-04
 -0.15000E-04
0.11007E-13

 -0.15000E-04
 -0.60000E-04
 -0.20687E-03
 -0.16341E-03
 -0.15038E-03
 -0.16341E-03
 -0.20687E-03
……
-0.38899E-02
 -0.38727E-02
 -0.38668E-02
 -0.38727E-02
 -0.38899E-02
 -0.50129E-02
 -0.50000E-02
 -0.49955E-02
 -0.50000E-02
 -0.50129E-02
 -0.62077E-02
 -0.61990E-02
 -0.61960E-02
 -0.61990E-02
 -0.62077E-02
 -0.74499E-02
 -0.74455E-02
 -0.74440E-02
 -0.74455E-02
 -0.74499E-02
 -0.87164E-02
 -0.87171E-02
 -0.87169E-02
 -0.87171E-02
 -0.87164E-02

*The parameters used are  
1.0,c 1.03q  and 3.0idi for MQ RBF;
4.8,cxdc 3.0,cydc  and 3.0s  for the local influence domains;

2.0q and
2 2g gng 2gn

for local quadrature domains;.  
The linear polynomial terms are added in MQ RPIM;
The cubic spline function is used as the test function for the local
Petrov_galerkin weak form. 
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Appendix 5.11.  A output sample for stress obtained using MQ LRPIM  

No. of field
nodes

xx yy xy

……
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
……

……
0.10836E+04
0.54814E+03
0.63871E-08
-0.54814E+03
-0.10836E+04
0.89328E+03
0.45566E+03
-0.34138E-08
-0.45566E+03
-0.89328E+03
0.71423E+03
0.36336E+03
0.16079E-08
-0.36336E+03
-0.71423E+03
0.53176E+03
0.27039E+03
-0.54533E-09
-0.27039E+03
-0.53176E+03
0.35854E+03
0.18269E+03
0.17923E-09
-0.18269E+03
-0.35854E+03
0.15814E+03
0.75874E+02
-0.68326E-10
-0.75874E+02
-0.15814E+03
……

……
-0.52377E+02
0.10130E+02
0.79569E-08
-0.10130E+02
0.52377E+02
-0.48896E+02
0.24844E+01
-0.16003E-08
-0.24844E+01
0.48896E+02
-0.36210E+02
0.50542E+01
0.45941E-09
-0.50542E+01
0.36210E+02
-0.28593E+02
0.25663E+01
0.11596E-10
-0.25663E+01
0.28593E+02
-0.17493E+02
0.15669E+01
-0.52410E-10
-0.15669E+01
0.17493E+02
-0.17753E+02
-0.36322E+01
0.85947E-10
0.36322E+01
0.17753E+02

……

……
 -0.69790E+02
 -0.95905E+02
 -0.14641E+03
 -0.95905E+02
 -0.69790E+02
 -0.68019E+02
 -0.90400E+02
 -0.13671E+03
 -0.90400E+02
 -0.68019E+02
 -0.66052E+02
 -0.89572E+02
 -0.13599E+03
 -0.89572E+02
 -0.66052E+02
 -0.65551E+02
 -0.87817E+02
 -0.13328E+03
 -0.87817E+02
 -0.65551E+02
 -0.64554E+02
 -0.86972E+02
 -0.13191E+03
 -0.86972E+02
 -0.64554E+02
 -0.66139E+02
 -0.88991E+02
 -0.13401E+03
 -0.88991E+02
 -0.66139E+02
……

Energy error:= 0.2419E+00

*The parameters used are 
1.0,c 1.03q  and 3.0idi for MQ RBF; 
4.8,cxdc 3.0,cydc and 3.0s  for the local influence domains;

2.0q  and 2 2g gng 2gn for local quadrature domains;. 
The linear polynomial terms are added in MQ RPIM;
The cubic spline function is used as the test function for the local
Petrov_galerkin weak form. 
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Appendix 5.12. A output sample for displacements obtained using MLPG 

No. of field nodes u v
1
2
3
4
5
6
7
8
9
10
……
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0.34272E-15
 -0.71875E-05
 -0.39980E-16
0.71875E-05

 -0.46273E-15
0.29397E-03
0.14080E-03
0.22333E-16

 -0.14080E-03
 -0.29397E-03
……
0.13229E-02
0.65460E-03

 -0.90234E-17
 -0.65460E-03
 -0.13229E-02
0.14346E-02
0.71048E-03

 -0.10666E-16
 -0.71048E-03
 -0.14346E-02
0.15146E-02
0.75033E-03

 -0.12135E-16
 -0.75033E-03
 -0.15146E-02
0.15619E-02
0.77406E-03

 -0.12619E-16
 -0.77406E-03
 -0.15619E-02
0.15784E-02
0.78212E-03

 -0.18770E-16
 -0.78212E-03
 -0.15784E-02

 -0.60000E-04
 -0.15000E-04
0.68236E-15

 -0.15000E-04
 -0.60000E-04
 -0.20657E-03
 -0.16710E-03
 -0.15389E-03
 -0.16710E-03
 -0.20657E-03
……
 -0.38436E-02
 -0.38257E-02
 -0.38197E-02
 -0.38257E-02
 -0.38436E-02
 -0.49791E-02
 -0.49657E-02
 -0.49612E-02
 -0.49657E-02
 -0.49791E-02
 -0.61915E-02
 -0.61826E-02
 -0.61796E-02
 -0.61826E-02
 -0.61915E-02
 -0.74550E-02
 -0.74506E-02
 -0.74491E-02
 -0.74506E-02
 -0.74550E-02
 -0.87437E-02
 -0.87439E-02
 -0.87438E-02
 -0.87439E-02
 -0.87437E-02

*The parameters used are 
4.8,cxdc 3.0,cydc  and 3.0s  for the local influence domains;

1.5q  and 2 2g gng 2gn  for local quadrature domains;.  
The linear polynomial basis and the cubic spline weight function are used in 

the MLS approximation;
The cubic spline function is as the test function for the local weak form.
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Appendix 5.13. A output sample for stress obtained using MLPG

No. of field 
nodes

xx yy xy

……
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
……

……
0.11874E+04
0.59427E+03

 -0.25722E-10
 -0.59427E+03
 -0.11874E+04
0.99634E+03
0.49745E+03
0.31903E-11

 -0.49745E+03
 -0.99634E+03
0.79699E+03
0.39835E+03

 -0.20520E-10
 -0.39835E+03
 -0.79699E+03
0.59791E+03
0.29898E+03

 -0.56843E-11
 -0.29898E+03
 -0.59791E+03
0.39737E+03
0.19772E+03

 -0.10289E-10
 -0.19772E+03
 -0.39737E+03
0.19294E+03
0.97666E+02
0.79581E-12

 -0.97666E+02
 -0.19294E+03
……

……
0.68411E+01

 -0.78572E+00
 -0.10118E-10
0.78572E+00

 -0.68411E+01
0.62591E+01

 -0.23578E+00
 -0.27569E-11
0.23578E+00

 -0.62591E+01
0.48532E+01

 -0.34690E+00
0.63380E-11
0.34690E+00

 -0.48532E+01
0.35348E+01

 -0.27567E+00
 -0.97771E-11
0.27567E+00

 -0.35348E+01
0.24781E+01

 -0.17138E+00
0.14779E-11
0.17138E+00

 -0.24781E+01
 -0.39955E-01
 -0.45676E+00
0.86402E-11
0.45676E+00
0.39955E-01

……

……
 -0.18401E+02
 -0.88914E+02
 -0.12424E+03
 -0.88914E+02
 -0.18401E+02
 -0.16038E+02
 -0.86858E+02
 -0.12228E+03
 -0.86858E+02
 -0.16038E+02
 -0.18323E+02
 -0.90428E+02
 -0.12649E+03
 -0.90428E+02
 -0.18323E+02
 -0.16586E+02
 -0.88766E+02
 -0.12486E+03
 -0.88766E+02
 -0.16586E+02
 -0.19015E+02
 -0.92160E+02
 -0.12879E+03
 -0.92160E+02
 -0.19015E+02
 -0.16144E+02
 -0.88943E+02
 -0.12531E+03
 -0.88943E+02
 -0.16144E+02
……

Energy error:= 0.5573E-01

*The parameters are  
4.8,cxdc 3.0,cydc  and 3.0s for the local influence domains;

1.5q  and 2 2g gng 2gn for local quadrature domains;. 
The linear polynomial basis and the cubic spline weight function are used in

the MLS approximation;
The cubic spline function is as the test function for the local weak form.
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COMPUTER PROGRAMS

Program  5.1. The include file VariablesLocal.h

        parameter(nx=2,ng=4,ndim=600)
        common/para/xlength,ylength,p,young,anu,aimo
        common/rpim/ALFC,DC,Q,nRBF
        common/basis/mbasis
        common/localdomains/dcx,dcy,dex,dey,ngx,ngy
        dimension Dmat(3,3),x(nx,ndim),conn(ng,ndim),xBK(nx,ndim)
        dimension npEBC(3,100),pEBC(2,100)
        dimension nbc(100),ibcn(2,100),bcn(2,100),xnbcl(2,100)
        dimension nv(ndim),gpos(nx),gauss(nx,20),xm(4)
        dimension phi(10,ndim),ds(2,ndim)
        dimension gss(4,ndim), gst(4,10*ndim)
        dimension ak(2*ndim,2*ndim),fk(2*ndim)
        dimension xc(2,4),xcc(2,4),dsi(2),xcent(2),f2(2)
        dimension fbcl(2,4)
        dimension u2(2,ndim),u22(2,ndim),displ(2*ndim),stress(3,ndim)
        dimension bb(3,2),bbt(2,3),ww(3,2),ek(2,2),bd(2,3)

Program  5.2. The main program of MFree_local.f90
!----------------------------------------------------------------------------
! main program--2D FORTRAN 90 CODE-MFree local weak-form methods
! Using rectangular support domain and rectangular background cells
! input file   -- input.dat
! output file  -- result.dat
! include file -- variablelocal.h
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z)
include 'variableslocal.h'
ir=4

       open(ir,file=' Local_Input55.dat ',status='old')
       open(2,file='result.dat',status='unknown')
       maxmatrix=2*ndim

! ************** Input boundaries / parameters
       call Input(ir,x,ndim,nx,numnode,xm, & 
                  nquado,Dmat,ALFs,numcell,numq,xBK,conn,&
                  npEBCnum,npEBC,pEBC,npNBCnum,nbc,ibcn,bcn)

! ************** Determine domains of influence--uniform nodal spacing
       xspace=dcx*dex

yspace=dcy*dey
       xstep=xspace/dex

ystep=yspace/dey
       do j=1,numnode
          ds(1,j)=alfs*xstep
          ds(2,j)=alfs*ystep

enddo
! ************* Coefficients of Gauss points,Weights and Jacobian for each cell 
       call GaussCoefficient(nquado,gauss)
       eps=1.e-16
       b=-100*eps
       do iak=1,2*numnode
          fk(iak)=0.0
          do jak=1,2*numnode
             ak(iak,jak)=0.
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enddo
enddo

! ************* Loop for field nodes
       do 100 nod=1,numnode
          write(*,*)'Field Node=',nod
          xn=x(1,nod)

yn=x(2,nod)
          xss=xspace

yss=yspace
          numgauss=nquado*nquado
          call QDomain(xss,yss,xn,yn,xm,xc) ! Local quadrature domain 
          nxc=ng         ! for the rectangular domain
! ************* Local quadrature domain is divided to sub-paritions
          xgs=(xc(1,4)-xc(1,1))/ngx
          ygs=(xc(2,1)-xc(2,2))/ngy
          x0=xc(1,1)
          do 60 iix=1,ngx
             xx=x0+(iix-1)*xgs

y0=xc(2,1)
             do 60 jjy=1,ngy

yy=y0-(jjy-1)*ygs
                xcc(1,1)=xx
                xcc(2,1)=yy
                xcc(1,2)=xx
                xcc(2,2)=yy-ygs
                xcc(1,3)=xx+xgs
                xcc(2,3)=yy-ygs
                xcc(1,4)=xx+xgs
                xcc(2,4)=yy
                call DomainGaussPoints(xcc,gauss,gss,nx,ng,nxc,nquado,numgauss)

! ************* Loop quadrature points
                numgauss=nquado*nquado
                do 30 ie=1,numgauss

gpos(1)=gss(1,ie)
gpos(2)=gss(2,ie)

                   weight=gss(3,ie)
                   ajac=gss(4,ie)
                    ndex=0
                   call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
                   do kph=1,ndex
                         do ii=1,10

phi(ii,kph)=0.
                      enddo 
                   enddo 
                   dsi(1)=xspace
                   dsi(2)=yspace
                   xcent(1)=xn
                   xcent(2)=yn
                   call TestFunc(dsi,xcent,gpos,w,wx,wy)
                   Call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)
ik1=nod*2-1
ik2=nod*2

! ************* Get Stiffness Matrix
                   do ine=1,ndex
                      n1=2*nv(ine)-1
                      n2=2*nv(ine)
                      do ii=1,3
                         do jj=1,2
                            bbt(jj,ii)=0.
                            bb(ii,jj)=0.
                            ww(ii,jj)=0.
                         enddo
                      enddo 
                      bb(1,1)=phi(2,ine)
                      bb(2,2)=phi(3,ine)
                      bb(3,1)=phi(3,ine)
                      bb(3,2)=phi(2,ine)
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                      ww(1,1)=wx
                      ww(2,2)=wy
                      ww(3,1)=wy
                      ww(3,2)=wx
                      do ii=1,3
                         do jj=1,2
                            bbt(jj,ii)=ww(ii,jj)
                         enddo
                      enddo
                      call DOBMAX(bbt,2,3,2,dmat,3,3,bd,2)
                      call dobmax(bd,2,3,2,bb,2,3,ek,2)
                      ak(ik1,n1)=ak(ik1,n1)+weight*ajac*ek(1,1)
                      ak(ik1,n2)=ak(ik1,n2)+weight*ajac*ek(1,2)
                      ak(ik2,n1)=ak(ik2,n1)+weight*ajac*ek(2,1)
                      ak(ik2,n2)=ak(ik2,n2)+weight*ajac*ek(2,2)

enddo
 30             continue  !End of integration for local quadrature domain

! ************* B.C. Integrations
                NNQ=nquado
                call Integration_BCQt(nx,ng,xcc,f2,x,numnode,NNQ,&
                                     xm,xss,yss,xcent)
                fk(2*nod-1)=fk(2*nod-1)+f2(1)
                fk(2*nod)=fk(2*nod)+f2(2)
                call Integration_BCQuQi(nx,ng,nod,xcc,x,numnode,nNQ,dmat,xm,xss&

,YSS,ak,maxmatrix,alfs,ds)
 60       continue
 100   continue !   End of loop for field nodes

! ************* Boundary conditions: essential
       call EssentialBC(x,numnode,ak,fk,maxmatrix,ds,alfs,npEBCnum,npEBC,pEBC)

! ************* Solve equation to get the solutions
       ep=1.0e-20
       neq=2*numnode
       write(*,*)'Solve equation...'
       call SolverBand(ak,fk,neq,maxmatrix)
       do kk=1,numnode
          u2(1,kk)=fk(2*kk-1)
          u2(2,kk)=fk(2*kk)

enddo
! ************* get the final displacement
       call GetDisplacement(x,ds,u2,displ,alfs,nx,numnode)
       do kk=1,numnode
          u22(1,kk)=displ(2*kk-1)
          u22(2,kk)=displ(2*kk)
       enddo

! ************* Get stress 
       call GetNodeStress(x,ds,Dmat,u2,Stress,alfs,nx,numnode)
       call Output(x,numnode,u2,u22,Stress) ! ouput results 

! ************* Get energy error using global BK cells 
       write(*,*)'Computing global energy error...' 
       ngst=numcell*nquado**2
       call TotalGaussPoints(xBK,conn,gauss,gst,nx,ng,&
                             numq,numcell,nquado,ngst)
       call GetEnergyError(nx,ng,xBK,numq,u2,dmat,ds,&
                            ngst,gst,alfs)

       write(*,*)'THE END' 
STOP
END

Program  5.3. Source code of Subroutine Input

   SUBROUTINE Input(ir,x,numd,nx,numnode,xm,nquado,Dmat,ALFs,numcell,numq,&
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                    xc,conn,npEBCnum,npEBC,pEBC,npNBCnum,nNBC,npNBC,pNBC)
!----------------------------------------------------------------------------
! This subroutine is to input data from data file
! input—-ir
! output—all other variables
!---------------------------------------------------------------------------

       implicit real*8 (a-h,o-z) 
       common/para/xlength,ylength,p,young,anu,aimo
       COMMON/rpim/ALFC,DC,Q,nRBF
       common/basis/mbasis 
       common/localdomains/dcx,dcy,dex,dey,ngx,ngy

CHARACTER*50 NAM
       dimension npEBC(3,100),pEBC(2,100) 
       dimension nNBC(100),npNBC(2,100),pNBC(2,100) 
       dimension x(nx,numd),Dmat(3,3),xm(4)
       dimension conn(4,numd),xc(nx,numd)
       read(4,10)nam
       read(ir,*) xlength,ylength,young,anu,p
       read(ir,10)nam
       read(ir,*)numnode
          read(ir,10)nam
       read(ir,*)xm(1),xm(2),xm(3),xm(4)
          read(ir,10)nam
       read(ir,*)dcx,dcy
        read(ir,10)nam
       read(ir,*)dex,dey
        read(ir,10)nam
       read(ir,*)ngx,ngy
       read(ir,10)nam
       read(ir,*)ALFs
       read(ir,10)nam
       read(ir,*)nquado
       read(ir,10)nam
       READ(ir,*)nRBF, alfc,dc,q 
       read(ir,10)nam
       READ(ir,*)mbasis
       read(ir,10)nam
       do i=1,numnode
          read(ir,*)j,x(1,i),x(2,i)

enddo
       read(ir,10)nam
       read(ir,*)npEBCnum
       read(ir,10)nam
       do i=1,npEBCnum
          read(ir,*)npEBC(1,i),npEBC(2,i),npEBC(3,i),pEBC(1,i),pEBC(2,i)
       enddo 
       read(ir,10)nam
       read(ir,*)npNBCnum
       read(ir,10)nam
       do i=1,npNBCnum
          read(ir,*)nNBC(i),npNBC(1,i),npNBC(2,i),pNBC(1,i),pNBC(2,i)

enddo
       read(ir,10)nam
       read(ir,*)numq,numcell
       read(ir,10)nam
       do i=1,numq
          read(ir,*)j,xc(1,i),xc(2,i)

enddo
       read(ir,10)nam
       do j=1,numcell
          read(ir,*)i,conn(1,j),conn(2,j),conn(3,j),conn(4,j)
       enddo 

! ************* Compute material matrix D[] for the plane stress 
you=young/(1.-anu*anu)

       aimo=(1./12.)*ylength**3
       Dmat(1,1)=you
       Dmat(1,2)=anu*you
       Dmat(1,3)=0.
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       Dmat(2,1)=anu*you
       Dmat(2,2)=you
       Dmat(2,3)=0.
       Dmat(3,1)=0.
       Dmat(3,2)=0.
       Dmat(3,3)=0.5*(1.-anu)*you
 10    format(a50)

RETURN
END

Program 5.4. Source code of Subroutine Qdomain

  SUBROUTINE QDomain(xs,ys,x,y,xm,xc)
!----------------------------------------------------------------------------
! This subroutine is to construct local quadrature domain for a field node 
! input—xs, ys: sizes of quadrature domain;
!       x,y: coordinates of the field node;
!       xm(4): (xmin, xmax,ymax,ymin) for the global boundary;
! output-- xc(2,4): coordinates of points for the quadrature domain;!
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z)
       common/para/xlength,ylength,p,young,anu,aimo
       common/node/numnode,numcell,dex,dey,nquado
       dimension xm(4),xc(2,4)
       xl=x-xs 
       xr=x+xs

yu=y+ys
yd=y-ys
if(xl.le.xm(1)) xl=xm(1)
if(xr.ge.xm(2)) xr=xm(2) 
if(yu.ge.xm(3)) yu=xm(3)
if(yd.le.xm(4)) yd=xm(4)

       xc(1,1)=xl
       xc(2,1)=yu
       xc(1,2)=xl
       xc(2,2)=yd
       xc(1,3)=xr
       xc(2,3)=yd
       xc(1,4)=xr
       xc(2,4)=yu
RETURN
END

Program 5.5. Source code of Subroutine DomainGaussPoints

  SUBROUTINE DomainGaussPoints(xc,gauss,gs,nx,ng,nxc,k,numgauss)
!----------------------------------------------------------------------------
! This subroutine is to set up Gauss points,Jacobian and weights
!        for a the local quadrature domaincell
! input--nxc: number of vertexes of the local quadrature domain, nxc=4; 
!        numgauss: number of Gauss points in the domain;
!        k: number of Gauss points used, numgauss=k*k for 2-D domain;
!        xc(nx,nxc): coordinates of points for background cells; 
! gauss(2,k): coefficients of Gauss points;
!        nx,ng: parameters are defined in file parameter.h.
! output--gs(ng,numgauss): coordinate of the Gauss points, weight and Jacobian
!---------------------------------------------------------------------------

implicit real*8 (a-h,o-z)
       dimension xc(nx,nxc),gauss(nx,k)
       dimension gs(ng,numgauss),psiJ(ng),etaJ(ng),xe(ng),ye(ng),aN(ng)
       dimension aNJpsi(ng),aNJeta(ng)
       index=0 
       psiJ(1)=-1.
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psiJ(2)=1.
psiJ(3)=1.
psiJ(4)=-1.

       etaJ(1)=-1.
       etaJ(2)=-1.
       etaJ(3)=1.
       etaJ(4)=1.

l=k
       do j=1,ng
          xe(j)=xc(1,j)

ye(j)=xc(2,j)
       enddo
       do 80 i=1,l
          do 80 j=1,l

index=index+1
             eta=gauss(1,i)
             psi=gauss(1,j)
             do ik=1,ng
                aN(ik)=.25*(1.+psi*psiJ(ik))*(1.+eta*etaJ(ik))
                aNJpsi(ik)=.25*psiJ(ik)*(1.+eta*etaJ(ik))
                aNJeta(ik)=.25*etaJ(ik)*(1.+psi*psiJ(ik))

enddo
             xpsi=0.

ypsi=0.
             xeta=0.

yeta=0.
             do jk=1,ng
                xpsi=xpsi+aNJpsi(jk)*xe(jk)

ypsi=ypsi+aNJpsi(jk)*ye(jk)
                xeta=xeta+aNJeta(jk)*xe(jk)
                yeta=yeta+aNJeta(jk)*ye(jk)

enddo
             ajcob=xpsi*yeta-xeta*ypsi
             xq=0.
             yq=0.
             do kk=1,ng
                xq=xq+aN(kk)*xe(kk)

yq=yq+aN(kk)*ye(kk)
enddo
gs(1,index)=xq
gs(2,index)=yq
gs(3,index)=gauss(2,i)*gauss(2,j)
gs(4,index)=ajcob

 80    continue
RETURN
END

Program 5.6. Source code of Subroutine TestFunc

   SUBROUTINE TestFunc (dsi,xcent,xg,w,wxx,wyy)
!------------------------------------------------------------------
! Cubic spline test (weight) function
! input—dsi: size of weight domain;
!       xcent: center of the weight domain;
!       xg: coordinate of point considered;
! output—w, wxx,wyy
!------------------------------------------------------------------

       IMPLICIT REAL*8(A-H,O-Z)
       dimension dsi(2),xcent(2)
       dimension xg(2)
       ep=1.e-15
       difx=xg(1)-xcent(1)
       dify=xg(2)-xcent(2)
       if(dabs(difx).le.ep) then
          drdx=0.

else
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          drdx=(difx/dabs(difx))/dsi(1)
end if
if (dabs(dify).le.ep) then

          drdy=0.
else

          drdy=(dify/dabs(dify))/dsi(2)
       end if
       rx=abs(xg(1)-xcent(1))
       ry=abs(xg(2)-xcent(2))
       rx=rx/dsi(1)
       ry=ry/dsi(2)

if (rx.gt.0.5) then 
          wx=(4./3.)-4.*rx+4*rx*rx-(4./3.)*rx**3
          dwx=(-4.+8.*rx-4.*rx*rx)*drdx

else
          wx=(2./3.)-4.*rx*rx+4.*rx**3
          dwx=(-8.*rx+12.*rx*rx)*drdx

endif
if (ry.gt.0.5) then 

          wy=(4./3.)-4.*ry+4*ry*ry-(4./3.)*ry**3
          dwy=(-4.+8.*ry-4.*ry*ry)*drdy

else
          wy=(2./3.)-4.*ry*ry+4.*ry**3
          dwy=(-8.*ry+12.*ry*ry)*drdy
       endif

if(rx.gt.1.) wx=0.
if(ry.gt.1.) wy=0.

       w=wx*wy
       wxx=wy*dwx
       wyy=wx*dwy
RETURN
END

Program 5.7. Source code of Subroutine Integration_BCQuQi

  SUBROUTINE Integration_BCQuQi(nx,ng,nod,xc,x,numnode,nquado,dmat,&
                    xm,xspace,yspace,ak,mk,alfs,ds)
!-----------------------------------------------------------------------
! The subroutine is to compute the integrations on the internal
!        and the essential sub-boundaries;
! input—nx,ng,nod,xc,x,numnode,nquado,dmat,xm,xspace,mk,alfs,ds
! Input & output—ak
!------------------------------------------------------------------------

implicit real*8 (a-h,o-z)
       common/para/xlength,ylength,p,young,anu,aimo
       common/rpim/ALFC,DC,Q,nRBF
       common/basis/mbasis
       dimension x(2,numnode),nv(50),xc(2,4),gauss(2,20) 
       dimension xcent(2),dsi(2),ak(mk,mk),ek(2,2)
       dimension gs(4,100),gpos(2),xm(4),dmat(3,3)
       dimension phi(10, numnode),ds(2,numnode)
       dimension bb(3,2),bn(2,3),bnd(2,3),ebb(2,2),ss(2,2)
        call GaussCoefficient(nquado,gauss)

ik1=2*nod-1
ik2=2*nod

       xcent(1)=x(1,nod)
       xcent(2)=x(2,nod)
       do i=1,2
          do j=1,2
             eK(i,j)=0.
          enddo
       enddo
       dsi(1)=xspace
       dsi(2)=yspace
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! ****************INTEGRATION FOR LEFT B.C. Qu 

      do i=1,2
         do j=1,3
            bn(i,j)=0.
            bb(j,i)=0.
            bnd(i,j)=0.
         enddo 
      enddo 
      ax=0.5*(xc(1,4)-xc(1,1))
      ay=0.5*(xc(2,4)-xc(2,1))
      bx=0.5*(xc(1,4)+xc(1,1))
      by=0.5*(xc(2,4)+xc(2,1))
      do il=1,nquado
         gpos(1)=ax*gauss(1,il)+bx
         gpos(2)=ay*gauss(1,il)+by
         weight=gauss(2,il)
         ajac=0.5*sqrt((xc(1,4)-xc(1,1))**2+(xc(2,4)-xc(2,1))**2)
         call TestFunc(dsi,xcent,gpos,w,wx,wy)
         ndex=0
         call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
         call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)
         do ine=1,ndex
            n1=2*nv(ine)-1
            n2=2*nv(ine)
            do i=1,2
               do j=1,3
                  bn(i,j)=0.
                  bb(j,i)=0.
                  bnd(i,j)=0.

enddo
enddo

            do i=1,2
               do j=1,2
                  eK(i,j)=0.
                  ss(i,j)=0.

enddo
enddo

            bb(1,1)=phi(2,ine)
            bb(2,2)=phi(3,ine)
            bb(3,1)=phi(3,ine)
            bb(3,2)=phi(2,ine)
            bn(1,3)=1.
            bn(2,2)=1.

            IF(XC(2,1).lt.xm(3)) then 
               ss(1,1)=1.
               ss(2,2)=1.

endif
            call DOBMAX(bn,2,3,2,dmat,3,3,bnd,2)
            call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
            call dobmax(ebb,2,2,2,ss,2,2,ek,2)
            ak(ik1,n1)=ak(ik1,n1)-w*weight*ajac*ek(1,1)
            ak(ik1,n2)=ak(ik1,n2)-W*weight*ajac*ek(1,2)
            ak(ik2,n1)=ak(ik2,n1)-W*weight*ajac*ek(2,1)
            ak(ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek(2,2)

enddo
enddo

! ****************INTEGRATION FOR DOWN B.C. Qu 
      do i=1,2
         do j=1,3
            bn(i,j)=0.
            bb(j,i)=0.
            bnd(i,j)=0.
         enddo 
      enddo 
      ax=0.5*(xc(1,2)-xc(1,3))
      ay=0.5*(xc(2,2)-xc(2,3))
      bx=0.5*(xc(1,2)+xc(1,3))
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     by=0.5*(xc(2,2)+xc(2,3))
     do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

        weight=gauss(2,il)
        ajac=0.5*sqrt((xc(1,2)-xc(1,3))**2+(xc(2,2)-xc(2,3))**2)
        call TestFunc(dsi,xcent,gpos,w,wx,wy)
        ndex=0
        call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
        call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis) 
        do ine=1,ndex
           n1=2*nv(ine)-1
           n2=2*nv(ine)
           do i=1,2
           do j=1,3
             bn(i,j)=0.
             bb(j,i)=0.
             bnd(i,j)=0.

enddo
enddo

           do i=1,2
           do j=1,2
             eK(i,j)=0.
             ss(i,j)=0.
           enddo 
           enddo 
           bb(1,1)=phi(2,ine)
           bb(2,2)=phi(3,ine)
           bb(3,1)=phi(3,ine)
           bb(3,2)=phi(2,ine)
           bn(1,3)=-1.
           bn(2,2)=-1.
           IF(XC(2,2).gt.xm(4)) then 
             ss(1,1)=1.
             ss(2,2)=1.

endif
           call DOBMAX(bn,2,3,2,dmat,3,3,bnd,2)
           call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
           call dobmax(ebb,2,2,2,ss,2,2,ek,2)
           ak(ik1,n1)=ak(ik1,n1)-w*weight*ajac*ek(1,1)
           ak(ik1,n2)=ak(ik1,n2)-W*weight*ajac*ek(1,2)
           ak(ik2,n1)=ak(ik2,n1)-W*weight*ajac*ek(2,1)
           ak(ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek(2,2)
        enddo
     enddo

! ****************INTEGRATION FOR RIGHT B.C. Qu 
     do i=1,2
     do j=1,3
        bn(i,j)=0.
        bb(j,i)=0.
        bnd(i,j)=0.

enddo
enddo

     ax=0.5*(xc(1,4)-xc(1,3))
     ay=0.5*(xc(2,4)-xc(2,3))
     bx=0.5*(xc(1,4)+xc(1,3))
     by=0.5*(xc(2,4)+xc(2,3))
     do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

        weight=gauss(2,il)
        ajac=0.5*sqrt((xc(1,4)-xc(1,3))**2+(xc(2,4)-xc(2,3))**2)
        call TestFunc(dsi,xcent,gpos,w,wx,wy)
        ndex=0
        call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
        call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)
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         do ine=1,ndex
            n1=2*nv(ine)-1
            n2=2*nv(ine)
            do i=1,2
            do j=1,3
            bn(i,j)=0.
            bb(j,i)=0.
            bnd(i,j)=0.
            enddo 
            enddo 
            do i=1,2
            do j=1,2
            eK(i,j)=0.
            ss(i,j)=0

enddo
enddo

            bb(1,1)=phi(2,ine)
            bb(2,2)=phi(3,ine)
            bb(3,1)=phi(3,ine)
            bb(3,2)=phi(2,ine)
            bn(1,1)=1.
            bn(2,3)=1.
            IF(XC(1,4).lt.xm(2)) then
              ss(1,1)=1.
              ss(2,2)=1.
            endif 
            call DOBMAX(bn,2,3,2,dmat,3,3,bnd,2)
            call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
            call dobmax(ebb,2,2,2,ss,2,2,ek,2)
            ak(ik1,n1)=ak(ik1,n1)-w*weight*ajac*ek(1,1)
            ak(ik1,n2)=ak(ik1,n2)-W*weight*ajac*ek(1,2)
            ak(ik2,n1)=ak(ik2,n1)-W*weight*ajac*ek(2,1)
            ak(ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek(2,2)

enddo
enddo

! ****************INTEGRATION FOR LEFT B.C. Qu 
      do i=1,2
      do j=1,3
          bn(i,j)=0.
          bb(j,i)=0.
          bnd(i,j)=0.

enddo
      enddo 
      ax=0.5*(xc(1,2)-xc(1,1))
      ay=0.5*(xc(2,2)-xc(2,1))
      bx=0.5*(xc(1,2)+xc(1,1))
      by=0.5*(xc(2,2)+xc(2,1))
      do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

         weight=gauss(2,il)
         ajac=0.5*sqrt((xc(1,2)-xc(1,1))**2+(xc(2,2)-xc(2,1))**2)
         call TestFunc(dsi,xcent,gpos,w,wx,wy)
         ndex=0
         call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
         call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)
         do ine=1,ndex
         n1=2*nv(ine)-1
         n2=2*nv(ine)
         do i=1,2
         do j=1,3
         bn(i,j)=0.
         bb(j,i)=0.
         bnd(i,j)=0.
         enddo 
         enddo 
         do i=1,2
         do j=1,2
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        eK(i,j)=0.
        ss(i,j)=0.

enddo
enddo

        bb(1,1)=phi(2,ine)
        bb(2,2)=phi(3,ine)
        bb(3,1)=phi(3,ine)
        bb(3,2)=phi(2,ine)
        bn(1,1)=-1.
        bn(2,3)=-1.
        ss(1,1)=1.
        ss(2,2)=1.
        call DOBMAX(bn,2,3,2,dmat,3,3,bnd,2)
        call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
        call dobmax(ebb,2,2,2,ss,2,2,ek,2)
        ak(ik1,n1)=ak(ik1,n1)-w*weight*ajac*ek(1,1)
        ak(ik1,n2)=ak(ik1,n2)-W*weight*ajac*ek(1,2)
        ak(ik2,n1)=ak(ik2,n1)-W*weight*ajac*ek(2,1)
        ak(ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek(2,2)

enddo
enddo

 RETURN
 END 

Program  5.8. Source code of Subroutine Integration_BCQt 

  SUBROUTINE Integration_BCQt(nx,ng,xc,f,x,numnode,nquado, &
           xm,xspace,yspace,xcent)
!-----------------------------------------------------------------------
! The subroutine is to compute the integrations on the natural sub-boundary;
! input— nx,ng,xc, x,numnode,nquado,xm,xspace,yspace,xcent
! Input & output— f; 
!------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
      common/para/xlength,ylength,p,young,anu,aimo
      common/rpim/ALFC,DC,Q,nRBF
      common/basis/mbasis
      dimension x(2,numnode),nv(50),f(2),xc(2,4),gauss(2,20)
      dimension xcent(2),dsi(2),fbcl(2,4)
      dimension gs(4,100),gpos(2),xm(4)
      dimension phi(10, numnode)
      call GaussCoefficient(nquado,gauss)
      do j=1,2
         f(j)=0.
      enddo 
      dsi(1)=xspace
      dsi(2)=yspace
! **************** Set global force BC for a rectangular domain
      do j=1,4
         fbcl(1,j)=0.
         fbcl(2,j)=0.

enddo
      fbcl(2,2)=1.0  ! force in y direction at right end is not zero 

! **************** INTEGRATION FOR UP B.C.
      IF(XC(2,1).GE.xm(3)) then 
         txx=fbcl(1,3)
         tyy=fbcl(2,3)
         ax=0.5*(xc(1,4)-xc(1,1))
         ay=0.5*(xc(2,4)-xc(2,1))
         bx=0.5*(xc(1,4)+xc(1,1))
         by=0.5*(xc(2,4)+xc(2,1))
         do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

            weight=gauss(2,il)
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             ajac=0.5*sqrt((xc(1,4)-xc(1,1))**2+(xc(2,4)-xc(2,1))**2)
             call TestFunc(dsi,xcent,gpos,w,wx,wy)
             f(1)=f(1)+w*weight*ajac*txx
             f(2)=f(2)-w*weight*ajac*tyy

enddo
endif

! **************** INTEGRATION FOR DOWN B.C.
       IF(XC(2,2).lE.xm(4)) then
          txx=fbcl(1,4)
          tyy=fbcl(2,4)
          ax=0.5*(xc(1,2)-xc(1,3))
          ay=0.5*(xc(2,2)-xc(2,3))
          bx=0.5*(xc(1,2)+xc(1,3))
          by=0.5*(xc(2,2)+xc(2,3))
          do il=1,nquado
             gpos(1)=ax*gauss(1,il)+bx
             gpos(2)=ay*gauss(1,il)+by
             weight=gauss(2,il)
             ajac=0.5*sqrt((xc(1,2)-xc(1,3))**2+(xc(2,2)-xc(2,3))**2)
             call TestFunc(dsi,xcent,gpos,w,wx,wy)
             f(1)=f(1)+w*weight*ajac*txx
             f(2)=f(2)-w*weight*ajac*tyy

enddo
       endif

!  **************** INTEGRATION FOR RIGHT B.C. 
       IF(XC(1,4).GE.xm(2)) then
          txx=fbcl(1,2)
          tyy=fbcl(2,2)
          ax=0.5*(xc(1,4)-xc(1,3))
          ay=0.5*(xc(2,4)-xc(2,3))
          bx=0.5*(xc(1,4)+xc(1,3))
          by=0.5*(xc(2,4)+xc(2,3))
          do il=1,nquado
             gpos(1)=ax*gauss(1,il)+bx
             gpos(2)=ay*gauss(1,il)+by
             weight=gauss(2,il)
             ajac=0.5*sqrt((xc(1,4)-xc(1,3))**2+(xc(2,4)-xc(2,3))**2)
             call TestFunc(dsi,xcent,gpos,w,wx,wy)
             aimo=(1./12.)*ylength**3
             ty=-(-1000./(2.*aimo))*(ylength*ylength/4.-gpos(2)*gpos(2))
             f(1)=f(1)+w*weight*ajac*0.*txx
             f(2)=f(2)-w*weight*ajac*ty*tyy ! Exact force B.C.
          enddo
       endif
RETURN
END

Program 5.9. Source code of Subroutine EssentialBC

  SUBROUTINE EssentialBC(x,numnode,ak,fk,mk,ds,alfs,npEBCnum,npEBC,pEBC)
!----------------------------------------------------------------------------
! This subroutine to cenforce point essential bc's using the direct method;
! input--numnode: total number of field nodes; 
!        npEBCnum: number of e. b.c points
!        alfs: coefficent of support support
!        x(nx,numnode): coordinates of all field nodes;
! input and output-- ak[]: stifness matrix; 
!                    fk{}:force vector. 
!---------------------------------------------------------------------------
       IMPLICIT REAL*8(A-H,O-Z)
       common/para/xlength,ylength,p,young,anu,aimo
       common/rpim/ALFC,DC,Q,nRBF
       common /basis/mbasis
       dimension x(2,numnode),ds(2,numnode)
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      dimension npEBC(3,100),pEBC(2,100)
      dimension ak(mk,mk),fk(2*numnode)
      dimension f(2*numnode),phi(10,numnode),nv(numnode),gpos(2)
      nx=2
      eps=2.2204e-16
      do 135 ib=1,npEBCnum 

in=npEBC(1,ib)
         ll=in*2-1
         lr=in*2

if(npEBC(2,ib).eq.1) f(ll)=pEBC(1,ib)
if(npEBC(3,ib).eq.1) f(lr)=pEBC(2,ib)

135 continue

      do 231 ib=1,npEBCnum
in=npEBC(1,ib)
gpos(1)=x(1,in)
gpos(2)=x(2,in)
ll=in*2-1

         lr=in*2 
         ndex=0
         call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
         Call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,& 
                                  q,nRBF,mbasis) 

if(npEBC(2,ib).eq.1) then 
            do ii=1,2*numnode
               ak(ll,ii)=0.

enddo
            do ii=1,ndex
               mm=nv(ii)
               ak(ll,mm*2-1)=phi(1,ii)
               ak(ll,mm*2)=0.
            enddo
         endif

if(npEBC(3,ib).eq.1) then 
            do ii=1,2*numnode
               ak(lr,ii)=0.

enddo
            do ii=1,ndex
               mm=nv(ii)
               ak(lr,mm*2)=phi(1,ii)
               ak(lr,mm*2-1)=0.

enddo
endif

231 continue

       do 165 ib=1,npEBCnum
in=npEBC(1,ib)
ll=in*2-1
lr=in*2

          if(npEBC(2,ib).eq.1) fk(ll)=f(ll) 
          if(npEBC(3,ib).eq.1) fk(lr)=f(lr) 
 165   continue
RETURN
END

Program 5.10. Source code of Subroutine GetDisplacement

   SUBROUTINE GetDisplacement(x,ds,u2,disp,alfs,nx,numnode) 
!-----------------------------------------------------------------------
! The subroutine is to compute the final nodal displacements
! input— x,ds,u2, alfs,nx,numnode
! Output— disp;
!------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
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      common/rpim/ALFC,DC,Q,nRBF
      common /basis/mbasis
      dimension x(nx,numnode),ds(nx,numnode),gpos(nx),u2(nx,numnode)
      dimension nv(numnode),phi(10,numnode),aa(nx,numnode),disp(2*numnode)
      do i=1,2*numnoden
         disp(i)=0.
      enddo 

ind=0
      do 50 id=1,numnode

ind=ind+1
gpos(1)= x(1,id)
gpos(2)=x(2,id)

         ndex=0
         call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
         do kph=1,ndex
            do ii=1,10
               phi(ii,kph)=0.

enddo
enddo

         call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&
q,nRBF, mbasis)

         nc1=2*ind-1
         nc2=2*ind
         do kk=1,ndex 
            m=nv(kk)
            disp(nc1)=disp(nc1)+phi(1,kk)*u2(1,m)
            disp(nc2)=disp(nc2)+phi(1,kk)*u2(2,m)
         enddo 
50    continue
RETURN
END

Program 5.11. Source code of Subroutine GetNodeStress

 SUBROUTINE GetNodeStress(x,ds,Dmat,u2,stress,alfs,nx,numnode)
!-----------------------------------------------------------------------
! The subroutine is to compute the nodal stress components.
! input— x,ds,Dmat,u2,alfs,nx,numnode;
! Output— stress; 
!------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
      common/para/xlength,ylength,p,young,anu,aimo
      common/rpim/ALFC,DC,Q,nRBF
      common/basis/mbasis
      dimension ds(nx,numnode),gpos(nx),x(nx,numnode)
      dimension nv(numnode),phi(10,numnode),aa(nx,numnode),ne(2*numnode)
      dimension stress(3,numnode),Bmat(3,2*numnode)
      dimension Dmat(3,3),u2(nx,numnode),u(2*numnode)

      do iu=1,numnode
         u(2*iu-1)=u2(1,iu)
         u(2*iu)=u2(2,iu)

enddo
      do i=1,3
         do j=1,numnode
            stress(i,j)=0.

enddo
enddo

      ind=0 
      do 200 is=1,numnode
         ind=ind+1 

gpos(1)=x(1,is)
gpos(2)=x(2,is)

         ndex=0
         call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
         do kph=1,ndex
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            do ii=1,10
phi(ii,kph)=0.

enddo
enddo

         Call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&
q,nRBF, mbasis)

         nb=2*ndex
         do in=1,nb
            ne(in)=0
         enddo 
         do ine=1,ndex
            n1=2*ine-1
            n2=2*ine
            ne(n1)=2*nv(ine)-1
            ne(n2)=2*nv(ine)

enddo
         do ib=1,3
            do jb=1,nb
               Bmat(ib,jb)=0.

enddo
enddo

         do inn=1,ndex
j=2*inn-1

            k=2*inn
            m1=ndex+inn
            m2=2*ndex+inn
            Bmat(1,j)=phi(2,inn)
            Bmat(1,k)=0.
            Bmat(2,j)=0.
            Bmat(2,k)=phi(3,inn)
            Bmat(3,j)=phi(3,inn)
            Bmat(3,k)=phi(2,inn)

enddo
         do ii=1,3
            do kk=1,3
               do mm=1,nb
                  mn=ne(mm)
                  stress(ii,ind)=stress(ii,ind)+Dmat(ii,kk)*Bmat(kk,mm)*u(mn)

enddo
enddo

enddo
200 continue
 RETURN
END

Program 5.12. Source code of Subroutine Output 

 SUBROUTINE Output(x,numnode,u2,u22,str)
!-----------------------------------------------------------------------
! The subroutine is to output resultscompute the final nodal displacements
! Output— all; 
!------------------------------------------------------------------------

      IMPLICIT REAL*8(A-H,O-Z)
      common/para/xlength,ylength,p,young,anu,aimo
      dimension x(2,numnode),u2(2,numnode),str(3,numnode),u22(2,numnode)
      write(2,*)'**************<DISPLACEMENT OF NODES>**************' 
      do i=1,numnode

nn=2*i-1
kk=2*i

         write(2,10)i,x(1,i),x(2,i),u22(1,i),u22(2,i)
      enddo 
      write(2,*)'**************<STRESSES OF NODES>**************8'
      do i=1,numnode

nn=2*i-1
         kk=2*i
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         write(2,20)i,x(1,i),x(2,i),str(1,i),str(2,i),str(3,i)
enddo

10   format(1x,i3,1x,2f10.5,3E15.5)
20   format(1x,i3,1x,2f10.5,1x,3E15.5)
 RETURN
 END 

Program 5.13. Source code of Subroutine TotalGaussPoints

 SUBROUTINE TotalGaussPoints(xc,conn,gauss,gs,nx,ng,numq,&
      numcell,k,numgauss)
!-----------------------------------------------------------------------
! The subroutine is to set up Gauss points,Jacobian and weights
!        for the global background cells;
! input— xc,conn,gauss,nx,ng,numq,numcell,k,numgauss
! Output— gs;
!------------------------------------------------------------------------

implicit real*8 (a-h,o-z) 
      dimension xc(nx,numq),conn(ng,numcell),gauss(nx,k)
      dimension gs(ng,numgauss),psiJ(4),etaJ(4),xe(4),ye(4),aN(4)
      dimension aNJpsi(4),aNJeta(4)

index=0
psiJ(1)=-1.
psiJ(2)=1.
psiJ(3)=1.
psiJ(4)=-1.

      etaJ(1)=-1.
      etaJ(2)=-1.
      etaJ(3)=1.
      etaJ(4)=1.

l=k
      do 10 ie=1,numcell
! determine nodes in each cell
         do j=1,4

je=conn(j,ie)
            xe(j)=xc(1,je)

ye(j)=xc(2,je)
enddo

         do 30 i=1,l
            do 30 j=1,l

index=index+1
            eta=gauss(1,i)

psi=gauss(1,j)
!            write(2,*)'psi,eta',psi,eta
            do ik=1,ng
               aN(ik)=.25*(1.+psi*psiJ(ik))*(1.+eta*etaJ(ik))
               aNJpsi(ik)=.25*psiJ(ik)*(1.+eta*etaJ(ik))
               aNJeta(ik)=.25*etaJ(ik)*(1.+psi*psiJ(ik))

enddo
            xpsi=0.

ypsi=0.
            xeta=0.

yeta=0.
            do jk=1,ng
               xpsi=xpsi+aNJpsi(jk)*xe(jk)

ypsi=ypsi+aNJpsi(jk)*ye(jk)
               xeta=xeta+aNJeta(jk)*xe(jk)

yeta=yeta+aNJeta(jk)*ye(jk)
            enddo
            ajcob=xpsi*yeta-xeta*ypsi
            xq=0.

yq=0.
            do kk=1,ng
               xq=xq+aN(kk)*xe(kk)

yq=yq+aN(kk)*ye(kk)
enddo
gs(1,index)=xq
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gs(2,index)=yq
gs(3,index)=gauss(2,i)*gauss(2,j)
gs(4,index)=ajcob

 30 continue
 10 continue
  RETURN
END

Program 5.14. Source code of Subroutine GetEnergyError

  SUBROUTINE GetEnergyError(nx,ng,x,numnode,u2,dmat,ds,numgauss,gs,alfs)
!-----------------------------------------------------------------------
! The subroutine is to compute the global energy;
! input- all;
!------------------------------------------------------------------------

       IMPLICIT REAL*8(A-H,O-Z)
       common/para/xlength,ylength,p,young,anu,aimo
       common/rpim/ALFC,DC,Q,nRBF
       common/basis/mbasis
       dimension x(2,numnode),u2(2,numnode),dmat(3,3),str(3,numgauss)
       dimension ph(10,numnode),gs(4,numgauss)
       dimension bx(3,2*numnode),dipl(2*numnode),db(3,2*numnode)
       dimension dbu(3),gpos(2),nv(numnode)
       dimension err(3),Dinv(3,3),der(3),stressex(3,numgauss)
       dimension ds(2,numnode),ddd(3)

       enorm=0.
errext=0.

       do id=1,3
          do jd=1,3
             Dinv(id,jd)=Dmat(id,jd)

enddo
enddo
invd=3

       call getinvasy(INVD,INVD,Dinv,EP)
       do 10 nod=1,numgauss
          xn=gs(1,nod)

yn=gs(2,nod)
          weight=gs(3,nod)
          ajac=gs(4,nod)

gpos(1)=xn
gpos(2)=yn

          ndex=0
          call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
          do i=1,ndex
             nn=nv(i)
             n1=2*i-1
             n2=i*2
             dipl(n1)=u2(1,nn)
             dipl(n2)=u2(2,nn)

enddo
          do ii=1,10
             do jj=1,ndex

ph(ii,jj)=0.
enddo

enddo
          call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,alfc,&
                                 dc,q,nRBF, mbasis)   ! RPIM Shape function
!         call MLS_ShapeFunc_2D(gpos,x,nv,ds,ph,nx,numnode,ndex,mbasis) ! MLPG
          do i=1,2*ndex
             bx(1,i)=0.
             bx(2,i)=0.
             bx(3,i)=0.
          enddo
          do i=1,ndex
             n1=i*2-1
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             n2=2*i
             bx(1,n1)=ph(2,i)
             bx(2,n2)=ph(3,i)
             bx(3,n1)=ph(3,i)
             bx(3,n2)=ph(2,i)

enddo
          m=2*ndex
          nn=2*numnode
          call DOBMAX(dmat,3,3,3,bx,m,3,db,3)
          call DOBMAX(db,3,m,3,dipl,1,nn,dbu,3)
          str(1,nod)=dbu(1)
          str(2,nod)=dbu(2)
          str(3,nod)=dbu(3)
!*******  Exact stress for beam problem
          stressex(1,nod)=(1./aimo)*p*(xlength-gpos(1))*gpos(2)
          stressex(2,nod)=0.
          stressex(3,nod)=-0.5*(p/aimo)*(0.25*ylength*ylength-gpos(2)*gpos(2))

          do ier=1,3
             err(ier)=str(ier,nod)-stressex(ier,nod)

enddo
          do jer=1,3
             der(jer)=0.
             ddd(jer)=0.
             do ker=1,3
                der(jer)=der(jer)+Dinv(jer,ker)*err(ker)
                ddd(jer)=ddd(jer)+Dinv(jer,ker)*stressex(ker,nod)

enddo
enddo
err2=0.

          eex=0.
          do mer=1,3
             err2=err2+weight*ajac*(0.5*der(mer)*err(mer))
             eex=eex+weight*ajac*(0.5*ddd(mer)*stressex(mer,nod))
          enddo
          enorm=enorm+err2
          errext=errext+eex
 10 continue
       enorm=dsqrt(enorm)
       errext=sqrt(errext)
       write(2,*)'**************<Global energy error>**************'
       write(2,180)enorm
180    format(1x,'The global energu error:',e20.8)
  RETURN
  END

Program  5.15. Source code of Subroutine Dobmax

  SUBROUTINE DOBMAX(A,N,M1,M3,B,M2,M4,C,M5)
!    This subroutine is used to calculate A[N][M1]*B[M1][M2]=C[N][M2].
       IMPLICIT REAL*8(A-H,O-Z)
       DIMENSION A(M3,M1),B(M4,M2),C(M5,M2)
       DO I=1,N
          DO J=1,M2
             C(I,J)=0.0
          ENDDO
       ENDDO
       DO I=1,N
          DO J=1,M2
             DO K=1,M1
                C(I,J)=C(I,J)+A(I,K)*B(K,J)
             ENDDO
          ENDDO
       ENDDO
RETURN
END



Chapter 6 

MESHFREE COLLOCATION METHODS

6 Meshfree collocation methods 

6.1 INTRODUCTION

MFree collocation methods (or MFree strong-form methods) have a long 
history.  To approximate strong-form of PDEs using MFree methods, the PDE 
is usually discretized at nodes by some forms of collocation.  There are
various MFree strong-form methods, e.g., the vortex method (Chorin, 1973;
Bernard, 1995), the finite difference method(FDM) with irregular grids or the
so-called general FDM (GFDM) (Girault,1974; Pavlin and Perrone,1975;
Snell et al,1981; Liszka and Orkisz,1977; 1980; Krok and Orkisz), the finite 
point method (FPM) (Oñate et al., 1996,1998, 2001), the hp-meshless cloud
method (Liszka et al., 1996), the meshfree collocation method (Kansa, 1990;
Wu, 1992; Xu et al, 1999; Zhang et al.,2000; Liu X et al.,2002, 2003a-d), etc.

MFree strong-form methods have following advantages:

The procedure for discretizing the governing equations is
straightforward, and the algorithms for implementing the discretized
equation are simple.  The discretized equations can be obtained 
directly from the strong-forms of PDEs governing the problem.     
They are, in general, computationally efficient.  The PDEs are
discretized directly without using weak-forms, and hence no
numerical integration is required.   
They are truly meshless: no mesh is used for both field variable
approximations and numerical integrations.
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6.  Meshfree collocation methods

Owing to these advantages, MFree strong-form methods have been studied 
and used in computational mechanics with some success, especially in fluid 
mechanics.  There are, however, the following two major issues that have
prevented the use of collocation methods with irregular grids or nodes.   

One such an issue is the singularity of the moment matrix arising in the 
process of function approximation.  The use of weighted least square method 
(Krok and Orkisz, 1989) has provided an effective way to solve this problem.  
The matrix triangularization algorithm (MTA) proposed by GR Liu and Gu
(2001d, 2003a) is a novel procedure to overcome the singularity problem in 
the point interpolation method (PIM) that uses polynomial basis.  The PIM
shape functions so created possess the delta function property (see, e.g.,
Section 3.2).  Kansa (1990) has also solved this kind of singularity problem
using radial basis functions (RBFs).  The Kansa method is a global 
collocation method that uses all the grids in the problem domain, which
leads to a fully populated system matrix.  Since the RBFs are used, the
moment matrix is, in general, not singular.  A more stable symmetric 
formulation has also been proposed by Wu (1992).  In addition, RBF is also 
used for creating RPIM shape functions using local nodes for MFreel
methods based on the global weak-form (GR Liu and Gu, 2001c; Wang et al.,
2000; 2002a, Section 4.2), local weak-form (GR Liu and Gu, 2000b, 2001b,
c,e, 2002a; GR Liu and Yan et al., 2000, 2002; Xiao and McCharthy,
2003a,b,c; Section 5.2) and strong-form (Liu X et al., 2002, 2003a~e, 
Section 6.3).

Another key issue that has been preventing the idea of collocation
methods with irregular grids or nodes from practical applications is the 
presence of derivative boundary conditions (DBCs).  It is well-known that 
the boundary conditions (BCs) are crucial in a collocation method.  We 
emphases specifically that it is the DBCs (not Dirichlet BCs) that are the true 
culprit responsible for the poor accuracy and instability problems in the
MFree strong-form methods using arbitrary nodes.  Therefore, we will
discuss this issue at great length with many examples of 1D and 2D 
problems in the next section.   

6.2 TECHNIQUES FOR HANDLING DERIVATIVE 
BOUNDARY CONDITIONS

In using an MFree strong-form method to solve a problem governed by a
set of partial differential equations (PDEs), the problem is represented by a
set of nodes that are arbitrarily distributed in the problem domain and the
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boundaries.  Strong-form methods can produce accurate results for PDEs,
when the boundary conditions are all of Dirichlet type†.  If there is any
derivative boundary condition, the accuracy of the solution deteriorates
drastically, and the solution can be unstable:  small changes in the setup of 
the problem can lead to a large change in the solution.  The discretized
system equation behaves, like an ill-posed problem in which errors 
introduced into the system are magnified in the output.

For convenience, we denote the boundary with derivative boundary 
conditions (BDCs) as the derivative boundary, and a node on the derivation
boundary as a “DB-node“ ”.

A number of strategies can be used to impose the DBCs in the strong-
form methods.  Six of them are listed below. 

1) The direct collocation (DC) method: The DBCs are discretized by
simple collocation to obtain a set of separate equations that are
different from the governing system equations.  In other words, there
is no special treatment for DBCs. 

2) The method using fictitious points (FP): along the derivative 
boundaries, a set of fictitious points is added outside the problem
domain along the derivative boundary.  In this case, two sets of 
equations are established at each DB-node: one for the DBC, and the
other for the governing equation.

3) The Hermite-type collocation (HC) method: this uses additional 
derivative variables for the DB-nodes to enforce the DBCs.  This 
treatment has been used by many researchers, such as Zhang et al. 
(2000), etc. 

4) The method using regular grids (RG): in this method, one or several 
layers of regularly distributed nodes are used in the problem domain 
along the derivative boundary.  The standard differential scheme used 
in FDM is adopted for these regular nodes.  The DBCs can then be 
implemented using the same procedure as that in the standard FDM.  

5) The use of dense nodes (DN) in the derivative boundaries (see, e.g.,
Liszka et al., 1996).

6) The MFree weak-strong (MWS) form method: being a combination
of the local weak-form and the strong-form, the DBCs can be 
naturally satisfied through the local weak-form.  The MWS method is 
proposed by GR Liu and Gu (2002d, 2003b).  It can efficiently and 

† We assume of course that the problem is well-posed, the moment matrix is not 
singular or badly conditioned, and a reasonable collocation scheme is used.
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completely solve the problem of the enforcement of DBCs in the 
strong-form methods, and it will be detailed in Chapter 7.   

There are also other means to stabilize the solution of meshfree
collocation methods, such as adding in higher order differential terms in 
strong form equations for stabilization (Oñate et al., 1998, 2001). In the 
following sections, MFree strong-form methods with the first five types of 
treatments for DBCs will be used to examine in detail for one-dimensional
(1D) and two-dimensional (2D) problems.  

Note that the source code used in this chapter is not provided because 1) 
it is very simple and straightforward; 2) Chapter 7 contains the same routines 
for strong-form methods.

6.3 POLYNOMIAL POINT COLLOCATION METHOD
FOR 1D PROBLEMS

In this section, we use simple 1D problems to illustrate the collocation
procedure for establishing the discretized system equations together with
five different ways to deal with the DBCs. 

For 1D problems, the polynomial PIM shape functions work best; we 
will use these, and call the procedure as polynomial point collocation 
method (PPCM).  Other types of shape functions discussed in Chapter 3 are 
of course applicable to 1D problems, and some of them will be used later for
2D problems. 

6.3.1 Collocation equations for 1D system equations

6.3.1.1 Problem description

Consider problems governed by the following general second-order
ordinary differential equation (ODE) in 1D domain, .

2

2 1 02( ) ( ) ( ) ( ) 0A
d u du2

( )( )A x A x A x u q2 1 02 ( ) ( ) ( ) () ( ) ( )1 011 (A( )( )
dxdx

)( ) ( ) (( ) ( ) (( ) ( )1 01 01 (6.1)

where u is the unknown scalar field function, the coefficients A0, A1 and A2
are given and may depend upon x, and qAqq is a given source term that can be 
also a function of x.  There are two-types of boundary conditions:

DBC:
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1 0
)( ) ( ) ( ) ( ) 0)

B
du x((B x B x u x q1 0( ) ( ) ( ) () ( ) ( )0

( ) (B
(

dx
)(( (6.2)

where x is a point on the derivative boundary DBDD , B0 and B1 are
given functions of x, and qB is a given source term on DBDD .

Dirichlet boundary condition: 

( ) 0u( )) (6.3)

where x is a point on the Dirichlet boundary denoted by u , and u  is
the specified value for the field function.

6.3.1.2 Function approximation using MFree shape functions

Assume that there are NdNN internal (domain) nodes andd NbNN =NDBNN + NuNN
boundary nodes, where NDBNN  is the number of DB-nodes and NuNN is the number
of nodes on the Dirichlet boundary.  The collocation points could be 
different (in term of both locations and numbers) from the field nodes, but 
we always take them to be the same in this book.   

For convenience, consider a 1D domain shown in Figure 6.1, and x1 is on
the Dirichlet boundary and xLx  is on the derivative boundary. Therefore, 
NDBNN =1 and NuNN =1. The problem domain is represented by N field nodesN
numbered sequentially with N Lx xL . Hence, there are 2N  internal nodes.

Figure 6.1. Nodal distribution used in a 1D problem domain. 

Using the MFree shape functions introduced in Chapter 3, we have the
following formulae for approximating the unknown function and their 
derivatives at the collocation node at xIx .

T( )h h
I I s( )u u (I ( ))u (( u (6.4)

Th
I

s
u

xx xx x
u (6.5)
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2 2 T

2 2

h
I

s
u

x2x xx x
u (6.6)

where is the vector of shape functions, and su is the vector that collects
nodal values of the unknown function, i.e.,

T
1 2 n11 22 (6.7)

T
1 2s nu u u1 2u (6.8)

in which n is the number of nodes used in the local support domain of xIx
where the shape functions are created.

6.3.1.3 System equation discretization 

For an internal node at xIx , Equation (6.4) gives the discretized governing
Equation (6.1) can be obtained by simple collocations at xIx :

( )
I

I

s A I

fI

q ((s A I

2 T Td d2 T

A22 ( ) ( ) ( )) ( ) (1 0111 0( )( ) ( )( ) d ( )A ( ) ( ) ( )( ) (( )1 011 (1 01 012 1 02 I1 01 dxdx2 I1 0 )I0 (0112

K

ddT

( ) d( )( )
(6.9)

or in the matrix form

I s If IK uI (6.10)

where KIK is the nodal matrix for the collocation node atI xIx , which can be 
written in detail as

2 T T

2 1 02( ) ( ) ( )I I I I2 1 01 (1 011
d d2 T

A ( ) ( ) (( ) (02 (1 0111 0( )( )
dxdx

A2 ( ) ( )) (( )( )111122 11111
ddT

( )( )K

2
1

2 1 02

2

2 1 02

( ) ( ) ( )1

( ) ( ) ( )

I1 01 (1 011

I1 01 (1 011

d d2

A2 ( ) ( ) ((1
1 01 (1 011 0dxdx

d d2

A22 ( ) ( ) () ( ) (1 01( )( ) (1 011 0dxdx

11d11111

d( )( )( )( )( )( )

A2 ( ) ( )) (( )( )1 1
111111111

1

( )(( )111( )(111( )(

(6.11)

The dimension of KIK is (1I n).

In Equation (6.9), fIff is given by I

( )I A IfI q (A I( (6.12)

Note that Equation (6.10) is established for all the internal nodes, and for
the DB-nodes if so required.
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6.3.1.4 Discretization of Dirichlet boundary condition

For a node at x1 that is on the Dirichlet boundary, the Dirichlet boundary 
condition Equation (6.3) can be re-written as 

1 1

T
1s

f1

u
K

u (6.13)

where K1 is the nodal matrix for the collocation node at x1 given by 
T

1 1 2 n11 22K (6.14)

where i is created using n nodes in the support domain of node 1. In 
Equation (6.13), f1ff is given by

1 1f1 u (6.15)

Note that if shape functions with the delta function property, such as PIM
and RPIM shape functions are used, we should have

TT
1K (6.16)

Without losing generalization, we use Equation (6.14). 

6.3.1.5 Discretized system equation with only Dirichlet boundary
conditions

When the problem has only Dirichlet boundaries at both ends of the 1D 
problem domain, we should also have the Dirichlet boundary condition
equation for node N:NN

T

N N

s N
fN

u
K

u (6.17)

where the nodal matrix for the collocation nodes at xNx isN

T
1 2N n11 22K (6.18)

where i is created using n nodes in the support domain of node N. In NN
Equation (6.17), fNff is given by N

N NfN u (6.19)

Assembling Equations (6.9), (6.13) and (6.17) for the corresponding
nodes, we can obtain the system equations as 

( ) ( 1) ( 1)) ( 1) () ( 1) (1) (K U F( ) ( 1) (( 1)) ( 1) () (( 1)1) ( (6.20)

where the global system matrix K has the form of K
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( )

11 12 1( 1) 1N1) 1K K K K11 12 1( 1) 11) 111 12 1( 1) 1N1) 1

K K K K
11 12 1( N1) 1

21 22 2( 1) 2N1) 2K K K K21 22 2( 1)1)K K K K

K K K K( 1)1 ( 1)2 ( 1)( 1) ( 1)1)2 (1)2 ( 1) (1) ( NK K K K( 1)1 ( 1)2 ( 1)( 1)( 1)2 ( 1)( 1)1)2 (1)2 ( 1)1)1 ( 1)2 ( 1)( 1) (1)1 ( 1)2 ( 1)( 1) (1)2 (1)2 ( 1) (1) (K K K K
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( )N N N N N1 2 ( 12 ( ) NNNKN N N N1 2 ( 12 (2 ) NNNK K K K1 2 ( 12 )N N N N1 2 ( 12 (2 )

K

(6.21)

and the global vector F consist of

DC
( 1)

1u1

( )
1

)2q (A ( )q ( 2 )2Aq x(A

( )q ( 1)1A Nq (A ( )q (

NNu

F( (6.22)

In Equation (6.20), U is the vector that collects all nodal values, i.e.

( 1)

1u11

2uu2u

u 1Nuu

NNu

U (6.23)

6.3.1.6 Discretized system equations with DBCs

In the following, we discuss how to construct collocation system
equations for problems with both a Dirichlet BC at x1 and a derivative
boundary condition at the DB-node at xNx .  The treatment for the governing 
equations and the Dirichlet boundary condition is the same as for those 
discussed in Sub-section 6.3.1.3 and 6.3.1.4.  As discussed in Section 6.2,
some special treatments are needed to impose the DBC. Treatments (1)~(4)
listed in Section 6.2 are discussed here.  Note that because the formulations 
of the treatment (5) listed in Section 6.2 are exactly the same as those the 
treatment (1) that is the direct collocation (DC) method, they are not 
presented here.

1) The direct collocation (DC) method 

Substituting Equation (6.4) into the DBCs, Equations (6.2), we have

Related to Dirichlet BC 
from Equation (6.14)

Related to Dirichlet
BC from Equation 
(6.18)

Related to the system
PDE  from Equation
(6.11)

Related to Dirichlet BC
from Equation (6.15)

Related to Dirichlet  BC
from Equation (6.19)

Related to the system PDE  
from Equation (6.12)
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T
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d
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N s0 ( ) )) )0 Bdx
( ) )(( ) )T

0 ( ) )) )0

K

dd
(6.24)

where KNK  is the nodal matrix for the collocation node at N xNx , which can beNN
written as

T
T( ) ( )N N N1 0 (0

dB ( ) ((01 (0dx
B1( )1

ddK

1 dd 11
n)((0( )(1 11 (1 1 01B1 ( )(0000000 1111 ( )(1 ( ) ( )1 d( ) ( )( )1( ) dB ( ) 1B1( ) 11B ( )1 N0N N0 1 11 1N ndx dx1 )N0 1 1 00 1 1 (0 1 1 00 1 10 1 1 n1 (0 1 1 00 1 10 1 11 1 )

(6.25)

and fNff  is given byN

( )N B NfN q (B ( (6.26)

Assembling Equations (6.9), (6.13) and (6.24) for the corresponding
nodes, we can obtain the discretized system equations as 

DC DC DC
( ) ( 1) ( 1)) ( 1) () ( 1) (1) (K U FDC DCDC
( ) ( 1) (( 1)) ( 1) () (( 1)1) ( (6.27)

where the global system matrix KDCKK  has the form of

DC
( )

11 12 1( 1) 1N1) 1K K K K11 12 1( 1) 11) 111 12 1( 1) 1N1) 1

K K K K
11 12 1( N1) 1

21 22 2( 1) 2N1) 2K K K K21 22 2( 1)1)K K K K

K K K K( 1)1 ( 1)2 ( 1)( 1) ( 1)1)2 (1)2 ( 1) (1) ( NK K K K( 1)1 ( 1)2 ( 1)( 1)( 1)2 ( 1)( 1)1)2 (1)2 ( 1)1)1 ( 1)2 ( 1)( 1) (1)1 ( 1)2 ( 1)( 1) (1)2 (1)2 ( 1) (1) (K K K K
K K K K

( ) ( ) ( )( ) ( )

( )N N N N N1 2 ( 12 ( ) NNNKN N N N1 2 ( 12 (2 ) NNNK K K K1 2 ( 12 )N N N N1 2 ( 12 (2 )

K

(6.28)

and the global source  vector FDC consists of

DC
( 1)

u
( ))2q (A ( )q ( 2 )2Aq x(A

( )q ( 1)1A Nq (A ( )q (
( ))B NqB (( )q (B (

F( (6.29)

In Equation (6.27), UDC is the vector that collects all nodal values, i.e.

Related to Dirichlet BC
from Equation (6.14) 

Related to DBC from
Equation (6.25)

Related to the governing
PDE  from Equation 
(6.11)

Related to Dirichlet BC
from Equation (6.15) 

Related to DBC from
Equation (6.26)

Related to the system PDE 
from Equation (6.12)
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DC
( 1)

1u11

2uu2u

u 1Nuu

NNu

U (6.30)

Solving Equation (6.27) gives the nodal values of u for all field nodes,
provided KDCKK is not singular.

Note that the assembling is different from that in the conventional FEM t
and the MFree global weak-form methods, such as EFG and RPIM. In the
FEM, EFG and RPIM, the element or nodal matrices are stamped 
symmetrically into the global matrix. In the collocation method, however, 
the nodal matrix is stacked together row-by-row to form the global matrix, 
which is very much similar to the procedure used in the MFree local weak-
form methods discussed in Chapter 5.  

Note also that the global system matrix KDCKK given in Equation (6.28) is, 
usually, sparse because of the use of the local support domain that contains 
usually a very small portion of the field nodes, and many of entries in KDCKK
are zero. It is, however, asymmetric for the reasons given in Sub-section
5.2.2.

2) The method using the fictitious point (FP)

In order to impose the DBC, a fictitious point beyond the DB-node is 
added outside the problem domain. The coordinate of this fictitious point is

1N N c1x x dN cNxN (6.31)

where dcdd is the nodal spacing given by 

1c N Nd x xc NNxx (6.32)

Hence, an additional degree of freedom (DOF), uN+1 is added into the system, 
and the discretized global system equation becomes 

FP FP FP
( 1) ( 1) ( 1) 1 ( 1) 11) ( 1) ( 1) 1 (1) ( 1) ( 1) 1 ( 1)1)1) ( 1) ( 1) 1 (1) ( 1) 1 (1) ( 1) ( 1)K U FFP FP
( 1) ( 1) ( 1) 1 (( 1) 11) ( 1) ( 1) 1 (1) ( 1) (( 1) 11) ( 1) ( 1) 1 (1) (1) ( 1) ( 1)( 1) 1 (6.33)

where the global stiffness matrix KFPKK becomes
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FP
( 1) ( 1)1) (1) (1) (1)

11 12 1 1( 1)N 1(K K K K11 12 1 1N 111 12 1 1( 1)N 1(

K K K K
11 12 1 1)N 1(

21 22 2 2( 1)N 2(K K K K21 22 2NK K K K

K K K K ( 1)N N N1 2 N N (NNK K K K1 2N N N1 2 NNK K K K
K K K K
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K

(6.34)

Note that there are two equations to be satisfied at the DB-node at xNx :
Equations (6.9) and (6.24).  The global source vector F becomes

FP
( 1) 11)1)

u
( ))2q (A ( )q ( 2 )2Aq x(A

( )q ( )A Nq (A ( )q (
( ))B NqB (( )q (B (

F( (6.35)

where the global vector of nodal function values UFP is

FP
( 1) 11)1)

1u11

2uu

1Nu

NuNuNu

1N 1Nu

U (6.36)

Solving these N+1 equations given in Equation (6.33) for the NN N+1 unknowns,NN
we obtain the nodal values for all field nodes including the fictitious point.

3) The Hermite-type collocation (HC) method 

In the Hermite-type approximation, the derivative variable for the DB-
node is added as an additional DOF. For an internal collocation node at xt Ix , if 
its local support domain does not include the DB-node, the conventional 
MFree shape functions are used, and the Equations (6.9)~(6.12) are used to 
derive the collocation equations. If its support domain includes the DB-node, 
the following formulation is used based on the Hermite-type shape functions 
(see, Chapter 3):

Related to DBC from
Equation (6.25) 

Related to Dirichlet BC
from Equation (6.14)

Related to the system
PDE  from Equation  
(6.11)

Related to Dirichlet BC
from Equation (6.15)

Related to DBC from
Equation (6.26)

Related to the system PDE 
from Equation  (6.12)
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1
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where is the vector of shape functions obtained using the Hermite-type 
approximation, HH  is the shape function related to the derivative DOF Nu ,

su is the vector that collects nodal function values, and ( )N
N

du x(u
dx

which

is the additional derivative DOF. Hence, the derivatives of u at the node I
can be approximated using  

Th
I

s s
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1 n ,
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(6.38)

Therefore, for an internal node whose support domain includes the DB-
node, the nodal matrix KIK  derived using EquationI (6.9) is re-written as

2 T T
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2
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2 1 02
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2 1 02
1 ( 1)

( ) ( ) ( )

( )1( )
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dxdx
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1
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ddT
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(6.39)

For the DB-node, the Hermite-type approximation, Equation (6.37), is 
used. There are now two equations should be satisfied at the DB-node at xNx .
One is Equation (6.9) that results in the similar nodal matrix KIK presented in
Equation (6.39), and the other is Equation (6.24) where the nodal matrix
KN+1K for the collocation node at xNx  can be re-written asN
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(6.40)

The discretized global system equation becomes 
HC HC HC
( 1) ( 1) ( 1) 1 ( 1) 11) ( 1) ( 1) 1 (1) ( 1) ( 1) 1 ( 1)1)1) ( 1) ( 1) 1 (1) ( 1) 1 (1) ( 1) ( 1)K U FHC HC
( 1) ( 1) ( 1) 1 (( 1) 11) ( 1) ( 1) 1 (1) ( 1) (( 1) 11) ( 1) ( 1) 1 (1) (1) ( 1) ( 1)( 1) 1 (6.41)

where the global matrix KHCKK  is given by 

HC
( 1) ( 1)1) (1) (1) (1)

11 12 1 1( 1)N 1(K K K K11 12 1 1N 111 12 1 1( 1)N 1(

K K K K
11 12 1 1)N 1(

21 22 2 2( 1)N 2(K K K K21 22 2NK K K K

K K K K ( 1)N N N1 2 N N (NNK K K K1 2N N N1 2 NNK K K K
K K K K

( )

( 1)1 ( 1)2 ( 1) ( 1)( 1)1)1 ( 1)2 ( 1) ( 1)(1)1 ( 1)2 ( 1) ( 1)(K( 1)1 ( 1)2 ( 1)1)1 ( 1)2 ( 1)( 1)2 ( 1)1)1 ( 1)2 ( 1) ( 1)(1)2 ( 1) ( 1)(1)1 ( 1)2 ( 1) (1)1 ( 1)2 ( 1)1)2 ( 1)( 1)2 ( 1)1)1 ( 1)2 ( ( 1)( 1)( 1)(1)(K K K K( 1)1 ( 1)2 ( 1)( 1)2 ( 1)1)1 ( 1)2 ( 1)1)1 ( 1)2 ( 1)( 1)2 ( 1)

K

(6.42)

the global vector UHC is given by 

HC
( 1) 11)1)

1u11

2uu

1Nuu

NuNuNu

NNu

U (6.43)

and the global vector FHC has the same form as FFP presented in Equation 
(6.35).

Solving Equation (6.41) for N+1 unknowns, we can obtain the nodalNN
function values for all field nodes.

4) The method using regular grids (RG)

Three regularly distributed nodes, xN-x 2, xN-x 1, xNx are used inside the
problem domain near the derivative boundary. The following standard finite 
difference scheme is used to construct the 1st derivative at the DB-node at xt N.x

Related to DBC from
Equation (6.40) 

Related to Dirichlet BC
from Equation (6.14)

Related to the system
PDE  from Equation
(6.11) or (6.39)
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2
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( N N N N1))

N N

u
x

1( ) 3 4 N 1) 3) 3u x u u 1( ) 3 4) 3 N 1) 3 4) 3

Nx xx xN
(6.44)

Replacing Equation (6.5) with this equation, we can obtain the
discretized system equation for the DB-node from the DBC Equation (6.2). 
Together with Equations (6.9), (6.13), and (6.24), we can obtain N equationsN
for N unknowns of nodal function values. Solving theseN N equations givesN
the nodal values for all field nodes. Note that the procedure for the RG 
method is exactly the same as the DC method, except that the derivative for 
the DB-node is approximated using Equation (6.44) instead of Equation
(6.5).

6.3.2 Numerical examples for 1D problems

In this section, several 1D examples are numerically analyzed reveal the 
features of the collocation method with different treatments for the DBCs.  
Because the analytical (exact) solutions are available, it is easy to conduct a 
detailed analysis of errors in the numerical solutions.  The following norms 
are defined as error indicators in this chapter. 

The error in the solution of function value is defined as e0:

2

1
0

exact 2

1

( )exact

N

i
N

i
i

e (6.45)

where exact
iu is exact values of the function, and num

iu is numerical values of
function obtained using the numerical methods.

The errors in the 1st derivatives of the function is defined as exe

2

1

exact 2
,

1

( )exact

N

i
x N

i x,,
i

ex (6.46)

where exact
,i x,u is the exact values of the 1st derivative, and num

,i x,u  is the
numerical value of the 1st derivative obtained using the numerical methods.

The rates of h-convergence of the relative error norms in numerical
results, R(e), are defined as
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10 1
1

10

Log ( )10( )
Log ( )10

i11
i i1
c c

11R( i 11 (6.47)

where e should be e0 or exe , and 1i
cdc and i

cdc  are the uniform nodal spacing of 
two consecutive nodes.

Example 6.1: Wave propagation problem with Dirichlet boundary
conditions

One-dimensional problem governed by the following second-order linear
ordinary differential equation (ODE) is solved by the polynomial point 
collocation method (PPCM), where the polynomial PIM shape functions are 
used in Equations (6.4)~(6.6) for the field function approximation.

2

2 0, (0,1)d u2

u 0,
dx

0,u 0,u (6.48)

which is subjected to the following Dirichlet boundary conditions

(0) 0, (1) 1.0u(0) 0, (1)0 (6.49)

Equation (6.48) governs different types of physical problems depends on
the value of . When >0, Equation (6.48) is the well-known 1D wave 
propagation problem, and the exact solution can be easily found 

exact sin( )
sin

xue ac ( x
(6.50)

Three models with 21, 41 and 81 regularly distributed nodes are used to
discretize the 1D problem domain.  Three different kinds of interpolation
schemes using 3 nodes, 5 nodes and 7 nodes, as shown in Figure 6.2, are
adopted in the interpolations.  There is no DBC in this example.  The
conventional polynomial PIM is used to construct shape functions. 

The errors in the numerical results of function u and its derivative u,x  are
listed in Table 6.1~Table 6.2.  For further illustration, some representative
results have also been plotted in Figure 6.3~Figure 6.4.

It can be found that very good (numerical) convergence rates have been 
obtained using the PPCM.

1) For the 3-node interpolation scheme, the convergence rate of e0 is
about 2.0 and the convergence rate of exe  is close to 2.0.

2) For the 5-node interpolation scheme, the convergence rate of e0 is
about 4.0-5.0 and the convergence rate of exe  is the nearly same as e0.
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3) For the 7-node interpolation scheme, the convergence rate of e0 is
about 6.0-7.0 and the convergence rate of exe is the also same as its e0.

4) The error for the derivative solution is slightly bigger than that for
the corresponding function solution. 

It can be found from these tables that the errors in the numerical results
obtained using the PPCM seems to be of the order 1( )1p

cO d( for both the
field function and its derivatives, where dcdd  is the nodal spacing. For example,
for the case of 5-node scheme (p(( =4), when the nodal density is doubled, the 

error decrease to
4 1 14 1

32
11
22

 times as shown in Table 6.1. For the case of

7-node scheme (p(( =6), when the nodal density is doubled, the error decrease

to
6 1 16 1

128
11
22

 times as shown in Table 6.1. Note also that the errors for

the first derivatives of the field functions are also about the same order of
1( )1p

cO d( , as seen in Table 6.2.  This only exception is for the case of 3-nodell
scheme for which the error is of the order of ( )p

c(( .  These facts
demonstrate that the collocation method is stable and convergent for 
problems without DBCs. 

Figure 6.2. Interpolation schemes with different sizes of support domains for 1D problems rr
(m: number of polynomial basis; p: complete order of the polynomial basis).
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Table 6.1. h- and p- convergence of u obtained numerically using different 
interpolation schemes

1.0 10.0 100.0
Model e0(%) R e0(%) R e0(%) R

21 1.97 10-3 / 13.82 / 15.32 /
41 4.85 10-4 2.02 3.84 1.85 4.24 1.85

3-
no

de
sc

he
m

e
(p((

=2
)

81 1.20 10-4 2.02 0.99 1.96 1.09 1.96

21 2.72 10-6 / 0.043 / 0.36 /
41 9.23 10-8 4.88 2.40 10-4 7.49 7.88 10-3 5.51

5-
no

de
sc

he
m

e
(p((

=4
)

81 3.22 10-9 4.84 1.11 10-4 1.11 1.25 10-3 2.65
21 5.14 10-9 / 1.74 10-3 / 0.11 /
41 4.24 10-11 6.92 1.62 10-5 6.75 1.70 10-3 6.06

7-
no

de
sc

he
m

e
(p((

=6
)

81 1.36 10-12 4.97 1.53 10-7 6.72 1.69 10-5 6.65

R: the convergence rate

Table 6.2. h- and p- convergence of u,x obtained numerically using different 
interpolation schemes

1.0 10.0 100.0
Model exe (%) R exe (%) R exe (%) R

21 4.12 10-2 / 13.99 / 16.97 / 
41 1.03 10-2 2.00 3.89 1.85 4.74 1.84 

3-
no

de
sc

he
m

e
(p((

=2
)

81 2.58 10-3 2.00 1.00 1.96 1.22 1.96 

21 1.46 10-5 / 0.04 / 0.31 /
41 1.09 10-6 3.75 3.08 10-4 7.11 1.18 10-2 4.74 

5-
no

de
sc

he
m

e
(p((

=4
)

81 7.43 10-8 3.87 1.16 10-4 1.41 1.73 10-3 2.77
21 2.28 10-8 1.75 10-3 0.12
41 2.64 10-10 6.43 1.63 10-5 6.75 1.83 10-3 6.04

7-
no

de
sc

he
m

e
(p((

=6
)

81 2.15 10-11 3.62 1.56 10-7 6.71 1.91 10-5 6.59 
21 4.17 10-2  0.31  3.25
41 1.04 10-2 2.00 9.76 10-2 1.68 0.98 1.73

qu
ad

ra
tic

FE
M

 

81 2.60 10-3 2.00 2.56 10-2 1.93 0.257 1.93

R: the convergence rate
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Figure 6.3. h-convergence of the PPCM with different interpolation schemes ( 10 ),
where dcdd  is the nodal spacing.

Figure 6.4. p-convergence of the PPCM using uniform 41 nodes for the wave propagationm
problems.

For comparisons, the results are also obtained using the quadratic FEM. 
It is well-known that the convergence rate for the function value obtained
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using the FEM is of the order of 1( )1pO h(  (Zienkiewicz and Taylor, 2000)
that is the same as that of the collocation method. Note also that in the
conventional FEM, the error in derivative results is of the order of ( )p(( †

which is surely higher than that of the collocation method that is of the order 
of 1( )1p

cO d( .

Note from this example that in the absent of the presence derivative
boundary conditions, the present PPCM can obtain stable and very accurate 
solutions for the 1D problems.  We have also studied the boundary layer 
problems (when <0), and similar results were found. 

Example 6.2: 1D truss member with derivative boundary conditions 

Consider a truss member or bar with force (derivative) boundary
conditions, as shown in Figure 6.5. The mechanics of the bar were discussed
in Sub-section 1.4.6. The bar is governed by the following equations: 

Governing equation in the form of ODE: 
2

2

d ( ) 0
d

uEA b2

d (u
xdd

)b( (6.51)

where E is the Young’s modulus,E A is the cross-section area, u is the axial 
displacement in the x direction, b is the body force in x direction, and L is
the length of the truss element.  For simplicity, 1.0 , 1.0A , L=1.0.

Two cases of the b(x(( ) are considered.  The source force term with the 
polynomial form that was used in Section 1.4 is first considered.  Due to
the reproducibility of the polynomial PIM, very accurate results were
obtained using the collocation method with different treatments for DBCs.   

To study numerically the convergence and accuracy of the collocation
methods, a more complex source term of non-polynomial form 

2( ) (2.3 ) sin(2.3 )2b(  is used in this study.   

Displacement (Dirichlet) boundary condition is given by: 

0
0

x
u (6.52)

which means that the bar is fixed at x=0 as shown in Figure 6.5.

Force (derivative) boundary condition is given by:

† The rate can change in the FEM, if the so-called super-convergence points can be
found. These kinds of special points may also exist in the collocation methods.
Here, we discuss only the results sampled at arbitrary points. 
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d 2.3 cos(2.3 )
dx x L

x L

uf A EAEAA
xdd

A cos(2.3cos(2.3EAA (6.53)

or

1

d 2.3 cos(2.3 )
d x

u
xdd

(6.54)

which means that a concentrated force is applied at x=L= .

The exact solution of the problem can be easily obtained by solving 
analytically ODE with these boundary conditions, which yields

exact ( ) sin(2.3 )ue c ( ) sin(2.3 (6.55)

x

f
L

A y

b(x(( )

Figure 6.5. A uniform truss member fixed at x=0 and subjected to an axial loading
distributed in x direction and a concentrated force at x=L= .

The same problem can be solved by imposing the following displacement 
(Dirichlet) boundary conditions at x=L= .

1
sin(2.3 )

x L
u

L (6.56)

which obtained simply using Equation (6.55).  In this case, the problem can
be solved without using any derivative boundary conditions. 

In seeking for an approximate numerical solution, we represent the 1D
truss member with regularly and irregularly distributed nodes shown in 
Figure 6.6.  The polynomial point collocation method (PPCM) is again used 
to discretize Equations (6.51)~(6.54).  The five different techniques
presented in Section 6.2 and Sub-section 6.3.1 are used to treat the force
(derivative) boundary condition in the following manner:  
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(a) 10 regular nodes 

(b) 10 irregular nodes 

(c) 10 irregular nodes used in RG method 

(d) 11 field nodes used in the method of use of dense nodes

Figure 6.6. Nodal distributions on the 1D truss member

1) In the direct collocation (DC) method, the conventional polynomial 
PIM shape functions are used and the force boundary condition,
Equation (6.54), is directly discretized by collocation.  

2) In the method using fictitious points (FP), a fictitious point is added at
x=1.1. Two equations, Equations (6.51) and (6.54), are imposed at the 
DB-node at x=L= using the conventional polynomial PIM shape 
functions.

3) In the Hermite-type collocation (HC) method, the Hermite-type 
polynomial PIM (see Sub-section 3.2.2) shape functions are used.  
The additional derivative variable, d / dx/ d/ d , at the DB-node is added 
as an additional unknown or DOF.

0 L

x
DB-node

0 L

x
DB-node

0 L

x
DB-node

0 L

x
DB-node
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4) In the method using regular grid (RG): the conventional polynomial
PIM shape functions are used, and the standard finite difference
scheme given in Equation (6.44) is used to approximate the first order
derivative of the displacement at the DB-node.   

5) The method of using dense nodes (DN) near the derivative boundaries, 
one more node is used in the problem domain near the DB-node. 

Three interpolation schemes shown in Figure 6.2 are used.  To reveal the
effect of the DBC on the accuracy of the solution, the average relative error
is used as the error indicator, which is defined as

num exact

exact
1

1 N
i i

i i

u uie
N u

(6.57)

where num
iu  and exact

iu are the displacement at the ith node obtained using the
numerical methods and the exact solution given in Equation (6.55),
respectively, and N is the number of field nodes.  Note that the case 0 is for N
the problem with the Dirichlet boundary conditions, Equations (6.52) and
(6.56).

Table 6.3 lists the error in numerical results obtained using the
collocation methods and the 3-node interpolation scheme shown in Figure 
6.2.  From Table 6.3, we can make the following remarks.  

1) If the problem is subjected only to Dirichlet BCs without any DBC, 
the collocation method yields very good results. The error is small, 
only e=0.51% for the regular model.  The error for the irregular model
is 1.36%, which is about 2.7 times larger than that for regular nodes.  
This is because the largest nodal spacing for the irregular model is
about 2.0 times that of the regular node model.  This example
indicates the effects of the nodal irregularity on the accuracy of the 
solution of the PPCM.

2) The presence of the DBC leads to large errors in the solution. If no
special treatment for the force boundary condition (the direct 
collocation method) is used, the error of the direct collocation method 
becomes 11.3%.  The error magnification is more than 22 times.   

3) Special treatments for handling the force (derivative) boundary 
conditions can improve the accuracy of the solution.   

4) The Hermite–type collocation method (HC) produces the accurate and t
stable results for both regular and irregular nodal distributions.  The 
error magnification is about 5 times for the regular nodal distribution.  
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The error for the irregular nodal distribution is only slightly larger 
than that without the DBC (case 0).

5) The FP method works reasonably well for the model of regular nodes, 
but not very well for the irregular nodes.  

6) The RG method has the same accuracy as the DC method for the 
model of regular nodes because the three nodes closest to the
Derivative boundary are used in Equation (6.44) that results in the 
same formulation as the DC in this case.  To use the RG method, the 
10 irregular nodes shown in Figure 6.6(c) (not Figure 6.6(b)) are used.  
Table 6.3 shows that the RG method leads to large error for the
irregular model.   

7) The DN method that uses one more node in the problem domain near 
the DB-node shown in Figure 6.6(d) leads to good result.  This 
confirms that the use of dense nodes near the derivative boundaries
can improve the accuracy of solution.  This may be because the use of 
dense nodes can better approximate the derivative of the function.

8) For the DC and the HC methods, the results of the model of irregular 
nodes are better than that for regular nodes.  This maybe because, in
the irregular model shown in Figure 6.6 (b), the nodal spacing near the 
DB-node is smaller than that in the regular model.  

Table 6.3. Relative errors e (%) in the displacement results obtained using the
PPCM with different schemes handling the DBCs

Cases Schemes Regular nodes (Rm) Irregular nodes(Rm)

0 Dirichlet BC 0.51 (1.0) 1.36 (2.67)
1 DC 11.3 (22.2) 1.21 (2.37)
2 FP 1.63 (3.2) 7.96 (15.61)
3 HC 2.68 (5.3) 1.42 (2.78)
4 RG 11.3 (22.2) 6.12 (12.0)
5 DN 1.68 (3.3) / 

3 nearest nodes are used in the local support domain
case_

case_0_regular

i
m

e
R

e
 is the error magnification rate. 

To study the h-convergence of these methods for this 1D truss problem,
regularly distributed 6, 11, 21, 41 and 81 nodes are used.  To study the p-
convergence, the models of 41 regular nodes with 3-node, 5-node and 7-
node interpolation schemes are used.  The relative errors, e, in the
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displacement results obtained by four different methods (excluding the DN 
method) are listed in Table 6.4 and plotted in Figure 6.7 and Figure 6.8.  All
these results re-confirm the fact that these special treatments for enforcement 
of the force boundary condition are necessary to improve the accuracy of the 
solution.  Again, the Hermite–type collocation method produces better 
results for all these cases.

Table 6.4. h- and p- convergence of u using different methods with different
interpolation schemes and different nodal distributions

 Dirichlet BC DC FP HC RG

Number
of Nodes

e(%) e(%) e(%) e(%) e(%)

11 5.10E-1 1.13E+1 1.63E+0 2.68 1.13E+1

21 6.59E-2 1.21E+0 1.99E-1 2.72E-1 1.21E+0

41 8.37E-3 1.35E-1 2.46E-2 2.91E-2 1.35E-1

3-
no

de
 (p ((

=2
)

81 1.05E-3 1.58E-2 3.05E-3 3.31E-3 1.58E-2 

11 6.30E-2 5.46E+0 5.70E-1 2.92E-1 7.56E+0 

21 1.35E-3 1.73E-1 1.62E-2 7.58E-3 9.55E-1

41 3.21E-5 4.68E-3 4.06E-4 1.74E-4 1.10E-1 

5-
no

de
 (p ((

=4
)

81 9.12E-07 1.29E-4 1.07E-5 4.28E-6 1.29E-2 

11 4.31E-2 1.57E+0 8.46E-2 1.55E-2 9.92E+0 

21 1.95E-4 2.24E-2 1.26E-3 1.01E-4 1.02E+0 

7-
no

de
 (p ((

=6
)

41 9.33E-7 1.59E-4 8.42E-6 6.30E-6 1.12E-1 

Table 6.4, Figure 6.7 and Figure 6.8 draw the following conclusions. 

1) This example illustrate the dominant effects of the DBC 

2) Although the accuracies of the different methods are different, their
convergence rates are nearly the same. 

3) The errors in the numerical results obtained using the PPCM seems 
again to be of the order of 1( )1p

cO d( , where dcdd  is the nodal spacing, 
regardless the presence of the DBC.
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4) The RG method does not achieve the p-convergence (see, Figure 6.8) 
because the three nodes closest to the derivative boundary are always
used in Equation (6.44) for all the different interpolation schemes 
used for the internal nodes. Since the error is largely controlled by the 
large error induced by the boundary conditions, the accuracy will not 
be improved, despite the increase of the order of the interpolation for 
all the internal nodes, and the p-convergence of the RG method is 
poor as shown in Figure 6.8.

The simple 1D example demonstrates that the enforcement of derivative
boundary conditions (DBCs) is the major technical issue in the use and the
development of MFree strong-form methods. A special treatment is required
to enforce the DBCs, and for this 1D problem, the Hermite method seems to
work well for both regular and irregular nodes. 

10
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-1
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10
-3
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-2
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1
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2
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Er
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r (
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Dirichlet BC (R=3.0)
DC (R=3.1)         
FP (R=3.0)          
HC (R=3.2)         
RG(R=3.1)           

cdd =h

Figure 6.7. h-convergence in relative errors in the numerical results obtainedn
using the PPCM with different schemes handling the DBCs (3-node scheme). The

R is the convergence rate, and dcdd  is the nodal spacing
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Figure 6.8. p-convergence of the PPCM using different schemes  handling the DBCs
(41 regular nodes)

6.4 STABILIZATION IN CONVECTION-DIFFUSION
PROBLEMS USING MFREE METHODS

Many practical problems in engineering are governed by the so-called
convection-diffusion equations, and hence the convection-diffusion problem
is important in computational mechanics. In a convection-diffusion equation, 
there are convective and diffusive terms, and there is a well-known technical
issue in the analysis for convection-diffusion problem using the numerical 
methods: the instability in the solution when the problem becomesy
convection dominated.  Much research has been performed to solve the 
instability problem, and an overview on this topic can be found in the book
by Zienkiewicz and Taylor (2000).  Many useful techniques have been
developed for stabilizing the numerical solution for FDM (Courant, et al. 
1952; Runchall et al. 1969; Spalding, 1972; etc.), FEM (e.g., Zienkiewicz 
and Taylor, 2000), FPM ( Onate et al., 1996), and the GFDM (e.g., Cheng et 
al., 1999, 2002).  In GFDM used for CFD problems by Cheng et al. (1999, 
2002), a simple idea similar to the upwind stabilization scheme is used by 
choosing more nodes on the side of the support domain facing the flow. In 
this section, the stability problem in the analysis of the convection-diffusion



336 Chapter 6

problem using MFree methods is discussed through a 1D example problem 
of steady state convection-diffusion.  The techniques studied are very simple
and easy to implement in MFree methods, and are in principle applicable 
also to 2D or 3D problems.  To simplify the issue, our discussion in this
section is confined for problems with only Dirichlet boundary conditions. 

Consider a 1D steady-state convection-diffusion problem governed by
the following equations (Zienkiewicz and Taylor, 2000). 

Governing equation: 

0du d duV q( ))du d du(
dx dx dx

(( )) , x (0, 1) (6.58)

where u is a scalar field variable, V,VV k andk q are all given constants, 
and u, V,VV k and k q carry different physical meanings for different
engineering problems.   

Dirichlet  boundary condition:

0

1

0
1

x

x

u
u (6.59)

Equation (6.58) is an ordinary differential equation (ODE) of second
order with constant coefficients, and it is a special case of Equations (6.1).  
The exact solution is

exact
1 2( )

V x
kq ku x c e c1( )

V V
kq c ec e1
kq (6.60)

where

1
1(1 / )

/ ( 1)V k//c V q1 (1 //
k h e/ ((

(1 (6.61)

2 1c kc V2 1 / (6.62)

The stability of the numerical solution of this problem depends on the so-
called the Peclet number

2
cVdcPe

k
(6.63)

where dcdd is the nodal spacing.

In this example, the problem domain is represented using 21 regularly 
distributed nodes, and hence 0.05c , and PPCM is used.  To simplify the
problem, the source term is omitted: q=0 is used.  The support domain is 
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defined to select 3 nearest nodes for computing the PIM shape functions.  
Figure 6.9 shows the results of u obtained using the PPCM for different Peclet
numbers.  The accuracy of solutions deteriorates as Pe increases, if no special
treatment is performed.  When Pe is large, Equation (6.58) becomes 
convection dominated, and the accuracy of the standard numerical result
becomes oscillatory.  If only the conduction term is omitted (k=0), which leadskk
to Pe , the standard numerical procedure fails.

When the equation is convection dominated, the second term in Equation 
(6.58) is negligible, and the down stream boundary condition 

1
1,

x
u  to

affects only a narrow region to form a thin boundary layer.  The thin
boundary layer is difficult to reproduce by a standard numerical method, and 
results become oscillatory.  

This type of instability can occur in many numerical methods including 
FEM, FDM and the MFree method if no special treatment is implemented.  
The key to overcoming this problem is to effectively capture the upstream
information in the approximation of the field variables.  The so-called
upwind scheme widely used in FDM was developed precisely for this
purpose (Courant, et al. 1952; Runchall et al. 1969; Spalding, 1972; etc.).  In 
the following, we discuss some simple strategies in MFree methods to deal
with this instability problem. 

Figure 6.9. Results for the convection-diffusion problem with different Peclet numbers.  Am
total of 21 regularly distributed nodes are used in the PPCM and the support domain is 

defined to select 3 nearest nodes.
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6.4.1 Nodal refinement

It is known that the instability is directly related to the Peclet number.
Therefore, a natural way to stabilize the solution is to reduce the Peclet
number by reducing the nodal spacing dcdd  for given V andV k.

To confirm this argument, two models with 21 and 41 regularly 
distributed nodes are used to solve the same problem.  The local support
domain is defined to select the 3 nearest nodes, and results are plotted in
Figure 6.10.  It can be found that using finer field nodes is one of the simple 
ways to alleviate the instability problem.  Note however that this is not an
effective way to solve the instability problem.  Increasing the nodal density
only in the boundary layer can certainly be more efficient.

Figure 6.10. Results of the 1D convection-diffusion problem with different nodal
distributions. V=100 andVV  kd =1 are considered and the supportkk domain is defined to select 3 

nearest nodes.

6.4.2 Enlargement of the local support domain

The instability is caused by the failure to capture the upstream 
information.  The simplest way to capture the upstream information is 
naturally to use more nodes in the interpolations. This may not be done 
easily in FDM or FEM, but can be done without any difficulty in MFree
methods by simply enlarging the support domain of the collocation node
near the boundary layer. 

Three types of local support domains, selecting 3, 5 and 7 nearest field
nodes, are used to solve the same problem, and results obtained using the 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

x

u

Exact results
Numerical results ( 21 field nodes )
Numerical results ( 41 field nodes )



6.  Meshfree collocation methods 339

PPCM are plotted in Figure 6.11.  The accuracy and stability of solutions are
significantly improved by the enlargement of the local support domain.  
Note that the overlap feature in the MFree interpolations may help also to 
stabilize the solution.

Note that the enlargement of the local support domain needs to be done 
only for the interpolation points (collocation nodes) that are in and near the 
boundary layer.

Figure 6.11. Results of the convection-diffusion problem solved using the PPCM with 
different support domains. Pe=2.5 is considered and a total of 21 regularly distributed 

nodes are used.

6.4.3 Total upwind support domain

Similar to the upwind difference scheme used in the FDM, the local 
upwind support domain, as shown in Figure 6.12(b), is proposed here and 
implemented in the PPCM to stabilize the solution.  Results for  0.25
and 2.5 are obtained and plotted in Figure 6.13.  The upwind support 
domain improves the accuracy and stability for large Peclet numbers
because it can fully capture the information from upstream.  However, it 
gives poor results for cases of smaller Peclet numbers because of the fully
asymmetric interpolation using the upwind support domain, which mis-
represents the conduction term that is a 2nd derivative operator and should 
be symmetric.  In contrast, when using the normal symmetric local support
domain, it gives good results for small Peclet numbers but unstable results 
for large Peclet numbers.  Hence, the ideal support domain should change
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with Peclet number, i.e., when Pe increases, the support domain should be 
biased towards the upwind side. We term such a support domain an adaptive
upwind support domain.

(a) the normal support domain that is symmetric with respect to the collocation point 

(b) the upwind support domain that is fully biased on the upwind side

(c) Construction of an adaptive upwind local support domain with an offset distance dudd

(d) Construction of a biased support domain by deliberately adding two more nodes in the
support domain in the upstream direction 

Figure 6.12. Different types of local support domains.

Stream direction Collocation node

The biased support domain

The normal support domain 

Stream direction Collocation node

Support domain dudd

New centre of the support domain

Stream direction Collocation node 

Support domain 

Stream direction Collocation node

Support domain 
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(a) Pe=0.25

(b) Pe=2.5

Figure 6.13. Results of the convection-diffusion problem with normal and upwind support
domain.  The support domain is defined to select 3 nearest nodes.

6.4.4 Adaptive upwind support domain

The adaptive upwind support domain can be defined using the following 
formula (Zienkiewicz et al., 1975; Christie et al., 1976; Zienkiewicz and
Taylor, 2000; Atluri and Shen, 2002) 
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u s(co / )d Pe Pe r(coth 1/ )1/(coth 1/ )1/u s(cot / )/Pe PePe Pe(coth 1/ )1/ (6.64)

where dudd is the central offset distance against the stream direction from the
collocation node as shown in Figure 6.12(c),  and rsr  is the dimension of the
support domain.  Clearly Equation (6.64) satisfies the following two 
conditions.

When Pe=0, the central support domain should be used and 0u .
When Pe= , fully upwind support domain should be used and u sd ru s .

Figure 6.14 shows that Equation (6.64) works well for both large and 
small Peclet numbers (the results are not presented here). It is one of thet
most effective methods to ensure the stability of convection dominated 
problems.   
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Analytical solutions

Figure 6.14.  Results of the convection-diffusion problem with adaptive upwind support 
domain s.

6.4.5 Biased support domain 

Another effective and simple way to establish a biased support domain is
to deliberately select more nodes in the upstream direction when 
constructing the local support domain for a collocation node (Cheng and GR 
Liu, 1999, 2002).  Figure 6.12(d) shows a biased support domain based on a 
normal support domain by adding two more nodes that are in the upstream
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direction.  The PPCM with the biased support domain gives accurate result
both large and small Peclet numbers.  Due to the freedom in selecting the
support domain in MFree methods, the method of using the biased support 
domain is very effective and easy to use in practical applications (Cheng and
GR Liu, 1999, 2002).

In summary, using MFree methods to analyze the convection dominated
problem, the above mentioned simple methods can be used overcome the
instability issues in convection dominated problems.  In these methods, the 
adaptive upwind support domain and the enlargement of the local support 
domain are the most effective methods and they are very easy to use because
of the freedom of selecting the support domain in an MFree method.  
Comparing with the conventional FDM and FEM, the MFree method has a
very attractive advantage in solving the convection dominated problems 
because it can easily overcome the instability problem even without the need
of any special treatment.  

We have discussed MFree strong-form methods.  MFree weak-form
methods can be modified in a similar way. Therefore, in solving a
convection-diffusion problem, the similar conclusions can be drawn for the 
weak-form methods.  In addition, the use of different weak-forms can be
other effective alternatives, as those used in the FEM (Zienkiewicz and 
Taylor, 2000): the Petrov-Galerkin weak-form (Zienkiewicz et al., 1975; 
Hughes and Brooks, 1982; Kelly et al., 1980), the finite increment calculus
(FIC) ( Onate , 1998), etc. 

6.5 POLYNOMIAL POINT COLLOCATION METHOD
FOR 2D PROBLEMS

This section introduces PPCM for solving 2D problems.  When there is 
only Dirichlet BC, the conventional polynomial PIM shape functions are 
used.  For problems with DBCs, the conventional PIM shape functions are
still used for all the nodes whose support domains do not contain any DB-
nodes, but for nodes whose support domains contain at least one DB-node,
shape functions created using the Hermite-type weighted least square (WLS)
polynomial approximation (see, Sub-section 3.2.1) are used.   
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6.5.1 PPCM formulation for 2D problems

Let us consider problems governed by the following general second-d
order partial differential equation (PDE) defined in a 2D domain, :

2 2 2

11 2

10 00

( ) ( , ) 2 ( , ) ( , )

( , ) ( , ) ( , ) ( , ) 0A

uy11) ( , ) 2 ( , ) ( ,) ( , ) 2 ( , )111 122 121 22x yy
uA x y A x y A x y u q x y101 00( , ) ( , ) ( , ) ( ,, ) ( , ) ( , ) ( ,20 000 Ax y

2 22

2 ( ) ( )u uu2 ( ) ( )( )2 ( ) (( )2 ( )2 ( ) (2 ( )( )( ) ( , )) ( ,( , )111 2 2)( ,( ,222222 12 222 12 222 12 22yx yx yx yx yx yx yx y
u ( )( )( )( ) )( , ) ( , ) ( ,( , ) ( , ) ( ,( , ) ( , )202 00020 yy20 ( , )( , )20x yx y

(6.65)

where u is an unknown field function whose physical significance depends
on the physical problems, qAqq  is a given source term, and the coefficients
A11~A~ 00  could depend upon x and y but are all given.  There can be two-
types of boundary conditions: 

Derivative boundary condition (DBC):

T( ) 0DB BL u u qT( )DBD Bu quT on DBDD (6.66)

where Bq  is the specified source term on the DBC DBDD , n is the
vector of  the unit outward normal, and  is the vector differential
(gradient) operator that is defined by 

u
xx xxxxxxu x xxuu uu
y yyyy yy

(6.67)

Dirichlet boundary condition: 

0u uu on u (6.68)

where u is the specified value of u on the Dirichlet boundary u .

Assume that there are N=NN  NdNN +NbNN field nodes in total with NdNN  internald
(domain) nodes and NbNN =NDBNN + NuNN boundary nodes, where NDBNN  is the number
of DB-nodes and NuNN is the number of nodes on the Dirichlet boundary.
Hermite-type collocation (HC) is used to impose the DBC; the derivatives at
the DB-nodes shown in Figure 3.3 are considered as additional unknowns or
DOFs. For simplicity, we collocate at the field nodes. 
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For the internal nodes and DB-nodes, the following NdNN +NDBNN  equations 
can be obtained using the following collocation approach. 
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where i=1, 2, …, (N(( dNN +NDBNN ), h
iu  is obtained using the Hermite-type WLS

shape functions, and its derivatives are obtained using the following 
equations.
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where  is the vector of shape functions, and us is the vector that collects
the values of the unknown function at all nodes and the 1st derivatives of the
function at DB-nodes in the support domain if the Hermite-type shape 
functions are used.

The following NDBNN equations can be obtained from the DBCs at the DB-
nodes.

T T T 0h
i B s Bi

T T
B s Bui qnT h
Bu qi , DB1,2, ,i ND1,2, , (6.71)

The following NuNN equations can be obtained from Dirichlet boundary
condition for nodes on the Dirichlet boundary: 

T 0h
i su u ui su uu u ,    1,2, , uN1,2, , u (6.72)

Following the procedure in Section 6.3 for 1D problems, we obtain a set 
of discretized system equations.  In the Hermite-type collocation, twon
equations are imposed at each DB-node: one equation resulting from the 
DBC, and the other from the governing PDE.

When PDE is nonlinear in u, an iterative scheme, such as the well-known
Newton-Raphson iteration scheme, can be adopted to solve the nonlinear
discretized equations.
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6.5.2  Numerical examples 

In the study of 2D problems, e0 given in Equation (6.45), exe given in
Equation (6.46) and eye  is defined in the following are used as error indicators.y

2

1

exact 2

1

( )exact

N

i
y N

i y,,
i

ey (6.73)

where eye  is the relative error in the 1st derivative of the function with respect
to the y coordinate, exact

i y,u  is the exact value of the 1st derivatives with

respect to the y coordinate, and num
i y,u is the numerical value obtained using 

the collocation methods.

Example 6.3: PPCM for 2D nonlinear PDEs with Dirichlet BCs

We consider the following PDE that is often seen in chemical
engineering

2 nu ku2u (6.74)

where the parameter k is called thek Thiele modulus in chemical engineering 
and represents the ratio of kinetic to transport resistances in the domain, and 
n  is the order of reaction.  When the Thiele modulus is large, a boundary
layer with a thickness of the order of (1/k) is presented.  The PPCM usingkk
the conventional polynomial PIM shape functions is again used to solve this
problem.  

The problem domain is a cylindrical container that is idealized as unit 
circle, and the following Dirichlet conditions on the entire circumferential
boundary are considered:

0.11ru (6.75)

This example can be found in the paper by Balakrishnan and
Ramachandran (2001).  The first-order reaction ( 1n ) and the second order
reaction ( 2n ) are studied here.  When 1n , the analytical solution is 
available (Balakrishnan and Ramachandran, 2001).

In order to investigate the effect of the parameter k on the solution,k  k=9kk
and 100 are chosen.  When k=9, a coarse nodal distribution of 41 nodes and kk
a finer nodal distribution of 145 nodes shown in Figure 6.15 (a) and (b) are 
adopted.  In the computation, the sizes of support domain are adjusted to
select the 6 nearest neighboring nodes in the interpolation domain.  The 
polynomial basis used to construct PIM shape functions is



6.  Meshfree collocation methods 347

2 2( ) 1 x y xy x yTp x(T (6.76)

which is of complete 2nd order (p(( =2).  The results obtained are listed in
Table 6.5.  Comparing with the results provided by Balakrishnan and
Ramachandran (2001), the PPCM gives reasonably good results.

(a) 41 nodes (b) 145 nodes

Figure 6.15. Two models of different nodal distributions for the circular domain for the
problem defined in Example 6.3 with k=9.kk

Since the PIM shape functions are used, we can now perform a rough 
error analysis based on the numerical results listed in Table 6.5. When 41
nodes are used, one can roughly estimate the nodal spacing using Equation 
(3.3):

2

(41)
1 0.328

41 1 41 1c
Adc 1 411 41

(6.77)

When 145 nodes are used the estimated nodal spacing is

2

(145)
1 0.1605

145 1 145 1c
Adc 1 1451 145

(6.78)

Since the same number of nodes is used in the local support domains, we can
estimate numerically the convergence rate 

2
(41) (41)

2
(145) (145)

)(41) (0.328) 4.176
) (0.1605)(145)

p
p

e p

e d(41) (
R

e d(145) (
( ) ( ) ( )

(6.79)

Compared with numerical results Re shown in Table 6.5, it is found this
rough estimation is good.
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Table 6.5. Results of u for Example 6.3 obtained using the PPCM and different 
nodal distributions (k=9)kk

n r Reference
solution

u(r)
(41 nodes) (41)e (%) u(r)

(145 nodes) (145)e (%) Re

0.0 0.3955 0.4056 2.55 0.3983 0.71 3.59 
0.25 0.4181 0.4287 2.54 0.4210 0.69 3.68 
0.50 0.4943 0.5049 2.14 0.4976 0.67 3.19 

2

0.75 0.6568 0.6678 1.67 0.6600 0.49 3.41
0.0 0.2048 0.2153 5.13 0.2076 1.37 3.74 
0.25 0.2347 0.2456 4.64 0.2375 1.19 3.90 
0.50 0.3373 0.3471 2.91 0.3404 0.92 3.161

0.75 0.5581 0.5678 1.74 0.5613 0.57 2.05 

The support domain is so chosen to select 6 nearest nodes.  
num ref
41

ref(41)
( )num ref

4141e u ,
num ref
145

ref(145)
( )num ref

145145e u , and (41)

(145)
e

eR e .

Table 6.6. Results of u for Example 6.3 obtained using the PPCM and different 
nodal distributions (k=100)kk

n r Reference
solution

u(r)
(45 nodes) Error(%) u(r)

(221 nodes) Error(%)

0.0 0.0689 0.0947 37.446 0.0813 18.00
0.25 0.0783 0.1087 38.825 0.0923 17.88
0.50 0.1258 0.1617 28.537 0.1376 9.38
0.70 0.2480 0.2916 17.581 0.2363 -4.72

2

0.90 0.5289 /  / 0.5423 2.53 
0.0 3.55 10-4 0.0015 4.21 10-4 18.59

0.25 0.0017 0.0040 135.294 0.0014 -17.65
0.50 0.0097 0.0210 116.495 0.0111 14.43 
0.70 0.0599 0.1158 93.322 0.0673 12.35 

1

0.90 0.3884 /  / 0.4041 4.04 

The support domain is so chosen to select 6 nearest nodes.  
num ref

ref
( )num ref

Error u

When k=100, two nodal distributionskk of 45 nodes and 221 nodes shown
in Figure 6.16 (a) and (b) are used.  The results are listed in Table 6.6.  Table
6.6 shows that the accuracy is significantly reduced due to the presence of
the boundary layer. An improvement can be made by using finer nodes near
the circular boundary to capture the sharp variation of the thin boundary
layer. 
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This example clearly shows that the PPCM using the conventional PIM 
shape functions works well even for non-linear problems, as long as there 
is no DBC.

(a) 45 nodes (b) 221 nodes

Figure 6.16. Two models of different nodal distributions for the circle domain for the
problem defined in Example 6.3 with k=100.kk

Example 6.4: Poisson’s equation with derivative boundary conditions

Consider the following PDE defined in a square domain. 
yxeuu u2 , ( , ) 0,1 0,1y,, 0,10,1 (6.80)

with the following fixed boundary conditions:

Dirichlet boundary conditions 

0),( 0xyxu ,( , ; x
y xeyxu y 0)( yx yx (6.81)

Derivative boundary conditions

1

1

2 y

x

u e
xxx

; 1

1

x

y

xe
y
u

(6.82)

The exact solution for this problem is
exact ( ) x yu x y xee ac ( , ), (6.83)

To show the effects of the presence of the DBCs, we conduct a study for
this problem with and without the DBC.  To study the problem without the 
DBC, the DBC in Equation (6.82) is replaced using the following Dirichlet 
boundary conditions to achieve the identical analytical solution.
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1
1

y
x

u e
1

; 1
1

x
y xeu 1 (6.84)

Two models of regularly distributed 11 11 and 21 21 field nodes are
used to represent the square domain.  The results obtained using the PPCM 
for this problem with and without the DBC are listed in Table 6.7 for easy
comparison.  This table shows that the presence of the DBC increases the
errors in the numerical results. This reconfirms that the DBC induce error in
the PPCM methods.

Table 6.7. Errors in the numerical results obtained using PPCM with and without 
DBC (using 9 nodes in interpolation, p=2)

11 11 21 21

e0 (%) exe (%) eye (%) e0 (%) exe (%) eye (%)

Without DBC 0.67 3.00 6.84 5.4e-3 8.9e-2 4.9e-2

With DBC 1.82 3.24 7.60 0.20 0.16 0.39 

We then study this problem with the DBC given in Equation (6.82); 
special treatment is needed to enforce the DBCs.   

If there is no DB-node included in the support domain of a collocation
node, the conventional polynomial PIM shape function discussed in Sub-
section 3.2.1 is used.  The matrix triangularization algorithm (MTA) (GR 
Liu, 2002) is used to avoid the singularity of the moment matrix.  If there are
DB-nodes included in the support domain, the Hermite-type WLS 
approximation discussed in Sub-section 3.2.1.3 is used to construct the shape 
functions.  Because the derivatives of DB-nodes are already the DOFs in thef
Hermite-type approximation, the derivative boundary conditions are
expected to be better enforced, as we discussed in the 1D problems. 

For 11 11 regular nodes, there are 19 DB-nodes, and 19 additional DOFs
of normal derivative.  The errors of numerical solutions obtained for
different weight coefficients j (see, e.g., Equation (3.63)) are listed in Table
6.8.  In obtaining the results in Table 6.8, the dimensionless size of local
support domain is chosen as s=1.5, and dcdd =0.5 in Equation (3.39). For 
comparison, the direct collocation (DC) method based on the conventional
PIM shape function (without Hermite-type approximation) is used to directly 
enforce the derivative boundary conditions, and results are also listed in 
Table 6.8. This table shows that the use of Hermite-type approximation can
improve the accuracy of the solution especially for reducing error in the
function value, e0, if a large  (>103) is employed.
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For 21 21 regular nodes, there are 39 DB-nodes and 39 additional DOFs
for normal derivatives.  The error results are listed in Table 6.9.  The results
show that when weight coefficients j in Equation (3.63) are chosen as 103

or 104, the accuracy is improved by the use of Hermite-type approximation.  

Table 6.8. Errors in the numerical results obtained using the PPCM with different 
weight coefficients (11 11 regular nodes, s=1.5, c=0.5, p=2)

e0 (%) exe (%) eye (%)

1 4.90 4.47 10.72
101 3.36 3.78 8.76
102 2.08 3.39 7.54
103 1.15 3.23 7.02
104 0.90 3.22 6.94
105 0.86 3.22 6.93

without Hermite approximation 1.82 3.24 7.61 

Table 6.9. Errors in the numerical results obtained using PPCM with different 
weight coefficients (21 21 regular nodes, s=1.5, c=0.5, p=2)

e0 (%) exe (%) eye (%)

1 1.36 1.06 2.37
101 1.04 0.81 1.79
102 0.47 0.39 0.77
103 0.12 0.13 0.18
104 0.08 0.09 0.28
105 0.11 0.11 0.33

without Hermite approximation 0.20 0.16 0.39 

Table 6.8 and Table 6.9 show that the results obtained using DC method
are acceptable because the regularly distributed nodes are used in the 
computation.  If the irregular nodes are used, the solution of the DC method
is inaccurate and often unstable†.  In such cases, the collocation method with
Hermite-type approximation gives better results.

Table 6.8 and Table 6.9 show that the finer nodal distribution can lead to
a significant improvement on the accuracy of the numerical solutions both
for the function values and the derivatives. The rate of improvement for the
derivatives is better than that for the function values. This finding is true for ff
both with or without Hermite-type approximation.  This could be because of 

†  Results can change significantly, even with small changes in nodal locations.
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the double positive effects of the refinement on the PDE approximation and 
the treatment of the DBCs.

6.6 RADIAL POINT COLLOCATION METHOD FOR 2D 
PROBLEMS

6.6.1 RPCM formulation

The radial point interpolation method (RPIM) was discussed in Sub-
section 3.2.2; the use of radial basis functions (RBFs) can overcome the
singularity of the moment matrix in the PIM.  In this section, a radial point 
collocation method (RPCM) is introduced.  The procedures are largely the 
same as those introduced in Section 6.5, except that the PIM shape function
is replaced by the RPIM shape function.  Therefore, the detailed formulation
is omitted to allow more rooms for the discussions of example problems
solved using the RPCM with different ways to deal with the DBCs.

The material used in this section is largely based on the work by Liu X
and GR Liu et al. (2002, 2003c,d).

6.6.2 RPCM for 2D Poisson equations 

In this section, several examples are used to study numerically the
performance of RPCM.

Example 6.5: Poisson’s equation with derivative boundary conditions

The 2D Poisson’s equation given by Equation (6.80) is considered againqq
with the following mixed boundary conditions. 

Boundary condition I 

Dirichlet boundary conditions 

0( ) x
yu x y xe0( , ), y ; 1

1( ) x
yu x y xe1( , ), y (6.85)

DBCs

0

y

x

u e
xxx

; 1

1
2 y

x

u e
xxx

(6.86)

Boundary condition II 
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Dirichlet boundary conditions: 

0( , ) 00xu x y( ,, ; 0( ) x
yu x y xe0( , ), y (6.87)

DBCs

1

1
2 y

x

u e
xxx

; 1

1

x

y

u xe
yyy (6.88)

The exact solution for this problem is given in Equation (6.83). 
The RPCM-Exp method is used to analyze this problem, and the shape

parameter in Exp-RBF is chosen as c =1.0.
Regularly distributed 11 11 nodes are first used to represent the problem

domain, and 9 nodes are used in the interpolation scheme is employed.  The 
results obtained with two different shape functions: the conventional RPIM 
and the Hermite-type RPIM shape functions, are listed in Table 6.10.  From 
this table, the relative errors of function using the conventional RPIM and ff
Hermite-type RPIM are 20.08% and 0.30%, respectively.  This demonstrates 
the fact that the Hermite-type interpolation significantly improves the
accuracy of the solution, because it can enforce DBCs more accurately.  

Table 6.10 Errors in the numerical results obtained using RPCM-Exp without 
polynomial and 121 regular nodes (9-node scheme and c=1.0)

 Boundary conditions I Boundary conditions II

e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

DC 8.47 8.53 36.92 20.08 16.10 40.32 

HC 3.30 2.77 9.65 0.30 1.63 6.40 

              *DC: using the conventional RPIM; HC: using Hermite-type RPIM  

A total of 121 irregularly scattered nodes is used to investigate the
stability of the results obtained using the RPCM for an highly irregular nodal
distribution.  The numerical results are listed in Table 6.11 for boundary II; 
RPCM using the Hermite-type RPIM shape function is stable even for
highly irregularly scattered nodes.  Hermite-type RPIM shape functions can
significantly improve the accuracy.

The influence of the size of the local support domain is studied and listed
in Table 6.11.  The solution obtained using RPCM-Exp is closer to the exact 
solution as the size of the support domain increases.  This is true for both the
conventional RPIM and the Hermite-type RPIM shape functions.  For the
former, the relative errors in the solution of function values are 14.98%,
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3.15% and 0.25%, respectively, for the support domain of s=1.0, 1.5 and 
2.0; for the latter, the relative errors of function values are 2.34%, 0.10% and 
0.03%, respectively, for the support domain of  s=1.0, 1.5 and 2.0. 

Table 6.11. Errors in the numerical results obtained using RPCM-Exp without 
polynomial ( c=1.0) and different sizes of the local support domainf
(using 121 highly irregular nodes; boundary condition II)

DC HC 

s e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

1.0 14.98 11.77 28.80 2.34 3.31 13.57 

1.5 3.15 3.03 10.30 0.10 0.50 1.14

2.0 0.25 0.23 0.63 0.03 0.14 0.20

6.6.3 RPCM for 2D convection-diffusion problems 

6.6.3.1 Steady state convection-diffusion problem 

The 2D steady state convection-diffusion problems are governed by
PDEs that are independent of time.  They can be solved using the RPCM 
based on both the conventional RPIM shape functions and the Hermite-type
RPIM shape functions.

Example 6.6: 2D steady state convection-diffusion problem 

Consider a 2D problem governed by the following convection-diffusion
PDE.

),()( yxquuu ,( ,)( uu) uu))) , 1,01,0),( y (6.89)

where

, {(3 ) (4 )}, 1) (4) (4
0

{(3 ) (4 )}{(3 ) (4 )}) (4) (4
00

D , (6.90)

in which  is a given diffusion coefficient.  Two sets of boundary conditions
are considered.

Boundary condition I 

Dirichlet boundary conditions: 
0
1
1

0x
x
y

u (6.91)
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DBCs:

0
0

y

u
n (6.92)

Boundary condition II: 

Dirichlet boundary conditions: 

0
0
1
0

y
x
xu (6.93)

DBCs:

0
1yn

u
(6.94)

The exact solutions for these problem with these two types of boundary
conditions are the same and given by

exact sin( )u xe ac sin( )
2(1 ) 3(1 )

2
x y) 3(1) 3(1

sin( ) 221 1e y ey1 121 1e ye yy1 1yyyy (6.95)

A total of 41 41 regularly distributed nodes is first used to represent the
problem domain.  It is then solved using 1681 randomly distributed nodes
shown in Figure 6.17 that are created using the Halton random model.  The 
RPIM-Exp with the shape parameter c=10.0 is used in RPCM-Exp for both 
the regular nodal model and the random nodal model.  The 9 nodes in the 
local support domains are applied to the regular model.  The dimensionless
size of support domain is chosen as s=2.0 for the random nodal model.
Note that the total numbers of nodes used in both regular and irregular 
models are roughly the same.

The results obtained using RPCM-Exp with two different shape functions, 
the conventional RPIM (see Sub-section 3.2.2.1) and the Hermite-type 
RPIM, are listed in Table 6.12 and Table 6.13.  It is seen that the Hermite-
type RPIM shape functions give better results for large diffusion coefficients 
of 10.0, 1.0 and 0.10 for both models of regular and random nodal 
distributions.

Table 6.13 shows that the use of Hermite-type RPIM shape functions 
improves accuracy slightly, especially for large diffusion coefficients. This
holds for both cases of boundary conditions when regular nodes are used.

Table 6.13 shows that the accuracy is not improved by the use of the
Hermite-type RPIM shape functions for the case of boundary condition I, 
while the random nodal model is employed.  For the random model with 
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boundary condition II, the use of the Hermite-type RPIM shape function
gives better accuracy.

Figure 6.17. A total of  1681 randomly distributed nodes created using the Halton random
model (interior nodes: 1521; boundary nodes: 160).

Table 6.12. Errors in the numerical results obtained using the RPCM-Exp without 
polynomial augmented ( c=10.0) and 41 41 regular nodes (9-node 
interpolation scheme)

Conventional RPIM  
shape function 

Hermite-type RPIM 
shape function 

Boundary condition I 
 e0(%) exe (%) eye (%) e(%) exe (%) eye (%)

10.0 5.04 5.41 3.89 0.97 1.80 2.56
1.0 4.38 4.97 4.85 0.46 1.86 4.67
0.1 2.55 17.13 28.63 0.95 17.52 28.71
0.01 28.12 72.58 79.86 27.87 72.50 79.85

Boundary condition II
 e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

10.0 8.25 7.89 7.57 1.64 2.42 1.56
1.0 9.62 9.62 10.73 1.16 2.25 1.26
0.1 18.24 24.84 29.02 2.43 17.90 13.46
0.01 fail fail

: the diffusion coefficient.

Note that when is very small, the problem becomes convection
dominated, for which the instability in the solution has been very well
known for many numerical methods including the FDM and FEM, as 
discussed in Section 6.4.  It can be concluded that the instability problem can
be alleviated using enlarged local support domains or adaptive upwind 
support domains in the MFree method.  Table 6.14 lists the results of
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different sizes of support domains for the case of =0.01 that is a highly
convection dominated case. To obtain the results in Table 6.14, RPCM-Exp
with c=10.0 and 1681 regularly distributed nodes are used.  This table 
shows that the accuracy of solution significantly improves with the 
enlargement of the local support domain.  It confirms again that the 
enlargement of the support domain can help to stabilize the solution of a 2D
convection dominated problem. 

Table 6.13. Errors in the numerical results obtained using RPCM-Exp ( c=10.0) and 
1681 irregular nodes (the size of support domain: s=2.0)

Conventional RPIM  
shape function 

Hermite-type RPIM 
shape function

Boundary condition I 
 e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

10.0 0.08 0.19 0.15 0.08 0.19 0.14
1.0 0.06 0.17 0.12 0.06 0.164 0.12
0.1 0.15 2.67 2.27 0.15 2.67 2.27 
0.01 fail fail

Boundary condition II
 e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

10.0 0.26 0.82 0.76 0.13 0.24 0.14
1.0 0.27 1.21 0.98 0.10 0.29 0.14 
0.1 3.85 12.08 5.96 1.63 3.55 2.29
0.01 fail fail

: the diffusion coefficient.

Table 6.14. Errors in the numerical results obtained using RPCM-Exp ( c=10.0) and 
1681 regular nodes for =0.01

Boundary condition I Boundary condition II

s e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)
1.01 341.9 100.4 100.1 fail fail fail 
1.45 27.8 72.5 79.8 fail fail fail
2.05 6.7 28.7 32.3 101.1 133.6 134.2 
3.05 4.2 13.5 17.1 61.7 94.5 90.5 

To study the efficiency of using the adaptive support domain discussed in 
Sub-section 6.4.4, this problem with small values of  is analyzed.  For 
simplicity, only the following Dirichlet boundary conditions are considered. 

0
1
0
1

0x
x
y
y

u (6.96)
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The adaptive upwind support domain is defined by assuming the
following formula  

u s(co / )d d(coth 1/ )u s(cot ))(coth /1/1/1//1/ (6.97)

where dudd is the central offset distance against the stream direction from the
collocation node as shown in Figure 6.18, Pe is the vector of the local Peclet
numbers, and dsd  is the size of the local support domain.  

Figure 6.18. Construction of an adaptive upwind local support domain in a 2D problem
domain using offset distance dudd .

Errors in the numerical results obtained using the RPCM-Exp with
different are listed in Table 6.15.  Table 6.15 shows that the adaptive
upwind support domains can stabilize the solution, and gives the good 
results for this convection-dominated problem.  

In summary, for a PDE with DBCs, the RPCM based on the Hermite-
type RPIM shape functions produces better results than that based on the
conventional RPIM shape functions, because the DBCs can be more 
accurately enforced using the Hermite-type interpolation.  However, the use 
of the Hermite-type RPIM shape functions for 2D cases is not as effective as
that observed for 1D cases.  This may imply that the effects of the DBCs are
more severe in multi-dimensional problems.

Stream direction 

dudd

Collocation point 

Biased centre

Normal support domain 

Adaptive upwind
support domain  
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In addition, the instability problem in the 2D convection-dominated 
problems can be alleviated using enlarged local support domains and
adaptive upwind support domains. 

Table 6.15. Errors e0(%) in the numerical results obtained using the RPCM-Exp
( c=10.0) and 121 regular nodes for different 

* The size of local support domain: dsd =2.0dcdd .

6.6.3.2 Linear dynamic convection-diffusion equations

Consider a 2D problem governed by the following time-dependent
convection-diffusion equation.

( ) ( 0T T( ) A
uL( q)
t

(( T( Au qu)))) ,    in (6.98)

where D is defined in Equation (6.90),  and qAqq are all given constants, v is
the vector of velocities

T
x yv vx yv (6.99)

The following boundary and initial conditions are considered. 

DBC:
T

DB ( ) 0BL u u qT
DB ( ) Bu quT ,    on DB (6.100)

where n is the unit outward normal vector on the boundary, and Bq  is
the specified source term on the derivative boundary.

Dirichlet boundary condition: 

0ii uui ,    on u (6.101)

where u  is the specified u.

Initial condition:

)(),( 0
0u ),( ) t (6.102)

= 210 = 310 = 410 = 610

0(%) e0(%) e0(%) e0(%)

Normal support domains 55.5 342.9 496.6 518.1 

Adaptive support domains 2.0 2.1 2.1 2.1 



360 Chapter 6

In Equation (6.98) the field variable u is a function of the spatial
coordinate and time.

The problem domain is now represented using NdNN  internal (domain)d
nodes and NbNN =NDBNN + NuNN boundary nodes, which NDBNN is the number of DB-
nodes and NuNN  is the number of the nodes on the Dirichlet boundaries.

For the approximation of the field function u in the space coordinates, the 
conventional RPIM shape functions are used for all the internal nodes whose 
support domains do not include DB-nodes, and the Hermite-type RPIM 
shape functions are used for DB-nodes and internal nodes whose support 
domains include at least one DB-nodes, as we have done for the static 
problems.  Using the RPCM, we can obtain a set of system equations at time
t.

For the internal nodes and DB-nodes, we have

0
h
i

i
u R
t iR , 1, 2, , di N1, 2, , d (6.103)

where h
imu is the approximate value of u at node i and time t, and

T h T h( )i i i( AR qi i) T h(T (( uuh
i)))))) (6.104)

For DB-nodes, we have in addition to Equation (6.103)

0T h
i Bi
h

Bu qin DT , DB1,2, , NDi 1,2, , (6.105)

For nodes on the Dirichlet boundary u , we obtain

0h
i iu ui iu , 1,2, , ui N1,2, , u (6.106)

With the conventional and the Hermite-type RPIM shape functions, h
iu

can be approximated as

1

( ) ( ) ( )
n

h
i j i j( ) ( )( )

j

u ( ) ( ) () ( ) (h
i ( ) ( )( )) ( ) (6.107)

and its derivatives can be obtained by following equations: 

1

( ) ( ) ( )
n

h
i j( ) i j

j

( ) ((( )h
i ( )u ( )h
i ( ) (6.108)

where n is the number of nodes used in the local support domain. Note that 
in these equations, additional derivative DOFs are included. 

The standard Crank-Nicolson scheme is used to perform the time 
integration, which leads to
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0)(
2
11 )(

t
uu 1

h
m

h
m (6.109)

where the subscript represents the time sequence, and t is the time step. t
In the following, a numerical example will be used to study the 

performance of the RPCM for linearly dynamic convection-diffusion
problems. 

Example 6.7: Rotating Gaussian wave problem: 

This problem is a special case of Equation (6.98) with coefficients given

as
0 0
0 00 0

D , =1, qAqq =0, vxv =y= , and vyv = x .

The problem domain is defined in a square domain of 
, and the Dirichlet boundary conditions is given by on 

the entire problem boundary :

( , ) 0,u( , x) 0,, (6.110)

The initial condition is

2
0

2

2)0,(
r

etu )0,( )0 (6.111)

where 2 2
0 0( ) ( )2

0r x x0( ) () (0( ) (2( ) () () (0 is the distance between a point at (x(( , y) and 
the initial position of the center at )000 ( 0.5,0.0) , and 0 1/8 is the
constant controlling the size of the Gaussian wave.

Two regular nodal distributions of 33 33 nodes and 65 65 nodes are
used to represent the problem domain, and the conventional RPIM-MQ 
shape functions are used for the spatial discretization of the field variables.
The dimension of the support domain of a collocation node to be processed 
is so chosen in order to select 9 or 25 nearest nodes in the support domain.
Note that the results of RPIM-Exp can also be similarly obtained, although 
only the results of RPIM-MQ are presented here. 

The elevations of the rotating Gaussian wave are plotted in Figure 6.19 
and Figure 6.20.  Figure 6.19 is obtained using 33 33 nodes, in the 
procedure of time integration, 100 time steps with time interval of 

t=2tt /100, and shape parameters of 2 / 32, 3.0c c2 / 32,2 / 32,d , and q=0.5 are
employed.  Figure 6.20 is obtained using 65 65 nodes model, 1000 time 
steps with time interval of t=2tt /1000, and shape parameters of 

2 / 64, 3.0c c2 / 64,dc 2 / 64 , and q=0.5.  To compare the accuracy of the various
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schemes, the maximum and minimum values of the computed solutions and 
the error by the present method are listed in Table 6.16~Table 6.18. 

(c) Full revolution, 0 max min2 , 4.7%, 0.9876, 0.00450 max mint 2 , 4.7%, 0.9876,4.7%, 0.9876,0 max i4 7% 0 98764 7% 0 98764 7%2

Figure 6.19. The solution for the rotating Gaussian wave solved using RPIM-MQ shape
functions and  33×33 regular nodes. 

Table 6.16. Errors in the numerical results obtained using the RPCM with RPIM-
MQ shape functions and 33 33 regular nodes with different shape
parameters c (9 nearest nodes selected in the support domain)  

Half revolution

c e0(%) exe (%) eye (%) umax umin

3.0 31.42 48.77 67.54 0.8433 -0.1623
6.0 41.14 59.30 82.87 0.8279 -0.1650

Full revolution
3.0 31.44 48.80 67.60 0.8435 -0.1624
6.0 41.18 59.34 82.94 0.8283 -0.1641

 * The shape parameter used in MQ: q=0.5
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(a) Half revolution, ,

0 max min3.40%, 0.99, 0.0002max mine0 3.40%, 0.99,0 99,max i3 40% 0 990 99
(b) Full revolution, 2 ,

0 max min3.47%, 0.99, 0.0002max mine0 3.47%, 0.99,0 99,max i0 99

Figure 6.20. The solution for the rotating Gaussian wave solved using RPIM-MQ shape
functions and  65×65 regular nodes. 

Table 6.17. Errors in the numerical results obtained using RPCM with RPIM-MQ
shape functions and 33 33 regular nodes for different shape parameters

c (25 nearest nodes selected in the support domain)

Half revolution

c e0(%) exe (%) eye (%) umax umin

3.0 4.68 7.80 10.45 0.9873 -0.0045
6.0 9.20 12.98 25.02 0.9569 -0.0172

Full revolution
3.0 4.68 7.80 10.45 0.9876 -0.0045
6.0 9.22 13.00 25.07 0.9571 -0.0173

* The shape parameter used in MQ: q=0.5

Table 6.18. Errors in the numerical results obtained using RPCM-MQ with RPIM-
MQ shape functions and 65 65 regular nodes for different shape 
parameters c (25 nearest nodes selected in the support domain)

Half revolution

c e0(%) exe (%) eye (%) umax umin

3.0 3.41 2.99 5.15 0.9987 -0.00026
6.0 0.68 0.93 1.51 1.00039 -0.00001

Full revolution
3.0 3.47 3.01 5.18 0.9988 -0.00026
6.0 0.68 0.88 1.42 1.00050 -0.00001

* The shape parameter used in MQ: q=0.5
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Note that the problem designed in Example 6.7 is a purely convection
problem, which can clearly show the instability issue discussed in Section 
6.4.  We have reconfirmed from this example that the solution can be
stabilized using denser nodes in the model and more nodes in creating the
RPIM shape functions.  The use of a large c in the RPIM-MQ can also 
improve the accuracy in the stabilized solution as shown in Table 6.18.  This
is because

1) The use of denser nodes produces better resolution for the Gaussian 
wave.

2) The use of more nodes in the local support domain allows the local
convection effects farther.

3) A large c makes the RPIM shape functions have large values in the
distant area, which also allows the convection effects farther.

Note that the better way to avoid the instability in the convection 
dominated problems is to use the adaptive upwind support domains
discussed in Section 6.4 and Example 6.8.  Another effective method to
overcome the instability problem in the dynamic convection-dominated 
problem is the characteristic-based method that is widely used in the FEM
(see, e.g., Zienkiewicz and Taylor, 2000), and the FPM ( Onate , 1996).

6.7 RPCM FOR 2D SOLIDS

Applying MFree strong-form methods (collocation methods) to solids 
mechanics problems is usually much more challenging, because of the
presence of both normal and shear force boundary conditions.  These force
boundary conditions are all of derivatives types, and related to the 
derivatives of the displacements in both normal and tangential directions at a
point on the derivative (or stress or traction) boundaries.  This section will 
discuss a number of attempts performed by Liu X and GR Liu et al.  (2002,
2003c,d,e) in dealing with those problems, when a collocation method is 
used.

6.7.1 Hermite-type RPCM 
Consider a problem of two-dimensional elastostatics of isotropic 

materials. The standard governing equations (strong-form) for the plane 
stress case (Timoshenko and Goodier, 1970) defined in the x-y- plane can be 
expressed explicitly as  
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2 2 2

2 ( )2 2 0
2221 x

v2E ( bxx yx y

2 2222u uu u2 21 221 )2 xbxx yx y2 22 2x yx 2
12 1

2
(6.112)

2 2 2

2 ( ))2 2 0
2221 y

E v v u2

( byx yy x

2 2222v vv v2 21 221 )2 ybyx yx y2 22 2y xy 2
12 1

2 (6.113)

where E andE are Young’s modulus and Poisson’s ratio, u and v are thev
two components of the displacement in x and y directions, respectively, and 
bx and byb are the two components of the external body forces applied at x and
y directions, respectively.   

On the derivative (stress) boundaries, t, where the traction forces in two 
directions are specified, the stress boundary conditions are

x xx y xy x

y yy x xy y

n n tx xx y xy x

n n ty yy x xy y

xx yxx yxx yxx y

yy xyy xyy xyy x

nn xyny

nn xynx
(6.114)

where x, y, and xy are stress components, xn and yn  are two components 
of the unit outward normal vector in x and y directions on the boundaryy t

(see Figure 1.4), and xtx and yty denote the prescribed tractions in x and y
directions, respectively.

Substituting the expressions of stresses in terms of displacement 
components (see, e.g, Sub-section 1.2.2) into Equation (6.114), we can
obtain the strong-forms of the stress boundary conditions in term of 
displacements:  

21 x
E tx

u v u v1u v uu v u1 v
xnx

u v uu v u1
yynnyy

u v u vu v u vu v uu v u1u v uu v u1nnnnyyyyyyyyyyyyyy 2x yx yyx y y xyyyyyyyyyyy 2x y y xx y y x2yyyy 2yyyy 2yyyy 2
(6.115)

21 y
E ty

u v u v1u v uu v u1 v
yny

u v uu v u1
xxnnxx

u v u vu v u vu v uu v u1u v uu v u1nnnnxxxxxxxxxxxxxx 2y xy x y x yxxxx 2x y x yx y x y222xxxx 2 (6.116)

Equations (6.115) and (6.116) can be written in the following matrix form

21
uE

1 1
yn

xx y xnx y xyn ny xy 2y x yy x2x y y xx y y x2 2y 2xtx x y y xxx y y xx y y x2 2x y y xx y y x2 2xx u
1 1t vyytyt

x y xy n n nx yx yny n nn nnx yxx yx y xx yx y y xxy x y y xx y y x2 22x y xx y2x y y xx y y x2 22

1nn

1nn
(6.117)
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These equations show that the boundary conditions are given in terms of 
derivatives of the field variable (displacements) with respect to both
coordinates.  It is therefore a typical type of DBC for solids mechanics
problems; is also termed as natural boundary conditions in the context of l
weak-form formulation (see also Section 1.5).

Equations (6.112), (6.113), (6.115) and (6.116) are for plane stress
problems.  For plane strain problems, the strong-forms of governing
equations and stress or natural boundary conditions can be easily obtained 
from Equations (6.112), (6.113), (6.115) and (6.116) by replacing the 
Young’s modules E withE

21
EE 2 (6.118)

and the Poisson ratio  with

1
(6.119)

The displacement boundary conditions can be expressed as: 

u= u ,       on u (6.120)

v= v ,        on u (6.121)

where u  and v  are the displacements in the x and y directions specified on 
the displacement boundaries. Equations (6.120) and (6.121) are the essential
boundary conditions in the context of weak-form formulation (see also
Section 1.5).

These equations are directly approximated using MFree shape functions, 
such as the MLS approximation, the RPIM, etc., and discretized by
collocating at the field nodes.  Note that special treatments are needed for the t
discretization of the equations of the stress (derivative) boundary conditions 
Equations (6.115) and (6.116).  In this section, the Hermite-type RPIM 
discussed in Sub-section 3.2.2.2 is used for the implementation of the stress 
boundary conditions.

For the internal nodes or nodes on the displacement boundaries whose 
support domains do not include DB-nodes, the conventional RPIM shape 
functions are used. The displacement at a point x can be approximated as 
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1
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0n11 01

0
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0
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10 n1 0110 0

nv

u( u (6.122)

where is the matrix  of the conventional RPIM shape functions, and su is
the vector that collects all nodal displacements at the n nodes in the local
support domain.  

Substituting Equation (6.122) into Equations (6.112), (6.113), (6.115) qq
and (6.116), we can obtain a set of discretized system equations for these 
nodes. Detailed procedures are similar to those presented in Sub-section 
6.3.1 for 1D problems. 

For DB-nodes and internal nodes whose support domains include DB-
nodes, the displacement at a point x can be approximated using the Hermite-
type RPIM shape functions (see Sub-section 3.2.2.2) to arrive at  

suu T)(x (6.123)

where the matrix  of shape functions is obtained using equations given in 
Sub-section 3.2.2.2, i.e.,

T
0H H

11 0 0 00 011
H H00

DB1 0n n11 011 01 01 01

0 H H0 00 0 H H0
DB1 n n11 1

H0 n1 0 0 00 01 11 1
H01 01

0 000 0

0 000 0
(6.124)

In Equation (6.123), su is the vector that collects all nodal displacements at 
the n nodes in the local support domain and nodal normal derivatives of the 
DB-nodes on the stress boundaries in the support domain. 

T

s

DB DBDB DB DB
1 n nvv1

DBDB DB vv nun
DBuu1

DBu1 1 DB DB
n1 1 nu v u v1 1 n1 1

1 1 DB DBn nDB11u1
n1 1 nn1 1 n nn n nn n

u u v (6.125)

The displacement at a collocation node x can be re-written as

1
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j

nn

DB
i 1 j j

u
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0H
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H0 u( )u 0j

DB
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( )
( )u j
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The governing Equations (6.112) and (6.113) are discretized at all DB-
nodes and the internal nodes whose support domain contain DB-nodes using
Equation (6.126) and the similar procedures presented in Sub-section 6.3.1.

For the DB-nodes, the stress boundary conditions, Equations (6.115) and 
(6.116), are also imposed using the Hermite-type RPIM shape functions. 
Substituting Equation (6.126) into Equation (6.117), we have
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Using Equation (6.127), the force (derivative) boundary conditions can be
implemented.  Some numerical examples will be presented in the following.

Example 6.8: 2D Cook membrane’s problem 

The Cook membrane’s problem shown in Figure 6.21 is solved using the 
radial point collocation method (RPCM).  The membrane is subjected to a 
uniformly distributed shear load at the free end.  The parameters are E=1,EE

=1/3, and F=1.  A reference solution for this problem was given by Hueck FF
and Wriggers (1995) using FEM with a fine mesh of 128 128 elements.
The vertical displacement at point C is found in the FEM analysis as vc
=23.96; the maximum principal stresses at the point A is Amax=0.2369, and 
the minimum principal stresses at the point B Bmin= 0.2035 .

The thin plate spline (TPS) RBF augmented with the constant term (m=1)
is used in the construction of the Hermite-type RPIM shape functions.  Two 
nodal distributions of 9×9 nodes and 17 17 nodes shown in Figure 6.22 are 
used.  The numerical results obtained are plotted in Figure 6.23~Figure 6.25 
for different sizes of local support domains.  The solutions obtained using 
the finer nodal distribution are generally much better than those from the
coarser nodal distributions.  The results obtained using the RPCM converge 
with the increase of the size of the support domain.  The accuracy of the 
solution is poor if s<4.5.  Note that for most problems studied in this book 
or the book by GR Liu (2002), s 3.0 is usually used.  It shows that solving 
solid mechanics problems using collocation methods is generally much more 
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demanding on the number of nodes used in the support domain, compared
with the weak-form methods.

The convergence is not monotonic. This is a typical feature of the
collocation methods or MFree strong-form method in general, in contrast to 
the methods based on the energy principles where the convergence is usually
monotonic, and hence it is easier for error bound estimation.  Finally, we 
mention, without showing detailed results, that if the direct RPCM is used 
for this problem, the results are poor. The use of the Hermite-type
interpolation is essential for this problem due to the presence of the complex
DBCs.

Figure 6.21. Cook’s membrane problem.

(a) 9 9 nodes (b) 17 17 nodes 

Figure 6.22. Two nodal distributions used in the RPCM.
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Figure 6.23. The vertical displacement at point C for the Cook’s membrane problem
solved using Hermite-type RPCM-TPS with shape parameter of =4.
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Figure 6.24. The minimum principal stress at point B for the Cook’s membrane
problem solved using Hermite-type RPCM-TPS with shape parameter of =4.
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Figure 6.25. The maximum principal stress of at point A for the Cook’s membranet
problem solved using the Hermite-type RPCM-TPS with shape parameter of =4.

6.7.2 Use of regular grid (RG)
FDM is successful for both fluid and solids mechanics problems with 

DBCs (e.g. Klerber, 1998).  This is because regular grids are used, and a
proper procedure for implementing the DBC can be formulated.  This fact 
has motivated many to use FDM grids in the MFree methods on the 
derivative boundary to handle the DBCs in CFD problems (Liszka and 
Orkisz, 1977; Cheng and GR Liu, 1999, 2002).  This section reports the 
attempts made by Liu X et al.  (2003e) for solids mechanics problems using
regular nodes on and near derivative boundaries. The conventional RPCM
procedure is used for all the other nodes that may not be regularly distributed.  

The force boundary conditions are given in Equations (6.115) and 
(6.116), and involve the 1st derivatives of both displacements.  In order to 
approximate these derivatives, several layers nodes regularly distributed are 
placed along the force boundaries.  The standard difference scheme used in 
FDM is then employed for these nodes to construct the discretized equations 
for these derivatives.  The force boundary conditions are then enforced in a 
similar manner used in the conventional FDM, while other nodes in the 
problem domain can still be irregularly distributed. 
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Two types of boundary shapes are considered in this study: the straight 
boundary as shown in Figure 6.26 and the curve (circle) boundary as shown 
in Figure 6.27.

Figure 6.26. Regular grids used to approximate the DBCs on a straight boundary.

Figure 6.27. Regular grids used to approximate the DBCs on a curves boundary. 

When the force boundary is straight, three layers of regular nodes are 
used, as shown in Figure 6.26.
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For a collocation node at xIx   that is not at the corner, four nodes,I I1II , I2II ,
I3II  and I4II , around xIx  are used to approximate the 1st derivatives of I
displacements, u and v, using the standard difference scheme:

4 3 1 2

4 3 2

3 4
,I4 3 I I I1 2

I4 3 I I2

u uIu
x x x y y y

3I I4 3 I2
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(6.128)

For a collocation node at xJx  that is at the corner, four nodes,J J1JJ , J2JJ , J3JJ
and J4JJ , around xJx  are used to approximate the 1st derivatives of J
displacements, u and v, using the standard difference scheme: 
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(6.129)

Substituting Equation (6.128) or (6.129) into Equations (6.115) and (6.116), 
we obtain a set of discretized equations for the force boundary conditions. 

When the force boundary is a curve (e.g. circle), three layers of regular
nodes are used, as shown in Figure 6.27. 

1) For a collocation node at xIx  that is not at the corner, four nodes,I I1, I2II ,
I3II  and I4II , around xIx  are used to express the 1st derivatives of I
displacements, u and v, using the standard difference scheme in the 
polar coordinates: 
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(6.130)

2) For a collocation node xJx that is at the corner, four nodes,J J1JJ , J2JJ , J3JJ  and
J4JJ , around xJx  are used to get the 1st derivatives of displacements,J u
and v, using the standard difference scheme in the polar coordinates: 
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For a circular boundary, the derivative for x and y can be obtained using the 
following equations of coordinate transformation (Reddy, 1993). 
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(6.133)

Substituting Equations (6.130)~(6.132) and (6.133) into Equations (6.115)
and (6.116), we find a set of discretized equations for the force boundary 
conditions.

For all other nodes, the standard collocation scheme similar to that 
presented in Sub-section 6.3.1 is employed using the conventional RPIM mm
shape functions.

For easy description, the above present method is terms as RPCM-RG in
the following numerical examples.  

Example 6.9: An infinite plate with a circular hole 

Consider a plate with a central circular hole of x2+y+ 2 a2 at the centre
subjected to a unidirectional tensile load of 1.0 in the x-direction as shown in 
Figure 6.28.  Due to symmetry, only the upper right quadrant of the plate is 
modelled (see, Figure 6.29).  Symmetry conditions are imposed on the left 
and bottom edges.  The inner boundary is traction free.  Plane strain 
conditions are assumed, and the material constants are E=1.0EE 103, and 

=0.3.
When b/a 5, the solution of the finite plate is very close to that of the 

infinite plate (Roark and Young, 1975), for which there is an analytical
solution:
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where

3 4       plane strain
3        plane stress2
1

E
2

(6.136)

The analytical solution for the stresses of an infinite plate is
2 4

2 4
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where (r, ) are the polar coordinates with   measured counter-clockwise
from the positive x axis.

The displacement boundary conditions are given by

0u ,  on the edge of x=0 (6.140)

0v ,  on the edge of y=0 (6.141)

which ensure the symmetry of the problem. 
Traction (derivative) boundary conditions given by the exact solution 

Equations (6.137)~(6.139) are imposed on the right (x(( =5) and top (y(( =5)
edges.  Clearly, this problem has more complex traction (natural) boundary 
conditions.

A total of 165 nodes are used to represent the problem domain, and the 
nodal arrangement is shown in Figure 6.29.  The displacements obtained by 
RPCM-RG based on the RPIM-MQ shape functions and the analytical 
methods are almost identical.  As the stresses are more critical for accuracy
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assessment, detailed results of stresses distribution for stress xx along x=0
computed using the RPCM-RG with different parameters are shown in
Figure 6.30.  Figure 6.30 shows that the RPCM-RG method yields
satisfactory results even for stresses for these sets of shape parameters used. 
Note that these sets of good shape parameters are not the same as those
found in other examples.  In addition, we have found again that when the RG
method is not used, the RPCM failed to give a reasonable result. 

For comparison, results obtained using EFG and RPIM methods (see, 
Chapter 4) are also plotted in Figure 6.30.  It is shown that EFG and RPIM 
produce more accurate stresses than the RPCM-RG method.  This confirms
that a weak-form method is usually more accurate than a strong-form
method.  It should be noted that in the weak-form methods, EFG and RPIM,
no special treatment is needed to enforce the force (derivative) boundary
conditions.  The solutions obtained using these weak-form methods are 
much less sensitive to the shape parameters, and wide ranges of good shape 
parameters have been found and shared with many types of problems (GR 
Liu, 2002). However, a background mesh is needed for the numerical
integrations.

Figure 6.28. A 2D solid with a central hole subjected to a unidirectional tensile
load.  Only the upper right quadrant with dimension of 5 5  of the plate is modeled.
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Figure 6.29. One quarter model of nodes and boundary conditions in a finite 2D 
solid with a central hole subjected to a unidirectional tensile load in the x direction.
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Figure 6.30. Normal stress ( xx) of the plate along the section of x=0 obtained using 
different methods (q=0.5, m=0).
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6.8 REMARKS

In this Chapter, the MFree strong-form methods are discussed.  Several 
numerical examples are presented to study the performance and efficiency. 
The strong-form method is a truly meshless method; there is no mesh for
function approximation or the numerical integration.  It is usually efficient, 
especially there are no DBCs.  

However, the major technical issue for the strong-form methods is the 
enforcement of the DBCs.  The error induced from the DBCs cannot be 
effectively controlled.  This often leads to instability and.  Several strategies
were introduced to treat the DBCs, and these methods were examined in 
numerical examples.  We draw the following conclusions: 

1) The collocation method is able to reproduce the exact solution if it is 
included in MFree shape functions (see, Section 1.4).

2) The direct collocation (DC) method is simple and straightforward,
and it is efficient for problems with only Dirichlet boundary 
conditions.  The DC method is usually unstable or inaccurate for 
problems with DBCs. 

3) The method using fictitious points (FP) can usually obtain 
satisfactory results.  However, it increases the number of equations 
and needs additional meshing work.

4) The Hermite-type collocation (HC) method based on the Hermite-
type shape functions is effective to enforce DBCs when a set of 
properly tuned parameters are used for a given problem.  However, it 
increases the number of degree of freedom and thus increases the
computational cost.  The HC method works well for 1D problems, 
but not so consistently well for 2D problems. 

5) Although the method of using regular grid (RG) nodes can more or
less effectively handle the DBCs, additional meshing work is needed 
and it is difficult to use for some problems.  In addition, the coding 
for the equations of DBCs is troublesome.  

6) A good method for 1D problems may not be good for 2D problems.
In general, 2D problem with derivative boundary conditions are more 
difficult to handle. The situation may be even worse for 3D problems.

7) The use of denser nodes on the derivative boundaries often improves 
the solution.
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8) One of the most critical problems in use of the collocation methods is 
the poor robustness.  A method tuned for one problem, may not work 
for others, and one set of parameters tuned for one problem may not 
work well for others.  This unfortunate feature of collocation
methods or MFree strong-form methods in general has not been 
observed in MFree weak-form methods.

In summary, there is still no way to totally solve the DBC issue in strong-
form methods.

MFree method has clear advantages in handling instability issues in the 
convection-diffusion problems. Our study has found that

Due to the overlap feature in the MFree interpolations 
/approximations, the solution for convection dominated problems is
general stable and convergent as long as the shape function is of 2nd 
order or higher, meaning that the solution approaches the exact 
solution when the nodes are refined.

The solution can be further improved by using more nodes in the 
interpolation/approximations; this can be done without any technical
difficulty in an MFree method, in which the nodes used in the support 
domain are not prefixed and can be selected as desired manner.  

More accurate solutions can be obtained using adaptive upwind
support domains. 
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MESHFREE METHODS BASED ON
COMBINATION OF LOCAL WEAK-FORM
AND COLLOCATION 

7 MFree methods based on local weak form/collocation 

7.1 INTRODUCTION

MFree methods fall into three categories (Chapter 2): MFree collocation 
methods (or MFree strong-form methods), discussed in Chapter 6; MFree 
weak-form methods, such as the RPIM method, the EFG method, LRPIM 
method and the MLPG method, discussed in Chapters 4 and 5; MFree
methods based on the combinations of both the strong-form and the weak-
form or short for MFree weak-strong form method.  

An MFree weak-strong (MWS) form method was proposed recently by
GR Liu and Gu (2002d); it aimed to remove the background mesh for
integration as much as possible, and yet to obtain stable and accurate
solutions even for PDEs with derivative boundary conditions.  The MWS 
method has been successfully developed and used in solid mechanics (Gu
and GR Liu, 2005; GR Liu and Gu, 2003b) and fluid mechanics (GR Liu
and Wu et al., 2004; GR Liu and Gu et al., 2003c).

This chapter is devoted entirely to MWS.  Justification and motivation 
precede the formulation, implementation and coding issues.  The 
convergence of the MWS method is studied numerically by comparison with 
other methods.  Finally, examples from elastostatics, elastodynamics and 
fluid mechanics are presented to illustrate its efficiency, accuracy, and 
robustness.

380
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7.2 MESHFREE COLLOCATION AND LOCAL WEAK-
FORM METHODS

The MWS method is designed to combine the advantages of strong-form
and weak-form methods and to avoid their shortcomings.  This can be 
performed only after a thorough examination of the features of both types of 
methods, presented in the following two sub-sections. 

7.2.1 Meshfree collocation method

The MFree strong-form methods were discussed in detail in Chapter 6, 
where the strong-forms of the governing equations and boundary conditions
are discretized simply by collocation techniques.  The MFree strong-form 
methods possess the following attractive advantages:

They are truly meshless.   

The procedure is straightforward, and the algorithms and coding are
simple, when there are only Dirichlet boundary conditions. 
They are computationally efficient, and the solution is accurate when
there are only Dirichlet boundary conditions.   

However, MFree strong-form methods have disadvantages:
They are often unstable and less accurate, especially for problems 
governed by PDEs with derivative boundary conditions.   
Derivative boundary conditions (DBCs) involve a set of separate
differential equations defined on the boundary; these are different from 
the governing equations defined in the problem domain.  These DBCs
require special treatments.
Unlike integration, which is a smoothing operator, differentiation is a 
roughening operator; it magnifies errors in an approximation.  This
magnified error is partially responsible for the instability of the solution
of PDEs (see discussions in Section 6.1).  Hence, MFree strong-form
methods are often unstable.  Special treatments such as those discussed
in Chapter 6 are employed to implement the derivative boundary
conditions in MFree strong-form methods.  However, such treatments 
cannot always control the error.  As demonstrated in Chapter 6, a
technique suitable for one problem may not work for another, even one
of the same types.  A set of parameters tuned for one problem may not 
work for another.
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7.2.2 Meshfree weak-form method 

MFree weak-form methods, such as the element-free Galerkin (EFG)
method, the radial point interpolation method (RPIM), the meshless local
Petrov-Galerkin method (MLPG), and the local radial point interpolation
method (LRPIM), were discussed in detail in Chapters 4 and 5.  The
common feature of MFree weak-form methods is that the PDE (strong-form) 
of a problem is first replaced by or converted into an integral equation
(global or local) based on a principle (weighted residual methods, energy 
principle etc.).  Weak-form system equations can then be derived by 
integration by parts (see, Chapters 4 and 5).

A set of system equations of MFree weak-form methods can be obtained 
from the discretization of the weak-form using meshfree interpolation
techniques.

There are four features of the local weak-form (see, Chapter 5).   
1) The integral operation can smear the error over the integral domain

and, therefore improve the accuracy in the solution.  It acts like some
kind of regularization to stabilize the solution.

2) The requirement of the continuity for the trial function is reduced or 
weakened, due to the order reduction of the differential operation 
resulting from the integration by parts. 

3) The force (derivative) boundary conditions can be naturally
implemented using the boundary integral term resulting from the
integration by parts. 

4) The system equations in the domain and the derivative boundary 
conditions are conveniently combined into one single equation.  

These features give MFree weak-form methods the following advantages.
They exhibit good stability and excellent accuracy for many
problems. 
The traction (derivative) boundary conditions can be naturally and 
conveniently incorporated into the same weak-form equation.  No
additional equations or treatments are needed and no errors are
introduced in the enforcement of traction boundary conditions. 
A method developed properly using a weak-form formulation is
applicable to many other problems.  A set of parameters tuned for
one method for a problem can be used for a wide range of problems. 
This robustness of the weak-form methods have been demonstrated
through many practical problems.  It is this robustness that makes 
the weak-form methods applicable to many practical engineering
problems.  
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However, MFree global weak-form methods are meshfree only in terms 
of the interpolation of the field variables.  Background cells have to be used 
to integrate a weak-form over the global domain.  The numerical integration
makes them computationally expensive, and the background mesh for the
integration means that the method is not truly meshless.  To remove the
global integration background mesh, methods based on the local Petrov-
Galerkin weak-forms  have been proposed, such as the meshless local 
Petrov-Galerkin (MLPG) method discussed in Chapter 5, the local boundary
integral equation (LBIE) method (Zhu et al., 1998,1999), the method of 
finite spheres (De and Bathe, 2000), the local point interpolation method
(LPIM) (Liu and Gu, 2001b), the local radial PIM (LRPIM) that developed
based on the idea of MLPG, etc.

In the MFree local weak-form methods, the local integral domain in the 
interior of the problem domain is usually of a regular shape.  It can be as 
simple as possible and can be automatically constructed in the process of 
computation.  The MFree local weak-form methods have obtained 
satisfactory results in solid mechanics and fluid mechanics (Atluri and Shen, 
2002; GR Liu, 2002).

Although the MFree local weak-form methods made a significant step in
developing ideal meshfree methods, the numerical integration is still 
burdensome, especially for nodes on or near boundaries with complex shape. 
The local integration can still be computationally expensive for some
practical problems.  It is therefore desirable to minimize the need for
numerical integrations. 

7.2.3 Comparisons of Meshfree collocation and weak-formff
methods

Both MFree strong-form methods and MFree local weak-form methods
have their own advantages and shortcomings, as discussed in Sub-sections
7.2.1 and 7.2.2, and they are largely complementary.  Therefore, their proper
combination could be beneficial.

Close comparison of the MFree strong-form methods and the MFree 
local weak-form methods reveals the following facts.

1) The implementation schemes of these two types of MFree methods are
similar.  They all construct the discretized equations one-by-one based on
the field nodes, and the system equation is assembled (stacked) in a node-dd
by-node manner.  This is different from the MFree global weak-form
methods, in which the discretized equations are constructed and 
assembled based on the integration cells and the quadrature points.   
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2) If the delta function is used as the weight function in MFree local weak-
form methods, the MFree local weak-form method becomes an MFree
strong-form method.  This can be easily demonstrated as follows. 

Let the weight function be

( )I I(WI ((( (7.1)

The local weak-form becomes

( )( )d 0
q

I ij j i,)()( ,( )()( )d)d)()( (7.2)

The property of the delta function leads to  

( ) ( ) 0ij j I i I, ( ) () (( )( )(()) (( (7.3)

This is exactly the discretized strong-form equations or the collocation
formulation for node I.II

3) In the MFree strong-form method, instability and computational error are 
mainly produced by the presence of DBCs.  In the weak form methods,
by contrary, DBCs can be easily and accurately enforced by using a 
sufficiently large local integral domain. 

4) In the MFree strong-form method, the essential boundary conditions can 
be imposed conveniently and accurately.  In the MFree local weak-form
method, however, the essential boundary conditions require special 
treatments (such as the penalty method or Lagrange multiplier method)
when MLS shape functions are used.

5) The number of field nodes on or near the derivative boundary is much 
less than that of the internal nodes plus the nodes on the essential 
boundaries.  In the MFree local weak-form method, most computational 
cost for numerical integrations comes from the integration for internal 
nodes and the nodes on the essential boundary. 

7.3 FORMULATION FOR 2-D STATICS

7.3.1 The idea 

Consider the two-dimensional solid mechanics problem with a problem
domain  shown in Figure 7.1.  The problem domain and boundaries are
represented by sets of irregular field nodes.  The key idea of MWS is that in
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establishing the discretized system equations, both the strong-form and the 
local weak-form are used for the same problem but for different sets of 
nodes.

Figure 7.1. Concept of the MWS method: the local Petrov-Galerkin weak-form is used for 
the field nodes (e.g.  the Lth node) that are on or near the derivative boundaries.  Strong-

form is used for all the rest nodes (e.g.  the Ith and Jth nodes).II s is the local support
domain. q is the local quadrature domain.

For a field node, a simple quadrature domain (see Section 5.2) is defined 
in Figure 7.1, where q denotes the local quadrature domain for the field 
node.  For a node whose quadrature domain q does not intersect with the
global derivative boundaries t, the strong-form (collocation) is used.  
Otherwise, the local Petrov-Galerkin weak-form is used.  

In MWS, for all the nodes whose local quadrature domains do not 
intersect with derivative boundaries, no numerical integrations are needed.  
The local integrations are needed only for the few nodes on or near the 
derivative boundaries.  The derivative boundary conditions can then be 
easily imposed together with the system equation to produce stable and 
accurate solutions.  MFree interpolation techniques that have been discussed
in Chapter 3 can be used in the weak-strong-form.  The detailed formulation 
will be presented in the following section. 

For convenience of description, we define DBR-nodes and collocatable
nodes.  A DBR-node is a node on a problem boundary, on which the 
derivative (natural) boundary conditions are specified, or an internal node 
whose local quadrature domain intersects with the derivative boundaries.

Node I

q
qi

qt

ut

s

xQ Node J

Node L

t
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DBR stands for Derivative Boundary Related.  A collocatable node is an
internal node that is not a DBR-node or a node on the essential boundaries.

In summary, the strategy of the MWS method is that the local weak-
forms are used to establish discretized system equations for all the DBR-
nodes and for collocatable nodes, the strong-form of PDEs will be directly 
discretized by collocation using MFree shape functions. 

7.3.2 Local weak-form

The local weak-form is used for all the DBR-nodes.  We use the local 
Petrov-Galerkin weak-form of the governing equations for 2D solids 
presented in Sections 5.2 and 5.3.  The local weak-form for Ith node can beII
written as

)d 0
q

I ij j i,( ,W b(I ( )d (7.4)

where W  is the weight function.  The Petrov-Galerkin weak-form was used 
by Atluri et al.  (1999b) to formulate the MLPG method, as detailed in 
Section 5.3.  Equation (7.4) is different from Equation (5.34) where there is 
an additional term for imposing essential boundary conditions.  In MWS,
however, the Petrov-Galerkin weak-form is used only on DBR-nodes where 
there is no essential boundary condition.  

The first term on the left hand side of Equation (7.4) can be integrated by
parts.  The boundary q for the local quadrature domain usually comprises
three parts: the internal boundary qi, the essential boundary qu and the
derivative boundary qt; Equation (7.4) becomes 

d
q qi qu qt q

I ibWI i

q qi qu qt

dI j ij, I i I i I iW W t W t W tW t W t W td d d dd d dI j ij dWdWdI i I i I id d dd dd d dd d d (7.5)

Equation (7.5) is the local Petrov-Galerkin weak-form to be used in
MWS.  Equation (7.5) shows that the derivative (or traction) boundary
conditions have been incorporated naturally into the local weak-form of the
system equation.  No additional equation for derivative boundary conditions
is needed.

The test (weight) function plays an important role in the performance of 
the local weak-form.  For simplicity, the test functions are selected such that 
they vanish over qi.  This can be easily done using the weight functions 
given in Chapter 3, such as the 4th-order spline weight function (W2 given 
in Equation (3.149)).  Hence, Equation (7.5) can be simplified because the
integration along the internal boundary qi vanishes.  We therefore have the 
following local weak-form for all the DBR-nodes. 
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d
q qu qt q

I iW bI i

q qu qt

dI j ij, I i I iW W t W tW t W td d ddd dI j ij I i I id ddd dd d (7.6)

7.3.3 Discretized system equations

As shown in Figure 7.1, the global problem domain is represented by a
set of irregularly distributed field nodes.  Using the MLS or RPIM shape
functions, we can have 

(2 1) (2 2 ) (2 1)( )h
) (2) (21) (2( )

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u(2 1) (h
1) ( u (7.7)

where n is the number of nodes in the support domain of a sampling point x.
 is the matrix of shape functions.  The sample point is a field node when 

the strong-form is used, and it is a Gauss point when the local weak-form is
used.  Note that these n field nodes are numbered from 1 to n, and it is a 
local numbering system for these field nodes used in the support domain.  
The field node has also a global number that is uniquely given to all field 
nodes from 1 to N.  This global numbering system is used to assemble all theNN
local nodal matrices together to form the global matrix.  Hence, an index is 
needed to record the global number for a field node used in the support 
domain.

With Equation (7.7) and the equations given in Sub-section 1.2.2, the 
product of Luh , which gives the strains, becomes 

(3 1) (3 2 ) (2 1)) (2) (22 ) (22 ) (2) (2) (2B u(3 2 )(3 2 )2 )) (7.8)

where B is the strain matrix given in Sub-section 4.2.1.  The stress vector 
can be written as

(3 1) (3 3)1) (31) (3D (3 1) (3 3) (3 2 ) (2 1)) (2) (21) (3 3) (3 2 ) (21) (3 3) (3 2 ) (2) (2) (2D B u(3 3) (3 2 )(3 3) (3 2 )(3 3) (3 2 )3) (3(3 3) (3 2 )) (7.9)

where D is the matrix of elastic constants that is defined in Sub-section 1.2.2 
for the plane stress problem and the plane strain problem.  Substituting 
Equations (7.7)~(7.9) into strong-form of the Equation (1.31), we can obtain 
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This can be written in the matrix form

(2 2 )

T
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s
I(2 2 ) (2 1)(2 2 ) (23) (3 3) (3 2)3) (3 3) (3 (2 2 ) (2(2 2 ) (22 ) (2

K

L D LT
(2 3) (3 3)(3 3)3) (3 3)3) (3(3 3) u b 0(2 2 ) (2 1)) s
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where the superscript s stands for strong-form, and s
IK  and s

Ib are,
respectively, the nodal stiffness matrix and the nodal body force vector for
the Ith node obtained by the strong-form (collocation) method.  EquationII
(7.11) can be re-written as 

( ) ( )) () (
I IK u b 0( ) ( )) () (
I I

( )(
I (7.12)

where
T

(2 2 ) (2 3) (3 3) (3 2) (2 2 )( )s
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Equation (7.12) is the discretized system equations for the Ith field nodeII
created using the strong-form and simple collocation procedure.  It consists 
of two linear equations that are for the Ith field node.  No numericalII
integration is needed to obtain Equation (7.12), and only simple collocations
are performed.   

Using the similar algorithm as that in Chapter 5, we can obtain the 
following formulation for the local Petrov-Galerkin weak-form for Equation 
(7.5) for the Ith DBR-nodeII
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where W (defined in Sub-section 5.2.1) is a matrix of weight functions, V
(defined in Sub-section 5.2.1) is a matrix that collects the derivatives of the
weight functions, the vector of tractions t at point x is defined in Equation 
(5.17), and n is a matrix defined in Sub-section 5.2.1 collecting the 
components of the unit outwards normal vector on the boundary.
Substituting Equation (7.7) into Equation (7.15) leads to the following
discretized systems of linear equations for the Ith node.II

( ) ( )) () (
I IK u f( ))
I I (7.16)

where the superscript w stands for weak-form , and  ( )
IK is the nodal

stiffness’ matrix for the Ith field node created using the local weak-form.  ItII
can be expressed as

( ) T dT d
q qi qu

I I I I

q qi

dTT Td ddTT d ddT
I II I I
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I I II II d ddT d dddT

II d dddT
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and ( )
IfI  is a nodal force vector for the Ith field node created using the localII

weak-form:
( ) T dT

qt q

I I I

qt

dT dII bI
Tf ( )

I III dT dII d (7.18)

This consists of contributions from body forces applied in the problem
domain and tractions applied on the derivative boundary.

Equation (7.16) is a set of the discretized system equations for the IthII
field node using the local Petrov-Galerkin weak-form.  It consists of two
linear equations for the Ith DBR-node.II

Using Equations (7.12) and (7.16), we can express the discretized system
equations for the Ith field node in the following general formII

I IK u fI I (7.19)
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or in detail
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or in detail
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With Equation (7.19) for all N field nodes in the entire problem domain,N
and assembling all these 2N equations together, we obtain the final global N
system equations and expressed in the following form.

(2 2 ) (2 1) (2 1)2 ) (2 1) (22 ) (2 1) (21) (2K U F(2 2 ) (2 1) ((2 1)2 ) (2 1) (2 ) (2(2 1)1) ( (7.24)

where K is the global stiffness matrix and K F is the global force vector. 
Solving this equation for U after imposing essential boundary conditions, we 
can obtain the displacements for all the field nodes and then can retrieve the 
stresses using Equations (4.10) and (5.12).

Note that it is easy to enforce the essential boundary conditions, because
the strong-form method is used.  If the MFree shape functions possess the
delta function property, the equations for the nodes on the essential boundary 
need not even be created.  If the shape functions do not possess the Delta
function property, the direct interpolation method can be used.  Detailed
discussions can be found in Chapter 6.

7.3.4 Numerical implementation

7.3.4.1 Property of stiffness matrix

From Equations (7.21) and (7.24), it can be easily seen that the system 
stiffness matrix, K, in MWS is sparse and banded as long as the support 
domain of meshfree interpolation is compactly supported.  However, K isK
usually unsymmetric.   

The global stiffness matrix in MWS comprises two parts:  the nodal
stiffness matrices obtained from the strong-form and the local weak-form. 
The asymmetry of the stiffness matrix is inherited from the nature of the
local Petrov-Galerkin weak-form, which has been discussed in Sub-section 
5.2.2.  The portion of the stiffness matrices coming from the use of strong-
form may be symmetric if the same support domains are used for all the field 
nodes.  However, this requirement usually cannot be met unless one uses a 
set of regular grids as in the conventional FDM model.  Therefore, the global 
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stiffness matrix in MWS is usually unsymmetric.  Making the global 
stiffness matrix symmetric would improve the efficiency and the stability† of
the MWS method.   

7.3.4.2 Type of local domains

In MWS, the local weak-form is used for the DBR-nodes.  Similar to the
MFree local weak-form methods, for any DBR-node at xIx , there exist three
local domains as discussed in Sub-section 5.2.2.   

For all collocatable nodes, the strong-forms are used via the collocation
procedure.  As shown in Figure 7.1, there is only one local domain, the
support domain s used for field variable approximation, for a collocatable
node.  The size of the local support domain has been defined in Equation
(5.30), and the suggested size is 1.5 ~ 3.0s .

7.3.4.3 Numerical integration

Integrations in MWS are performed only for the few DBR-nodes. 
However, care should still be taken to obtain accurate numerical integrations.  
As discussed in Sub-section 5.2.2 (see Figure 7.1), the local quadrature
domain q should be sufficiently large ( 1.5 ~ 2.0q  is recommended), and 
it should be divided into small partitions, and sufficient Gauss quadrature
points should be used in each of the small partitions.  A more detailed 
discussion of local numerical integrations can be found in the book by GR 
Liu (2002).  For complex quadrature domains, triangular background cells
may be used.

7.4 SOURCE CODE

In this section, a standard computer code, MFree_MWS.f90, of the MWS 
method is given.  This code is developed using FORTRAN 90.  Combined 
with Subroutines RPIM_ShapeFunc_2D and MLS_ShapeFunc_2D given in
Chapter 3, the code can perform the task of the MWS method using both
RPIM and MLS shape functions.  For the convenience of description in later
comparison studies, we use MWS-RPIM to denote the MWS method using 
RPIM shape functions, and MWS-MLS to denote the MWS method using
the MLS shape functions.

† It is generally true that a symmetric system seems to be more stable than an
unsymmetric one. 



392 Chapter 7

7.4.1 Implementation issues

Numerical implementations used in the code MFree_MWS.f90 are
similar to those used in the code MFree_Local.f90 presented in Sub-section 
5.4.1.  Hence, numerical implementations of MFree_MWS.f90 are only
briefly described here.

As in the discussions in Sub-section 4.4.1, the influence domains are used 
for construction of the meshfree shape functions.  The dimensions of the
influence domain can be determined as in Sub-section 4.4.1.  In the code 
MFree_MWS.f90, rectangular influence domains are used.  The dimension
of the influence domain is defined in Equations (4.75).  

Because the requirement for the consistency of trial functions in the 
strong-form is higher (e.g., 2nd order for 2D solids) than that in the weak-
form (e.g.  1st order for 2D solids)†, a basis with higher order should be used 
in the MLS approximation.  The parabolic polynomial basis (mbasis=6) is 
therefore used in the MWS-MLS.  In addition, the 4th-order spline weight 
function is used as the weight function in computing the MLS shape 
functions.

In the present MFree_MWS.f90 code, rectangular quadrature domains 
are used.  For problems with derivative boundaries of complex shapes, 
quadrature domains consists of triangular cells should be used.  The sizes of r
the rectangular quadrature domain have been defined in Sub-section 5.2.2. 
The direct interpolation method is used to enforce the essential boundary
conditions.

For error analysis, the energy norm defined in Equation (4.78) is used as
an error indicator.  Note that the integration in Equation (4.78) is over the
global domain.  Hence, in order to assess the global error in the energy norm,
global background cells that are the same as these used in the RPIM (or EFG)
have to be used.

7.4.2 Program description

The flowchart of MFree_MWS.f90 is shown in Figure 7.2.  The 
procedure of the MWS method is similar to that in the MFree local weak-
form method.  The main difference comes in the construction of the nodal
stiffness matrix.  In the flowchart of the MWS method, the geometry of thef
problem domain is modelled and a set of nodes is generated to represent the 
problem domain.  The system matrices are assembled through loops for all
the field nodes.  The local quadrature domain is constructed for each node,

† See, for example, the discussions given in Section 5.2.2 in the book by GR Liu 
(2002) for the detailed argument on consistence.  
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and then a checking is performed to determine whether the local quadrature
domain intersects with the derivative boundaries.

If the local quadrature domain does not intersect with the derivative
boundaries, it is then noted as a collocatable node, and the nodal
stiffness is obtained directly through collocation using the strong-
form.
If the local quadrature domain intersects with the derivative
boundaries, it goes into the inner loop.  In the inner loop, the nodal
stiffness matrix is obtained through another loop for all Gauss
quadrature points in the quadrature domain of this DBR-node.

After the construction of the global discretized system equations, the
essential boundary conditions are enforced by direct interpolation.  The
algebraic system equations are solved using a standard linear equation solver
(for banded unsymmetric matrix) to obtain the nodal displacements or the 
parameters of the nodal displacements.  Finally, the nodal stress and the
global error in the energy norm are computed.

The source code of the main program of MFree_MWS.f90 is listed in
Program 7.1.  The main program of the MWS method calls several
subroutines.  The macro chart for the program is the same as Figure 5.4.  The 
functions of these subroutines are listed in Appendix 7.1.  Because all the
subroutines used in MFree_MWS.f90 are the same as those used in the
program MFree_Local.f90, the source codes of these subroutines are not 
repeated in this chapter.  The same global variables as given in Appendix 5.2
are used in MFree_MWS.f90.  In this chapter, the quartic spline function is
used as the test function in the local weak-form.  The source code of this test
function is provided in Program 6.2.  The including file, variableslocal.h, is 
given in Program 5.1. 

7.5 EXAMPLES FOR TESTING THE CODE

The code is tested on a cantilever beam subjected to a parabolic traction 
at the free end as shown in Figure 4.5. The beam has a unit thickness and is
in plane stress.  The exact solution of this problem is given in Equations
(4.79)~(4.84).  As in discussions in Chapter 5, the following three steps
should be followed:

Step 1: Preparation of input file of this program

The data file is similar to that used in Appendix 5.9.  A sample input data
file used in MWS.f90 is given in Appendix 7.2.  This input data file has the



394 Chapter 7

same structure as that used in MFree_local.f90 (Sub-section 5.5.1), in which 
the beam problem is represented by regularly and evenly distributed 189
( 21 9 ) field nodes, as shown in Figure 4.12(a).

Input data

Search all influence domains to determine
nodes involved in the interpolation

Loop over
quadrature points 

q intersects with 
natural boundaries?

Compute the shape functions for the
quadrature point

Define local quadrature domain, q, for this field node 

Loop over all the
field nodes

Search all influence domains to
determine nodes involved in

interpolation for the field node 

Compute nodal stiffness matrix
for this field node

Compute the shape functions for the
quadrature point 

Assemble the nodal stiffness matrix
into the global stiffness matrix 

Compute nodal stiffness matrices 
related to the quadrature point

A B

C

YesNo
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End of the loop for the quadrature point

End

Assemble the nodal stiffness matrices
into the global stiffness matrix

End of the loop for the field nodes 

Enforce essential boundary conditions

Solve the system equation for displacements and then stresses 

A B C

Figure 7.2. Flowchart for the program of the MFree Weak-Strong (MWS) form method, 
MFree_MWS.f90.

Step 2: Execution of the program 

The MWS-RPIM results are first obtained and are listed in the output files 
given in Appendix 7.3.  In the end of the output, the error in the energy norm
is also presented. 

The MWS-MLS results are listed in Appendix 7.4.  At the end of the 
output, the error in the energy norm is also presented. 
Step 3: Analysis of the output results

Results obtained using MWS-RPIM are presented in Figure 7.3 and Figure
7.4.  In this study, the MQ-RBF is used together with the linear polynomial
terms and the parameters used are: 4.0,c q=1.03, dcdd =2.4, and 3.0i .
For local quadrature domains, 1.5q  and ng=2 are used.  The quartic spline g

function (W2) is employed as the test function for the local weak-form.  The
results of deflections are plotted in Figure 7.3.  For comparison, the analytical
results from Equations (4.79) and (4.81) are plotted in the same figure; there is
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good agreement.  The results of shear stress, xy , are plotted in Figure 7.4.  
The MWS-RPIM method gives accurate results, even for stresses.  

The cantilever beam is also modelled using 189 irregularly distributed
nodes, as shown in Figure 7.5.  Results are obtained using the MWS-RPIM
method and plotted in Figure 7.6 and Figure 7.7.  Again there is good
agreement with the analytical results.   

Results of the MWS-MLS are presented in Figure 7.8 and Figure 7.9.  In
this study, the parameters used are i=3.0, q=1.5, and ng=2.  The parabolic 
polynomial basis (mbasis=6) is used in computing the MLS shape functions,
and the quartic spline weight function (W2) is used as the weight function in
both MLS shape functions and the local weak-form.  The deflections are
plotted in Figure 7.8, and the shear stress, xy, are plotted in Figure 7.9.  
Again there is good agreement with the analytical results.

The 189 irregular nodes in Figure 7.5 are also used.  Results are obtained 
using the MWS-MLS method and plotted in Figure 7.10 and Figure 7.11. 
Again there is good agreement with the analytical results.  
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Figure 7.3. Deflections v on the central axis at y=0 of the beam obtained using the 
MWS-RPIM method and 189 regularly distributed field nodes. 
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Figure 7.4. Shear stresses on the cross-section at x=L= /2 of the beam obtained using the 
MWS-RPIM method and 189 regularly distributed field nodes.

Figure 7.5. A total of 189 irregularly distributed nodes.

 Analytical solution           MWS-RPIM

Figure 7.6. Deflection of the beam obtained using the MWS-RPIM method and 189 
irregularly distributed field nodes.  Note that the displacements plotted are magnified by 500t

times.
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Figure 7.7. Shear stresses on the cross-section at x=L= /2 of the beam obtained using the
MWS-RPIM method and 189 field nodes. 

Figure 7.8. Deflections v on the central axis at y=0 of the beam obtained using the MWS-
MLS method and 189 regularly distributed field nodes.
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Figure 7.9. Shear stresses on the cross-section at x=L= /2 of the beam obtained using the 
MWS-MLS method and 189 regularly distributed field nodes.

Analytical solution             MWS-MLS

Figure 7.10. Deflections of the beam obtained using the MWS-MLS method and
189 irregularly distributed field nodes.  Note that the displacements plotted are 

magnified by 500 times. 
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Figure 7.11. Shear stresses on the cross-section at x=L= /2 of the beam obtained using the 
MWS-MLS method and 189 field nodes is used. 

7.6 NUMERICAL EXAMPLES FOR 2D ELASTOSTATICS

7.6.1 1D truss member with derivative boundary conditions 

The problem of the truss member discussed in Example 6.1 of Chapter 6
is analyzed using the MWS method.  All conditions and parameters are 
exactly as in Example 6.1.  As discussed in Chapter 6, special treatments are
required to impose the derivative boundary conditions.  Table 7.1 lists results
of different methods to solve this truss problem using the polynomial PIM
shape functions and 11 field nodes (both regular and irregular nodes, shown
in Figure 6.7).  The table shows that the MWS method produces the best 
result for both regular and irregular nodal distributions.
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Table 7.1 Relative errors e (%) in results obtained different methods* 

Case Schemes Regular nodes Irregular nodes 

0 Dirichlet
BC 0.51 1.36

1 DC 11.3 6.12 

2 FP 1.63 7.56 

3 HC 2.68 3.05 

4 RG 11.3 6.12

5 MWS 1.24 2.98

* 3 nearest nodes are used in the local support domain; 
      In MWS, 1.5q c1.5dc is used for the local quadrature domain and 8 Gauss 

points are used in the quadrature domain.  To ensure local compatibility, the
same support domain is used for all Gauss points in a quadrature domain in the 
construction of PIM shape functions.

7.6.2 Standard patch test 

This numerical example is to perform the standard patch test that is often 
used in the FEM.  Three patches shown in Figure 7.12 are tested.  Figure
7.12 (a) shows a patch with 15 irregular distributed nodes.  Figure 7.12 (b)
shows one with 25 nodes including 9 irregularly-placed interior nodes. 
Figure 7.12 (c) shows one with 55 nodes including 39 irregularly distributed 
internal nodes.

The dimensions of these patch tests are presented in Figure 7.12.  The
material parameters are E=1.0 and EE =0.3.  In these patch tests, the
displacements are prescribed along all boundaries by a linear function of x
and y:

i i iu x yi iixxii (7.25)

i i iv x yi iixxi (7.26)

Satisfaction of the patch test requires that the displacement of any interior 
node be given by the same linear functions, Equation (7.25) and (7.26), and 
the strains and stresses should be constant in the patch.  Because there is no 
traction (derivative) boundary condition in these patch tests, all nodes are 
collocatable nodes, and the strong-forms are used to construct the discretized
system equation.  For the influence domain, 1.6ix iy iiyiy i is used.
Both RPIM-MQ (with linear polynomial terms) and MLS shape functions 
are used.  In the MLS approximation, the parabolic basis and the weight 
function W2 are used. 
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(a) (b)

(c)

Figure 7.12. Standard patch tests. (a) patch with 15 irregular nodes;  (b)  patch with 25 
irregular nodes; (c)  patch with 55 irregular nodes. 

The MWS method can pass all the patch tests.  If RPIM shape functions 
(with m=3) are used, the relative displacement error is less than 1510 .  It is
also confirmed that if the polynomial terms are not included in the RPIM-MQ
shape functions, these patch tests cannot be passed exactly, as discussed by
GR Liu (2002).  If MLS shape functions are used, the relative displacement 
error is 1110 .

The requirements for the MWS method to pass the patch test are listed as
follows:

1) The shape functions have at least linear consistence.  This means that 
the MFree shape functions used should at least be able to reproduce a
linear function.

Length:L=48

2
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2) The essential boundary conditions must be accurately imposed.

The RPIM-MQ with linear polynomial terms and MLS shape functions
can satisfy the first requirement easily because linear polynomials are
included in the basis.  Without additional linear terms, RPIM-MQ shape
functions do not satisfy the first requirement; there will be errors in the 
results for these patch tests.

RPIM-MQ shape functions can also satisfy the second requirement, as 
they have the Kronecker delta function property.  However, the MLS shape 
function has no delta function property. The second requirement cannot be 
exactly satisfied when the MLS shape function is used without additional
treatments.  Although the MWS-MLS with the direct interpolation method
can pass the standard patch test, the enforcement of essential boundary
conditions will introduce some numerical error.  Hence, for the standard 
patch test problem, the error of MWS-MLS with the direct interpolation 
method is larger than that of the MWS-RPIM.  For MWS-MLS to accurately 
pass the patch test, the Lagrange multiplier method should be used.   

7.6.3 Higher-order patch test

In these examples of the standard patch tests, there is no the derivative
boundary.  Hence, no local weak-form is used.  In order to fully examine the 
efficiency of the MWS formulation, the following high-order patch tests are 
studied. As shown in Figure 7.13, a patch is subjected to two types of 
loading at the right end.

y

x

Case 1 Case 2

A

6

3

txt =tytt =0

txt =tytt =0

Figure 7.13. A higher-order patch and regular nodal distribution. 
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Figure 7.14. The irregular nodal distribution for the high order patch test. 

1) Case 1: a uniform axial stress with unit intensity is applied on the righth
end.  The exact solution of displacements for this problem with E=1EE
and v=0.25 is:

i iu xi
(7.27)

4
i

i
yv (7.28)

2) Case 2, a linearly varying normal stress is applied on the right end.  
The exact solution of displacements for this problem with E=1 and EE
v=0.25 is:

2
3
i i

i
x yu (7.29)

2 2 / 4
3

i i
i

x yiv (7.30)

For the construction of the RPIM and MLS shape functions, the influence 
domains with 2.5i are used in this study.   

Case 1 is passed exactly (to very high accuracy) by the presented MWS 
method using both RPIM with the linear polynomial terms and MLS shape 
functions.  In the MLS approximation, the parabolic basis and the weight
function W2 is used.  This case demonstrates that the MWS method exactly
implements the traction (derivative) boundary condition and leads to an
exact solution for this problem in which the analytical displacement solution
is linear.

The computational results of displacements at point A (at the lower-right 
corner, see Figure 7.13) for case 2 are shown in Table 7.2.  There is an error
in solving case 2 of the high order patch test using the MWS methods. 
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Table 7.2 Relative errors (%) of ux at point A for case 2 of the higher-order patchx
test (using regular nodes)

q=1.0 q=1.5

u(error) v(error) u(error) v(error)

-6.682 -13.793 -6.099 -12.572
MWS-RPIM (11.362%) (13.175%) (1.644%) (3.157%)

-6.403 -13.100 -6.073 -12.544 LRPIM
(full local

weak-form) (6.712%) (7.489%) (1.214%) (2.923%)

-5.955 -12.113 -5.973 -12.141
MSW-MLS (-0.758%) (-0.609%) (-0.449%) (-0.386%)

-5.956 -12.118 -5.985 -12.163MLPG
(full local

weak-form) (-0.728%) (-0.572%) (-0.245%) (-0.199%)

Exact -6.00 -12.1875 -6.00 -12.1875

The reason for the error mainly comes from the errors of the numerical 
integration for the complex DBCs.  In order to study the effect of the
numerical integration, results of two different sizes of quadrature domains 
are obtained and listed in Table 7.2.  The error decreases when a lager
quadrature domain is used.  When 1.0qx qy qqyqy , the local quadrature
domain is too small to effectively smear the error along the derivative 
boundary.  It is be found that the accuracy of the solution improves with the
improvement of the numerical integration by use of more Gauss quadrature 
points and more sub-partitions for the numerical integrations.

The irregularly distributed nodes for this high patch test, as shown in
Figure 7.14, are also used in this study, and results are listed in Table 7.3. 
The MWS method can also give acceptable results for this irregular nodal 
distribution.

For comparison, results of MFree local radial point interpolation method 
(LRPIM) and MLPG methods, which use local weak-forms entirely for all
the field nodes, are listed in Table 7.2 and Table 7.3.  LRPIM leads to more 
accurate results than MWS-RPIM, and MLPG has nearly the same accuracy
as MWS-MLS.

The MFree strong-form method (the collocation method) that uses
strong-forms entirely for all field nodes is also used in the high order patch
test.  It has been found that the MFree collocation method can also produce
satisfactory results for case 1, whose force boundary condition is simple.  
However, it leads to large errors (>15%) for case 2 with regular nodal 
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distribution.  Displacement results of irregular nodes using MFree
collocation method based on RPIM are listed in Table 7.3.  The error is even
more than 40%.  The solution of the MFree collocation method is also
unstable.  It is sensitive to the nodal distribution and parameters used in the
model.  The error and instability mainly come from the error in the
implementation of the complex force (derivative) boundary conditions in
case 2.  Compared with the pure collocation method, the present MWS 
method has better accuracy and stability for this high order patch test due to
the use of the local weak-form for the DBR-nodes.

Results of several MFree methods used for patch tests are summarized in 
Table 7.4.

Table 7.3.  Relative errors (%) of ux at point A for case 2 of the higher-order patch
test (using irregular nodes, q=1.5)

Exact Collocation
(RPIM)

MWS-
RPIM

LRPIM MWS-MLS MLPG

u -6.00 -8.786 -6.389 -5.951 -5.976 -5.982 

Error / 46.6% 6.491% -0.808% -0.396% -0.291%

v -12.1875 -16.202 -13.234 -12.020 -12.168 -12.172

Error / 49.3% 8.586% -1.408% -0.160% -0.159%

Table 7.4. Summarization of patch tests

Standard
patch test 

Higher-order
patch test (case 1)

Higher-order patch
test (case 2)

MWS-RPIM Pass Pass Pass with small error

MWS-MLS Pass Pass Pass with small error

LRPIM Pass Pass Pass with small error

MLPG Pass Pass Pass with small error

Collocation method Pass Pass Cannot pass 
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7.6.4 Cantilever beam 

The cantilever beam shown in Figure 4.5 is reconsidered for further study
numerically on convergence and stability of the MWS method.  The results
of displacements and stresses were discussed and presented in Section 7.5.

The collocation method that uses pure strong-forms is also used to solve
the same problem under the same conditions.  The error obtained using the 
collocation method is large even for regular nodes.  It fails for the irregularly
distributed nodes.  The solution of the MFree collocation method is also
unstable.  Compared with the pure collocation method, the MWS method has 
better accuracy and stability for this problem.  In the following studies, the
MWS results are compared with those for stable methods such as the LRPIM,
MLPG, and FEM. 

a) Convergence study

The convergences of the MWS methods are first numerically studied for
this cantilever beam problem.  Regularly distributed 18 (3 6), 55(5 11),
112(7 16), 189(9 21) and 403(13 31) nodes are used.  The convergence
curves of error in energy norm obtained numerically are shown in Figure 
7.15.  For comparison, the convergence curves for LRPIM, MLPG, and 
FEM using bi-linear elements are plotted in the same figure.  The h is the
nodal spacing dcdd in the MFree methods, and is equivalent to the maximum
element size (in x direction) in the FEM analysis in this case.  The 
convergence rates, R, computed via linear regression are also given in Figure
7.15.  From Figure 7.15, we can find the following:  

1) MFree methods have better accuracy and convergence than the
conventional FEM using bi-linear elements.

2) Using local weak-forms for all field nodes, the LRPIM and MLPG
have slightly better accuracy than the MWS method.  This is because 
the use of strong-forms for the collocatable nodes in MWS reduces
slightly the accuracy.

3) The MWS-MLS method has good convergence rate and high accuracy. 
Compared with MLPG, the MWS-MLS has nearly same convergence
and accuracy.  

4) The convergence process of the MWS-RPIM using MQ-RBF is not
good when finer nodes are used although the accuracy is acceptable. 
Further tuning of the shape parameter may be necessary.

The poor convergence of the MWS-RPIM (MQ) may be attributed to the
property of the MQ-RBF that is often found poor performance in h-
convergence.  The properties of RPIM-MQ have been studied by Gu and GR 
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Liu (2003b) in detail for mechanics problems.  It was found that pure MQ-
RBF cannot always ensure to exactly reproduce a linear field function.  This
could be one of the major reasons for the poor h-convergence in using MQ-
RBF.  Another cause for the poor convergence is the shape parameters 
chosen in the RBFs.  When a proper shape parameter of MQ-RBF is used, its
convergence improves.  Unfortunately, there is no theoretical optimal value
for these shape parameters.  Other RBFs (e.g.  Gaussian RBF, the compactly
supported RBFs, etc.) could be used to improve the convergence of the 
MWS-RPIM.  To find an efficient method to improve the h-convergence of
the MWS-RPIM is still an open issue.

Figure 7.15. Comparisons of convergences of MWS, LRPIM, MLPG, and FEM in error er e
of energy norm.  R is the convergence rate.  The same parameters are used in MWS-RPIM 

and LRPIM; The same parameters are used in MWS-MLS and MLPG. 

b) Efficiency of the MWS method

In the efficiency study, regularly distributed 55, 189 and 403 nodes are 
used.  The influence domain with i=3.0 is used to construct shape functions.  
The CPU times of MWS, LRPIM and MLPG are listed in Table 7.5.  From
this table, it can be found that MWS-RPIM and MWS-MLS use much less
CPU time than their counterparts of pure local weak-form methods, LRPIM
and MLPG.
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Table 7.5. CPU time (s) required by different methods for the cantilever beam
problem

 MWS-RPIM LRPIM MWS-MLS MLPG 

189 nodes

403 nodes

43.710

66.730

123.160

50.060

310.630

822.710

2.060

7.270

13.840

5.360

14.541

32.245
* Computer system used: DataMini PC, Intel Pentium 4 CPU 1.80 GHz.

Note that the computational cost must be considered together with the
accuracy for a fair comparison.  A successful numerical method should 
obtain high accuracy at a low computational cost.  The curves of error in
energy norm against the computation time for the MWS methods are
computed and plotted in Figure 7.16.  For comparison, the same curves for 
LRPIM and MLPG are computed and plotted in the same figure.  From
Figure 7.16, the following points can be observed: 

Figure 7.16. Comparison of efficiencies of MWS, LRPIM, and MLPG. The data of LRPIM
and MLPG are obtained from Chapter 5.

The MWS methods are more efficient than their corresponding MFree
local weak-form methods.
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For the same nodal distribution, the MWS methods need much less
CPU time.  This is because in MWS numerical integrations for all the 
collocatable nodes are avoided by the use of the strong-form and the
simple collocation procedure.

The MWS-MLS and MLPG have better efficiency than the MWS-
RPIM and LRPIM, respectively.  This is because the MLS
approximation has better efficiency than the RPIM-MQ.

7.6.5 Hole in an infinite plate
Consider the plate with a central circular hole discussed in Example 6.12. 

The same conditions are used as those employed in Example 6.12.  The
analytical solutions for an infinite plate (Roark and Young, 1975) are given
in Equations (6.142)-(6.147).  Due to symmetry, only the upper right
quadrant of the plate is modelled.  Symmetry conditions are imposed on the
left and bottom edges.  On the inner boundary of the hole, the boundary 
conditions are traction free.  Traction boundary conditions given by the exact 
solution Equations (6.145)-(6.147) are imposed on the right (x(( =5) and top 
(y(( =5) edges.  Clearly, this problem has more complex traction (derivative)
boundary conditions than the beam problem. 

A total of 165 nodes is used to represent the plate, and the nodal
arrangement is shown in Figure 7.17.  The results for the displacements
obtained using the MWS and the analytical methods are identical.  As the
stresses are more critical for accuracy assessment, detailed results of stresses 
distribution for stress xx along x=0 computed using the MWS are shown in
Figure 7.18.  Figure 7.18 shows that the MWS method yields satisfactory
results even for stresses for this problem; they are less accurate near the
boundaries.

7.7 DYNAMIC ANALYSIS FOR 2-D SOLIDS

The MWS method is also used to analyze the linear elastodynamics of 
two-dimensional solids.  The standard strong-form of the initial/boundary
value problem for 2D linear elastodynamics is given in Equation (1.32).  The
boundary conditions and the initial conditions are given in Equations 
(1.33)~(1.36).



7.  Meshfree methods based on local weak form/collocation 411

Figure 7.17. Nodes and boundary conditions in the quarter model of the  plate with a
central hole subjected to a unit unidirectional tensile load in the x direction.

Figure 7.18. Stress ( xx) distributions along the section of x=0 in the plate obtained 
using the MWS method and 165 regularly distributed nodes.
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As shown in Figure 7.1, the problem domain and boundaries are 
represented by properly scattered nodes.  MWS is used to establish the
discretized system equations, the strong-forms are used for collocatable 
nodes, and the local weak-form is used for DBR-nodes.

7.7.1 Strong-form of dynamic analysis

Equation (1.32) for isotropic materials can be written in terms of
displacements in the following standard strong-form.

2 2 2 2

2 2

2 2 2 2

2 2

( ) 02 2 22221

( ) 02 2 22221

x

y

uE ( 2x y tx y t

E v v u v v( ) 2x y ty x t

2 2 2 22 222

))u u v uu u v u2 2 2 221 22

))1 12 1 ))2 2x yx y2 22 2x yx 2
2 2 2 22 222

))v v u vv v u v2 2 2 221 22

))1 12 1 )))2 2x yx y2 22 2y xy 2

(7.31)

where E andE  are Young’s modulus and Poisson’s ratio, is the mass
density, u and v are displacements inv x and y directions, respectively, and bx
and byb are the body forces applied in x and y directions.  The collocation
method is used directly to discretize Equation (7.31) for all the collocatable 
nodes.

7.7.2 Local weak-form for the dynamic analysis 

For a DBR-node, a local weak-form is used.  A local Petrov-Galerkin 
weak-form for the Ith node of the partial differeII ntial Equation (7.31) over a
local quadrature domain q bounded by q, can be obtained using the
weighted residual method or the local Petrov-Galerkin method (Gu and GR 
Liu, 2001c):

)d 0
q

I ij j i i i,(W b u cu(I ( ij j i,( , )d (7.32)

where W  is the weight function.
The first term on the left hand side of Equation (7.32) can be integrated f

by parts to arrive at 

)]d 0
q q

I j ij I i i i, ([ I j ij I i, (((,[ ((((
q

)]d[ ((([ ((((((((I ij jW n dII ij jn dij j (7.33)

The local quadrature domain q of a node xIx  can be a domain of an arbitrary I

shape in which IWI 0.  The boundary q for the local quadrature domain
usually comprises three parts: the internal boundary qi, the boundaries qu

and qt, over which the essential and derivative boundary conditions are
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specified.  Imposing the derivative boundary conditions and considering
ij j in tjj , we find that Equation (7.33) becomes 

d
q qi qu

I iII

q

diW tII( )d dI i I i I j ij I iI i, ) I iII i)dd di I i I j,, x W tW tW t)d dI iII i)dd d

d
qt q

I iWI i

qt

ddI iW t dI iW t dI i

(7.34)

Equation (7.34) shows that the traction (derivative) boundary conditions
have been incorporated naturally into the local weak-form of the system
equation.  There is no need for another set of equations to enforce the 
derivative boundary conditions. 

7.7.3 Discretized formulations for dynamic analysis

The global problem domain  is represented by a set of distributed nodes.  
In the dynamic analysis, u is a function of both space co-ordinate and time.  
Only the equations for the space coordinates are discretized.  Using the
RPIM and MLS shape functions, we have

1

(2 2 ) (2 1)

( , )

( ) ( )(2 2 )

n

j

) (2) (2(222 )) (2) (2)

( ) 0j ( ) 0jj ( )((( , )u( ,( , )( , )u( ,
( )

( )
( )

j

(
( )

0 ( )
j ( )j ( )

( , )v( ,( )( 0 ( )j ( )0 ( ) ( )j ((( )((
u(

))(2 2 )2 ))

(7.35)

where u(t) is the vector of nodal displacements at time t,  is the matrix of
shape functions.  Substituting Equation (7.35) into the strong-form Equation 
(7.31) and local weak-form Equation (7.34) , using the same procedure as in
Section 7.3, we can obtain the following discretized system equations for the 
Ith field node.II

( ) ( ) ( ) ( )I I I I( ) ( ) ( )( ) ( ) (M u( ) ( ) ( )( ) ( )I ( ) ( ) ( )( )( )) ( ) ( )) ( ) (( ) ( )) ( ) ( )( )) ( ) (( ) ( )( ) ( )) (( ) ( )( )( ) ( )( )) (( ) ( )( )( )( ) (7.36)

where u is the vector of nodal displacements (or nodal displacement 
parameters) for nodes in the support domain of the Ith field node.  Detailed II
formulations of KIK  and I FI have been presented in Section 7.3.  The nodal I
mass matrix MIM is defined asI

( ) T

( )

(

, ( )
q

I I q, I t)
I

I q, I t

T d , ( )I d ,, t)

( )I t

IM( )
I

T

M
M

(7.37)

and the nodal damping matrix CI is defined asI
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( ) T

( ) , ( )
q

I I q I t, ( )(
I

I q, I tc

T d ( )I q I td , ( )(,

( )I t

C( )
I Ic T

C
C

(7.38)

Equation (7.36) presents 2 linear equations for the Ith field node.  UsingII
Equations (7.36) for all N field nodes in the entire problem domain, and N
assembling all these 2N equations, we can obtain the final global systemN
equations in the following matrix form. 

MU CU KU F (7.39)
Equation (7.39) is the system equation of the MWS method for dynamic 

analyses of two-dimensional solids.  Solving this equation, we can obtain 
displacements for all field nodes and then retrieve all the stresses at any 
point in the problem domain using again the RPIM or MLS shape functions. 

7.7.3.1 Free vibration analysis 

For free vibration analysis, the aims are to obtain the natural frequencies 
and the corresponding vibration modes.  Therefore, no damping and body 
force need be considered.  The displacement u(x, t) can be written as a
harmonic function of time as follows

1
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n

j

)

( )

ˆ( )sin( )u( )sin( )( ) ( )
ˆ( ) i ( )

( )( )s (u( )sin((
( )sin( )v( )sin(( )ˆ( ) i ( )( ) i (

( ) 0j ( ) 0j ˆ̂ ju
sin(ˆ

jj

ˆ
jjj ( )

( )0
j ( )

( )
j

ˆ0 ( )j ( )( )0 jjvv

( ) sin(

u(

)))

(7.40)

where is the natural frequency and is the phase of the harmonic motion,
û and v̂ are the amplitudes for displacement components in x and y
directions, respectively. 

Substituting Equation (7.40) into the strong-form and the local weak-
form, we can obtain the final system equation in terms of the amplitudes of 
the modal displacements for free vibration analysis. 

2 ˆ( )2 U 0)22 (7.41)

where Û  is the vector of amplitudes of all nodal displacements or
displacement parameters when the MLS shape functions are used.  Equation
(7.41) can also be written in the following typical eigenvalue equation 

( ) 0q)))) (7.42)



7.  Meshfree methods based on local weak form/collocation 415

where 22 is so-called eigenvalue, and q is the eigenvector.  This 
equation can be solved using a standard eigenvalue solver to obtain
eigenvalues i (i=1, 2,…, N) and the corresponding NN qi.  The natural
frequencies of the structures are then given by i iii .  The vibration
modes (or shapes of the vibration modes) correspond to the eigenvectors. 

Note that in MWS-MLS, because the nodal displacement parameters are 
first obtained, the eigenvector qr obtained is also for the nodal parameters. 
The MLS shape functions should be used again to obtain the true
eigenvector, e.g.  using the subroutine, GetDisplacement, given in Chapter 4.

7.7.3.2 Direct analysis of forced vibration

The system equation of forced vibration analysis is given in Equation 
(7.39).  The methods of solving Equation (7.39) are similar to those in FEM, 
and fall into two categories: modal analysis and direct analysis (see, e.g., GR 
Liu and Quek, 2002).  The direct analysis methods are utilized in this chapter.  
Several direct analysis methods have been used to solve the dynamic Equation 
(7.39), such as the well-known central difference method (CDM) and thett
Newmark method (see, e.g., Petyt, 1990; GR Liu and Quek, 2002).  The 
standard Newmark method is used in the following numerical examples.   

The Newmark method is a generalization of the linear acceleration 
method.  This method assumes that the acceleration varies linearly within the 
time interval (t, t+tt t), which gives

1 ( )t t t t t t(
t

)(ut t t ((t (1 ( for 0 t (7.43)

where 0 t tt , and

[(1 ) ]t t t t t t t)[(1 ) ]u u [(1 )t t t [(1 ))t ( ))[(1 )) (7.44)

21[( ) ]1
2t t t t t t t t]))) t[( ) ]1 ]t [( ))))u u u [(t t t tt t [( ))t tt t [( ))[(1 ) (7.45)

The response at time t+tt t is obtained by evaluating the equation of t
motion at time t+tt t.  The Newmark method is, therefore, an implicit method.   
For coding purpose, the flowchart of the Newmark method is given in Figure
7.19.

The Newmark method is unconditionally stable provided that 

2

0.5
1 0.5)
4
1 (
4

(
(7.46)
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One can find that 0.5  and 0.25  lead to acceptable results for most 
problems considered.  Therefore, 0.5  and 0.25 are used in this
chapter.

Figure 7.19. Flowchart of the Newmark algorithm for solving a set of forced vibration 
equations.

7.7.4 Numerical examples 

Several numerical examples of two-dimensional elastodynamics are 
studied to examine the efficiency and performance of the MWS method for
dynamic analyses.  The standard international (SI) units are used in 

For given matrices K, M and C

Determine 0u , 0u and 0u ; Choose time step t , , ; Compute
constants: 2
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Compute equivalent stiffness matrix 0 1K K M C0 1c c0c0
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Compute equivalent force vector: 
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Solve equation t t t tt tt tKu Ft t t

Compute t tu  and t tu

t t ttt

End of the loop of time steps
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following examples unless specially mentioned.  For simplicity, the MWS 
method based on the MLS approximation (MWS-MLS) is used in the
following numerical examples.  Results of dynamic analysis by the MWS 
method based on RPIM (MWS-RPIM) can be obtained by replacing the
MLS shape functions with the RPIM shape functions.

7.7.4.1 Free vibration analysis 

The present MWS method is used for the free vibration analysis of the 
cantilever beam shown in Figure 4.5.  The parameters are the same as those 
in the example in Sub-section 7.6.4.  The mass density of the beam is =1.0.
Three kinds of nodal arrangements (55 regular nodes, 189 regular nodes and 
189 irregular nodes) are used.  In the free vibration analyses, i =3.5 is used
for the influence domain to construct MLS shape functions.  

Frequencies of three nodal distributions obtained by the MWS method 
are listed in Table 7.6.  The results obtained by the FEM commercial 
software package, ANSYS, using bi-linear rectangular elements with the
same number of nodes are listed in the same table.  This table shows that the
results of the present MWS method are in good agreement with those 
obtained using FEM.  The convergence of the MWS method is also
demonstrated in Table 7.6.  As the number of nodes increases, results 
obtained by the present MWS method approach to the exact reference results
obtained using the FEM with an extremely fine mesh.   

The first six eigenmodes obtained by the MWS-MLS method are plotted 
in Figure 7.20.  Comparing with FEM (ANSYS) results, they are almost 
identical.

Frequencies results of the beam modeled with 189 irregular nodes are
listed in Table 7.6.  This table shows that good results are obtained using the 
irregular distribution nodal arrangement.  The stability and high accuracy in 
the results for irregular nodal distributions are significant features of the 
present MWS method.  

7.7.4.2 Forced vibration analysis 

The forced vibration of the same cantilever beam shown in Figure 4.5 is 
analyzed.  The parameters are the same as in the example in Sub-section
7.6.4.  For simplicity, the mass density of the beam is =1.0.

In this numerical example for the forced vibration analysis, the beam in
subjected to a parabolic traction at the free end, P=1000g(t), where g(t) is the
time function.  Two functions of g(t) shown in Figure 7.21 are considered.  
A total 189 uniformed nodes, as shown in Figure 4.12(a), are used to 
discretize the problem domain.  Displacements and stresses for all nodes are
obtained using the MWS-MLS method.  Detailed results of vertical
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displacement, vAv , at the middle point A at the free end of the beam are
presented.

Table 7.6. Natural frequencies of the cantilever beam obtained using MWS-MLS 
and FEM with different nodal distributions

55 nodes 189 nodes

Mode MWS FEM MWS
 (regular nodes)

MWS
 (irregular nodes) FEM

Reference
(FEM
4850

DOFs*)

1 26.7693 28.60 27.8370 27.7909 27.76 27.72

2 141.3830 144.12 141.1300 141.3111 141.79 140.86

3 179.7013 179.77 179.9077 179.9932 179.82 179.71

4 327.0243 328.47 323.8497 323.0334 328.01 323.89

5 527.3999 523.36 522.3307 522.7783 534.23 523.43

6 539.0598 532.41 537.1464 537.4757 538.08 536.57

7 730.1131 716.35 727.2628 727.5968 751.15 730.04

8 886.5635 859.23 881.5703 881.7091 887.69 881.28

9 896.9009 875.84 896.1059 897.2380 920.36 899.69

10 1004.7952 956.34 997.7824 998.1700 1022.78 1000.22

* DOF—degree of freedom

Dynamic relaxation 

If ( )g is a step-function , as shown in Figure 7.21, the long time 
response should approach the static results for the beam subjected to a static 
force.  This approach of the dynamic analysis is the so-called dynamic 
relaxation, which can be used as one of the means of examining the stability
and accuracy of a numerical procedure.   

In our problem, a constant loading is suddenly loaded to this structure, 
and then kept unchanged.  If the damping is neglected, a steady harmonic 
vibration should be observed with the static deformation (given by the static
analysis) as the equilibrium position.  If damping is considered, the response 
should converge to the static deformation.   
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Mode 1 

Mode 2 

Mode 3 
Mode 6

Mode 5

Mode 4

Figure 7.20. Vibration modes for the cantilever beam using the MWS-MLS method and 
189 irregular nodes.

The present MWS-MLS method is used to perform the dynamic 
relaxation analysis; the time step is 34 10t 4t  is used.  The response of 
the vertical displacement, vAv , at the middle point at the free end of the beam 
is first computed with no damping; the response is a steady harmonic 
vibration with respect to the static deformation, whose analytical value (see,
Section 4.5) is 0.0089A .

The same results for c=0.4 are then computed.  Table 7.7 lists results of 
several time steps near 50s .  MWS gives stable and convergent results,
as shown in Figure 7.22.  The response converges to 0.00885.A
Compared with the exact static solution of 0.0089,A  the error is about
0.5%.
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Transient response

The transient response of the beam subjected to a triangular loading 
P=1000g(t) is now considered.  The function g(t) is shown in Figure 7.21(b). 
The present MWS-MLS method is used to obtain the transient response with 
and without damping (c=0).  The Newmark method is used in this analysis.
The result for c=0 is plotted in Figure 7.23 and Figure 7.24.  Many time
steps are calculated to examine the stability and accuracy of the MWS-MLS 
method and code.  Figure 7.24 shows that the response becomes a stabilized
harmonic vibration at about 1.0s.  A stable result is obtained using the
MWS-MLS method. 

The result for c=0.4 is plotted in Figure 7.25.  The amplitude of the 
vibration decreases with time because of the effects of damping; a stable and
accurate result is obtained.

Figure 7.21. Time function g(t):
(a) time-step function;  (b) triangular-pulse function.

Table 7.7.  Results of displacements vAv excited by the time-step load (damping coefficient 
c=0.4, several time steps near t=50s)tt

No.  of time step Time (s) Displacement vAv

11875
12000
12125
12250
12375
12500

0.475000E+02
0.480000E+02
0.485000E+02
0.490000E+02
0.495000E+02
0.500000E+02

-0.00883255
-0.00883264
-0.00882592
-0.00883220
-0.00884123
-0.00884174

1.0

t

g(t)

1.0

1.0s

t

g(t)

(a) (b)
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Figure 7.22. Displacements vAv  at the middle point at  the free end of the beam excited by the
time-step load (damping coefficient c=0.4).

Figure 7.23. Early transient response of the displacement vAv  at the middle point at 
the free end of the beam excited by the triangular-pulse load (damping coefficientd c=0).
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Figure 7.24. Long time response of the displacement vAv at the middle point at the 
free end of the beam excited by the triangular-pulse load (damping coefficientd c=0).

Figure 7.25. Transient displacement vAv  at the middle point at  the free end of the beam
excited by the triangular-pulse load (damping coefficient c=0.4).
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7.8 ANALYSIS FOR INCOMPRESSIBLE FLOW
PROBLEMS

The MFree Weak-Strong (MWS) form method has been applied to fluid 
dynamics problems by GR Liu and Wu et al.(2004).  Based on their work,
this section introduces the detailed formulations of MWS for incompressible 
fluids and some examples.  No source code will be provided for the fluid 
problems, as we are still in the process of improving the code.  The purpose 
of this section is to demonstrate that the MWS method can be easily 
formulated and works well for simulating fluid flows. 

7.8.1 Simulation of natural convection in an enclosed domain

7.8.1.1 Governing equations and boundary conditions

The problem domain is given in Figure 7.26.  The standard set of 
governing equations of natural convection in an enclosed domain in terms of
vorticity and stream function can be written in the Cartesian coordinate 
system as follow (Hughes and Brighton, 1991). 

Figure 7.26. Schematic drawing of the problem domain for the natural convection problem.
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The stream function equation is: 
2 2

2 2x y

22

22x yx y
(7.47)

The vorticity equation is:  
2 2

2Pr( ) Pr Ra2 2
Tu v
x2y y

2 2

) P R
2 2

P (Pr( ) Pr Ra) Pr2 2v
xx yy xx222 (7.48)

The heat transfer equation is
2 2

2 2
T2

u v
x y y

2T T TT T2

2v
x yx y 2xx yy

(7.49)

where , , ,T  Pr,  and Ra  are, respectively, the vorticity, stream function,
temperature, Prandtl number and Rayleigh number, and u, v are thev
components of velocity in the x and y directions, which can be calculated
using the stream function.

u
y

v
x

yy

xx

(7.50)

The boundary conditions are listed as follows:

1) 0, 0 1: 1, 0, 0,x y T0, 0 1:1:
x

,1, 0,1 00, 0 1:1:
xx

(7.51)

2) 1, 0 1: 0, 0, 0,x y T1, 0 1:1:
x

,0, 0,0 01, 0 1:1:
xx

(7.52)

3) 0, 0 1: 0, 0, 0,y x0, 0
y y

,0 00 0T0, 0 1: 0, 0,1: 0, 0,0 00, 0 0 00 0, ,, ,
y yy y

, (7.53)

4) 1, 0 1: 0, 0, 0 .y x, 0
y y

,0 00 0T1, 0 1: 0, 0,1: 0, 0,0 01, 0 0 00 0, ,, ,
y yy y

, (7.54)

There are two types of boundary conditions: Dirichlet and Neumann.

7.8.1.2 Discretized system equations

For RPIM or the MLS shape functions, the discretized equation of the
MWS method for natural convection can be written as: 
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1) For the collocatable nodes, the following strong-form of discretized 
equations (for the Ith node) is used. II

For the stream function equation,

1

n n

k yy k I,
k k1

( ) yy k Ik I,( )
1

( ) yy k( )( )k xx k,)),( (7.55)

For the vorticity equations, 

,
1

)

                                                      +Pr

n n n

I x k,)
k k k1 11

uI T) x k)(((
1 11

n n

k( ) yy kk( )( )
1

k yy k,
k k11

yy k, yy,( )

( k x k I k y kk x k I, ,,((( ) ( )  Pr) (( )  Prk , ,,( ) ( )) ( )) ( ), ,,) ( )  ) () ( )) ( )) ( ) Pr( ))( )( )( ))

( )))(( )k xx k,( k ,)),(
(7.56)

For the heat transfer equations,

1

)
nn n n

I k x k I k y k k xx k k yy k,)
k k k k1 1 11 1

T) yy k)uI ((((
1 1 11 11

( k x k I k y k k xx kk x k I k y k k xx k, , ,, ,, ,((( ) ( ) ( )) ( ) (( ) ( )k , , ,, ,,, ,( ) ( ) ( )) ( ) ( )) ( ) (( ) ( ), , ,,, ,,, ,) ( ) ( )( ) ( )) ( ) (( ) ( )) ( ) ( )) ( ) ( )( ) ( )) ( ) (( ) ( )( ) ( )( ) ( )) (( ) ( )( )( ) ( )( ) ( )( ) ( )) (( ) ( )( ) (7.57)

The velocities are computed using stream function values: 

1

n n

I k x k I k y k,
k k1

uI ( ) y,( )
1

( )( )k x k Ik x k I,( )),( ))( ,,,))(( (7.58)

where n is the number of nodes used for constructing the MFree shape 
functions, uI, and vIv  are the components of velocity for theI Ith collocatableII
node in the x and y directions, respectively.

2)  For DBR-nodes, the following local weak-form (for the Ith node) is used:II

For the stream function equation,  

Ik k Ik k Ik kC E AIk k Ikkk k k Ikk IkAk k II (7.59)

For the vorticity equations,

PIk k Ik k Ik k Ik kBI C E D TPr Pr RaPIk k Ik kPr Ik kkk k Ikk IkPrPrPrPr Pr Pr RaPr PrPrPrPrPrPrPrPrPr (7.60)

For the heat transfer equations,

0Ik k Ik k Ik kB T C T E TIk k Ik k Ik kk Ik k Ik kE TIk kIk (7.61)

In Equations (7.59)-(7.61),

q

Ik k IA W dIk k IIk kW dk Ikk (7.62)



426 Chapter 7

[ ]
q

k
Ik IBI u v W d]k

Ix y
kkkkkk[ W d] Ix yx y

[[ (7.63)

( )
q

I
Ik

WIC d( )I
Ik

I

x x y y
kkk kkkkkkkW d( )

x x y yx x y y (7.64)

q

k
Ik IDI W dIx

kk

xx (7.65)

qu

k
Ik IEI W dI

kk

n (7.66)

where ( )I is the test function centered by the Ith node,II and q is the local
quadrature domain of the Ith node.  The single integrationII Eik alongk qu is
implemented appropriately according to different essential boundary
conditions for , and T.  The double integration for TT AIk, BIk, CIkC , and DIkD
can be evaluated by Gauss quadrature using the transformation strategy (GR
Liu, 2002).  Note that all these integrations can be carried out over the local
domain with a regular shape centered at the Ith node.II

Equations (7.55)-(7.61) are used for all the field nodes, which gives a set 
of discretized system equations for the entire domain.

3) For a field node on the essential boundary, the essential boundary 
conditions for  and T can be simply given as follows:T

0,  when node  is on the whole wall boundary
1,   when node  is on the hot wall
0,  when node  is on the cool wall

I

I

I

T 1, when nodeI

T 0, when nodeI

(7.67)

The essential boundary condition can be directly imposed using the direct 
interpolation method discussed in Sub-section 5.3.2.

4) The boundary condition for vorticity :

There is no explicit boundary condition for the vorticity.  However, it is 
found that the implementation of the vorticity condition is equivalent to the
approximation of the second order derivatives of the stream function at the
boundary.  Therefore, the Dirichlet boundary condition for vorticity can
be interpreted as a Neumann boundary condition for the stream function .
Thus, the boundary condition for vorticity can be derived by taking the local 
weak-form of Equations (7.47) on the wall boundary, as shown in Equation 
(7.59), i.e.
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( )Ik k Ik k Ik k(A (Ik kI ( k k Ikk Ik(k (AIk kk (7.68)

7.8.1.3 Numerical results for the problem of natural convection

The resultant algebraic Equations (7.55)~(7.61) are a set of non-linear
equations.  Therefore, an iterative loop is needed.  The iteration is stopped, 
when the L  norm of the residuals for ,  and T  in Equations
(7.55)~(7.57) and Equations (7.59)~(7.61) are less than 10-3.

Four different nodal distributions shown in Figure 7.27 are used for the 
square cavity problem to examine the efficiency of the present MWS method. 
To compare quantitatively the computational accuracy of the present MWS
method with that of other methods, such as MLPG, LRPIM, and FDM, the 
following quantities are calculated.

Figure 7.27.  Different nodal distributions used for the square 
cavity problem of natural convection.

1) max :  maximum absolute value of the stream function

2) maxu :  maximum horizontal velocity on the vertical mid-plane of the 
cavity 
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3) maxvm :  maximum vertical velocity on the horizontal mid-plane of the
cavity

4) maxNuNN : maximum value of the local Nusselt number on the boundary
at x=0

5) minNuNN :  minimum value of the local Nusselt number on the boundary
at x=0

where NuNN  is the local Nusselt number t

0
0

x
x

TNu
xxx

(7.69)

The energy norm , ErE , is defined as an error indicator:
2

51
5r

j

Er

num exact
j

num e
jj jj jj

exacteexact
j
exact
j

(7.70)

where num
j
n and exact

j
e  (j(( =1~5) represent, respectively, the five quantities

computed using the numerical methods and using the exact solutions.  Since 
there is no analytical solution for the problem, the benchmark numerical
solution of Davis (1983) is adopted as the exact solution.

The main feature of the MFree methods is that the numerical solution can
be obtained using irregularly distributed nodes.  To determine the maximum 
and minimum variable values in the whole problem domain as well as post-
processing the results (after the converged solution on field nodes have been
obtained), the function values on a fine uniform mesh of 101 101 are
calculated.  This can be done using the corresponding interpolation 
procedure which was used in the discretization process for the methods.  It is 
noted that the uniform mesh of 101 101 is independent of the
implementation for different methods, as it is only used for the post-
visualization.  In the following, all the results shown in the tables and figures
are based on the function values on this post-visualization mesh of 101 101
resolution.

First, we compare the rates of convergence and corresponding CPU time
required for the present MWS, MLPG, LRPIM and FDM for Ra=103, using
the same uniform nodal distribution.  For comparison, all the parameters in
the MFree interpolation schemes are kept the same for the MWS methods
and other MFree methods.  For example, the dimensionless size of influence
domain i for the MLS scheme is taken as 3.0 for both MWS-MLS and 
MLPG.  The dimensionless shape parameter c , shape parameter q, and the
number of nodes in the support domain n in RPIM-MQ scheme are taken as

8.0c , q=1.03, n=30 respectively for both MWS-RPIM and the LRPIM.
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Figure 7.28 shows the convergence results obtained numerically, where h
is the nodal spacing.  We find the following conclusions. 

1) The MFree methods are more accurate than FDM, and their
convergence rates are also better than that of FDM.

2) The MWS methods are less accurate than the corresponding MFree 
local weak-form methods (i.e. LRPIM and MLPG) when the same
number of nodes is used.  In other words, the MWS-MLS is less 
accurate than MLPG, and MWS-RPIM is less accurate than the
LRPIM method.  This finding is the same as that obtained for solid 
mechanics presented in the previous sections.

3) The MLS-based MFree method is less accurate than the RPIM-based
MFree method for this problem.  This finding is opposite to that for
solid mechanics problems.

4) The MWS methods (i.e.  MWS-RPIM and MWS-MLS) have slightly
slower convergence rates than the corresponding MFree local weak-
form methods (i.e.  LRPIM and MLPG).

5) MWS-RPIM has better convergence rate than the MWS-MLS.  This
finding is also opposite to that for solid mechanics problems.  

Figure 7.28.  Comparison of the convergence rates, R,  for different methods for the natural
convection problem. 
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It should be noted that the accuracy of MWS-RPIM and LRPIM depend
on the proper choice of the shape parameters of RBF.  For present MWS-
RPIM (MQ) to analyze the problem of natural convection with Ra=103 and
104, c  can be chosen 6~9 for n=20~30 (n is the number of field nodes
selected in the support domain).  For Ra=105, c  should be around 1.0, and 
n should not be larger than 12 to achieve good accuracy.  Therefore, the 
choice of these parameters depends also on the Rayleigh number of the fluid
problems.  Because the same model of nodes is used for problems with 
different Rayleigh number, an adaptive scheme is required..  The MWS-
RPIM achieves this adaptivity by changing the shape parameters and the 
number of local nodes.

Figure 7.29 and Figure 7.30 show the running time against the number of 
field nodes, N,NN in the problem domain used in MWS, MLPG and LRPIM.  
The running time is obtained by running the codes on a Compaq Alpha-
server supercomputer.  The number of field nodes N  corresponds to theN
different nodal spacing dcdd (or h).

In the simulation, it is found that neither the MWS-MLS nor MLPG 
achieve convergent results using the iterative scheme to solve the algebraic 
equations.  Therefore, the algebraic equations have to be solved using a 
modified Gaussian elimination procedure at each iteration step.  Figure 7.30 
shows that the running time of the MWS-MLS is much less than that for
MLPG.  This is because, in MLPG, CPU time is consumed in constructing 
the shape function for the Gauss points inside the quadrature domain for
each field node.  In MWS-MLS, however, the strong-form equation is used
for all the collocatable nodes that are the majority of all the nodes. 
Therefore, only the shape functions need to be computed for these field
nodes.  These shape functions can be determined first and stored for use in
the entire iteration process, which reduces computational cost greatly.  If the
number of nodes is large, the direct solver adopted by both MWS-MLS and 
MLPG becomes computationally expensive.

Similarly, the MWS-RPIM spends much less running time on calculating
the shape function for Gauss points and numerical integration than LRPIM.  
More importantly, it is found that a stationary iterative scheme, such as SOR 
scheme, can be used in MWS-RPIM to solve the algebraic equations systems. 
Therefore, the computational complexity for MWS-RPIM is only about 

( )O( .  On the other hand, although LRPIM can achieve high accuracy
using less nodes, the weak-form equation over every field node does not 
make the traditional stationary iterative scheme (such as Gauss-Seidel, SOR 
scheme) converge.  In conclusion, a more expensive direct solver has to be 
used to solve the algebraic equations; the computational complexity is 

3( )3O(  because the matrices are unsymmetric, as shown in Figure 7.30.  
Therefore, MWS-RPIM (MQ) is more efficient than LRPIM, especially for
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solving large scale problem.  This is a unique feature of the MWS-RPIM
method for fluid problem, which we did not find for solid problems.   

Figure 7.29. Comparison of running time required by the MWS-MLS and MLPG for the
natural convection problem.

Figure 7.30. Comparison of running time required by the MWS-RPIM and LRPIM.

Number of field nodes N

Number of field nodes N
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Table 7.8~Table 7.10 list the numerical results for different sets of nodes
for Rayleigh numbers 103,104,105 respectively.  For all the sets of nodes, the
results of MWS agree well with the benchmark solution given by Davis 
(1983).  The streamlines and isotherms for Ra=103, 105 are shown in Figure
7.31~Figure 7.32.

Table 7.8. Comparison of numerical results for the problem of natural convection in 
the square cavity (Ra=103)

Results (difference % with Davis’s solution)
Method Nodal distribution

max maxu maxvm maxNuNN minNuNN

1.117 3.546 3.609 1.477 0.706 256 regular nodes 
(-4.86) (-2.82) (-2.38) (-1.86) (2.02)
1.140 3.696 3.594 1.498 0.718

MWS-
MLS

268 irregular nodes
(-2.90) (1.29) (-2.79) (-0.47) (3.76)
1.196 3.681 3.734 1.  528 0.684256 regular nodes 
(1.87) (0.88) (1.00) (1.53) (-1.16)
1.192 3.688 3.731 1.525 0.686

MWS-
RPIM

268 irregular nodes
(1.53) (1.07) (0.92) (1.33) (-0.87)

Davis (1983) 1.174 3.649 3.697 1.505 0.692

Table 7.9 Comparison of numerical results for the problem of natural convection in
the square cavity (Ra=104)

Results (difference % with Davis’s solution)
Method Nodal distribution

max maxu maxvm maxNuNN minNuNN

4.809 15.752 18.698 3.609 0.581256 regular nodes (-5.17) (-2.63) (-4.68) (2.30) (-0.85)
4.963 16.689 19.427 3.746 0.543

MWS-
MLS 268 irregular nodes

(-2.13) (3.16) (-0.97) (6.18) (-7.34)
5.169 16.373 20.017 3.756 0.577256 regular nodes (1.93) (1.21) (2.04) (6.46) (-1.54)
5.174 16.447 20.071 3.740 0.580

MWS-
RPIM 268 irregular nodes (2.03) (1.66) (2.31) (6.01) (-1.02)

Davis (1983) 5.071 16.178 19.617 3.528 0.586
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Table 7.10. Comparison of numerical results for the problem of natural convection
in the square cavity (Ra=105)

Results (difference % with Davis’s solution)
Method Nodal distribution

max maxu maxvm maxNuNN minNuNN

9.463 36.787 61.431 8.772 0.713441 regular nodes (-1.55) (5.92) (-10.4) (13.67) (-2.19)
10.098 36.689 70.093 10.597 0.743

MWS-
MLS 441 irregular nodes

(5.06) (5.64) (2.19) (37.32) (1.92)
9.772 35.209 66.044 10.070 0.699441 regular nodes (1.66) (1.38) (-3.71) (30.49) (-4.12)
9.918 37.863 64.964 8.507 0.579

MWS-
RPIM 441 irregular nodes (3.18) (9.02) (-5.29) (10.24) (-20.5)

Davis (1983) 9.612 34.730 68.590 7.717 0.729 

Figure 7.31. Streamlines and isotherms for the cavity flow (Ra=103) obtained using the
MWS-MLS and 268 irregularly distributed nodes.

Figure 7.32. Streamlines and isotherms for cavity flow (Ra=105) obtained using the
MWS-RPIM and 441 irregularly distributed nodes. 
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7.8.2 Simulation of the flow around a cylinder

The incompressible, viscous fluid flow around a circular cylinder is a
classical problem in fluid mechanics.  Despite the simplicity of the cylinder
geometry, the flow field is in fact very complex in nature.  Because of its 
relevance to engineering problems and importance in the fundamental 
understanding of fluid flows, numerous theoretical, numerical and 
experimental investigations on a fluid flow passing a circular cylinder have 
been reported in the past century.  It serves as a good sample problem for 
validating a new numerical method for unsteady two-dimensional Navier-
Stokes equations.  In the sub-section, the MWS method is used to solve this
sample problem.  

7.8.2.1 Governing equation and boundary condition

Consider an incompressible, viscous fluid flow at a constant velocity UU
in the x direction passing a stationary cylinder of radius a, as shown Figure
7.33.

Figure 7.33. Configuration of a fluid flow around a circular cylinder.

The standard dimensionless two-dimensional Navier-Stokes equations for 
dynamic fluid flows in the vorticity-stream function form are as follows

The equation for the stream function is 
2 2

2 2x y

22

22x yx y
(7.71)

The equation for the vorticity is  

r=a r

x

y

UUU

n
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2 2

2( )2 2Re
u v

t x y y

2

(
21 21 (( 2u v

t x yx y 22xx yy
(7.72)

where Re is Reynolds number defined as 

Re U DU
(7.73)

where D is the cylinder diameter, and  is the kinematic viscosity.

The boundary conditions of the problem are: 

i) Free stream velocity U at the in-flow boundary: U

0
U yUUU

(7.74)

ii) Non-slip condition slip on the surface of the cylinder; 
2

2

0
n (7.75)

where n is the unit outward normal on the surface of the cylinder (See, 
Figure 7.33)
iii) Uniform flow at x  and y .

uniform flow

0
(7.76)

iv) Zero-gradient condition at x

0

0

x

x

xx

xx

(7.77)

The initial condition for the flow field is assumed and computed using the
following formulae, i.e.   

2 2
0t x y2x (7.78)

which serves as an artificial initiator for the numerical iteration to solve the
non-linear problem.   
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With the same notation as in Sub-section 7.8.1, the discretized strong-
forms for the equations of the stream function and vorticity, respectively,  at 
a collocatable node can be written as follwos:

1

n n

k yy k I,
k k1

( ) yy k Ik I,( )
1

( ) yy k( )( )k xx k,)),( (7.79)

1

1
Re

n n
I

I k x k I k y k,
k k1

d uIdt
II ( ) y kk,( )

1

uI

n n

( ))( )))( )
1

k yy k,
k k11

yy k, yy,( )),

( k x k Ik x k I,(( )k ,( ))),( )))((( )))))))

(( )))( )( )))))k xx k,( k ,( k ,)),

(7.80)

where n is the number of nodes used for constructing the MFree shape 
functions.

The discretized equations in local weak-form for a DBR-node can be
written as follows.

For the equation of the stream function,  

Ik k Ik k Ik kC E AIk k Ikkk k k Ikk IkAk k II (7.81)

For the equation of the vorticity,

1 1 0
Re Re

I
Ik k Ik k Ik k

d B C E1 1
Ik kdt

II
IkCk Ik k I kB C EIk Ik kkC ECCCkk Ik kk I

(7.82)

where , , ,Ik Ik Ik Ik, , ,, , E, , ,, , I, , ,, ,, ,  are defined in Equations (7.62)~(7.66).  As discussed 
in Sub-section 7.8.1, the boundary condition for vorticity can be discretized 
as in Equation (7.68).

For this unsteady fluid flow problem, there is a time derivative in 
Equations (7.79)~(7.82).  In the present model, the time derivative is 
approximated using an explicit three-step formulation based on a Taylor
series expansion in time; this is a kind of difference method.  From Taylor’s 
series, a function f  in time can be written asf

2 2 3 3
4

2 3
)( ( )4

2 2
f3 ((3

f t t f t t) ( )) ( O(
t t

f t tf 2 2 32 3( ) ( )) ( )( )2 2 32 3

2 3
)f f ff( ) ( ) (( ) (( )t) ( )) () O(ff ( ) ( )) ( )( )

2t 62 (7.83)

where t is the time interval.  Approximating Equation (7.83) up to third-
order accuracy, we can write the three-step formulation as:

))
3 3

) t f t()f t( ) () (
3

) () ((
t

t t ft f)t ) ( ))) (()) (( (7.84)
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/ 3))
2 2

) t f t t()f t( ) () (
2

) () ((
t

t t f tt f ()t ) ( ))) (()) (( (7.85)

( / 2)ff t t f t t( ) ( )) (
t

(ff) ( )) () (7.86)

7.8.2.2 Computation procedure

To solve the resultant set of non-linear algebraic equations for the 
unsteady fluid flow problem, a time-matching iterative procedure is used.  
The procedure adopted here includes the following steps: 

1) assume that at time t= 0 the unsymmetrical initial flow field is given as tt

2 2
0

0 0
t

t

x y2x
(7.87)

2) calculate the unknown field values of velocities u and v using v
Equation (7.58); 

3) solve the vorticity equations that are built using Equation (7.80) or 
(7.82) using three-step time marching scheme given in Equations 
(7.84)-(7.86);

4) solve the stream-function equations that are built using Equation (7.79)
or (7.81) by SOR iteration scheme until the L  norm of residuals for

 is less than 210 , because the accuracy of the stream-function is
very important for a stable simulation. 

5) the procedure is repeated until the prescribed time-step or the final 
time is reached.

7.8.2.3 Results and discussion

Simulations of small and moderate Reynolds number flow (Re=20 and 
Re=100, respectively) are carried out using the present MWS method.  The 
computational domain is shown in Figure 7.34, where a is the radius of the
cylinder.   

Two different types of nodal distributions are adopted, as shown in 
Figure 7.35.  In these two nodal distributions, the nodes within the area

2 2 3.5r x y2 2x yx are generated by MFree2D©.  The region is distributed by
regular nodes in model (Figure 7.35(a)) and by irregularly scattered nodes 
in model II (Figure 7.35(b)).  Both model I and model II contain many field 
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nodes.  For simplicity, only MWS-RPIM (MQ) is used to simulate this
problem.  The dimensionless shape parameter c, shape parameter q, and the 
number of nodes in the support domain n in present RPIM-MQ scheme are 

4.0c , q=1.03, n=20 respectively. 
For Re=20, the unsymmetrical initial flow field becomes symmetrical

and the flow appears to be laminar steady flow as shown in Figure 7.36; for
Re=100, the flow field eventually settles into a periodic oscillatory pattern.  
The fine sequences for the vorticity are shown in Figure 7.37 and the 
streamlines of the fluid flow are plotted in Figure 7.38.  The pattern of the 
fluid flow has been confirmed by other experimental and numerical results. 
It is generally agreed that in two dimensions the vortex shedding begins at a 
critical Reynolds number around 49.  For Reynolds numbers less than the 
critical value (Recritical=49), the introduced perturbation is gradually 
dissipated by viscosity.  Above this critical Reynolds number, the introduced 
perturbation will trigger the vortex shedding process to form a Von Karman 
vortex street, as given in Figure 7.37.

16

248

UUU

a=0.5

0 , U yUU

0 , U yUU

0
xxx

,

0
yyy

0 ,
U yUU

Figure 7.34.  Problem domain for the simulation of the fluid flow around a circular.

Figure 7.36 shows the streamlines for Re=20 when the flow reaches its
final steady state.  In Figure 7.36, a pair of stationary recirculating eddies 
develops behind the cylinder.  The length of the recirculating region, L, from
the rearmost point of the cylinder to the end of the wake, the separation
angle agree s , and the drag coefficient CDC  are compared with previous
computational and experimental data as listed in Table 7.11.  The 
geometrical and dynamical parameters agree well with those in the literature.

Figure 7.38 shows time-dependent behavior of streamline contours for
Re=100.  Figure 7.37 and Figure 7.38 show that the most attractive feature
of the vortex shedding behind a circular cylinder, the periodic variation of 
the flow field, has been successfully reproduced.  The two characteristic 
parameters, the drag and lift coefficients, are  
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2

2

D

L

xCD U a2

yCL U a2

U

U

F

F
(7.88)

where F is the total force acting on the circular cylinder, which arises from
the surface pressure and shear stress.  Figure 7.39 shows these two
parameters at a late stage.  The flow is periodically oscillatory; the lift 
coefficient oscillates more strongly than the drag coefficient.  The drag
coefficient varies nearly twice as fast as the lift coefficient.  This is because
of the drag coefficient is affected by vortex shedding processes from both 
sides of the cylinder.

(a) model I 

(b) model II 

Figure 7.35. Two types of nodal distributions used in the numerical simulation using the
MWS-RPIM.
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Figure 7.36. Streamlines of the fluid flow near the cylinder at the final steady state for
Re=20.

Table 7.11.  Comparison of geometrical and dynamical parameters with those in the
literature

Results
Sources

L/a s CDC

MWS-RPIM (Model ) 1.86 43.21 2.076

MWS-RPIM (Model ) 1.84 44.74 2.103

Dennis and Chang (1980) 1.88 43.7 2.045

Nieuwstadt and Keller (1973) 1.786 43.37 2.053 

Table 7.12. Comparison of the average DCD , and StSS

Results

DCD StSS

MWS-RPIM (Model ) 1.257 0.167

MWS-RPIM (Model ) 1.273 0.167

Jordan and Fromm(1972) 1.28 -

Braza et al. (1986) 1.28 0.16

He and Doolen (1997) 1.287 0.161

The average drag coefficient and Strouhal number ( tS fD U/ , where f
is the shedding frequency) are listed in Table 7.12.  The vortex shedding 
frequency is obtained by measuring the final period of the lift coefficient. 
All the results agree well.
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(d) t0

(d) t0+2s

(d) t0+4s

(d) t0+6s

Figure 7.37. Vorticity distribution for the fluid flow around a cylinder (Re=100) after the
steady state at t0.
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t=0stt

t=tt 2s

t=4stt

t=6stt

Figure 7.38. Time-evolution of streamlines of the fluid flow around a cylinder for Re=100 
(Model I).
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7.9 REMARKS

In this Chapter, the MFree weak-strong (MWS) form method was
presented for problems of solid and fluid mechanics.  In MWS, both the 
strong-form and the Petrov-Galerkin local weak-form are used.  The strong-
form with collocation method is used for the collocatable nodes, whose local 
quadrature domains do not intersect with derivative boundaries.  No 
numerical integration is needed for these nodes.  The local weak-form is
used only for the DBR-nodes that are on or near the derivative boundaries, 
and the derivative boundary conditions can then be easily imposed together
with the system equations to produce stable and accurate solutions.  The
MWS method was illustrated for problems of statics, free and forced 
vibration of structures, and incompressible flow.  It performed well.  The 
following remarks may be made.

Figure 7.39. Time-evolution of Lift and Drag coefficients for Re=100 (Model I).



444 Chapter 7

1) MWS-MLS is more efficient than MLPG for both the solid and fluid 
mechanics problems tested.

2) MWS-RPIM is far more efficient than LRPIM, especially for the fluid
mechanics problems tested.

3) MLS shape functions perform better than RPIM shape functions in 
solid mechanics.  However, RPIM shape functions are better in fluid 
mechanics.

MWS provides an alternative avenue to develop new MFree methods and 
adaptive analysis for the numerical analysis of problems in solid and fluid 
mechanics.
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APPENDIX

Appendix 7.1. Major subroutines used in MFree_MWSl.f90 (for solid mechanics
problem only) and their functions

Subroutines Functions Location

Input Input data from the external data file Program 5.3 

Qdomain Construct the quadrature domain for a
field node

Program 5.4 

GaussCoefficient  Obtain coefficients of Gauss points Program 4.5 

DomainGaussPoints Compute the array of the information of 
Gauss points for a quadrature domain 

Program 5.5 

SupportDomain Determine the support domain for a
quadrature point 

Program 4.7 

RPIM_ShapeFunc_2D
(MLS_ShapeFunc_2D)

Construct shape functions and their
derivatives.

Program 3.1 
(Program
3.9)

TestFunc Compute the quartic spline weight 
function

Program 7.2 

Integration_BCQuQi Perform boundary the integration on qu
and qi

Program 5.7 

Integration_BCQt Perform boundary the integration on qt Program 5.8

EssentialBC Enforce essential boundary conditions Program 5.9

SolverBand Solve system equations Program 4.12

GetDisplacement Compute the finial displacements  Program 5.10 

GetNodeStress Compute the stress components for field 
nodes

Program 5.11

Output Output results Program 5.12 

TotalGaussPoints Compute the matrix of information of 
Gauss points for the global cells

Program 5.13

GetEnergyError Compute global error in the energy norm Program 5.14 

GetInvasy Compute the inversion for a matrix Program 4.15 

Dobmax Compute multiplication of two matrices Program 5.15 
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Appendix 7.2. The data file, Input189.dat, used in MFree_MWS.f90

*L,H,E,v,P,
48.  12. 3.e7 .3 1000.
*numnode
189
* Global BC: Xmin,Xmax,Ymax, Ymin 
0.  48. 6.  -6.
* Nodal spacing: Dcx,Dcy
2.4 1.5
* Local quadrature domain: Aqx,Aqy
1.5 1.5
* Num.  of sub-partitions: Nsx,Nsy
2 2
*Influence domain 
3.
*Num. of Gauss Points
4
*RBF shape parameters: nRBF ALFc, dc and q
1  4.0 2.4  1.03
*Num.  of Basis
3
*Field nodes: x[xi,yi]

     1    .00000 6.00000
2    .00000   4.50000
3    .00000 3.00000

     4    .00000   1.50000
5 .00000 .00000
6    .00000  -1.50000

     7    .00000  -3.00000
8 .00000  -4.50000
9    .00000  -6.00000

    10   2.40000   6.00000 
.
.
.
   180  45.60000  -6.00000
   181  48.00000 6.00000
   182  48.00000   4.50000
   183  48.00000 3.00000
   184  48.00000   1.50000 
   185  48.00000 .00000
   186  48.00000  -1.50000
   187  48.00000  -3.00000
   188  48.00000  -4.50000
   189  48.00000  -6.00000

*Num.  of Essential BC: numFBC 
9
*Node,iUx,iUy,Ux,Uy
 1  1 1 0.000000E+00 -0.599999E-04
2  1 1  -0.628906E-05 -0.337499E-04
3  1 1  -0.718749E-05 -0.149999E-04

 4  1 1  -0.449218E-05 -0.374999E-05
 5  1 1 0.000000E+00 0.000000E+00
6  1 1 0.449218E-05 -0.374999E-05

 7  1 1 0.718749E-05 -0.149999E-04
8  1 1 0.628906E-05 -0.337499E-04
9  1 1 0.000000E+00 -0.599999E-04

*Num. Concentrated loading: numFBC 
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9
*Node,iTx,iTy,Tx,Ty
  189    1    1 0.00000 0.0
  188    1    1 0.00000 0.0
  187    1    1   0.00000   0.0 
  186    1    1 0.00000 0.0
  185    1    1 0.00000 0.0
  184    1    1 0.00000 0.0
  183    1    1 0.00000 0.0
  182    1    1 0.00000 0.0
  181    1    1 0.00000 0.0

* Num.  of nodes and cells(for en.  error)
189  160
*Nodes for cells: xc[ ]

    1    .00000 6.00000
    2    .00000   4.50000

3    .00000 3.00000
    4    .00000   1.50000
    5    .00000    .00000

6    .00000  -1.50000
    7    .00000  -3.00000

8    .00000  -4.50000
9    .00000  -6.00000

   10 2.40000 6.00000
.
.
.

  180  45.60000  -6.00000
  181  48.00000 6.00000
  182  48.00000   4.50000
  183  48.00000 3.00000
  184  48.00000   1.50000
  185  48.00000    .00000
  186  48.00000  -1.50000
  187  48.00000  -3.00000
  188  48.00000  -4.50000
  189  48.00000  -6.00000

*No.  of nodes in cells[1,2,3,4]

  1      1 2     11     10
2 2 3     12     11
3 3      4     13     12

  4      4 5     14     13
5 5 6     15     14 

.

.

.
156    175    176    185    184
157    176    177    186    185
158    177    178    187    186
159    178    179    188    187
160    179    180    189    188

*END of data file
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Appendix 7.3. A output sample for stress obtained using MWS-RPIM 

No.  of 
field nodes

xx yy xy

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

0.11007E+04

0.82845E+03

0.55283E+03

0.27649E+03

0.21699E-09

-0.27649E+03

-0.55283E+03

-0.82845E+03

-0.11007E+04

0.99841E+03

0.75146E+03

0.50145E+03

0.25079E+03

-0.17631E-07

-0.25079E+03

-0.50145E+03

-0.75146E+03

-0.99841E+03

0.89681E+03

 0.67499E+03

0.45042E+03

0.22528E+03

-0.48267E-08

-0.22528E+03

-0.45042E+03

-0.67499E+03

-0.89681E+03

0.79582E+03

0.59899E+03

 0.39970E+03

0.19991E+03

0.47603E-08

-0.19991E+03

-0.39970E+03

-0.59899E+03

-0.79582E+03

 -0.21716E+01

 -0.10702E+00

 -0.66389E+00

 -0.36205E+00

 -0.14311E-06

0.36205E+00

0.66389E+00

0.10702E+00

0.21717E+01

 -0.19636E+01

 -0.95292E-01

 -0.60194E+00

 -0.32842E+00

 -0.44176E-07

0.32842E+00

0.60194E+00

0.95292E-01

0.19636E+01

 -0.17655E+01

 -0.86294E-01

 -0.54133E+00

 -0.29571E+00

 -0.88478E-08

0.29571E+00

  0.54133E+00

0.86294E-01

0.17655E+01

 -0.15750E+01

 -0.77155E-01

 -0.47954E+00

 -0.25727E+00

 -0.37796E-08

0.25727E+00

0.47954E+00

  0.77155E-01

0.15750E+01

-0.93984E+01

-0.57459E+02

-0.99072E+02

-0.12285E+03

-0.13079E+03

-0.12285E+03

-0.99072E+02

-0.57459E+02

-0.93984E+01

-0.93281E+01

-0.57053E+02

-0.98374E+02

-0.12198E+03

-0.12987E+03

-0.12198E+03

-0.98374E+02

-0.57053E+02

-0.93281E+01

-0.92725E+01

-0.56689E+02

-0.97744E+02

-0.12120E+03

-0.12904E+03

-0.12120E+03

-0.97744E+02

-0.56689E+02

-0.92725E+01

-0.92171E+01

-0.56361E+02

-0.97182E+02

-0.12051E+03

-0.12830E+03

-0.12051E+03

-0.97182E+02

-0.56361E+02

-0.92171E+01

Error in the energy norm:= 0.538919E-01

*The parameters used are:
4.0,c 1.03q and 2.4cdc for MQ-RBF;
2.4,cxdc 1.5,cydc and 3.0s  for the local influence domains;

1.5q  and 2 2g gng 2gn  for local quadrature domains;.
The linear polynomial terms are added in the MQ-RPIM;
The quartic spline function is used as the test function for the local weak form.
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Appendix 7.4. A output sample for stress obtained using MLS MWS

No.  of 
field nodes

xx yy xy

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

0.11080E+04

0.83117E+03

0.55385E+03

0.27732E+03

0.19094E-04

-0.27732E+03

-0.55385E+03

-0.83117E+03

-0.11080E+04

0.10072E+04

0.75554E+03

0.50342E+03

0.25217E+03

-0.70059E-05

-0.25217E+03

-0.50342E+03

-0.75554E+03

-0.10072E+04

0.90723E+03

0.68009E+03

0.45397E+03

0.22604E+03

-0.11025E-04

-0.22604E+03

-0.45397E+03

-0.68009E+03

-0.90723E+03

0.80534E+03

0.60423E+03

0.40246E+03

0.20185E+03

0.22259E-04

-0.20185E+03

-0.40246E+03

-0.60423E+03

-0.80534E+03

0.34628E+00

-0.37000E+00

0.46561E+00

-0.42962E+00

-0.23530E-04

0.42965E+00

-0.46559E+00

0.36996E+00

-0.34621E+00

0.23823E+00

-0.31540E+00

0.45185E+00

-0.46547E+00

0.85493E-05

0.46545E+00

-0.45186E+00

0.31542E+00

-0.23827E+00

-0.62574E+00

0.74438E+00

-0.10080E+01

0.98990E+00

0.12912E-04

-0.98992E+00

0.10080E+01

-0.74437E+00

0.62572E+00

0.57034E+00

-0.59938E+00

0.75836E+00

-0.69266E+00

-0.26170E-04

0.69269E+00

-0.75833E+00

0.59935E+00

-0.57027E+00

0.64555E+00

-0.53871E+02

-0.94146E+02

-0.11676E+03

-0.12552E+03

-0.11676E+03

-0.94146E+02

-0.53871E+02

0.64554E+00

-0.15794E+01

-0.53106E+02

-0.94331E+02

-0.11705E+03

-0.12478E+03

-0.11705E+03

-0.94331E+02

-0.53106E+02

-0.15794E+01

-0.10710E+00

-0.53588E+02

-0.94175E+02

-0.11682E+03

-0.12528E+03

-0.11682E+03

-0.94175E+02

-0.53588E+02

-0.10710E+00

0.73683E-01

-0.53722E+02

-0.94254E+02

-0.11691E+03

-0.12530E+03

-0.11691E+03

-0.94254E+02

-0.53722E+02

0.73682E-01

Error in the energy norm:= 0.1737E-01
*The parameters used are

2.4,cxdc 1.5,cydc and 3.0s for the local influence domains;

1.5q  and 2 2g gng 2gn  for local quadrature domains;.

The second order polynomial basis (mbasis=6) and the quartic spline weight function 
are used for MLS approximation;
The quartic spline function is used as the test function for the local weak form.
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COMPUTER PROGRAMS

Program  7.1. The source code of main program of MFree_MWS.f90

!--------------------------------------------------------------------
! The main program--2D FORTRAN 90 CODE-MWS method
! Using rectangular quadrature and influence domains
! input file   -- input189.dat
! output file  -- result.dat
! include file -- variableslocal.h
!--------------------------------------------------------------------

implicit real*8 (a-h,o-z)
include 'variableslocal.h'
ir=4  ! for input data 

       open(ir,file='Input189.dat',status='old')
       open(2,file='result.dat',status='unknown')
       maxmatrix=2*ndim
! ************** Input data
       call Input(ir,x,ndim,nx,numnode,xm, nquado,Dmat,&
                  ALFs,numcell,numq,xBK,conn,&
                  nbnum,npEBC,pEBC,nbcnum,nbc,ibcn,bcn)
! ************* Determine influence domains --uniform nodal spacing
       xspace=dcx*dex        ! Size of quadrature domain

yspace=dcy*dey
       xstep=xspace/dex

ystep=yspace/dey
       do j=1,numnode
          ds(1,j)=alfs*xstep ! Size of influence domain
          ds(2,j)=alfs*ystep

enddo
! ************* Coef.  of Gauss points and Weights
       call GaussCoefficient(nquado,gauss)
       eps=1.e-16
       do iak=1,2*numnode
          fk(iak)=0.0
          do jak=1,2*numnode
             ak(iak,jak)=0.
          enddo
       enddo

! ************* Loop for field nodes 
       do 100 nod=1,numnode
          write(*,*)'Field Node=',nod
          xn=x(1,nod)
          yn=x(2,nod)
          xss=xspace
          yss=yspace
          numgauss=nquado*nquado
          call QDomain(xss,yss,xn,yn,xm,xc) ! Local quadrature domain

if((xc(2,1).lt.xm(3)).and.(xc(2,2).gt.xm(4))&
             .and.(xc(1,3).lt.xm(2))) then
! ************* using strong form

gpos(1)=xn
gpos(2)=yn

             ndex=0
             call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv) ! support domain
             do kph=1,ndex
                do ii=1,10

phi(ii,kph)=0.
                enddo 
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            enddo
            call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,&
                                   alfc,dc,q,nRBF, mbasis)

ie1=2*nod-1
ie2=ie1+1

            do ill=1,ndex
               mm=nv(ill)
               m1=2*mm-1
               m2=2*mm
               ak(ie1,m1)=young*(phi(4,ill)+&
                          0.5*(1.-anu)*phi(6,ill))/(1-anu**2)
               ak(ie1,m2)=young*(phi(5,ill)*0.5*(1.+anu))/(1-anu**2)
               ak(ie2,m1)=young*(phi(5,ill)*0.5*(1.+anu))/(1-anu**2)
               ak(ie2,m2)=young*(phi(6,ill)+&
                          0.5*(1.-anu)*phi(4,ill))/(1-anu**2)

enddo
else

! ************* using local weak form 
            nxc=ng         ! for the rectangular domain
            xgs=(xc(1,4)-xc(1,1))/ngx

ygs=(xc(2,1)-xc(2,2))/ngy
            x0=xc(1,1)
! ************* Local quadrature domain is divided to sub-partitions
            do 60 iix=1,ngx
               xx=x0+(iix-1)*xgs
               y0=xc(2,1)
               do 60 jjy=1,ngy
                  yy=y0-(jjy-1)*ygs
                  xcc(1,1)=xx
                  xcc(2,1)=yy
                  xcc(1,2)=xx
                  xcc(2,2)=yy-ygs
                  xcc(1,3)=xx+xgs
                  xcc(2,3)=yy-ygs
                  xcc(1,4)=xx+xgs
                  xcc(2,4)=yy
! ************* Gauss points for a sub-partition
                 call DomainGaussPoints(xcc,gauss,gss,nx,ng,nxc,&
                                         nquado,numgauss)
! ************* Loop quadrature points
                  numgauss=nquado*nquado
                  do 30 ie=1,numgauss

gpos(1)=gss(1,ie)
gpos(2)=gss(2,ie)

                     weight=gss(3,ie)
                     ajac=gss(4,ie)
                     ndex=0
                     call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv) 
                     do kph=1,ndex
                        do ii=1,10

phi(ii,kph)=0.
enddo

enddo
                     dsi(1)=xspace
                     dsi(2)=yspace
                     xcent(1)=xn
                     xcent(2)=yn
                     call TestFunc(dsi,xcent,gpos,w,wx,wy) ! test function
                     Call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,&
                                        ndex,alfc,dc,q,nRBF, mbasis)

ik1=nod*2-1
ik2=nod*2

! ************* Get nodal stiffness matrix and assembling
                     do ine=1,ndex
                       n1=2*nv(ine)-1
                       n2=2*nv(ine)
                       do ii=1,3
                          do jj=1,2
                             bbt(jj,ii)=0.
                             bb(ii,jj)=0.



452 Chapter 7

                              ww(ii,jj)=0.
enddo

enddo
                        bb(1,1)=phi(2,ine)
                        bb(2,2)=phi(3,ine)
                        bb(3,1)=phi(3,ine)
                        bb(3,2)=phi(2,ine)
                        ww(1,1)=wx 
                        ww(2,2)=wy
                        ww(3,1)=wy
                        ww(3,2)=wx
                        do ii=1,3
                           do jj=1,2
                              bbt(jj,ii)=ww(ii,jj)
                           enddo
                        enddo 
                        call dobmax(bbt,2,3,2,dmat,3,3,bd,2)
                        call dobmax(bd,2,3,2,bb,2,3,ek,2)
                        ak(ik1,n1)=ak(ik1,n1)+weight*ajac*ek(1,1)
                        ak(ik1,n2)=ak(ik1,n2)+weight*ajac*ek(1,2)
                        ak(ik2,n1)=ak(ik2,n1)+weight*ajac*ek(2,1)
                        ak(ik2,n2)=ak(ik2,n2)+weight*ajac*ek(2,2)

enddo
 30               continue  !End of integ.  for local quadrature domain 

! ************* B.C.  Integrations
                  call Integration_BCQt(nx,ng,xcc,f2,x,numnode,nquado,&
                                       xm,xss,yss,xcent)
                  fk(2*nod-1)=fk(2*nod-1)+f2(1)
                  fk(2*nod)=fk(2*nod)+f2(2)
                  call Integration_BCQuQi(nx,ng,nod,xcc,x,numnode,&
                         nquado,dmat,xm,xss,YSS,ak,maxmatrix,alfs,ds)
 60          continue
          endif
 100   continue !   End of loop for field nodes

! ************* Boundary conditions: essential
       call EssentialBC(x,numnode,ak,fk,maxmatrix,ds,alfs,&
                        nbnum,npEBC,pEBC) 

! ************* Solve equation to get the solutions
       neq=2*numnode  ! number of equations
       write(*,*)'Solve equation...'
       call SolverBand(ak,fk,neq,maxmatrix)
       do kk=1,numnode
          u2(1,kk)=fk(2*kk-1)
          u2(2,kk)=fk(2*kk)

enddo
! ************* Get the final displacement
       call GetDisplacement(x,ds,u2,displ,alfs,nx,numnode)
       do kk=1,numnode
          u22(1,kk)=displ(2*kk-1)
          u22(2,kk)=displ(2*kk)
       enddo

! ************* Get stress for field nodes
       call GetNodeStress(x,ds,Dmat,u2,Stress,alfs,nx,numnode)
       call Output(x,numnode,u2,u22,Stress) ! ouput results 

! ************* Get error in the energy norm using global BK cells 
       write(*,*)'Computing global error in the energy norm...' 
       ngst=numcell*nquado**2
       call TotalGaussPoints(xBK,conn,gauss,gst,nx,ng,&
                             numq,numcell,nquado,ngst)
       call GetEnergyError(nx,ng,xBK,numq,u2,dmat,ds,&
                            ngst,gst,alfs)
       write(*,*)'THE END' 
STOP
END
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Program  7.2. The source code of subroutine TestFunc

  SUBROUTINE TestFunc(dsi,xcent,xg,w,wxx,wyy)
!------------------------------------------------------------------
! The quartic spline test (weight) function
! input—dsi: size of weight domain;
!       xcent: center of the weight domain;
!       xg: coordinate of point considered;
! output—w, wxx,wyy
!------------------------------------------------------------------
       IMPLICIT REAL*8(A-H,O-Z)
       dimension dsi(2),xcent(2)
       dimension xg(2)
       ep=1.e-15
       difx=xg(1)-xcent(1)
       dify=xg(2)-xcent(2)
       if(dabs(difx).le.ep) then
          drdx=0.

else
          drdx=(difx/dabs(difx))/dsi(1)

end if
if (dabs(dify).le.ep) then

          drdy=0.
else

          drdy=(dify/dabs(dify))/dsi(2)
end if

       rx=abs(xg(1)-xcent(1))
       ry=abs(xg(2)-xcent(2))
       rx=rx/dsi(1)
       ry=ry/dsi(2)
       wx=1.-6*rx*rx+8.*rx**3-3.*rx**4
       dwx=(-12.*rx+24.*rx**2-12.*rx**3)*drdx
       wy=1.-6*ry*ry+8.*ry**3-3.*ry**4
       dwy=(-12.*ry+24.*ry**2-12.*ry**3)*drdy

if(rx.gt.1.) wx=0. 
if(ry.gt.1.) wy=0.

       w=wx*wy
       wxx=wy*dwx
       wyy=wx*dwy
RETURN

  END
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Computational fluid dynamics, 
see CFD

Condition number, 118,187
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Domain of integration, See
quadrature domain
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Finite differential
representation,13
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Fluid dynamics, 46,48,79,423

Forced vibration analysis, 415, 
417
Free vibration, 414,417

Frequency,  414

Functional, 19,98,164

Function approximation,  

349,355,393,404,428
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Galerkin method, 20,25

Gauss point, 155,179,245, 
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Hamilton’s principle, 14
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Kronecker delta function, 65, 79,
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Lagrange multiplier, 163, 164, 
165, 167,279,384,403

Local PIM, LPIM, See Local
point interpolation method,  

Local point interpolation
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Local radial PIM, LRPIM, See
Local radial point interpolation
method,
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Local support, 43,54,55,66,76, 
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Local weak form, 34,46,238,239,
250,312,381,386,314,425

M

Mass density, 7,12,412,417

Matrix triangulization algorithm,
66,147,238,311

Mesh, 37,42,197

Mesh generation, 38,40 

Meshless local Petrov-Galerkin,
45,46,48, 237,250,382,383

MFree method, 39 
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Petrov-Galerkin method 
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Natural boundary conditions, 9, 

Natural convection, 423 

Natural coordinates, 43 

Navier-Stokes Equation, 434
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244, 261, 389 
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Nonlinear analysis, 201

Normal stress, 4,178,404
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Numerical integration, 45, 155,
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ordinary differential equation,
see ODE
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Partial differential equation, see
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Penalty stiffness matrix, 162
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Point interpolation method, 45,
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PIM, See Point interpolation
method,

PIM shape function, 60 
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PPCM, 313, 324, 344

Principles, 20,27,160,369 

Poisson’s ratio, 7

Polynomial basis, 7,49,61,62,74, 
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Post-processor, 180,263

Potential energy, 14,27,31,32,33 

Pre-processor, 179
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Quadrature domain, 35,55,239,
240, 246,  248,249,254,256, 264,
270,274,385,412

Quartic spline functions, 102, 
108, 109,111

R

Radial basis function, see (RBF,

RPCM, 352-377 

Radial Point Collocation
Method, see RPCM

Radial point interpolation
method, see RPIM

Rayleigh numbers, 424,430,432 

RBF, 74,75,86,169,352

Relative error, 323,331,346

Reproducing Kernel Particle 
Method, RKPM, 45,46,48,57

Reproducibility, 27,36,65,66,81

RPIM, 50,52,57,74,79,80,86,148

S

Shape function, 48,54,61, 73, 74,
97

Shape parameters, 74,75,86,92,
118,169

Shear modulus, 7

Shear stress, 4,10,178

Smoothed particle 
hydrodynamics, see, SPH
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Smoothing kernel, 

Smoothing length, 

SPH, 44,47,48,57

Stability, 55,335,336 

Standard patch test, 76,240, 401, 
406

Stiffness matrix, 157,159,247,
390

Strain-displacement relations, 
6,10,33

Strain, 5,6,10,150,242, 387

Strain energy, 31,32 

Strong forms, 13,46,47,161,311, 
380, 381,387,412

Support domain,  43,54,55,59,
86, 108, 167,170

Surface fitting, 114,115,117,118 

System equation, 9,13,44,155, 
161, 167,251,424

T

Taylor series, 13,57,80,436

Time step, 361,419,437

Traction boundary condition, 
8,12,158,386

Transient response, 420 

V

Variational principle, 51,164

Vibration, see free vibration,
forced vibration

W

Weak forms, 13,27,33,34,45, 47,
146,237,382,383

Weight function domain, 240,
259

Weight (test) functions,16,17,
57,98,102,108,240,241,248,258, ,

386

weight coefficient, 68,72,73,350,
351,

Weighted residual method, 14, 
34,239,250,412

Y

Young’s modulus, 7,21,178, 
365,412

384,
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