
AN INTRODUCTION TO MESHFREE METHODS AND THEIR PROGRAMMING

An Introduction to Meshfree Methods
and Their Programming

by

G.R. LIU
National University of Singapore, Singapore

and

Y.T. GU
National University of Singapore, Singapore

A C.I.P. Catalogue record for this book is available from the Library of Congress.

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 2005 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

ISBN-10 1-4020-3228-5 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-10 1-4020-3468-7 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-13 978-1-4020-3228-8 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-13 978-1-4020-3468-8 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York

Dedication

To Zuona

Yun, Kun, Run,

and my family

for the support and encouragement

G. R. Liu

To Qingxia

and Zhepu

for the love, support and
encouragement

To my mentor, Professor Liu for
his guidance

Y. T. Gu

Table of Contents

Preface xiii

Authors xix

1 Fundamentals ... 1

1.1 Numerical simulation... 1
1.2 Basics of mechanics for solids ... 3

1.2.1 Equations for three-dimensional solids....................................... 4
1.2.1.1 Stress components ... 4
1.2.1.2 Strain-displacement equations 5
1.2.1.3 Constitutive equations ... 6
1.2.1.4 Equilibrium equations.. 7
1.2.1.5 Boundary conditions and initial conditions 8

1.2.2 Equations for two-dimensional solids... 9
1.2.2.1 Stress components ... 9
1.2.2.2 Strain-displacement equation....................................... 10
1.2.2.3 Constitutive equations ... 11
1.2.2.4 Equilibrium equations.. 12
1.2.2.5 Boundary conditions and initial conditions 12

1.3 Strong-forms and weak-forms ... 13
1.4 Weighted residual method ... 14

1.4.1 Collocation method... 17
1.4.2 Subdomain method ... 18
1.4.3 Least squares method.. 19
1.4.4 Moment method.. 20
1.4.5 Galerkin method ... 20
1.4.6 Examples... 21

1.4.6.1 Use of the collocation method 23
1.4.6.2 Use of the subdomain method 23
1.4.6.3 Use of the least squares method................................... 24
1.4.6.4 Use of the moment method.. 24
1.4.6.5 Use of the Galerkin method ... 25
1.4.6.6 Use of more terms in the approximate solution 26

1.5 Global weak-form for solids .. 27
1.6 Local weak-form for solids .. 34
1.7 Discussions and remarks.. 36

vii

Table of Contents

2 Overview of meshfree methods ... 37

2.1 Why Meshfree methods ... 37
2.2 Definition of Meshfree methods .. 39
2.3 Solution procedure of MFree methods... 40
2.4 Categories of Meshfree methods.. 44

2.4.1 Classification according to the formulation procedures 45
2.4.1.1 Meshfree methods based on weak-forms..................... 45
2.4.1.2 Meshfree methods based on collocation techniques.... 46
2.4.1.3 Meshfree methods based on the combination of weak-

form and collocation techniques 47
2.4.2 Classification according to the function approximation

schemes... 47
2.4.2.1 Meshfree methods based on the moving least squares

approximation ... 48
2.4.2.2 Meshfree methods based on the integral representation

method for the function approximation....................... 48
2.4.2.3 Meshfree methods based on the point interpolation

method... 49
2.4.2.4 Meshfree methods based on the other meshfree

interpolation schemes.. 49
2.4.3 Classification according to the domain representation 49

2.4.3.1 Domain-type meshfree methods. 50
2.4.3.2 Boundary-type meshfree methods. 50

2.5 Future development.. 51

3 Meshfree shape function construction ... 54

3.1 Introduction.. 54
3.1.1 Meshfree interpolation/approximation techniques 55
3.1.2 Support domain... 58
3.1.3 Determination of the average nodal spacing............................. 58

3.2 Point interpolation methods ... 60
3.2.1 Polynomial PIM shape functions .. 61

3.2.1.1 Conventional polynomial PIM..................................... 61
3.2.1.2 Weighted least square (WLS) approximation.............. 67
3.2.1.3 Weighted least square approximation of Hermite-type

... 69
3.2.2 Radial point interpolation shape functions 74

3.2.2.1 Conventional RPIM ... 74
3.2.2.2 Hermite-type RPIM ... 81

3.2.3 Source code for the conventional RPIM shape functions 86
3.2.3.1 Implementation issues.. 86
3.2.3.2 Program and data structure .. 88

viii

Table of Contents xi

3.2.3.3 Examples of RPIM shape functions............................. 90
3.3 Moving least squares shape functions.. 97

3.3.1 Formulation of MLS shape functions 97
3.3.2 Choice of the weight function... 102
3.3.3 Properties of MLS shape functions... 106
3.3.4 Source code for the MLS shape function................................ 108

3.3.4.1 Implementation issues.. 108
3.3.4.2 Program and data structure .. 111
3.3.4.3 Examples of MLS shape functions 111

3.4 Interpolation error using Meshfree shape functions......................... 114
3.4.1 Fitting of a planar surface ... 118
3.4.2 Fitting of a complicated surface.. 118

3.5 Remarks ... 122
Appendix.. 124
Computer programs.. 131

4 Meshfree methods based on global weak-formsff145

4.1 Introduction.. 145
4.2 Meshfree radial point interpolation method..................................... 148

4.2.1 RPIM formulation... 148
4.2.2 Numerical implementation ... 155

4.2.2.1 Numerical integration .. 155
4.2.2.2 Properties of the stiffness matrix 157
4.2.2.3 Enforcement of essential boundary conditions 158
4.2.2.4 Conformability of RPIM.. 160

4.3 Element Free Galerkin method .. 161
4.3.1 EFG formulation ... 161
4.3.2 Lagrange multiplier method for essential boundary

conditions.. 163
4.4 Source code .. 167

4.4.1 Implementation issues... 167
4.4.1.1 Support domain and the influence domain 167
4.4.1.2 Background cells ... 169
4.4.1.3 Method to enforce essential boundary conditions 169
4.4.1.4 Shape parameters used in RBFs................................. 169

4.4.2 Program description and data structures 171
4.5 Example for two-dimensional solids – a cantilever beam................ 177

4.5.1 Using MFree_Global.f90 .. 179
4.5.2 Effects of parameters .. 186

4.5.2.1 Parameter effects on RPIM method........................... 187
4.5.2.2 Parameter effects on EFG method 191

4.5.3 Comparison of convergence ... 193
4.5.4 Comparison of efficiency.. 194

Table of Contents

4.6 Example for 3D solids.. 196
4.7 Examples for geometrically nonlinear problems 198

4.7.1 Simulation of upsetting of a billet... 199
4.7.2 Simulation of large deflection of a cantilever beam 200
4.7.3 Simulation of large deflection of a fixed-fixed beam 201

4.8 MFree2D .. 201
4.9 Remarks ... 204
Appendix.. 205
Computer programs.. 219

5 Meshfree methods based on local weak-forms.................................ff .. 237

5.1 Introduction.. 237
5.2 Local radial point interpolation method... 239

5.2.1 LRPIM formulation .. 239
5.2.2 Numerical implementation ... 246

5.2.2.1 Type of local domains.. 246
5.2.2.2 Property of the stiffness matrix.................................. 247
5.2.2.3 Test (weight) function.. 248
5.2.2.4 Numerical integration .. 248

5.3 Meshless Local Petrov-Galerkin method .. 250
5.3.1 MLPG formulation ... 250
5.3.2 Enforcement of essential boundary conditions 252
5.3.3 Commons on the efficiency of MLPG and LRPIM................ 253

5.3.3.1 Comparison with FEM .. 254
5.3.3.2 Comparison with MFree global weak-form methods 254

5.4 Source code .. 254
5.4.1 Implementation issues... 254
5.4.2 Program description and data structures 256

5.5 Examples for two dimensional solids – a cantilever beam 262
5.5.1 The use of the MFree_local.f90 .. 262
5.5.2 Studies on the effects of parameters 267

5.5.2.1 Parameters effects on LRPIM.................................... 268
5.5.2.2 Parameter effects on MLPG 274

5.5.3 Comparison of convergence ... 276
5.5.4 Comparison of efficiency.. 278

5.6 Remarks ... 279
Appendix.. 281
Computer programs.. 292

6 Meshfree collocation methods... 310

6.1 Introduction.. 310
6.2 Techniques for handling derivative boundary conditions 311

x

Table of Contents xi

6.3 Polynomial point collocation method for 1D problems 313
6.3.1 Collocation equations for 1D system equations...................... 313

6.3.1.1 Problem description ... 313
6.3.1.2 Function approximation using MFree shape functions

... 314
6.3.1.3 System equation discretization 315
6.3.1.4 Discretization of Dirichlet boundary condition 316
6.3.1.5 Discretized system equation with only Dirichlet

boundary conditions .. 316
6.3.1.6 Discretized system equations with DBCs.................. 317

6.3.2 Numerical examples for 1D problems 323
6.4 Stabilization in convection-diffusion problems using MFree methods

.. 335
6.4.1 Nodal refinement .. 338
6.4.2 Enlargement of the local support domain 338
6.4.3 Total upwind support domain ... 339
6.4.4 Adaptive upwind support domain... 341
6.4.5 Biased support domain.. 342

6.5 Polynomial point collocation method for 2D problems 343
6.5.1 PPCM formulation for 2D problems....................................... 344
6.5.2 Numerical examples ... 346

6.6 Radial point collocation method for 2D problems 352
6.6.1 RPCM formulation ... 352
6.6.2 RPCM for 2D Poisson equations .. 352
6.6.3 RPCM for 2D convection-diffusion problems........................ 354

6.6.3.1 Steady state convection-diffusion problem................ 354
6.6.3.2 Linear dynamic convection-diffusion equations........ 359

6.7 RPCM for 2D solids... 364
6.7.1 Hermite-type RPCM... 364
6.7.2 Use of regular grid (RG)... 371

6.8 Remarks ... 378

7 Meshfreeff methods based on local weak form and collocation..........380

7.1 Introduction.. 380
7.2 Meshfree collocation and local weak-form methods 381

7.2.1 Meshfree collocation method.. 381
7.2.2 Meshfree weak-form method.. 382
7.2.3 Comparisons of meshfree collocation and weak-form

methods... 383
7.3 Formulation for 2-D statics .. 384

7.3.1 The idea .. 384
7.3.2 Local weak-form... 386
7.3.3 Discretized system equations.. 387

xii Table of Contents

7.3.4 Numerical implementation ... 390
7.3.4.1 Property of stiffness matrix.. 390
7.3.4.2 Type of local domains.. 391
7.3.4.3 Numerical integration .. 391

7.4 Source code .. 391
7.4.1 Implementation issues... 392
7.4.2 Program description.. 392

7.5 Examples for testing the code .. 393
7.6 Numerical examples for 2D elastostatics ... 400

7.6.1 1D truss member with derivative boundary conditions 400
7.6.2 Standard patch test .. 401
7.6.3 Higher-order patch test ... 403
7.6.4 Cantilever beam .. 407
7.6.5 Hole in an infinite plate .. 410

7.7 Dynamic analysis for 2-D solids .. 410
7.7.1 Strong-form of dynamic analysis.. 412
7.7.2 Local weak-form for the dynamic analysis............................. 412
7.7.3 Discretized formulations for dynamic analysis....................... 413

7.7.3.1 Free vibration analysis ... 414
7.7.3.2 Direct analysis of forced vibration............................. 415

7.7.4 Numerical examples ... 416
7.7.4.1 Free vibration analysis ... 417
7.7.4.2 Forced vibration analysis ... 417

7.8 Analysis for incompressible flow problems..................................... 423
7.8.1 Simulation of natural convection in an enclosed domain 423

7.8.1.1 Governing equations and boundary conditions.......... 423
7.8.1.2 Discretized system equations..................................... 424
7.8.1.3 Numerical results for the problem of natural convection

... 427
7.8.2 Simulation of the flow around a cylinder 434

7.8.2.1 Governing equation and boundary condition............. 434
7.8.2.2 Computation procedure.. 437
7.8.2.3 Results and discussion ... 437

7.9 Remarks ... 443
Appendix.. 445
Computer programs.. 450

Reference ... 454

Index .. 473

Preface

The finite difference method (FDM) has been used to solve differential
equation systems for centuries. The FDM works well for problems of simple
geometry and was widely used before the invention of the much more
efficient, robust finite element method (FEM). FEM is now widely used in
handling problems with complex geometry. Currently, we are using and
developing even more powerful numerical techniques aiming to obtain more
accurate approximate solutions in a more convenient manner for even more
complex systems. The meshfree or meshless method is one such
phenomenal development in the past decade, and is the subject of this book.

There are many MFree methods proposed so far for different applications.
Currently, three monographs on MFree methods have been published.

Mesh Free Methods, Moving Beyond the Finite Element Method byd
GR Liu (2002) provides a systematic discussion on basic theories,
fundamentals for MFree methods, especially on MFree weak-form
methods. It provides a comprehensive record of well-known MFree
methods and the wide coverage of applications of MFree methods to
problems of solids mechanics (solids, beams, plates, shells, etc.) as
well as fluid mechanics.

The Meshless Local Petrov-Galerkin (MLPG) Method by Atluri and d
Shen (2002) provides detailed discussions of the meshfree local
Petrov-Galerkin (MLPG) method and its variations. Formulations
and applications of MLPG are well addressed in their book.

Smooth Particle Hydrodynamics; A Meshfree Particle Method by GR d
Liu and Liu (2003) provides detailed discussions of MFree particle
methods, specifically smoothed particle hydrodynamics (SPH) and
some of its variations. Applications of the SPH method in fluid
mechanics, penetration, and explosion have also been addressed in
this book, and a general computer source code of SPH for fluid r
mechanics is provided.

Readers may naturally question the purpose of this book and the
difference between this book and others, especially that by GR Liu (2002).

xiii

The second and the third books are related to specific MFree methods,
which have clearly different scopes from this book. The book by GR Liu
(2002) is the first book published with a comprehensive coverage on many
major MFree methods. It covers all the relatively more mature meshfree
methods based on weak-form formulations with systematic description and
broad applications to solids, beams, plates, shell, fluids, etc. However, the
starting point in that book is relatively high. It requires a relatively strong
background on mechanics as well as numerical simulations. In addition,
some expressions in this book were not given in detail, and no computer t
source code was provided, because of space limitation.

After the publication of the first book, the first author received many
constructive comments, including requests for source codes and for more
detailed descriptions on fundamental issues. This book is therefore intended
to complement the first book and provide the reader with more details of the
fundamentals of meshfree methods accompanied with detailed explanation mm
on the implementation and coding issues together with the source codes.
This book covers only the very basics of meshfree weak-form methods, but
provides intensive details on meshfree methods based on the strong-form
and weak-strong-form formulations. The relationship of this book and the
book by GR Liu (2002) is detailed in Table 0.1. This shows that there isa
very little duplication of materials between the two; they are complementary.
The authors hope that this monograph will help beginning researchers,
engineers and students have a smooth start in their study and further
exploration of meshfree techniques.

The purpose of this book is, hence, to provide the fundamentals of MFree
methods in as much detail as possible. Some typical MFree methods, such
as EFG, MLPG, RPIM, and LRPIM, are discussed in great detail. The
detailed numerical implementations and programming for these methods are
also provided. In addition, the MFree collocation (strong-form) methods are
also detailed. Many well-tested computer source codes for MFree methods
are provided. The application and the performance of the codes provided
can be checked using the examples attached. Input and output files are
provided in table form for easy verification of the codes. All computer codes
are developed by the authors based on existing numerical techniques for
FEM and the standard numerical analysis. These codes consist of most of
the basic MFree techniques, and can be easily extended to other variations of
more complex procedures of MFree methods.

Releasing this set of source codes is to suit the needs of readers for an
easy comprehension, understanding, quick implementation, practical
applications of the existing MFree methods, and further improvement and

xiv Preface

Table 0.1. The relationship between this book and the meshfree method book by
GR Liu (2002)

Book by GR Liu (2002) This book
Topics Content Source

code
Content Source

code
Weighted residual
methods

Briefed NA Detailed explicitly
with 1D examples

NA

Weak-forms Detailed NA Briefed NA

MFree shape
functions

Detailed with
emphasizes on MLS,
PIM and RPIM

No Detailed for MLS,
PIM WLS, RPIM,
and Hermite-type

Provided

MFree global weak-
form methods

Detailed for EFG, PIM
and RPIM

No Detailed for EFG
and RPIM

Provided

MFree local Petrov-
Galerkin weak-form
methods

Detailed for MLPG,
LPIM and LRPIM

No Detailed for MLPG
and LRPIM

Provided

MFree collocation
methods

No No Detailed for various
techniques

No

MFree weak-strong
form methods

No No Detailed for MWS-
LS and MWS-
RPIM

Provided

Boundary-type MFree
methods

Detailed for BPIM and
BRPIM

No No NA

Coupled methods Detailed for EFG/BEM,
MLPG/FEM/BEM

No No NA

SPH Detailed for fluid
mechanics problems

No No NA

Applications to solids 1D and 2D solids No 1D, 2D and 3D
solids

Partially
provided

Applications to beam,
plate and shell
structures

Yes No No NA

Applications to fluid
mechanics problems

Detailed for SPH,
MLPG and LRPIM

No Detailed using
MWS

No

Material non-linear
problems

Yes No No NA

Geometric non-linear
problems

No NA Provided examples
of RPIM

No

Convection-
dominated problems

No No Detailed for 1D and
2D problems using
MFree strong-form
methods

No

MFree2D Detailed for usage and
techniques used

No No NA

NA: not applicable.

Preface xv

xvi Preface

development of their own MFree methods. All source codes provided in this
book are developed and tested based on the MS Windows and MS Developer
Studio 97 (Visual FORTRAN Professional Edition 5.0.A) on a personal
computer. After slight revisions, these programs can also be executed in other
platforms and systems, such as the UNIX system on workstations. In our
research group these codes are frequently ported between the Windows and qq
UNIX systems, and there has been no technical problem.

Outline of this book

Chapter 1: The weighted residual methods are introduced and
discussed. Various numerical approaches derived from the
weighted residual method are introduced and examined
using 1D examples. The fundamental and theories of solid
mechanics and weak-forms are also provided.

Chapter 2: An overview of MFree methods is provided, including the
background, classifications, and basic procedures in MFree
methods.

Chapter 3: Fundamental and theories of MFree interpolation
/approximation schemes for shape function construction,
especially, MLS, PIM, WLS, and RPIM, and Hermite-type
shape functions, are systemically introduced. Source codes
of two standard subroutines of computing MLS and RPIM
shape functions are provided.

Chapter 4: Formulations of the MFree global weak-form methods,
EFG and RPIM, are presented in detail. A standard source
code of RPIM and EFG is provided.

Chapter 5: Formulations of the MFree local weak-form methods,
MLPG and LRPIM, are presented in great detail. A
standard source code of LRPIM is provided.

Chapter 6: Fundamentals and procedures of the MFree collocation
methods are systemically discussed. The issues related to
the stability and accuracy in the strong-form methods are
discussed in detail. In particular, the effects of the presence
of the derivative boundary conditions are examined in great
detail.

Chapter 7: The MFree methods based on combination of local weak
form and collocation are derived and discussed in detail. A
standard source code is provided.

Preface xvii

The book is written for senior university students, graduate students,
researchers, professionals in engineering and science. Readers of this book
can be any one from a beginner student to a professional researcher as well
as engineers who are interested in learning and applying MFree methods to
solve their problems. Knowledge of the finite element method is not
required but it would help in the understanding and comprehension of many
concepts and procedures of MFree methods. Basic knowledge of solids
mechanics would also be helpful. The codes provided for practise might be
the most effective way to learn the basics of MFree methods.

Acknowledgement
The authors’ work in the area of meshfree methods discussed in this book

has been profoundly influenced by the works by Prof. T. Belytschko, Prof. S.
N. Atluri, and others. Without their significant contributions in this area,
this book would not exist.

Many of our colleagues and students have supported and contributed to
the writing of this book. The authors would like to express their sincere
thanks to all of them. Special thanks to X. Liu, Y.L. Wu, K.Y. Dai, L. Yan,
G.Y. Zhang, etc. Many of them have contributed examples to this book in
addition to their hard work in carrying out a number of projects related to
meshfree methods at the Centre for Advanced Computations in Engineering
Science (ACES). Special thanks also go to Y. Liu, Bernard Kee, Jerry Quek,
etc. for reading the drafts of this thick volume and providing very useful
editorial comments.

The authors are grateful to Professor Gladwell for editing the manuscript;
his constructive comments and suggestions improved readability of the book.

Finally, the authors would also like to thank A*STAR, Singapore, and
the National University of Singapore for their partial financial sponsorship in
some of the research projects undertaken by the authors and their teams
related to the topic of this book.

G.R. Liu
Y.T. Gu

Authors

Dr. G.R. Liu received his PhD from Tohoku
University, Japan in 1991. He was a Postdoctoral
Fellow at Northwestern University, U. S. A. He is
currently the Director of the Centre for Advanced
Computations in Engineering Science (ACES),
National University of Singapore. He serves as the
President of the Association for Computational
Mechanics (Singapore). He is also an Associate
Professor at the Department of Mechanical
Engineering, National University of Singapore. He
has provided consultation services to many national and international
organizations. He authored more than 300 technical publications including
more than 200 international journal papers and six authored books, includingaa
the popular book “Mesh Free Method: moving beyond the finite element
method”, and a bestseller “Smooth Particle Hydrodynamics-a meshfree
particle method”. He is the Editor-in-Chief of the International Journal of
Computational Methods and an editorial member of a number of other
journals. He is the recipient of the Outstanding University Researchers
Awards (1998), the Defence Technology Prize (National award, 1999), the
Silver Award at CrayQuest 2000 Nationwide competition, the Excellent
Teachers (2002/2003) title, the Engineering Educator Award (2003), and
the APCOM Award for Computational Mechanics (2004). His research
interests include Computational Mechanics, Mesh Free Methods, Nano-scale
Computation, Micro bio-system computation, Vibration and Wave
Propagation in Composites, Mechanics of Composites and Smart Materials,
Inverse Problems and Numerical Analysis.

Dr. Y.T. Gu received his B.E. and M. E. degrees
from Dalian University of Technology (DUT), China
in 1991 and 1994, respectively, and received his PhD
from the National University of Singapore (NUS) in
2003. He is currently a research fellow at the
Department of Mechanical Engineering in NUS. He
has conducted a number of research projects related to
meshfree methods, and he has authored more than 40

xix

technical publications including more than 20 international journal papers.
His research interests include Computational Mechanics, Finite Element
Analysis and Modeling, Meshfree (meshless) Methods, Boundary Element
Method, Mechanical Engineering, Ship and Ocean Engineering,
Computational Microelectromechanical Systems (MEMS), High
Performance Computing Techniques, Dynamic and Static Analyses of
Structures, etc.

xx Author

Chapter 1

FUNDAMENTALS

1 Fundamentals

This chapter provides the fundamentals of mechanics for solids, as this
type of problems will be frequently dealt with in this book. Several widely
used numerical approximation methods are outlined in a concise manner using
one dimensional (1D) problems to address fundamental issues in numerical
methods. Readers with experience in mechanics and numerical methods may
skip this chapter, but this chapter introduces the terms used in the book.

1.1 NUMERICAL SIMULATION

Phenomena in nature, whether mechanical, geological, electrical,
chemical, electronic, or biological, can often be described by means of
algebraic, differential, or integral equations. One would like to obtain exact
solutions analytically for these equations. Unfortunately, we can only obtain
exact solutions for small parts of practical problems because most of these
problems are complex; we must use numerical procedures to obtain
approximate solutions. Nowadays, engineers and scientists have to be
conversant with numerical techniques for different types of problems.
Because of the rapid development of computer technology, numerical
simulation techniques using computers (or computational simulation) have
increasingly become an important approach for solving complex and
practical problems in engineering and science.

1

Chapter 1

The main idea of numerical simulation is to transform a complex
practical problem into a simple discrete form of mathematical description,
recreate and solve the problem on a computer, and finally reveal the
phenomena virtually according to the requirements of the analysts. It is
often possible to find a numerical or approximate solution for a complex
problem efficiently, as long as a proper numerical method is used.

Numerical simulations follow a similar procedure to serve a practical
purpose. There are necessary steps in the procedure, as shown in Figure 1.1.

Physical phenomena

Mathematical model

Results Visualization and other
analysis tools

Simplification

Computer systems

Numerical algorithms
and implementation

Governing equations
and BC, IC, etc

Numerical techniques

Computer Code

Numerical simulation

Figure 1.1. Procedure of conducting a numerical simulation. This book deals with
topics related to the items in the shaded frames.

Step 1: Identity and isolate the physical phenomenon;

Step 2: Establish mathematical models for this phenomenon with some
possible simplifications and acceptable assumptions. These mathematical
models are generally expressed in terms of field variables in governing

2

1. Fundamentals 3

equations with proper boundary conditions (BCs) and/or initial conditions
(ICs). The governing equations are usually a set of ordinary differential
equations (ODEs), partial differential equations (PDEs), or integral equations.
Boundary and/or initial conditions are needed to complement the governing
equations for determining the field variables in space and/or time. This step
is the base for a numerical simulation.

Step 3: Describe the mathematical model in a proper numerical
procedure and algorithm. The major aim of this step is to produce computer
code performing the numerical simulation. For different numerical
techniques, the numerical algorithm and implementation are different, and
hence the computer codes are also different.

Step 4: Numerically simulate the problem. Te computer systems and the
computer codes obtained in Step 3 are used to simulate the practical problem.

Step 5: Observe and analyze the simulation results that are obtained in
Step 4. Visualization software packages are often very useful tools for
presenting the data produced by computers as they are usually complex in
nature and large in volume.

In this procedure, we find that a numerical technique determines the
algorithm and codes used in the numerical simulation. In order to obtain a
successful simulation result representing the true physics, we need a reliable
and efficient numerical technique. Many researchers have been developing
the numerical techniques or numerical approximation methods. Several
efficient approximation methods have been proposed and developed so far,
such as the finite difference method (FDM), the finite element method
(FEM), the boundary element method (BEM), and the meshless or meshfree
methods (shortened as MFree methods in this book) † to be discussed in this
book.

1.2 BASICS OF MECHANICS FOR SOLIDS

In this book, MFree formulations are presented mainly for mechanics
problems of solids and fluid flows. In this section, the basic equations of
solids are briefly introduced for future reference.

† A detailed definition of MFree methods will be presented in Chapter 2.tt

4 Chapter 1

1.2.1 Equations for three-dimensional solids

1.2.1.1 Stress components

Consider a continuum of three-dimensional (3D) elastic solids with a
volume and a surface boundary , as shown in Figure 1.2. The solid is
supported at various locations and is subjected to external forces that may be
distributed over the volume or/and on the boundary. When the solid is
stressed, it will deform resulting in a displacement field. The field variablest
of interest are the displacements. The displacements and the stress level can
be different from point to point in the solid depending on the configuration
of solid, loading, and boundary conditions.

y

x

z

1t11

2t22

tt

u

nnzz

nyn
nx

b

Figure 1.2. A continuum of solids.
: the problem domain considered; : the global boundary of the problem domain; t: the

traction boundary (or force, derivative, natural boundary); u: the displacement boundary (or
Dirichlet, essential boundary); n={nx ,nyn , nz}T: the outward normal vector on the boundary.

At any point in the solid, there are, in general, six components of stress to
describe the state stressed, as indicated on the surface of a small cubic “cell”
shown in Figure 1.3. On each surface, there will be one component of
normal stress, and two components of shear stress. The sign convention for
the subscript is that the first letter represents the surface on which the stress
is acting, and the second letter represents the direction of the stress. Note
that there are also stresses acting on the other three hidden surfaces. As the
normal to these surfaces are in the directions opposite to the corresponding
coordinates, positive directions of the stresses should also be in the directions

1. Fundamentals 5

opposite to the coordinates. There are a total of nine stress components shown
on the cubic cell. These nine components are the components of the stress
tensor. By taking moments of forces about the central axes of the cubic cell at t
the state of equilibrium, it is easy to confirm that

xy yxx ; xz zx ; yzzy (1.1)

Therefore, there are six independent stress components in total at a
particular point in a solid. The stresses are often written in the vector form

T
xx yy zz yz xz xyxx yy zz yz xzyy zz yz xz (1.2)

xy
xxxx

yy

yz

yx

zy

zz

zx

y

x

z

yy

yz

yx

zy

zz

zx

xy
xx

Figure 1.3. Stress components on a small cubic cell in a stressed three-dimensional
solid.

1.2.1.2 Strain-displacement equations

The strain-displacement equation gives the relationship between
displacements and strains. There are six strain components at a point in
solids corresponding to the six stress components, which can also be written
in a similar vector form of

T
xx yy zz yz xz xyxx yy zz yz xzyy zz yz xz (1.3)

A strain is a rate of displacement per unit length. The components of
strain can be obtained by derivatives of the displacements for small

6 Chapter 1

deformation in solids. The strain-displacement relation can be written in the
following matrix form.

= Lu (1.4)

where u is the displacement vector having the form of

uu
v
ww

u (1.5)

where u, v and v w are displacement components in x, y and z directions,z
respectively.

In Equation (1.4), L is a matrix differential operator given by

0 0xxx
0 00 0y0 0y
0 0 zzz
0
0 0 zz
0 z y0 z yz y

x0 xxzz 0 xxxz 0 xz 0
y 0y x 0y xy x

L (1.6)

1.2.1.3 Constitutive equations

The constitutive equation gives the relationship between the stress and
the strain for a given material. It is often called a generalized Hooke’s law.
The generalized Hooke’s law for general anisotropic elastic materials can be
given in the following matrix form.

= D (1.7)

where D is a matrix of material constants, which have to be obtained through
experiments. The constitutive equation can be written explicitly as

xxxx xxD D D D D D11 12 13 14 15 16D11 12 13 14 15 112 13 14 15 16D D D D D D11 12 13 14 15 112 13 14 15xxxx xxxx11 12 13 14 15 16

D D D D DD D D D D
11 12 13 14 15 16

yyyy yy22 23 24 25 26D22 23 24 25 223 24 25 26D D D D D22 23 24 25 223 24 25D D D D D
D D D D36D D D D33 34 35 334 35zzzzzz zzzz33 34 35 36

D D D
33 34 35 36D33 34 35 334 35 36D33 34 35 334 35zz zz

44 45 46D D D44 45 445 46D D D44 45 445D D Dyzyz yz

D Dsy D D55 56.sy D55 556.sy D55 556sy D D55 5xzxz xz

D6666D666D6yxyxy yxy

D (1.8)

1. Fundamentals 7

Note that Dij=D= jiD . There are a total of 21 possible independent material
constants Dij. For different types of anisotropic materials, there will be
fewer independent material constants (see, e.g., GR Liu and Xi, 2001). For
isotropic material, which is the simplest type of material, D can be gradually
reduced to

11 12 12 0 0 0D D D11 12 11211 12 12

0 0 0D D
11 12 12

11 12 0 0 0D D11 1 0 0 0D D

11 0 0 0D111 0 0 0
() / 2 0 0

D111 0 0 0D1

11 12() / 2 0 011 1211 1) / 2 0 0(
() / 2 0sy 11 12() / 2 011 12. 11 1sy) / 2 012(11 1sy

() / 2() /11 12()11 12() / 211 1211 1

D
(1.9)

where

11
(1)

(1 2)(1)
ED1 22)(12)(12

; 12 (1 2)(1)
ED1
E

22)(12)(12
; 11 12

2
D D11 1 G (1.10)

in which E, and G are Young’s modulus, Poisson’s ratio, and shear G
modulus of the material, respectively. There are only two independent
constants among these three constants:

2(1)
EG (1.11)

1.2.1.4 Equilibrium equations

The equilibrium equation gives the relationship between the stress and
the external force. Using equilibrium conditions of forces in a small block in
a solid, we can obtain the following equilibrium equations in a concise
matrix form for three-dimensional elastodynamics.

TL b u uT c (1.12)

where is the mass density, c is the damping coefficient,
2

2t
uu is the

acceleration vector,
t
uu is the velocity vector, and bd is the vector of

external body forces in x, y, and z directions:z

8 Chapter 1

bxxbx

ybyby

b
y

zbzb
b (1.13)

Using Equations (1.4) and (1.7), we can write the dynamic equilibrium
Equation (1.12) in terms of displacements:

TL DLu b u uT c (1.14)

This is the general form of the dynamic equilibrium equation for three-
dimensional elasticity. If the loads applied on the solid are static, then the
concern is only on the static status of the solid, and the static equilibriumf
equation can be obtained simply by dropping the dynamic terms in Equation
(1.14), which yields

TL DLu b 0T (1.15)

Equation (1.12) can also be written in the following form using the tensor
notation.

ij j i i i, b u cui ii iuuiiu (1.16)

where i, j=(1, 2, 3) representing, respectively, x, y and z directions.z
Equation (1.12) or Equation (1.16) is the equilibrium equation of three-

dimensional elastodynamics. The equilibrium equation is often called the
governing equation for solids; it is a partial differential equation (PDE) with
the displacement vector as the unknown function of field variables.

1.2.1.5 Boundary conditions and initial conditions

The governing Equation (1.12) or Equation (1.16) must be complemented
with boundary conditions and initial conditions.

Traction boundary condition: ij j in tj ij on t (1.17)

Displacement boundary condition:
ii uui on u (1.18)

Displacement initial condition: 0 0(,) ()0 0u(,) (,) (0 00 x (1.19)

Velocity initial condition: 0 0(,) ()0 0u(,) (,) (0 00 x (1.20)

where iu , it , u0 and v0 denote the prescribed displacements, tractions, initial
displacements and velocities, respectively, and njn is a component of the
vector of the unit outward normal on the boundary of the domain (see

1. Fundamentals 9

Figure 1.2). The traction boundary condition is, in general, a type of
derivative boundary condition or natural boundary condition (in the weak-
form context). The displacement boundary conditions are often called the
Dirichlet ort essential boundary conditions in the weak-form context.

In summary, the governing equation (Equation (1.12) or Equation (1.16)),
the constitutive equation (Equation (1.7)) and the strain-displacement
equation (1.4) together with boundary conditions and initial conditions
(Equations (1.17)~(1.20)) form a boundary value problem (BVP) and the
initial value problem (IVP) for three-dimensional solids. The entire set of
equations is called system equations.

Note that equations obtained in this section are applicable to 3D elastic
solids. Theoretically, these equations for 3D solids can be applied to all
other types of structures such as trusses, beams, plates and shells, because
they are all made of 3D solids. However, treating all the structural
components as 3D solid makes computation very expensive, and practically
impossible. Therefore, theories for making good use of the geometrical
advantage of different types of solids and structural components have been
developed. Application of these theories in a proper manner can reduce
analytical and computational effort drastically.

1.2.2 Equations for two-dimensional solids

1.2.2.1 Stress components

For two-dimensional (2D) solids as shown in Figure 1.4, it is assumed
that the geometry of the domain is independent of z-axis, and all the external
loads and supports are independent of the z coordinate, and applied only in z
the x-y plane. This assumption reduces the 3D equations to 2D equations.
There are two types of typical states of 2D solids. One is plane stress, and
another is plane strain. Plane stress solids are solids whose thickness in the
z direction is very small compared with dimensions in thez x and y directions.
As external forces are applied only in the x-y plane, and stresses in z
direction (zz, xz, yz) are all zero. There are only three in-plane stresses,
(xx, yy, xy).

Plane strain solids are solids whose thickness in the z direction is veryz
large compared with dimensions in the x and y directions. External forces
are applied uniformly along the z-axis, and the movement in the z directionz
at any point is constrained. The strain components in z direction (z zz, xz, yz)
are all zero, there are only three in-plane strains, (xx, yy, xy) to deal with.

The system equations for 2D solids can be obtained by simply omitting
the terms related to the z direction in the system equations for 3D solids. z
Equations for isotropic materials are given as follows.

10 Chapter 1

Figure 1.4. A two-dimensional continuum of solids.
: the problem domain considered; : the global boundary of the problem domain; t: the
traction boundary (or force boundary); u: the displacement boundary; n={nx ,nyn }T: the

outward normal vector on the boundary.

The stress components are

xxxxxxx

yyyyyy

xyx

(1.21)

where the shear stress component, xyx , is often denoted xy .
There are three corresponding strain components at any point in 2D

solids, which can also be written in a similar vector form

xxxxxxx

yyyyyy

xyx

(1.22)

1.2.2.2 Strain-displacement equation

The strain-displacement relation can also be written in the following
matrix form.

Lu (1.23)

where the displacement vector is

nyn

x

y

t
u

tb

n

nx

1. Fundamentals 11

uu
v

u (1.24)

and the differential operator matrix, L, is given by

0
xxx

00
yyy

yy xy xy x

(1.25)

1.2.2.3 Constitutive equations

Hooke’s law for 2D elastic solids has the following matrix form:

= D (1.26)

where D is a matrix of material constants, which have to be obtained through
experiments. For isotropic materials in the plane stress state, we have

21
E

1 0
1 0

0
1 01 0

0 0 1 / 20 0 1 / 20 0 1 / 2
D (Plane stress) (1.27)

For solids in the plane strain state, the matrix of material constants D can be
obtained by simply replacing E andE , respectively, with E/(1EE 2) and

/(1), which leads to

(1)
(1)(1 2)

E)
)())(

1 01 0
1

1 0
11

1 01 0
1

1 0
)(1 2))(1 2))(1 2 11

1 2
11

1 20 0 21 20 00 0
2(1)2(1)

D (Plane strain) (1.28)

12 Chapter 1

1.2.2.4 Equilibrium equations

The equilibrium equations for 2D elastic solids can be easily obtained by
removing the terms and omitting the differential operations related to the z
coordinate from Equation (1.12), i.e.,

TTL b u uc (1.29)

where b is the external force vector given by

xbxx

b
x

ybyb
b (1.30)

Equation (1.29) has exactly the same form as Equation (1.12). For static
problems, the equilibrium equations can be written as

T 0L bT (1.31)

Equation (1.29) or (1.31) is much easier to solve then their counterpart
equations for 3D solids. Equation (1.29) can be also written in the following
form using tensor notations:

ij j i i i, b u cui ii iuuiiu (1.32)

where i, j=(1, 2) represent, respectively, x and y directions, is the mass

density, c is the damping coefficient, ui is the displacement,
2

2
i

i
uu
t

is the

acceleration, i
i

uu
t

 is the velocity, ij is the stress, bi is the body force,

and (),j,, denotes
jxxx

.

1.2.2.5 Boundary conditions and initial conditions

The boundary conditions and initial conditions can be written as

Traction boundary condition: ij j in tj ij on t (1.33)

Displacement boundary condition: ii uui on u (1.34)

Displacement initial condition: 0 0(,) ()0 0u(,) (,) (0 00 x (1.35)

1. Fundamentals 13

Velocity initial condition: 0 0(,) ()0 0u(,) (,) (0 0 x (1.36)

in which iu , it , u0 and v0 denote the prescribed displacements, tractions,
initial displacements and velocities, respectively, and njn is the component of
the unit outward normal vector on the boundary (see Figure 1.4).

In summary, the governing equation, the constitutive equation, and the
strain-displacement equation together with the boundary conditions and r
initial conditions form a set of system equations defining the boundary value
problem (BVP) and the initial value problem (IVP) for two-dimensional
solids.

1.3 STRONG-FORMS AND WEAK-FORMS

Partial differential equations (PDEs) developed in Section 1.2 are strong-
forms of system equations. Obtaining the exact solution for a strong-form of t
system equation is ideal, but unfortunately it is very difficult for practical
engineering problems that are usually complex in nature. One example of a
strong-form numerical method is the widely used finite difference method
(FDM). FDM uses the finite differential representation (Taylor series) of a
function in a local domain and solves system equations of strong-form to
obtain an approximate solution. However, FDM requires a regular mesh of
grids, and can usually work only for problems with simple and regular
geometry and boundary conditions. In a strong-form formulation, it is
assumed that the approximate unknown function (u, v, w in this case) should
have sufficient degree of consistency, so that it is differentiable up to the
order of the PDEs.

The weak-form, in contrast to the strong-form, requires a weaker
consistency on the approximate function. This is achieved by introducing an
integral operation to the system equation based on a mathematical or
physical principle. The weak-form provides a variety of ways to formulate
methods for approximate solutions for complex systems. Formulation based
on weak-forms can usually produce a very stable set of discretized system
equations that produces much more accurate results.

This book will use weak-form formulations to form discretized system
equations of MFree weak-form methods† for mechanics problems of solids

† A detailed discussion of the categories for mesh-free methods will be discussed in
Chapter 2.

14 Chapter 1

and fluids (see Chapters 4 and 5). The strong-form formulation based on the
collocation approach will also be used to formulate the so-called MFree
strong-form methods (or MFree collocation method, see Chapter 6). In
addition, both of them will be combined to formulate the MFree weak-strong
(MWS) form method (see Chapter 7), where the local weak-form is utilized
on and near the natural boundary to obtain stabilized solution.

The consistency requirement on the approximate functions for field
variables in the weak-form formulation is quite different from that for the
strong form. For a 2kth order differential governing system equation, thekk
strong-form formulation assumes the field variable possesses a continuity of
2kth order. The weak-form formulkk ation, however, requires usually a
continuity of only kth order.kk

There are two major categories of principles used for constructing weak-
forms: variational and weighted residual methods. The Galerkin weak-form
and the Petrov-Galerkin weak-form may be the most widely used approaches
for establishing system equations; they are applicable for deriving MFree
formulations. Hamilton’s principle is often employed to produce
approximated system equations for dynamic problems, and is also applicable
to MFree methods. The minimum total potential energy principle has been a
convenient tool for deriving discrete system equations for FEM and many
other types of approximation methods. The weighted residual method is a
more general and powerful mathematical tool that can be used for creating
discretized system equations for many types of engineering problems. It has
been and will still be used for developing new MFree methods. All these
approaches will be adapted in this book for creating discretized system
equations for various types of MFree methods.

1.4 WEIGHTED RESIDUAL METHOD

The weighted residual method is a general and extremely powerful
method for obtaining approximate solutions for ordinary differential
equations (ODEs) or partial differential equations (PDEs). Many numerical
methods can be based on the general weighted residual method. Hence, this
section discusses some of those numerical methods using a simple example
problem. This section is written in reference to the text books by Finlayson
(1972), Brebbia (1978), Wang and Shao (1996), and Zienkiewicz and Taylor
(2000). The materials are chosen, organized and presented for easy
reference in describing MFree methods in later chapters.

1. Fundamentals 15

As discussed in Section 1.2, many problems in engineering and physics
are governed by ODEs or PDEs with a set of boundary conditions. Consider
the following (partial) differential equation.

() 0F u b()) in problem domain (1.37)

where F is a differential (partial) operator that is defined as a process whenF
applied to the scalar function u produces a function b. The boundary
condition is given as

()G u g() on the boundary (1.38)

where G is a differential (partial) operaG tor for the boundary condition.

Most engineering problems which are expressed in ODEs or PDEs can
only be solved in an approximate manner, by which the function u is first
approximated by

() ()
n

h
i i

i
u () () (h)((B (1.39)

where ()i is the ith term basis function or trial function, i is the
unknown coefficient for the ith term basis function, and n is the number of
basis functions used. These basis functions are usually chosen so as to
satisfy certain given conditions, called admissibility conditions, relating to
the essential boundary conditions and the requirement of continuity.

In practice, the number of basis functions used in Equation (1.39), n, is
small, hence the governing Equation (1.37) and the boundary conditions,
Equation (1.38), cannot usually be satisfied exactly. Substituting Equation
(1.39) into Equations (1.37) and (1.38), we generally should have

() 0hF u b())h (1.40)

() 0hG u g()) (1.41)

Hence, we can obtain the following residual functionsl sR and bR ,
respectively, for the system equations defined in the problem domain and the
boundary conditions defined on the boundaries.

()h
sR F u b()h (1.42)

()h
bR G u g() (1.43)

If Equation (1.39) is the exact solution of the governing Equation (1.37) and
the boundary conditions Equation (1.38), residuals sR and bR will be zero.
However, the exact solution is usually unavailable for many practical
problems, and sR and bR are, in general, not zero. Note that sR and bR

16 Chapter 1

change with the approximate functions chosen. We can use some techniques
to properly obtain an approximate function so as to make the residual as
“small” as possible; we force the residual to zero in an average sense by
setting weighted integrals of residuals to zero. For example, we impose

d 0i bi bddi sW R di sd (1.44)

where i=1, 2, …, n, W and V are a set of given weight functions for the
residuals sR and bR , respectively.

Note that the approximate solution, Equation (1.39), can be chosen to
satisfy the boundary conditions. In such cases, bR is zero, and Equation
(1.44) becomes

d 0i sW Ri (1.45)

This is the formulation of the weighted residual method that is often used in
establishing numerical procedures (e.g., the FEM etc.).

Note also that in Equation (1.44), it is possible to use the same weight
functions for both W and V .

Substituting Equations (1.42) and (1.43) into Equation (1.44), we can
obtain

d 0h)h(d)(i g()i ()()()()(iWi
hF u(h) dd()F ())() d) dddddd (1.46)

Using Equation (1.39), we have

d 0diWi (1.47)

Equation (1.47) can be re-written more explicitly for i=1, 2, …, n as
follows.

d 0

d 0

d 0

d

d

d

1W1

2W2

nWn

(1.48)

From Equation (1.48), we can obtain n equations for n unknowns i

(i=1,2, …, n). Solving these equations, we can obtain i, and then obtain the

1. Fundamentals 17

approximate solution, which makes residuals, sR and bR , vanish in an
average sense. When 1) the weight functions iWi , iVi and the basis functions

()iB are linearly independent; 2) the basis functions ()i are continuous
of a certain order; 3) the weight functions and the basis function have certain
degree of overlapping; 4) and when n , the approximate solution
Equation (1.39) will converge to the exact solution of the problem, if the
solution of the problem is unique and continuous.

This is the general form of the weighted residual method. It should be
noted that Equation (1.48) is a set of integral equations that is obtained from
the original ODEs or PDEs. Therefore, the weighted residual method
provides a way to transform an ODE or PDE to an integral form.

This integral equation helps to “smear” out the possible error induced by
the function approximations, so as to stabilize the solution and improve the
accuracy. The integral operation can also reduce the requirement for the
order of continuity on the approximate function via integrals by parts to
reduce the order of the differential operators. It is termed a weak-form,
meaning that it weakens the requirement for continuity on the approximate
function.

In the weighted residual method, the selection of weight functions will
affect its performance. Different numerical approximation methods can be
obtained by selecting different weight functions. In the following sub-
sections, several such methods are discussed.

1.4.1 Collocation method

Instead of trying to satisfy the ODE or PDE in an average form, we can
try to satisfy them at only a set of chosen points that are distributed in the
domain. This is the so-called collocation method that seems to be first usedd
by Slater (1934) for problems of electronic energy bounds in metals. Early
development and applications of the collocation method include the works
by Barta (1937), Frazer et al. (1937), Lanczos (1938), etc. The Lanczos’
method, known as the orthogonal collocation method, uses Chebyshev
polynomials and their roots as collocation points.

The standard formulation of the collocation method can be easily
obtained by using Dirac delta functions ()i as the weight functions in
Equation (1.44), i.e.,

()
()

i i(

i i(
W (i (
V (i ((

(
(

(1.49)

where i=1,2, …, n, and the Dirac delta function, ()i , has the following
property:

18 Chapter 1

() 0,

() 1, 0
i

i

i i) 0,
x ci

i
x ci

x) 0,

) 1,)

(

(

) 0, x) 0,) 0,

1,1, (1.50)

Thus we derive the collocation method from the weighted residual
formulation by substituting Equation (1.49) into Equation (1.44):

() d

d 0

i b))()() d()))

dd

()i s))() d))) d))) d) d)) d))

(ii)(())())
(1.51)

which becomes:

 () d () d () () 0i b s i b i) d () () d () (() d () () d ()d () (() d () ()() d () () d () () d ()) d () () d ()d () (()() d() di s))() d))) d))) d) d)) d) (1.52)

or

0 (1.53)

Equation (1.52) is applicable to n points chosen in the problem domain,
which means that the collocation method forces the residuals to zero at the
points xi (i=1,2, …, n) chosen in the domain.

1.4.2 Subdomain method

The subdomain method is similar to the collocation method. Thed
difference is that instead of requiring the residual function to be zero at
certain points, we make the integral of the residual function over n regions
(or subdomains), i (i=1,2, …, n), to be zero. This method was first
developed by Biezeno and Koch (1923), Biezeno (1923), Biezeno and
Grammel (1955). In the subdomain method, we use the weight function that
has the following form

within1,
outside0,

i
i

i

Wi (1.54)

where i=1,2, …, n. Hence, Equation (1.44) becomes

d

d 0
i i

i i

i bi b

i

i

d

d

d d dd di s i b i sW R V R Wd di s i bsd i sdd dd dd dd ddd dd dd

(1.55)

1. Fundamentals 19

where i is the boundary of the intersection between the subdomain i and
the global problem boundary .

Equation (1.55) means that the subdomain method enforces the residuals
to zero in a weighted average sense in n subdomains chosen in the problem
domain.

1.4.3 Least squares method

The least squares method (LSM) was originated by Gauss in 1795 and d
Legendre in 1806 (see, e.g., Hall, 1970; Finlayson 1972). Picone (1928)
applied the LSM to solve differential equations. In the LSM, we first define
the following functional

() di s s))J ())) d (1.56)

and then seek for the minimum value of the functional J, which requires thatJJ

s
() () d 0s

)

i i i

((J

ii

())JJ ds
()(

i iiii

d 2()() ds s()) 2 (1.57)

or

s
() d 0s

i

R (1.58)

This means, in the context of the weighted residual method, that the weight
function is chosen as the following form.

()h
s

i
i i

R FWi
RR FF

i
(1.59)

We can similarly obtain

()h
b

i
i i

R G(Vi
RR

i
(1.60)

Hence, Equation (1.44) becomes

d 0b
b

i

Rb

i

R RR R d
ii

d ddi s i b sW R V R Rd d ddi s i bs d s
RR ddddd ddd dd dddddds (1.61)

where i=1,2, …, n, which gives n equations for n coefficients i. Solving
these n equations for i leads to an approximate solution.

20 Chapter 1

1.4.4 Moment method

The weight functions can be chosen to be monomials of, 1, x, x2,…, xn.
In this way, successive higher “moments” of the residuals are forced to be
zero. This technique, called the moment method, was invented by Yamada
(1947) and Fujita (1951).

The Moment method can be simply formulated as follows. Let
1i

i i iW V xi iiVV , i=1,2, …, n (1.62)

Equation (1.44) becomes
1 d 01

i bi d111d dd i 11
i s i b i sW R Vd ddi i b idd 1d ddd dd dd11

(1.63)

which gives n equations for n coefficients i. Solving these n equations for
i yields an approximate solution. Note that the results set of equations is

often ill-conditioned. An alterative is to use Chebyshev polynomials in stead
of monomials.

1.4.5 Galerkin method

The Galerkin method (Galerkin, 1915) can be viewed as a particular d
weighted residual method, in which the trial functions used for the
approximation of the field function are also used as the weight functions.

i i

i i

W Bi i

V Bi i

(1.64)

Equation (1.44) now becomes

d

d 0

i bd

d

di sdB R di d

iBi

(1.65)

which gives n equations for n coefficients i. Solving these n equations for
i yields an approximate solution.

The Galerkin method has some advantages. First the system matrix
obtained by the Galerkin method is usually symmetric. In addition, in many
cases, the Galerkin method leads to the same formulations obtained by the
energy principles, and hence has certain physical foundations. Therefore,
the Galerkin method is regarded so far as the most effective version of the
weighted residual method, and is widely used in numerical methods, in
particular the finite element method (FEM). Note that to obtain the

1. Fundamentals 21

formulations of the FEM using the weighted residual method, Equation (1.45)
is often used, in which only the residual for the governing equation is
considered. The boundary conditions (BCs) are treated separately for the
essential BCs and the natural BCs. The former is handled after obtaining the
discretized system equations, and the latter is implemented after performing
integration by parts. This procedure will also be followed in forming the
MFree weak-form methods (Chapters 4 and 5).

1.4.6 Examples

In order to illustrate these approximation methods, consider a simple
example problem of a truss member. A truss member is a solid whose
dimension in one direction is much larger than those in the other two
directions, as shown in Figure 1.5. The force is applied only in the x
direction, and the axial displacement u is only a function of x. Therefore,
the axial displacement u in a truss member is governed by the following
equilibrium equations.

2

2

d () 0
d

uEA b x2

d (u
xdd

)b((1.66)

where E is the Young’s modulus,E A is the cross-section area, and b(x(() is a
distributed external axial force applied along the truss member.

We assume that the solution is constrained by the essential (displacement)
boundary conditions.

0 0x
x L

u (1.67)

where L is the length of the truss member.

x
y

b(x(()

Figure 1.5. A uniform truss member subjected to an axial loading distributed in the x
direction.

22 Chapter 1

For simplicity, 1.0E , 1.0A , 2()b x x() 12 , and L=1.0 are used in this
example. The following exact solution of the problem for the axial
displacement can be easily obtained by solving the differential Equation
(1.66) together with the boundary conditions Equation (1.67).

exact 4()u x x xe ac () 4xx (1.68)

In seeking an approximate solution for the axial displacement, we assume
that the solution has the following form.

1

1
() ()()1

n
ih () ()(i

i
u () ()() ()(h () ()() (((((1.69)

where i is the unknown coefficient to be determined, and 1() i
iB x x L x()x(

is ith trial function. Note that the basis function is deliberately chosen to
satisfy the displacement boundary conditions Equation (1.67).

As the assumed displacement satisfies the boundary conditions, there is
no residual on the boundary (i.e., Rb=0). The approximate solution has
continuity of all orders throughout the problem domain. However, Equation
(1.69) may not exactly satisfy the equilibrium Equation (1.66), and the
following residual exists in the problem domain:

2

2

d ()2

() ()
d

h ((R x b2

d ()) ((
xdd 2

() (1.70)

In the approximate solution Equation (1.69), n can be taken as 1, 2, …,.
Because the Bi are linearly independent and complete‡, Equation (1.69) will
converge to the exact solution when n . For simplicity, we choose only
one and two terms (n=1 and 2) so that the solution is an approximation.

When n=1, the approximate solution can be written as

1 1 1() () (1.0)1 11
hu 1() () () () (((1
h ()(()11 ()(()11 () ((()(()) (1.71)

and the corresponding residual is
2

1 1() 2 121R x121) 2 12 (1.72)

When n=2, the approximate solution can be written as
2

2 1 2
2

1 2

() () ()2
1 21

(1) (1)2
2

hu 2 () () () () (2
1 2

h

((2

1111

1

() () (() (2
1 2()(())11

(1) ((2 ((21 (1)x(1)1)
(1.73)

and the corresponding residual is

‡ Meaning that there is no skip of orders: 1() i
iB x x L x()i x(for all i=1, 2, …n.

1. Fundamentals 23

2
2 1 2() 2 (6 2) 121 2R x(6 2) 122) 11112 (6 2)(6 2)(6 2)2)22 11 (1.74)

1.4.6.1 Use of the collocation method

When one term is used in the approximate solution (n=1), the middle

point on the truss (or 0.5
2
Lx) is chosen as the point for the collocation

method. Using the collocation form given in Equation (1.52) and the
residual formulation given in Equation (1.72), we can obtain 1 and then the
following approximate solution using one term.

() 1.5 (1.0)hu () 1.5 () 1.5 (h 1 5 (((1.75)

For two terms in approximate solutions (n=2), we choose two points on

the truss (or
3
Lx and 2

3
Lx) as the collocation points. With Equations

(1.52) and (1.74), we can obtain 1, 2, and the following approximate
solution.

22() (1) 2 (1)22
3

hu () (1) 2 () (1) 2 (h (1) 2 ((1) 2 ((1) (1.76)

1.4.6.2 Use of the subdomain method

If the whole domain is used as the integration domain of the subdomain
method, using Equation (1.55) and the unit weight functions, the formulation
of the subdomain method using one term in the approximate solution (n=1)
can be written as

1 1
2

1 1
0 0

(2 12)d 4+2 02
1 1(2 12)d2()d)d1 4+2 1(2 12)d2 4+212)d)d2
11 1() ()d1W1() ()d) ()d11 (1.77)

which gives 1 2.0 . Hence, the approximate solution using one term is
obtained as

() 2.0 (1.0)hu () 2.0 () 2.0 (h 2 0 (((1.78)

For two terms in the approximate solution (n=2), we use two subdomains
and two unit weight functions, i.e.,

1 1

2 2

: 0 0.51.0,
: 0.5 1.01.0,

W1

W2

(1.79)

24 Chapter 1

Equation (1.55) and Equation (1.74) give two coefficients of 1 and 2. The
approximate solution using two terms is

2() 1.0 (1) 2.0 (1)2hu () 1.0 (1) 2.0 () 1.0 (1) 2.0 (h 1 0 (1) 2 0 ((1) 2 0 (1 0 (1) (1.80)

1.4.6.3 Use of the least squares method

In the least squares method, the weight function is chosen as

()
i

i

RWi
RR

(1.81)

For one term in the approximate solution (n=1), we use the following
weight function

1
1

1

() 2.0R1(W1
RR

(1.82)

With Equation (1.61) and Equation (1.82), we can obtain 1 2.0 . The
approximate solution becomes

() 2.0 (1.0)hu () 2.0 () 2.0 (h 2 0 (((1.83)

With two terms in the approximate solution (n=2), we use the following
two weight functions, i.e.

2
1

1

2
2

() 2.0

() 6 2

R2 (W1

R2 (W x2
2

() 6R2 (

RR

RRR 6
(1.84)

From Equation (1.61) and Equation (1.84), we can obtain 1 1.0 and

2 2.0 . The approximate solution using two terms is found as
2() 1.0 (1) 2.0 (1)2hu () 1.0 (1) 2.0 () 1.0 (1) 2.0 (h 1 0 (1) 2 0 ((1) 2 0 (1 0 (1) (1.85)

It should be noted that the coefficient matrix for solving the unknown
coefficient i is symmetric in the least squares method.

1.4.6.4 Use of the moment method

In the moment method, the weight function is chosen as
1i

iW xi (1.86)

For one term in the approximate solution (n=1), we use the following
weight function:

1. Fundamentals 25

0
1 1W x1 x (1.87)

Using Equation (1.63) and Equation (1.87), we obtain 1 2.0 , and, hence,
the approximate solution

() 2.0 (1.0)hu () 2.0 () 2.0 (h 2 0 (((1.88)

With two terms in the approximate solution (n=2), we use two weight
functions, i.e.

(1 1)
1

(2 1)
2

1.0W x1

W x x(2 1)
2

()x
xx() (1.89)

From Equation (1.63) and Equation (1.89), we can obtain 1 1.0 and
2 2.0 . Finally, the approximate solution using two terms is

2() 1.0 (1) 2.0 (1)2hu () 1.0 (1) 2.0 () 1.0 (1) 2.0 (h 1 0 (1) 2 0 ((1) 2 0 (1 0 (1) (1.90)

1.4.6.5 Use of the Galerkin method

For one term in the approximate solution (n=1), we use the following
weight function:

1 1 (1)W B x1 1 (x((1.91)

Using Equation (1.65) and Equation (1.91), we can obtain 1 1.8 and,
therefore, the approximate solution using one term is

() 1.8 (1.0)hu () 1.8 () 1.8 (h 1 8 (((1.92)

With taking two terms in the approximate solution (n=2), we use the
following two weight functions:

1 1
2

2 2

(1)
(1)

W B x1 1 (
W B x2

2 2 (
B xB1 (

x (
(1.93)

Using Equation (1.65) and Equation (1.93), we can obtain the following set
of equations in the matrix form of

1 1 3
3 6 11 553 63 6 11

2
1 5

1 21 2 22 22
6 15 56 15 5

(1.94)

It can be seen that the coefficient matrix obtained using the Galerkin method
is symmetric.

26 Chapter 1

Solving these equations to yield 1 0.8 and 2 2.0 , we find the
approximate solution as

2() 0.8 (1) 2.0 (1)2hu () 0.8 (1) 2.0 () 0.8 (1) 2.0 (h 0 8 (1) 2 0 ((1) 2 0 (0 8 (1) (1.95)

The approximate solutions obtained by the five approximation methods
are listed in Table 1.1, and plotted in Figure 1.6~Figure 1.9 for easy
comparison. Figure 1.6 and Figure 1.7 plot the weight functions and the
results of displacements obtained using the analytical solution and the one-
term approximate solution, respectively. Figure 1.8 and Figure 1.9 plot the
weight functions and the curves obtained using the analytical solution and
the two-term approximate solutions, respectively. These table and figures
show that the accuracy of the approximated results is different for different
approximation methods and for different terms used in the approximate
solutions. Usually, more terms used in the approximate solution lead to
higher accuracy. This can be easily observed from Figure 1.9. Note that the
Galerkin method leads to the best results for this example problem. It
provides the solution with best balanced over- and under-estimation of the
exact solution over the entire problem domain, as clearly shown in Figure
1.8 and Figure 1.9. The solutions of other methods are one-side biased.

1.4.6.6 Use of more terms in the approximate solution

To study the convergence of the weighted residual methods, we discuss
results of the three-term approximate solution in this section. We omit
details and present only the results. Readers are also encouraged to obtain
the solution using more than 3 terms.

When three terms (n=3) are used, the approximate solution, Equation
(1.69), can be written as

2 3
3 1 2 3() (1) (1) (1)2 3

1 2 31 2
hu3 ()h ((31 221 21 2221 2(1) (1) ((1) (2 3 ((3

3(1)(1) 2(1) (1)(1) ((1) (1)1) (1)1 2221 22 (1.96)

and the corresponding residual is
2 2

3 1 2 3() 2 (6 2) (12 6) 122(6)1 2 31 2R x(12 6) 1263) 1 21 21 21 22 (6 2) (12 6)(6 2) (12 6)2(12 6)66)32 (6 2)(6 2)(6 2)(6 2)(6 2)(6 2)1 21 22 (1.97)

The five versions of weighted residual methods all give the same coefficients,
1 , 3 and 3 :

1

2

3

1
1
1

(1.98)

So that, the approximate solution using three terms is

1. Fundamentals 27

2 3() 1.0 (1) 1.0 (1) 1.0 (1)2 3hu () 1.0 (1) 1.0 (1) 1.0 () 1.0 (1) 1.0 (1) 1.0 (3h 1 0 (1) 1 0 (1) 1 0 ((1) 1 0 (1) 1 0 (1 0 (1) 1 0 (1)

4x x4x
(1.99)

The approximate solution is the same as the exact solution that is given in
Equation (1.68). This means that all these five weighted residual methods
give the exact solution when three terms are used in the approximate solution
given in Equation (1.69). The same conclusion can be drawn when more
than 3 terms are used. For quantitative analysis, the following norm is
defined as the error indicator.

num exact

exact

() ()num
1

()

N
j j) () (

j j

u() () () ((
e

N u(
(1.100)

where num()ju(and exact()ju(are, respectively, displacements at point xjx
(j((=1,2, …, N) obtained using the numerical methods and the analyticalNN
method, N is the number of uniform points used to study the error, andN N=21NN
is used here.

Figure 1.10 plots the convergence curves of different weighted residual
methods using different terms in the approximate solution. When 3 or more
terms are used, all these five weighted residual methods converge to the
exact solution.

This example shows that if the exact solution is included in the basis (or
trial) functions, the different versions of weighted residual methods will
reproduce the exact solution. This reproducibility property makes the
method fundamentally credible, and is essential to any numerical method.

1.5 GLOBAL WEAK-FORM FOR SOLIDS

The Galerkin weak-form can be derived directly from the energy
principles for problems of solid mechanics. One of these is the minimum
total potential energy principle. This principle states that for a structural
system that is at an equilibrium state, the total potential energy in the system
is stationary for a given set of admissible displacements. This principle can
be used in a straightforward manner in the following three simple steps:

Ta
bl

e
1.

1.
Co

m
pa

ris
on

s b
et

w
ee

n
th

e
an

al
yt

ic
al

 a
nd

 a
pp

ro
xi

m
at

e
re

su
lts

*

x=
0.

25
x=

0.
5

x=
0.

75
So

lu
tio

ns
u

Er
ro

r(
%

)
u

Er
ro

r(
%

)
u

Er
ro

r(
%

)
Ex

ac
t:

ex
ac

t
4

(
)

u
x

x
x

(
)

4 xx
0.

24
61

/
0.

43
75

/
0.

43
36

/
a)

(
)

1.
5

(
1.

0)
h u
(

)
1.

5
(

)
1.

5
(

1
5

((
0.

28
12

14

.2

0.
37

5
-1

4.
2

0.
28

12

-3
5.

13
b)

(
)

2.
0

(
1.

0)
h u
(

)
2.

0
(

)
2.

0
(

2
0

((
0.

37
5

52
.3

8
0.

5
14

.2
8

0.
37

5
-1

3.
51

c)
(

)
2.

0
(

1.
0)

h u
(

)
2.

0
(

)
2.

0
(

2
0

((
0.

37
5

52
.3

8
0.

5
14

.2
8

0.
37

5
-1

3.
51

d)
(

)
2.

0
(

1.
0)

h u
(

)
2.

0
(

)
2.

0
(

2
0

((
0.

37
5

52
.3

8
0.

5
14

.2
8

0.
37

5
-1

3.
51

One term

e)
(

)
1.

8
(

1.
0)

h u
(

)
1.

8
(

)
1.

8
(

1
8

((
0.

33
75

37

.1
4

0.
45

2.

85

0.
33

75

-2
2.

16

a)
2

2
(

)
(

1)
2

(
1)

2
2 3

h u
(

)
(

1)
2

(
)

(
1)

2
(

(
1)

2
(

(
1)

2
(

(
1)

0.
21

88

-1
1.

11

0.
41

67

-4
.7

6
0.

40
63

-6

.3
1

b)
2

(
)

1 .
0

(
1)

2 .
0

(
1)

2
h u
(

)
1 .

0
(

1)
2 .

0
(

)
1.

0
(

1)
2.

0
(

1
0

(
1)

2
0

(
(

1)
2

0
(

1
0

(
1)

0.
28

13

14
.2

8
0.

5
14

.2
8

0.
46

87

8.
11

c)
2

(
)

1 .
0

(
1)

2 .
0

(
1)

2
h u
(

)
1 .

0
(

1)
2 .

0
(

)
1.

0
(

1)
2.

0
(

1
0

(
1)

2
0

(
(

1)
2

0
(

1
0

(
1)

0.
28

13

14
.2

8
0.

5
14

.2
8

0.
46

87

8.
11

d)
2

(
)

1 .
0

(
1)

2 .
0

(
1)

2
h u
(

)
1 .

0
(

1)
2 .

0
(

)
1.

0
(

1)
2.

0
(

1
0

(
1)

2
0

(
(

1)
2

0
(

1
0

(
1)

0.
28

13

14
.2

8
0.

5
14

.2
8

0.
46

87

8.
11

Two terms

e)
2

(
)

0.
8

(
1)

2.
0

(
1)

2
h u
(

)
0 .

8
(

1)
2 .

0
(

)
0.

8
(

1)
2.

0
(

0
8

(
1)

2
0

(
(

1)
2

0
(

0
8

(
1)

0.
24

38

-0
.9

5
0.

45
2.

86
0.

43
12

-0

.5
4

*
nu

m
ex

ac
t

ex
ac

t
(

)
nu

m
ex

ac
t

er
ro

r
u

u
,w

he
re

nu
m

u
an

d
ex

ac
t

u
ar

e
th

e
re

su
lts

 o
bt

ai
ne

d
by

 n
um

er
ic

al
 m

et
ho

ds
 a

nd
 th

e
ex

ac
t r

es
ul

t,

re
sp

ec
tiv

el
y.

 (
a)

 th
e

co
llo

ca
tio

n
m

et
ho

d;
 (b

) t
he

 su
bd

om
ai

n
m

et
ho

d;
 (c

) t
he

 le
as

t s
qu

ar
es

 m
et

ho
d;

 (d
) t

he
 m

om
en

t m
et

ho
d;

(e
) t

he
 G

al
er

ki
n

m
et

ho
d

28 Chapter 1

Figure 1.6. Weight functions used in different weight residual methods when the
approximate solution is 1 1() ()1

hu 1() () (1
h (((with 1 being a coefficient.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

x

u

Exact

Collocation method

Subdomain method,
Least squares method,
Moment method

Galerkin method

Figure 1.7.77 Displacement results for the truss member obtained using the analytical
method and five different weighted residual methods; the approximate solution is

1 1() ()1
hu 1() () (1
h (((.

1W1 : the subdomain method, and the moment method

1W1 : the collocation method

1W1 : the least squares method

1W1 : the Galerkin method

x

x

x

1. Fundamentals 29

30 Chapter 1

Figure 1.8. Weight functions used in different weight residual methods when the
approximate solution is 2

2 1 2() () ()2
1 21

hu 2 () () () () (2
1 2

h
1111 () () (() (2
1 2()(())11 with 1 and 2 being

coefficients.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

u
Exact

Subdomain method,
Least squares method,
Moment method

Collocation method

Galerkin method

Figure 1.9. Displacement results for the truss member obtained using the analytical
method and five different versions of weighted residual methods; the approximate

solution is 2
2 1 2() () ()2

1 21
hu 2 () () () () (2

1 2
h

1111 () () (() (2
1 2()(())11 .

x

1W1 : the least squares method

2W2 : the Galerkin method

x x

x
1W1 : the moment method

1W1 : the Galerkin method

2W2 : the moment method

2W2 : the least squares method

xx

1W1 : the subdomain method 2W2 : the subdomain method

1W1 : the collocation method

x x

2W2 : the collocation method

x

x

1. Fundamentals 31

Figure 1.10. Convergence of the results of the axial displacements obtained using different
weighted residual methods with different terms in the approximate solution.

1) Approximate the field function (displacement) in terms of the nodal
variables using the trial or shape functions; let d be the vector
consisting of all the nodal displacements in the problem domain.

2) Express the total potential energy, , in terms of the nodal variables d.
For solids and structures of elastic materials, the total potential energy
can be expressed as

= s WfWW (1.101)

where s is the strain energy, and the WfWW is the work done by thef
external forces.

3) Use the stationary conditions to create a set of discretized system
equations.

0

d1d1d

d2d2d
(1.102)

5

10

15

20

25

30

35

1 2 3 4

Number of terms

E
rr

or
(%

)

Methods of sub-domain,
least square, and moment

Galerkin method

Collocation method

32 Chapter 1

The number of equations created is equal to the number of the total
numbers of the nodal variables. The solution of this problem can be
obtained by solving Equation (1.102).

For solids and structures of elastic materials, the strain energy of the
system can be expressed as

T1 d
2s (1.103)

The work done by the external forces is
T dT

t

fWf dTTT TdT d (1.104)

where is the problem domain, t stands for the boundary of the solids on
which traction forces are prescribed.

Hence, the total potential energy can be expressed as

T1 dT

2
t

dT1 T TTTTTd dT d TTTT TddTT
(1.105)

The variation of the potential energy can be written as

T1(d d d)T1
2

t

(dT(1 T TTT TTTd dd dddT TTTT TddTT
(1.106)

Moving the variation operation into the integral operations, we obtain

T1 dT

2
t

1 d1 T TTT TTTTT uTd ddT d dddTTTTT
(1.107)

because the changing of the order does not affect the results, as they operatest
on different arguments (variation is on the coefficients of the functions and
the integration is on the coordinates). The integrand in the first integral term
can be written as follows using the chain rule of variation.

T T TT T() +T T (1.108)

We note that
T T T TT TT T()T TT (1.109)

Using the constitutive equation of solids and the symmetry of the matrix of
material constants D, we have

T T T T T T(T T TT T TT)(T TT T T((1.110)

1. Fundamentals 33

Therefore, Equation (1.108) becomes
T TT 2()T (1.111)

and Equation (1.107) now becomes
T dT

t

dTT TTTTTT TTTT TTTT Td ddT d dddTTTTT
(1.112)

The minimum total potential energy principle requires 0 . Hence, the
following Galerkin weak-form can be obtained:

T d 0T

t

dTT TTT TTTTTTTT TT d dddddTTTT
(1.113)

Equation (1.113) can also be viewed as the principle of virtual work,
which states that if a solid body is in its equilibrium states, the total virtual
work performed by all the stresses in the body and all the external forces
applied on the body vanishes, when the body is subjected to a virtual
displacement. The virtual work can be viewed as an alternative statement of
equilibrium equation. In our situation given in Equation (1.113), we can
suppose that the solid is subjected to a virtual displacement of u. The first
term in Equation (1.113) is the virtual work done by the internal stress in the
problem domain, ; the 2nd term is the virtual work done by the external
body force; the 3rd term is the virtual work done by the external tractions on
the boundaries, t. Therefore, using the principle of virtual work, we can
actually write out Equation (1.113) directly without going through the above
procedure.

For static linear elastic problems, using the stress-strain relation, and then
the strain-displacement relation, we can express Equation (1.113) as follows
in terms of the displacement vector u.

T d 0T

t

dTT TTd TT Td dddddT
(1.114)

This is the Galerkin weak-form written in terms of displacements, and it is
convenient because the displacement is to be approximated in FEM or
MFree methods. Equation (1.114) can also be derived from Equation (1.45)
by performing integration by parts.

It should be noted that in the weak-form of Equation (1.114) the traction
boundary conditions (see Equations (1.17) and (1.33)) have been imposed
naturally in the same system equation. Hence, the traction (derivative)
boundary conditions in solids, Equations (1.17) and (1.33), are often called
natural boundary conditions in numerical methods based on the weak-forms.
However, in the weak-form of Equation (1.114), the displacement boundary

34 Chapter 1

conditions, Equations (1.18) and (1.34), are not considered. To obtain
solutions for weak-forms, it is essential to satisfy the displacement boundary
conditions through other proper means. Therefore, the displacement
boundary conditions are often called essential boundary conditions in
numerical methods based on the weak-forms. One simple technique to
satisfy the essential boundary conditions is to have the approximate solution
satisfy these boundary conditions, as presented in Sub-section 1.4.6.
Techniques used to satisfy the essential boundary conditions will be
discussed in the following chapters for MFree methods.

The above equation of Galerkin weak-form is very handy in application
to problems of solid mechanics, because one does not need to perform
integration by parts any more. The discretized system equation can be
derived very easily using approximated displacements that satisfy the
admissible conditions. This Galerkin procedure will be applied repeatedly in
the following chapters for many MFree methods.

Note that in using the above-mentioned Galerkin procedure one does not
have to know the strong-form of the governing equation.

1.6 LOCAL WEAK-FORM FOR SOLIDS

In deriving local weak-forms, the Petrov-Galerkin procedure has to be
used. The Petrov-Galerkin procedure is often used in the FEM formulation
for convection dominated systems to obtain a stabilized solution
(Zienkiewicz and Taylor, 2000).

The local Petrov-Galerkin weak-forms have been used to formulate the
meshless Petrov-Galerkin (MLPG) method (Atluri et al., 1999b). The local
weak-form can be obtained from the subdomain weighted residual method
discussed in Section 1.4. In this section, the local weak-forms for solids are
presented.

In a problem domain , the governing Equation (1.31) of two-
dimensional solids at a point xIx is approximately satisfied by a subdomainI
weighted residual method. A local weak-form of the partial differential
Equation (1.31), over a subdomain (a local quadrature domain) q bounded
by q can be obtained using the weighted residual method locally

)d 0
q

I ij j i,(,W b(I ()d (1.115)

1. Fundamentals 35

where IWI is the weight function or the test function centered at the point xIx .
The first term on the left hand side of Equation (1.115) can be integrated

by parts to obtain

d
q q q

I j ij,I jWI

q qq

dd ddI ij j, I j ijW dI ij j W nW nd ddij j I j ijdddddddd (1.116)

where jn is the jth component of the unit outward normal vector (see Figure
1.4) on the boundary. Substituting Equation (1.116) into Equation (1.115),
we can obtain the following local weak-form:

d 0
q qq

dI j ij I i,I j ij I iIWI jI ij jW n dI ij jn dij j (1.117)

Equation (1.117) is the local Petrov-Galerkin weak-form for two-
dimensional solids.

Equation (1.117) suggests that instead of solving the strong-form of the
system equation given in Equation (1.31), we employ a relaxed weak-form
with integration over a small local quadrature domain. This integration
operation can “smear” out the numerical error, and therefore make the
discrete equation system much more accurate compared to the numerical
procedures that operate directly on the strong-forms of system equations. In
other words, using Equation (1.117) for any node at xIx , we transform a global
boundary value problem into a localized boundary value problem over a
local quadrature domain. In the present formulation, the equilibrium
equation and boundary conditions are satisfied in all local quadrature
domains q and on their boundary q. Although the quadrature domains
affect the solution, the equilibrium equation and the boundary conditionsm
will be approximately satisfied in the global domain and on its boundary
as long as the union of all the local quadrature domains covers the global
domain, , and the global boundary, , well.

Because the local weak-form is obtained by the weighted residual method,
the test (weight) function plays an important role. Theoretically, any test
function is acceptable as long as the condition of continuity is satisfied, and
all the weight functions defined for all the nodes in the problem domain are
linearly independent. For example, in the MLPG method (Atluri et al.,
1999b), the locally supported bell-shaped weight functions can be used so
that the integrations are performed locally and no global integration is
required. Detailed discussions of the weight functions will be presented in
Chapter 3 and Chapter 5.

The main disadvantage of the local Petrov-Galerkin method is that the
system matrix is usually not symmetric. The detailed properties of the local
weak-form will be discussed in Chapter 5 and Chapter 7.

36 Chapter 1

1.7 DISCUSSIONS AND REMARKS

The basic equations of the solid mechanics were presented. Different
versions of the weighted residual methods were introduced and demonstrated
using a simple example.

The weighted residual methods will possess the convergence property,
meaning that the approximate solution of the weighted residual methods will
approach the exact solution when the number of the basis functions used
increases, as long as

1) The weight functions iWi , iVi and the basis functions ()i are
linearly independent.

2) The basis functions ()i have a certain order of continuity.

3) The weight functions and the basis functions have a certain degree of
overlapping.

The simple example solved using these five different methods
(collocation, subdomain, moment, least squares and Galerkin) confirmed the
convergence property. This example showed that the weighted residual
methods possess the reproducibility property, meaning that they are capable
of producing the exact solution as long as the independent basis functions
contain the components of the exact solution. The convergence and
reproducibility properties make the weighted residual methods as reliable
ways of obtaining approximate solutions. However, the stability and
accuracy of the solution depend on the quality of basis functions; the choices
of weight functions; and “matchablility” of the weight and trial (basis)
functions. The Galerkin method that uses the same functions for the weight
and trial functions often performs the best.

For problems with complicated domains, choosing an independent set of
trial (basis) functions for the entire problem domain is often very difficult.
Therefore, we usually use local shape functions in a l piecewise manner as the
trial functions. The details of creating local MFree shape functions will be
given in Chapter 3. The choice of different weight functions leads to
different formulation procedures for meshfree methods, such as the
collocation scheme, Galerkin weak-form formulation, Petrov-Galerkin weak
form formulation, etc. Various MFree methods will be formulated in
Chapters 4~7 for problems in mechanics of solids and fluids.

Chapter 2

OVERVIEW OF MESHFREE METHODS

2 Overview of meshfree methods

2.1 WHY MESHFREE METHODS

One of the most important advances in the field of numerical methods
was the development of the finite element method (FEM) in the 1950s. In
the FEM, a continuum with a complicated shape is divided into elements,
finite elements. The individual elements are connected together by a
topological map called a mesh. The FEM is a robust and thoroughly
developed method, and hence it is widely used in engineering fields due to
its versatility for complex geometry and flexibility for many types of linear
and non-linear problems. Most practical engineering problems related to
solids and structures are currently solved using well developed FEM
packages that are commercially available.

However, the FEM has the inherent shortcomings of numerical methods
that rely on meshes or elements that are connected together by nodes in at
properly predefined manner. The following limitations of FEM ared
becoming increasingly evident:

1) High cost in creating an FEM mesh

The creation of a mesh for a problem domain is a prerequisite in using
any FEM code and package. Usually the analyst has to spend most of the
time in such a mesh creation, and it becomes the major component of the
cost of a computer aided design (CAD) project. Since operator costs now
outweigh the cost of CPU (central processing unit) time of the computer, it is

37

Chapter 2

desirable that the meshing process can be fully performed by the computer
without human intervention. This is not always possible without
compromising the quality of the mesh for the FEM analysis, especially for
problems of complex three-dimensional domains.

2) Low accuracy of stress

Many FEM packages do not accurately predict stress. The stresses
obtained in FEM are often discontinuous at the interfaces of the elements
due to the piecewise (or element-wise) continuous nature of the displacement
field assumed in the FEM formulation. Special techniques (such as the use
of the so-called super-convergence points or patches) are required in the
post-processing stage to recover accurate stresses.

3) Difficulty in adaptive analysis

One of the current new demands on FEM analysis is to ensure the
accuracy of the solution; we require a solution with a desired accuracy. To
achieve this purpose, a so-called adaptive analysis must be performed.

In an adaptive analysis using FEM, re-meshing (g re-zoning) is required to
ensure proper connectivity. For this re-meshing purpose, complex, robust
and adaptive mesh generation processors have to be developed. These
processors are limited to two-dimensional problems. Technical difficulties
have precluded the automatic creation of hexahedron meshes for arbitrary
three-dimensional domains. In addition, for three-dimensional problems, the
computational cost of re-meshing at each step is very expensive, even if an
adaptive scheme were available. Moreover, an adaptive analysis requires
“mappings” of field variables between meshes in successive stages of the
analysis. This mapping process can often lead to additional computation as
well as a degradation of accuracy in the solution.

4) Limitation in the analyses of some problems

Under large deformations, considerable loss in accuracy in FEM
results can arise from the element distortions.
It is difficult to simulate crack growth with arbitrary and complex
paths which do not coincide with the original element interfaces.
It is very difficult to simulate the breakage of material with large
number of fragments; the FEM is based on continuum mechanics, in
which the elements cannot be broken; an element must either stay as
a whole, or disappear completely. This usually leads to a
misrepresentation of the breakage path. Serious error can occur
because the problem is non-linear and the results path-dependent.

The root of these problems is the use of elements or mesh in the
formulation stage. The idea of getting rid of the elements and meshes in the

38

2. Overview of meshfree methods 39

process of numerical treatments has naturally evolved, and the concepts of
meshfree or meshless methods have been shaped up. For convenience, these
methods are shortened as MFree methods in this book.

2.2 DEFINITION OF MESHFREE METHODS

The definition of an MFree method (GR Liu, 2002) is:

An MFree method is a method used to establish system algebraic
equations for the whole problem domain without the use of a predefined
mesh for the domain discretization.

MFree methods use a set of nodes scattered within the problem domain
as well as sets of nodes scattered on the boundaries of the domain to
represent (not discretize) the problem domain and its boundaries. These sets t
of scattered nodes are called field nodes, and they do not form a mesh,
meaning it does not require any a priori information on the relationship
between the nodes for the interpolation or approximationr † of the unknown
functions of field variables.

What is the requirement for an MFree method?

The minimum requirement for an MFree method is
A predefined mesh is not required in the field variable interpolation
or approximation.

The ideal requirement for an MFree method is l
No mesh is required at throughout the process of formulating and
solving the problem of a given arbitrary geometry governed by partial
differential system equations subject to boundary conditions.

Many MFree methods have found good applications, and shown very
good potential to become powerful numerical tools. However, the MFree
methods are still in their developing stage, and there are technical problems
that need to be resolved before the methods can become efficient and useful
tools for complex engineering problems.

† We distinguish interpolation and approximation. Interpolation refers to an approximation
procedure that reproduces the exact values of the approximated function at the nodes. All
the other approximation procedures that do not return nodal function values are called
approximation. Both interpolation and approximation are used in MFree methods; theaa
standard FEM uses interpolation based on elements.rr

40 Chapter 2

2.3 SOLUTION PROCEDURE OF MFREE METHODS

In this section, the solution procedure of MFree methods will be outlined.
It will be introduced based on the comparisons with the familiar finite
element method (FEM).

Figure 2.1 shows two procedures of FEM and the MFree method. This
tells us:

Figure 2.1. Flowcharts for FEM and MFree method.

1) The methods depart at the stage of mesh creation.

2) The constructions of the shape functions in these two methods are
different. In the finite element method, the shape functions are
constructed using predefined elements, and the shape functions are

Mesh generation

Shape functions based
on a pre-defined

element

Discretized system equations

Solution for field variables

Node Generation

Geometry creation

Shape functions based
on nodes in a local

support domain

FEM

Post-processing

MFree

2. Overview of meshfree methods 41

the same for the entire element. In MFree methods, however, the
shape functions constructed are usually only for a particular point of
interest based on selected local nodes; the shape functions can
change when the point of interest changes.

3) The methods follow the similar procedure once the global discretized
system equation is established. Therefore, many techniques
developed for the FEM can be used in MFree methods.

Comparisons between the finite element method and the MFree method
are listed in Table 2.1.

Table 2.1. Differences between FEM and MFree method

Items FEM MFree method
Mesh Yes No
Shape function
creation

Based on pre-defined
elements

Based on local support
domains

Discretized system
stiffness matrix

Banded, symmetric Banded, may or may not
be symmetric depending
on the method used.

Imposition of
essential boundary
condition

Easy and standard Special treatments may be
required, depending on the
method used

Computation speed Fast Slower compared to the
FEM depending on the
method used.

Accuracy Accurate compared to
FDM

More accurate than FEM

adaptive analysis Difficult for 3D cases Easier
Stage of
development

Well developed Infant, with many
challenging problems

Commercial
software packages
availability

Many Few

We now list the steps in an MFree method with discussions on major
differences with the finite element method.

Step 1: Domain representation

In the MFree method, the problem domain and its boundary are first
modelled and represented by using sets of nodes scattered in the problem
domain and on its boundary. Since these nodes carry the values of the field
variables in an MFree formulation, they are often called field nodes. The
density of the nodes depends on the accuracy required and resources

42 Chapter 2

available. The nodal distribution is usually not uniform. Since adaptive
algorithms can be used in MFree methods, the density is eventually
controlled automatically and adaptively in the code; the initial nodal
distribution becomes not important. An MFree method should be able to
work for an arbitrary nodal distribution.

In the finite element method, this step is different: meshing needs to be
performed to discretize the geometry and create the elements. The domain
has to be meshed properly into elements of specific shapes such as triangles
and quadrilaterals. No overlapping or gaps are allowed. Information, suchaa
as the element connectivity, has also to be created during the meshing for
later creation of system equations. Mesh generation is a very important part
of the pre-process of the finite element method. It is ideal to have an
entirely automated mesh generator; unfortunately, it is not practically
available for general situations.

Figure 2.2 shows the differences of the domain representation in the
MFree method and the FEM.

(a) FEM

(b) MFree

Figure 2.2. Domain representation in FEM and MFree method.

Field nodes

FEM elements

2. Overview of meshfree methods 43

Step 2: Function interpolation/approximation

Since there is no mesh of elements in an MFree method, the field variable
(e.g., a component of the displacement) u at any point at x=(x((, y, z) within
the problem domain is interpolated using function values at field nodes
within a small local support domain of the point at x, i.e.,

1
() ()()

n

i i()() s
i

u(U() ()) (()()()())) () (2.1)

where n is the number of the nodes that are included in the local support
domain of the point at x, ui is the nodal field variable at the ith node, Us is
the vector that collects all the field variables at these n nodes, and ()i is
the shape function of the ith node determined using these nodes included in
the support domain of x. As the shape functions will not be used regarded as
zero outside the local support domain in an MFree method, we often say that
the shape functions is locally support.

A local support domain of a point x determines the number of nodes to be
used to support or approximate the function value at x. The support domain
can have different shapes and its dimension and shape can be different for
different points of interest x, as shown in Figure 2.3; they are usually circular
or rectangular.

In the finite element method, the shape functions are constructed using
pre-defined elements. In fact, if the so-called natural coordinate systems are
used, the shape functions in the natural coordinates are the same for all the
elements of the same type. These shape functions are usually pre-
determined for different types of elements before the finite element analysis
starts.

Figure 2.3. Local support domains used in the MFree method to construct shape
functions.

Local support
domain

: point of interest : field node

44 Chapter 2

Step 3: Formation of system equations

The discrete equations of an MFree method can be formulated using the
shape functions and strong or weak form system equation given in Chapter 1. m
These equations are often written in nodal matrix form and are assembled
into the global system matrices for the entire problem domain. The
discretized system equations of MFree methods are similar to those of FEM
in terms of bandness and sparseness, but they can be asymmetric dependingt
on the method used.

Step 4: Solve the global MFree equations

This is similar to that for FEM, except solvers for asymmetric matrix
systems may be needed.

2.4 CATEGORIES OF MESHFREE METHODS†

The development of some of the MFree methods can be traced back more
than seventy years to the collocation methods (Slater, 1934; Barta, 1937;
Frazer et al., 1937; Lanczos, 1938, etc). Some of the early MFree methods
were the vortex method (Chorin, 1973; Bernard, 1995), finite difference
method (FDM) with arbitrary grids, or the general FDM (GFDM) (Girault,r
1974; Pavlin and Perrone, 1975; Snell et al, 1981; Liszka and Orkisz, 1977;t
1980; Krok and Orkisz, 1989). Another well-known MFree method is the
Smoothed Particle Hydrodynamics (SPH) that was initially used for
modelling astrophysical phenomena such as exploding stars and dust clouds
that had no boundaries. Most of the earlier research work on SPH is
reflected in the publications of Lucy (1977), and Monaghan and his co-
workers (Gingold and Monaghan, 1977; Monaghan and Lattanzio, 1985;
Monaghan, 1992). Detailed discussions on some of the recent developments
for SPH can be found in the book by GR Liu and Liu (2003). Overall, there
has been less research devoted to MFree strong-form methods. This may be
partly because the MFree strong-form method was less robust than the
method based on the weak-form, and partly because research was
concentrated on the finite element method (FEM) which used weak-forms; it
was then a natural step to MFree weak-form methods.

† MFree methods and techniques presented in this section will be discussed in detail
in the following chapters.

2. Overview of meshfree methods 45

From the early 1990s, there has been an increase in research devoted to
MFree weak-form methods, and a group of MFree methods has been greatly
proposed. Examples of these methods are the diffuse element method (DEM)
(Nayroles et al., 1992), the element free Galerkin (EFG) method (Belytschko
et al, 1994a), the reproducing kernel particle method (RKPM) (Liu et al,
1995), the point interpolation methods (GR Liu and Gu, 2001c; Wang and
GR Liu, 2000), the meshless local Petrov-Galerkin method (MLPG) (Atluri
1998a), the boundary node method (BNM) (Mukherjee and Mukherjee,
1997), the boundary point interpolation method (BPIM) (Gu and GR Liu,
2001e,2002a,2003b), the meshfree weak-strong (MWS) form method (GR
Liu and Gu, 2002d; 2004), etc. These methods do not require a mesh at least
for the field variable interpolations. The approximation functions are
constructed by using a set of arbitrary nodes, and no element or connectivity
of the nodes is needed for the function approximation. Adaptive analyses
and simulations using MFree methods become very efficient and much
easier to implement, even for problems which pose difficulties for the
traditional FEM.

Many MFree methods have been proposed and achieved remarkable
progress over the past years: we now classify them in different ways for easy
understanding and later referencing.

2.4.1 Classification according to the formulation procedures

According to the formulation procedures, MFree methods fall into three
categories:

2.4.1.1 Meshfree methods based on weak-forms

These are called MFree weak-form methods in this book. In MFree weak-
form methods, the governing partial differential equations (PDEs) with
derivative boundary conditions are first transformed to a set of so-called weak-
form integral equations using different techniques discussed in Chapter 1. The
weak-forms are then used to derive a set of algebraic system equations through
a numerical integration process using sets of background cells that may be
constructed globally or locally in the problem domain.

MFree weak-form methods were relatively under developed before 1990,
but there has been a substantial increase in research effort since then.
Several important papers have been published. The first was by Nayroles et
al. (1992); they applied the moving least squares (MLS) approximation
proposed by Lancaster and Salkauskas (1981) to the Galerkin weak-form to
formulate the diffuse element method (DEM). Belytschko et al. (1994a)
published another important paper on the element free Galerkin (EFG)

46 Chapter 2

method based on the DEM. He and co-workers have also made significant
contribution in further developing, improving and popularizing EFG for
many mechanics problems. The MFree weak-form methods have been
developed at a very fast pace since 1994; there are now many different
versions of MFree weak-form methods.

MFree weak-form methods based on the global weak-forms are called
MFree global weak-form methods, and those based on local weak-forms are
called MFree local weak-form methods.

MFree global weak-form methods are based on the global Galerkin
weak-form for equations of problems and the MFree shape functions. Two
typical MFree global weak-form methods: the element-free Galerkin (EFG)
method (Belytschko et al., 1994a) and the radial point interpolation method
(RPIM) (GR Liu and Gu, 2001c; Wang and GR Liu, 2000; 2002a), will be
discussed in Chapter 4. Another typical MFree global weak-form method is
the reproducing kernel particle method (RKPM) proposed by Liu and co-
workers in 1995 (Liu et al., 1995). The main idea of RKPM is to improve
the SPH approximation to satisfy consistency requirements using a
correction function. RKPM has been used in nonlinear and large
deformation problems (Chen et al., 1996; Chen et al., 1998; Liu and Jun,
1998), inelastic structures (Chen et al., 1997), structural acoustics (Uras et al.,
1997), fluid dynamics (Liu and Jun et al., 1997), and so on.

MFree local weak-form methods were developed by Atluri and
coworkers based on the local Petrov-Galerkin weak-form, and the MFree
shape functions. The detailed discussions of the meshless local Petrov-
Galerkin (MLPG) method (Atluri and Zhu, 1998a, 1998b, 2000a, 2000b;
Atluri and Shen, 2002) and the local radial point interpolation method
(LRPIM) (GR Liu and Gu, 2001c; GR Liu and Yan et al., 2002) will be
presented in Chapter 5.

Some other MFree weak-form methods have also been developed, such
as the hp-cloud method (Armando and Oden, 1995), the partition of unity
finite element method (PUFEM) (Melenk and Babuska, 1996; Babuska and
Melenk, 1997), the finite spheres method (De and Bathe, 2000), the free
mesh method (Yagawa and Yamada, 1996), and so on.

2.4.1.2 Meshfree methods based on collocation techniques

These MFree methods are called MFree collocation methods or MFree
strong-form methods in this book. In these methods, the strong-forms of
governing equations and equations for boundary conditions are directly
discretized at the field nodes using simple collocation techniques to obtain a
set of discretized system equations. MFree strong-form methods have a long

2. Overview of meshfree methods 47

history. The finite difference method with arbitrary grids or the general finite
difference method (GFDM) (Girault, 1974; Pavlin and Perrone, 1975; Snell et
al, 1981; Liszka and Orkisz, 1977; 1980; Krok and Orkisz, 1989), MFree
collocation methods (see, e.g. Kansa, 1990; Wu, 1992; Zhang and Song et al.,
2000; Liu X et al., 2002; 2003a-e; etc.), and the finite point method (FPM)
(Onate et al., 1996; 1998; 2001; etc.) are all typical MFree strong-form methods.

MFree strong-form methods have some attractive advantages: a simple
algorithm, computational efficiency, and truly meshfree. However, MFree
strong-form methods are often unstable, not robust, and inaccurate,
especially for problems with derivative boundary conditions. Several
strategies may be used to impose the derivative boundary conditions in the
strong-form methods, such as the use of fictitious nodes, the use of the
Hermite-type MFree shape functions, the use of a regular grid on the
derivative boundary, etc. Detailed discussions appear in Chapter 6.

2.4.1.3 Meshfree methods based on the combination of weak-form and
collocation techniques

These MFree methods are called MFree weak-strong (MWS) form
methods in this book. The MWS method was developed by GR Liu and Gu
(2002d, 2003b). The key idea of the MWS method is that in establishing thet
discretized system equations, both the strong-form and the local weak-form
are used for the same problem, but for different groups of nodes that carries
different types of equations/conditions. The local weak-form is used for all
the nodes that are on or near boundaries with derivative boundary conditions.
The strong-form is used for all the other nodes (called collocatable nodes to
be defined in Chapter 7). The MWS method uses least background cells for
the integration, and it is currently the almost ideal MFree method that cant
provide stable and accurate solutions for mechanics problems.

There are also MFree methods based on the integral representation
method for function approximations, such as the Smooth Particle
Hydrodynamics (SPH) methods (Lucy, 1977; Gingold and Monaghan, 1977;
GR Liu and Liu, 2003, etc.). In the standard SPH method, the function
approximation is performed in a weak (integral) form, but strong-form k
equations are directly discretized at the particles.

2.4.2 Classification according to the function approximation
schemes

The method of function interpolation/approximation based on arbitrary
nodes is one of the most important issues in an MFree method. Without

48 Chapter 2

robust interpolation/approximation tools being developed, MFree methods
would not exist. Hence, MFree methods may be classified according to the
MFree interpolation/approximation methods used.

2.4.2.1 Meshfree methods based on the moving least squares
approximation

The moving least squares (MLS) approximation was originated by
mathematicians working on data fitting and surface construction (Lancaster
and Salkauskas, 1981). The detailed discussions of MLS will be presented
in Chapter 3. The invention of the MLS approximation was the key to the
development of many MFree weak-form methods, because the MLS can
provide a continuous approximation for a field function over the entire
problem domain. It is now widely used in many types of MFree methods
for constructing MFree shape functions. Nayroles et al. (1992) used the
MLS approximation for the first time to develop the so-called diffuse
element method (DEM). Many MFree methods have been since developed
based on the MLS approximation, such as the element-free Galerkin (EFG)
method (Belytschko et al., 1994a) and the meshless local Petrov-Galerkin
(MLPG) method (Atluri and Zhu, 1998a). EFG and MLPG will be
described in Chapters 4 and 5, respectively.

2.4.2.2 Meshfree methods based on the integral representation method
for the function approximation

These MFree methods use integral forms of function approximations.
The widely used smooth particle hydrodynamic (SPH) method (Lucy, 1977;
Gingold and Monaghan, 1977; GR Liu and Liu, 2003) and the reproducing
kernel particle method (RKPM) (Liu et al., 1995) can belong to this category.

Smooth Particle Hydrodynamic (SPH) was first invented to solve
astrophysical problems in three-dimensional open space, in particular
polytropes (Lucky, 1977; Gingold and Monaghan, 1977). The basic idea of
SPH is that the state of a system can be represented by arbitrarily distributed
particles, and then the SPH approximation is used to discretize the strong-
form of the PDEs of the problem. The applications of SPH include
astrophysical problems and related fluid dynamics procedure, such as the
simulation of binary stars and stellar collisions (Benz, 1988; Monaghan,
1992), incompressible flows (e.g., Liu MB and GR Liu et al., 2001), elastic
flow (Swegle et al., 1992), gravity currents (Monaghan, 1995), heat transfer
(Cleary, 1998), and so on. Recently, the SPH method has been applied for
the simulations of high (or hyper) velocity impact (HVI) problems. Libersky
and his co-workers have made substantial contributions in the application of
SPH to impact problems (Libersky and Petscheck, 1991; Libersky et al.,

2. Overview of meshfree methods 49

1995; Randles and Libersky, 1996). GR Liu and his co-workers have used
SPH to simulate explosion and penetration (GR Liu and Liu et al., 2001a,b;
Liu MB and GR Liu et al., 2003a, 2003c-f). A so-called discontinuous SPH
has also been formulated for simulating the discontinuity at the front of
shock waves (Lam et al., 2003e).

The major shortcomings of the SPH method include tensile instability,
lack of consistency in field variable approximation, and difficulty in
enforcing boundary conditions. Some improvements and modifications of
the SPH method have been achieved (Monaghan and Lattanzio, 1985;
Swegle et al., 1995; Morris, 1996; GR Liu and Liu et al., 2002; Liu MB and
GR Liu, 2003b).

2.4.2.3 Meshfree methods based on the point interpolation method

The point interpolation method (PIM) is an MFree interpolation
technique that was used by GR Liu and his colleagues (GR Liu and Gu,
2001a) to construct shape functions using nodes distributed locally to
formulate MFree weak-form methods. Different from the MLS
approximation, PIM uses interpolations to construct shape functions that
possess Kronecker delta function property. Two different types of PIM
formulations using the polynomial basis (GR Liu and Gu, 2001c) and the
radial function basis (RBF) (Wang and GR Liu, 2000) have been developed. R
MFree methods using PIM shape functions will be discussed in Chapters 4, 5,
6, and 7.

2.4.2.4 Meshfree methods based on the other meshfree interpolation
schemes

These methods include MFree methods based on the hp-cloud method
(Durarte and Odenm 1995), the partition of unity (PU) (Melenk and Babuska,
1996; Babuska and Melenk, 1997) method, etc. This book will not cover
these methods.

Note that all these interpolation/approximation methods can be applied
in strong-form methods. More details on this can be found in Chapter 6.

2.4.3 Classification according to the domain representation

Similar to the classification of finite element method (FEM) and
boundary element method (BEM), MFree methods may also be largely
categorized into the following two categories:

50 Chapter 2

2.4.3.1 Domain-type meshfree methods.

In these methods, both the problem domain and the boundaries are
represented by field nodes. The discretized system equations are obtained
using the weak-form or strong-form or both for the whole domain.

2.4.3.2 Boundary-type meshfree methods.

MFree ideas have also been extended to the Boundary Integral Equation
(BIE) to formulate boundary-type MFree methods. In these MFree
methods, only the boundaries of the problem domain are represented by a set
of nodes. No node is needed within the problem domain. The boundary
integral equation (BIE) is first established using the Green’s functions. The
discretized system equations are then obtained from boundary nodes using
MFree shape functions.

Mukherjee and co-workers proposed the boundary node method (BNM)
(Mukherjee and Mukherjee, 1997; Kothnur et al., 1999). In BNM, the
boundary of the problem domain is represented by a set of properly
scattered nodes. BIEs of problems considered are discretized using the
MLS approximation based only on a group of arbitrarily distributed
boundary nodes. BNM has been applied to three-dimensional problems of
potential theory and elasto-statics (Chati and Mukherjee, 2000; Chati et al.,
1999, 2001). Very good results were reported. However, because the
MLS shape functions lack the delta function property, it is difficult to
satisfy the boundary conditions accurately in BNM. This problem
becomes even more serious in BNM because many boundary conditions
need to be satisfied. The method used in BNM to impose boundary
conditions doubles the number of system equations compared with the
conventional BEM. This makes BNM computationally much more
expensive than the BEM.

Another boundary-type MFree method is the local boundary integral
equation (LBIE) method (Zhu et al., 1998a, 1998b; Sladek et al., 2002). In
LBIE, the domain and the boundary of the problem are represented by
distributed nodes. For each field node, BIE is used in a regular local domain
to construct system equations. The LBIE has been successfully used to
solve linear and non-linear boundary value problems (Zhu et al., 1998a,
1998b; Zhu et al., 1999; Atluri et al., 2000).

Gu and GR Liu used the PIM and RPIM shape functions in BIEs of PDEs
to formulate two boundary-type MFree methods (GR Liu and Gu, 2004a):
the boundary point interpolation method (BPIM) (Gu and GR Liu, 2002a)
and the boundary radial point interpolation method (BRPIM) (Gu and GR
Liu, 2001a,e, 2003b). In BPIM and BRPIM, since the shape functions have
the Kronecker delta function property, the boundary conditions can be

2. Overview of meshfree methods 51

enforced as easily as in the conventional BEM. Hence, the BPIM and
BRPIM are much more efficient than the methods using MLS shape
functions.

In the late eighties, alternative boundary element formulations were
developed based on generalized variational principles. DeFigueiredo and
Brebbia (1991) proposed a hybrid boundary integral equation (HBIE). The
HBIE leads to a symmetric stiffness matrix, which makes HBIE easy and
accurate to combine with other numerical methods that produce symmetric
system matrices. A hybrid boundary point interpolation method (HBPIM)
and a hybrid boundary radial point interpolation method (HBRPIM) (Gu and
GR Liu, 2002b, 2003a) were also formulated for solving boundary value
problems. HBPIM and HBRPIM are formulated using the PIM and RPIM
shape functions in HBIE. In HBPIM and HBRPIM, the stiffness matrices
obtained are symmetric. This property of symmetry can be an added
advantage in coupling HBPIM and HBRPIM with other established MFree
methods that produce symmetric system matrices.

Some of the MFree methods are summarized in Table 2.2 based on the
above-classifications.

2.5 FUTURE DEVELOPMENT

Table 2.3 lists a matrix of different possible ways to formulate an MFree
method. It is clearly shown again from this matrix that MFree methods are
proposed based on different combinations of interpolation /approximation
techniques and formulation procedures. It should be noted that there are stillt
some empty entries in the matrix. These empty entries may not be possible to
be filled, or may not result in a good method a class of problems, but provide a
window of possibilities for future development of ideal MFree methods.

The authors believe that the development of MFree methods has not only
led to a group of useful numerical methods that are useful for a different
classes of engineering problems, but also frees the minds of researchers from
conventional ideas of numerical methods for further exploration of new
numerical methods. The following four areas could be the future possible
direction to develop ideal MFree methods.

Development of new method for MFree function approximation;
Development of new formulation procedures;

52 Chapter 2

Development of MFree methods based on different combinations of
function approximations and formulation procedures;
Development of MFree methods based on combinations of methods of
function interpolation/approximations or formulation procedures for
different parts of the problem domain or for different types of
equations.

Table 2.2. Three categories of MFree methods

Classification Categories Example MFree
methods†

MFree methods based on strong-forms of
governing equations

MFree collocation
methods, FPM etc.

MFree methods based on weak-forms of
governing equations

EFG, RPIM, MLPG,
LRPIM , etc.

Based on
formulation
procedure

MFree methods based on the combination
of weak-form and strong-form

MWS, etc.

MFree methods using MLS EFG, MLPG, etc.

MFree methods using integral
representation method for function
approximations

SPH, etc.

MFree methods using PIM RPIM, LRPIM, etc.

Based on
interpolation
/approximation
method

MFree methods using other meshfree
interpolation schemes.

PUFEM, hp-cloud, etc.

Domain-type MFree methods SPH, EFG, RPIM,
MLPG, LRPIM, etc.Based on domain

representation
Boundary-type MFree methods BNM, LBIE, BPIM,

BRPIM, HBRPIM, etc.

† See Chapters 4-7 for more details on these methods.

2. Overview of MFree methods 53

Chapter 3

MESHFREE SHAPE FUNCTION
CONSTRUCTION

3 Meshfree shape function construction

3.1 INTRODUCTION

As we have seen in Chapter 2, in seeking for an approximate solution to a
problem governed by PDEs and boundary conditions, one first needs to
approximate the unknown field function using trial (shape) functions, before
any formulation procedure can be applied to establish the discretized system
equations. This chapter discusses various techniques for MFree shape
function constructions. These shape functions are locally supported, because
only a set of field nodes in a small local domain are used in the construction
and the shape function is not used or regarded as zero outside the local
domain. Such a local domain is termed the support domain or influence
domain or smoothing domain†.

In the finite element method (FEM), the shape functions are created using
interpolation techniques based on elements formed by a set of fixed nodes.
This type of interpolation is termed stationary element based interpolation. t
In MFree methods, the problem domain is usually represented by field nodes
that are, in general, arbitrarily distributed. The field variables at an arbitrary
point in the problem domain are approximated using a group of field nodes
in a local support domain. Hence, a moving domain based interpolation/

† The difference between the support domain and the influence domain will be presented in
Chapter 4.

54

3. Meshfree shape function construction

approximation technique is necessary to construct the MFree shape function
for the approximation of the field variables using a set of arbitrarily
distributed nodes. In the development of an MFree method, the construction
of efficient MFree shape functions is the foremost issue needed to be settled.

3.1.1 Meshfree interpolation/approximation techniques

A good method for creating MFree shape functions should satisfy some
basic requirements.

1) It should be sufficiently robust for reasonably arbitrarily distributed
nodes (arbitrary nodal distribution).

2) It should be numerically stable (stability).
3) It should satisfy up to a certain order of consistency (consistency).
4) It should be compactly supported (compact), i.e., it should be

regarded as zero outside a bounded region, the support domain.
5) The approximated unknown function using the shape function should

be compatible (compatibility) throughout the problem domain when
a global weak-form is used, or should be compatible within the local
quadrature domain when a local weak-form is used.

6) It is ideal if the shape function possesses the Kronecker delta
function property (Delta function property((), i.e. the shape function is
unit at the node and zero at other nodes in the support domain.

7) It should be computationally efficient (efficiency).

The requirement of arbitrary nodal distribution is essential for
developing a robust MFree method for practical engineering problems.

The stability condition concerns two issues. The first is the interpolation
stability, meaning that the shape functions constructed should be stable with
respect to small perturbations of node locations in the support domain. This
requires the moment matrix created using the arbitrarily distributed nodes to
be well-conditioned. The interpolation stability will be briefly addressed in
Sections 3.2 and 3.3. The second issue is the solution stability, meaning that
the numerical solution using the shape functions together with a formulationff
procedure should not have the so-called numerical or l unphysical oscillations
that have been observed from, for example, convection dominated problems
(see Chapter 6). For the second instability, even if the local interpolation istt

 In an MFree method (or even FEM), the shape functions are constructed in a
piecewise manner based on local support domains. Therefore, the field function
approximated using these shape functions may not be continous when the support
domain moves in the global problem domain. If the approximation is continous,
we say it is compatiable, otherwise incompotable.

55

56 Chapter 3

stable, the solution could be unstable due to the mismatch of the
interpolation scheme (or formulation procedure) with the physical nature of
the problem. Changing the interpolation schemes is a possible way to solve
this problem. The formulation procedure can also play a very important role
in producing a set of discretized system equation that produces a stable
solution. This requires a properly designed formulation procedure based on
the nature of the problem to have the dominant terms properly reflected in
the formulation. This aspect of numerical treatment is addressed to certain
degree of satisfaction in the finite difference method (FDM) by changing the
interpolation scheme using so-called upwind grids (Courant et al., 1953; d
Runchall and Wolfstein, 1969; Spalding 1972; Barrett, 1974; etc.). It has
also been well studied by Guymon et al., (1970), Adey and Brebbia (1974),
Zienkiewicz et al. (1975), Christie et al. (1976), Morton (1985), Donea et al,
(1985), Hughes et al. (1988), Onate (1998), and many others for the FEM.
More detailed discussions on this issue can be found in the book by
Zienkiewicz and Taylor (2000) and the references provided there.

Unfortunately, the instability in MFree methods for convection
dominated problems has not been properly addressed, and the issue is far
from conclusive. Hence, this book will not provide concrete discussions on
this topic, but will discuss some of the techniques in Chapter 6 for
convection dominated problems.

Another type of solution instability often encountered is the well-known
tensile instability that arises in applying the SPH approximation to
hydrodynamics with material strength. Some discussions and measures have
been developed (Swegle et al., 1995; Balsara; 1995; Dyka and Ingel, 1995;
Morris 1996; Dyka et al., 1997; Monaghan, 2000; Randles and Libersky,
2000; Gray et al. 2001; GR Liu and Liu, 2003).

The consistence is important for an accurate function approximation and
convergence of the MFree method.

The compact support is required to produce a set of sparse discretized
system equations that can be solved effectively. This is extremely importantff
for large systems.

When a global weak form is used, the global compatibility of the shape
function, meaning that it has to be compatable in the entire (global) problem
domain, is required. When local weighted residual methods of collocation
methods are used for establishing the discretized system equations, only
local compatibility in the local weighted domain is required.

The Kronecker delta function property is not rigid because one can use
special measures to impose essential boundary conditions if the MFree shape
function does not have this property (see Chapters 4~5).

3. Meshfree shape function construction 57

The development of effective construction methods for MFree shape
functions has been one of the hottest areas in the research of MFree methods.
Several MFree approximation formulations have been proposed. GR Liu
(2002) classified these formulations into three large categories based on the
types of theories of function approximation/representation, i.e., the integral
representation, the series representation, and the differential representation.
Table 3.1 lists some of the techniques under these categories.

Table 3.1. Categories of MFree interpolation techniques

Categories MFree approximation techniques

Integral
representation

Smoothed Particle Hydrodynamics (SPH)

Reproducing Kernel Particle Method (RKPM)

Series
representation

Moving Least Squares (MLS)

Point Interpolation Methods (PIM, RPIM)

Partition of Unity (PU) methods

Differential
representation General Finite difference method (GFDM)

In the integral representation method, the function is represented using
its information in a local domain (smoothing domain or influence
domain) via a weighted integral operation. The consistency is achieved
by properly choosing the weight function. It is often used in the so-
called smoothed particle hydrodynamics (SPH).

The series representation methods have a long history. They are well
developed in FEM and are now used in MFree methods based on
arbitrary distributed nodes. The consistency is ensured by the
completeness of the basis functions. The moving least square (MLS)
approximation is the most widely used method. The point interpolation
method (PIM) using radial basis function (or RPIM) is also often used.
Both MLS and RPIM will be discussed in this chapter in detail.

The differential representation method has also been developed and used
for a long time in the finite difference method (FDM). The finite
difference approximation is not globally compatible (see, e.g.,
Zienkiewicz and Tayler, 2000), and the consistency is ensured by the
theory of Taylor series. Differential representation methods are usually
used for establishing system equations based on strong-form formulations,
such as FDM and the general finite difference method (GFDM).

58 Chapter 3

In the following sections, we will discuss the point interpolation method
(PIM) and the moving least squares (MLS) approximation in detail. There
are other methods of constructing MFree shape functions, such as the SPH
approximation, the hp-clouds method, and partitions of unity finite element
method, and so on. Readers can refer to the related references for more
details and more precise descriptions.

Before introducing the MFree interpolants, the concept of support
domain that is often used in the MFree interpolation operations is introduced.

3.1.2 Support domain

The accuracy of interpolation for the point of interest depends on the
nodes in the support domain as shown in Figure 3.1. Therefore, a suitable
support domain should be chosen to ensure an efficient and accurate
approximation. For a point of interest at xQ, the dimension of the support
domain dsd is determined by

dsd = sdcdd (3.1)

where s is the dimensionless size of the support domain, and dcdd is the nodal
spacing near the point at xQ. If the nodes are uniformly distributed, dcdd is
simply the distance between two neighboring nodes. When nodes are non-
uniformly distributed, dcdd can be defined as an average nodal spacing in the
support domain of xQ.

The dimensionless size of the support domain s controls the actual
dimension of the support domain. For example, s=2.1 means a support
domain whose radius is 2.1 times the average nodal spacing. The actual
number of nodes, n, can be determined by counting all the nodes included in
the support domain. Note that s should be pre-determined by the analyst
before analysis, and it is usually determined by carrying out numerical
experiments for a class of benchmark problems for which we already have
solutions. Generally, an s=2.0~3.0 leads to good results for many problems
that we have studied.

Note that the support domain is usually centered by a point of interest at
xQ. Biased support domains can also be used for special problems such as
convection dominated problems (see, Section 6.4).

3.1.3 Determination of the average nodal spacing

For one-dimensional cases, the simplest method of defining an average
nodal spacing could be

(1)
s

c
Ds

Dsdc (3.2)

3. Meshfree shape function construction 59

where DsD is an estimated dsd (in Equation (3.1)) that does not have to be very
accurate but should be known and is a reasonably good estimate of dsd , and nDs
is the number of nodes covered by the domain with the dimension of Ds.

Figure 3.1. Support domains of points of interest at xQ in MFree models.
(a) circular support domains (rsr : the dimension of the support domain);

(b) rectangular support domains (rsxr and rsyr : dimensions of the support domain in x and y
directions). The support domain is centred byrr xQ.

(a)

(b)

s

rsyr
rsxr

s

rsr

xQ

xQ

60 Chapter 3

For two-dimensional cases, the simplest method of defining an average
nodal spacing could be

1
s

s
c

Ass

Assdc n (3.3)

where As is the area of the estimated support domain. The estimate does not
have to be accurate, but should be known and should be a reasonably good kk
estimate; nAs is the number of nodes covered by the estimated domain with
the area of As.

Similarly, for three-dimensional cases, the simplest method of defining
an average nodal spacing could be

3

3 1
s

c
Vs

Vsdc n
(3.4)

where VsVV is the volume of the estimated support domain, and nVs is the
number of nodes covered by the estimated domain with the volume of VsVV .

After determining dcdd , using Equation (3.1), we can easily determine the
dimension of the support domain dsd for a point at xQ in a domain with non-
uniformly distributed nodes. The procedure is

1. Estimate dsd for the point at xQ, which gives Ds or As or VsVV ;
2. Count nodes that are covered by Ds or As or VsVV , which yields

sDs
n ,

sAss
n ,

and
sVs

n ;

3. Use Equation (3.2) or (3.3) or(3.4) to calculate dcdd ;
4. Calculate dsd using Equation (3.1), for a given (desired) dimensionless

size of support domain.

3.2 POINT INTERPOLATION METHODS

The point interpolation method (PIM) is one of the series representation
methods for the function approximation, and is useful for creating MFree
shape functions. Consider a scalar function u(x) defined in the problem
domain that is represented by a set of scattered nodes. The PIM
approximates u(x) at a point of interest x in the form of

1

() ()
m

i i()
i

u B a() ()()(() (3.5)

3. Meshfree shape function construction 61

where the Bi(x) are the basis function defined in the space Cartesian
coordinates xT=[x[[, y], m is the number of basis functions, and the ai are the
coefficient.

For function approximation, a local support domain is first formed for the
point of interest at x which includes a total of n field nodes. For the
conventional point interpolation method (PIM), n=m is used that results in
the conventional PIM shape functions that pass through the function values
at each scattered node within the defined support domain. For the weighted
least square (WLS) approximation or the moving least squares (MLS)
approximation, n is always larger than m.

There are two types of PIM shape functions have been developed so far
using different forms of basis functions. Polynomial basis functions (GR
Liu and Gu, 1999; 2001a) and radial basis functions (RBF) (Wang and GR
Liu, 2000; GR Liu, 2002) have often been used in MFree methods. These
two-types of PIMs will be discussed in the following sections.

3.2.1 Polynomial PIM shape functions

3.2.1.1 Conventional polynomial PIM

Using polynomials as basis functions in the interpolation is one of the
earliest interpolation schemes. It has been widely used in establishing
numerical methods, such as the FEM. Consider a continuous function u(x)
defined in a domain , which is represented by a set of field nodes. The
u(x) at a point of interest x is approximated in the form of

T

T

1

() ()
m

i i
i

u(
1a11a

maap

a

p aT()p ()()i i()())) ()()()() (3.6)

where pi(x) is a given monomial in the polynomial basis function in the
space coordinates xT=[x, y], m is the number of monomials, and ai is the
coefficient for pi(x) which is yet to be determined. The pi(x) in Equation
(3.6) is built using Pascal's triangles (see Figure 3.2), and a complete basis is
usually (but not always) preferred. For one-dimensional (1-D) and two-
dimensional (2-D) space, the linear basis functions are given by

T () {1 }pT (m=2 , p=1 (1-D) (3.7)

T () {1 }pT (m=3, p=1 (2-D) (3.8)

and the quadratic basis functions are
T 2() {1 }2pT (m=3, p=2 (1-D) (3.9)

62 Chapter 3

T 2 2() {1 }x y x xy ypT (m=6, p=2 (2-D) (3.10)

1

x y

x2 xy y2

x3 x2y x y2 y3

x4 x3y x2y2 xy3 y4

Figure 3.2. Pascal triangle of monomials for two-dimensional domains.

The complete polynomial basis of order p can be written in the following
general form.

T 2 1() {1 }p p1x x x xppT ((1-D) (3.11)

T 2 2() {1 }p px y x xy y x yppT ((2-D) (3.12)

In order to determine the coefficients ai, a support domain is formed for
the point of interest at x, with a total of n field nodes included in the support
domain. Note that in the conventional PIM, the number of nodes in the
local support domain, n, always equals the number of basis functions of, m,
i.e., n=m. The coefficients ai in Equation (3.6) can then be determined by
enforcing u(x) in Equation (3.6) to pass through the nodal values at these n
nodes. This yields n equations with each for one node, i.e.,

1 1
1

2 2
1

1

() ()1

() ()2

() ()

m

i m1 1 2 1 3 1 m
i
m

i m2 1 2 2 3 2 m
i

m

i n n n m m n1 2 3 (n
i

u1 1 1 21 1 1 3 111

u2 2 1 22 1 2 3 222

un i n n n mi n n n m1 2 32()

()a p(1

()a p(2

()a p(ii ()

(a p) a a x a ya a x a y1 211 1 3 1)1 1 211 1 3 11

(a p) a a x a ya a x a y1 211 2 3 2)2 1 211 2 3 22

(m (a pmm) a a x a ya a x a y1 2 322) n nnn n1 2 322)

(3.13)

which can be written in the following matrix form.

s mU P as m (3.14)

3. Meshfree shape function construction 63

where
T{ ... }s n1 2 3{ ...u u u1 2 32 ...1 2 32 ...U (3.15)

is the vector of nodal function values, and
T

1 2 3{ ... }na a a1 2 32 ...a (3.16)

is the vector of unknown coefficients, and

m

1 ()1x y x y1 1 1 11 11 1 1 1 1()1

1 ()
my y p1 1 1 11 1 ()1y y1 1 1 11 1

2 2 2 2 21 ()2mx y x y p2 2 2 22 2)1 (x y x y
1 ()33()3m3 3 3 33 3 3 33 3 ()33 3 3 33 3

1 ()1 ()n n n n m n((x y x yn n n nn n n1 ()x y x y

Pm 1 (x y x y3 3 3 33 31 (1 x y x y3 3 3 33 33 3 3 33 3 (3.17)

is the so-called moment matrix. Because of n=m in PIM, Pm is hence a
square matrix with the dimension of (n n or m m).

Solving Equation (3.14) for a, we obtain
1

m sa P U1
m (3.18)

In obtaining the foregoing equations, we have assumed 1
mPm exists, and left

the issue regarding non-existence of 1
mPm to be addressed later.

It is noted that coefficients a are constants even if the point of interest at x
changes, as long as the same set of n nodes are used in the interpolation,
because Pm is a matrix of constants for this given set of nodes.

Substituting Equation (3.18) back into Equation (3.6) and considering
n=m yield

T 1 T

1

() T ()
n

m s i i s
i

u u(s ii iuiiix p x P U1) ()) (T
m) ()) (m()(U) (3.19)

where () is a vector of shape functions defined by
T T 1() () () () ()T 1T

m n1 2() ()() ()1 2p) () () () () () () () (T 1TT
m n() ()() ()() ()() ()) (1 21 21 2() ()() ()1 2()()() (3.20)

The derivatives of the shape functions can be easily obtained because the
PIM shape function is of polynomial form. The lth derivatives of PIM shapell
functions can be written as

T
() 1()()

l

ml

()
1 ()(
111
()

())1 (
()
2 ()(
22
()
2 ()

() ()(() ()n
() ()(

pT (P)
ml) 2 ()2 () p x(

x
(3.21)

64 Chapter 3

The properties of PIM shape functions (GR Liu, 2002) can be
summarized as follows.

1) Consistency

The consistency of the polynomial PIM shape function depends on the
highest complete order of the monomial pi(x) used in Equation (3.6). If the
complete order of monomial is p, the shape function will possess pC
consistency. This is because the PIM shape functions can reproduce the
monomials that are included in the basis used to construct the shape
functions. To demonstrate, we consider a field given by

1

()
k

j j
j

f p b k m() ,()j j()() k() ,()()) (((3.22)

where pjp (x) are monomials that are included in Equation (3.6). Such a given
field can always be written in the form of Equation (3.6).

1

T T

1

() ()T T

0

m
k

j j
j

b1

bkf p() ()j

0

p p() (() (T T
jp ()()j () ()()()()()()) (3.23)

Using n (here n=m) nodes in the support domain of x, we can obtain the
vector of nodal function values Us as

1 1 1 1 1

2 2 2 2 2

1

()1

()2

()
1 ()1

()

m

m

k k k k m ks

k k k k m k1 1 1 11 1 ((

n n n n m n

x y x y p1 1 11 1 11
x y x y p2 2 22 2 21

x y x y p1 k k kk k1 k
x y x yk k k kk k k1 1 1 11 11 1

x y x y p1n n nn n1 n

1 1 11 11 11 1 11 11 11 1

f x()11f 1(1

f ()
f (1

2f x2()2f ()

f x()f ()f x(k)f x())
)f x(

kf k

1)1kf x()f (

f ()nf x()n)f ()

U

1

2

...

0
...
0

k

m

b1

b2

bk

0

P am

(3.24)

Substitute Equation (3.24) into Equation (3.19), we have

T 1 T

1

() () () () ()T 1 T
k

s m m j j)
j

(u() (bj((j (p) () ()) () ()T 1 T1) () ()) () ()s m m) () ()() ()) () () (3.25)

3. Meshfree shape function construction 65

This proves that any polynomial field function given by Equation (3.6) will
be exactly reproduced by PIM interpolation, as long as the basis functions of
the field function are included in the basis functions of the PIM shape
functions. This can always be done as long as the moment matrix Pm is
invertible so as to ensure the uniqueness of the solution for the coefficient a.

2) Reproducibility

On the extension of proving the consistency of the polynomial PIM shape
functions, we can conclude that PIM shape functions can reproduce any
functions (not necessarily a polynomial) that are included in the basis
functions.

3) Linear independence

PIM shape functions are linearly independent in the support domain.
This is because basis functions are linear independent, and Pm is assumed to
be invertible.

4) Delta function property

Shape functions have the Kronecker delta function property, that is

1 , 1,2, ,
0 , , 1,2, ,i

i j j n, 1,2, ,,
i j i j n, , 1,2, ,, ,, ,, ,, ,

(3.26)

This is because the PIM shape functions are created to pass thorough
nodal values.

5) Partitions of unity

If the constant is included in the basis, the i x is form a partition of
unity, i.e.,

1

() 1
n

i
i

i (3.27)

This can be proven easily from the reproducibility feature of the polynomial
PIM shape functions. For a given constant field u(x)=c, we have

1 2 nu u u c1 2 nu uu u2 (3.28)

Because the constant field can be reproduced using PIM shape functions, we
obtain

1 1

()
n n

i
i i1

u c() ii
1

cc i iu ci iiiui ii (3.29)

which leads to

66 Chapter 3

1

1
n

i
i

i (3.30)

This shows that the polynomial PIM shape functions possess the partitions of
unity.

6) Linear reproducibility

PIM shape functions have the linear reproducibility, i.e.,
n

i
ii

1
)(xix) (3.31)

if the complete 1st order monomials are included in the basis. This can also
be proven easily from the reproducibility of the PIM shape functions.

7) Polynomial form

PIM shape functions and their derivatives have polynomial forms.

8) Compact support

The PIM shape function is constructed using nodes in a compact support
domain, and its’ value at any point outside the support domain is regarded as
zero when it is used in MFree method.

9) Compatibility

In using PIM shape functions, the compatibility in the global domain is
not ensured when the local support domain is used, and the field function
approximated could be discontinuous when nodes enter or leave the moving
support domain. Because no bell shape weight function is used in PIM, the
nodes in the support domain are updated suddenly, meaning that when the
nodes are entering or leaving the support domain, they are actually
“jumping” into or out of the support domain (GR Liu and Gu, 2004c). Care
must be taken when a global weak-form is used together with PIM shape
functions with compact supports. The global compatibility is not an issue
when the strong-forms or the local weak-forms are used.

Note that our discussion is based on the assumption that 1
mP exists. This

condition cannot always be satisfied depending on the locations of the nodes
in the support domain and the terms of monomials used in the basis. If an
inappropriate polynomial basis is chosen for a given set of nodes, it may
yield in a badly conditioned or even singular moment matrix. There are a
number of ways to solve the singularity problem. The most practical method
is the use of the matrix triangularization algorithm (MTA) (GR Liu and Gu,
2001d, 2003a) and the use of the radial basis functions (RBFs) in place of
the polynomial basis (Sub-section 3.2.2). In addition, the weighted least

3. Meshfree shape function construction 67

square (WLS) method can also be used to overcome the singularity problem
in the polynomial PIM. The WLS approximation will be discussed in the
following section.

3.2.1.2 Weighted least square (WLS) approximation

The weighted least square (WLS) approximation is a widely used
technique for data fitting. In the WLS, the number of basis, m, is usually
pre-determined according to the requirements on the consistency for shape
functions. Using Equation (3.5), we can write a two-dimensional field
function u(x) approximated using the polynomial basis as follows.

T

1 2 3
1

T

() () ()
m

h
i i m m

i

a a x a y a p1 2 32u p()h
i i() m()a a a x a ya a x a y1 2 322) i()

1a11a

maap

a

((())

p aT
(3.32)

where ai (i=1, 2, …, m) are the coefficients to be determined, and p is the
vector of basis functions.

To determine coefficients a in Equation (3.32), n nodes are selected in
the local support domain for the approximation. Note that in the WLS, n>m
is used. Using Equation (3.32) for all these n nodes, we can obtain the
similar equations of Equations (3.14)~(3.17), i.e.,

() (1)()s m () () (() () () (U P a()()s m (())) (3.33)

The moment matrix, Pm, is

()

m

1 ()1x y x y1 1 1 11 11 1 1 1 1()1

1 ()
my y p1 1 1 11 1 ()1y y1 1 1 11 1

2 2 2 2 21 ()2mx y x y p2 2 2 22 21 ()x y x y
1 ()33()3m3 3 3 33 3 3 33 3 ()33 3 3 33 3

1 ()1 ()n n n n m n((x y x yn n n nn n n1 ()x y x y

Pm 1 (x y x y3 3 3 33 31 (1 x y x y3 3 3 33 33 3 3 33 3 (3.34)

Note that Pm is not a square matrix because n>m.
Equation (3.33) is a set of overdetermined system of equations due to

n>m meaning that the number of equations is more than the number of
unknowns. We can solve Equation (3.33) for a using the standard weighted
least squares (WLS) method by minimizing the following weighted discrete
L2 norm:

68 Chapter 3

2

1

[() ()]
n

h
i i i[() () (

i

W [()J Wi[()()W [(i[((()))) (3.35)

where iWi (i=1, 2, …, n) is the weight coefficient associated with the
function value at the ith node in the support domain, and ui becomes the
“nodal parameter” of u at x=xi . The stationary condition for J isJ

0JJJ
a

(3.36)

which leads to the following linear relation between a and Us

T T
m m m sP WP a P WUT T
m m mm m (3.37)

where W is the diagonal matrix constructed from the weight constants, i.e.,

() 1 2 nW W W1 21 nW((3.38)

Note that the weights used here are considered as constants (not functions of
x) that define the different influences of the nodes in the approximation. The
further nodes should have smaller influences while closer nodes have bigger
influences, iWi can be computed from any weight function with the bell
shape that will be provided in Section 3.3.2. For example, the following
formulations of iWi can be used.

2 2

2

() ()) (2

()
()

1
s

rr
c c

i i(rs
c

e ec
W Wi

e

()

)((W (3.39)

2 2() ()2
i ir x x() () (i) (() (2() () () () ((3.40)

where (x((, y) is coordinate of the point of interest, rsr is the size of local
supported domain, and c is a constant to be determined by the analyst before
calculation.

We now let
T
m mA P WPT
m m (3.41)

T
mB P WT
m (3.42)

Solving Equation (3.37) for a yields

3. Meshfree shape function construction 69

T 1 T() ()T 1 T1
m m m s) ()) (a P WP P W U() ()) (T 1 T11) ()) () ((3.43)

or
1

sa A BU1 (3.44)

Substituting Equation (3.44) back into Equation (3.32), we have

T T 1 T()h
s su x p a p A BUT T 1T 1) U (3.45)

where the vector of shape functions is

T T 1
1 2 n11 22p A BT 1Tp A B (3.46)

where i (i=1, 2, …, n) is the shape function corresponding to the ith node in
the support domain.

Equation (3.45) is the approximation equation for the WLS. Because the
weighted least squares method is used, the shape functions so constructed do
not have the Kronecker delta function property, which can cause difficulties
in imposing essential boundary conditions, if it is used in MFree methods
based on global weak-from such as the Galerkin weak-form (Chapter 4).
However, it is not a big issue in the MFree methods based on local weak-
forms (Chapter 5) or the MFree collocation methods (Chapter 6), because the
direct interpolation method can be used to enforce the essential boundaryd
conditions. Note also that the WLS shape functions are compatible only in
the local support domain rather than in the global domain. This is not a
problem when the WLS shape functions are used in the local weak-form
methods or collocation methods, but care needs to be taken when it is used
for global weak-form formulation, for which the moving least squares
(MLS) to be discussed in Section 3.3 is a better choice.

3.2.1.3 Weighted least square approximation of Hermite-type

In some problems, the normal derivatives of field functions at some
nodes are important and need to be considered as independent variables. For
example, in order to impose the stress (derivative) boundary conditions in
the analysis of solid mechanics problems using the MFree strong-form
methods (see, Chapter 6), the normal derivatives of displacements at the
nodes on the derivative boundaries (called DB-nodes) are often considered
as independent variables in the function approximation. This is the so-called
Hermite-type approximation. In this section, the Hermit-type WLS is
discussed, which is an extension of the WLS and will be used in Chapter 6.

70 Chapter 3

Interior nodes and nodes on the Dirichlet boundary
 Collocation node
Nodes on Derivative boundary (DB-nodes)

1
DBu
n

2
DBu
n

3
DBu
n

1

2

3

Problem
domain

Derivative
boundary

Dirichlet
boundary

Support
domain

Figure 3.3 Hermite-type interpolation with normal derivatives as additional degrees of
freedom.

To determine coefficients a in Equation (3.32), n nodes are selected in
the local support domain for the approximation. The normal derivatives of
the function at the DB-nodes shown in Figure 3.3 are considered as variables
in addition to the variables of the nodal function values. Applying Equation
(3.32) to all these n nodes, we have

1 1 2 1 3 1 1

2 1 2 2 3 2 2

()1

()2

()

m m

m m

n n n m1 2 3 m n

u a a x a y a p1 1 2 1 3 11 2 1 3 m

u a a x a y a p2 1 2 2 3 21 2 2 3 m

u a a x a y a pn n n mn n1 2 32

a a x a ya a x a y1 2 1 3 11 2 1 31 2 1

a a x a ya a x a y1 2 2 3 21 2 2 31 2 2

a a x a ya a x a y1 2 322 n nn1 2 322

(3.47)

or

s mU P as m (3.48)

where the moment matrix Pm is given in Equation (3.34), and
T{ . . }s n1 2 3{ .1 2 3 ...1 2 32 ...1 2 32 ..U (3.49)

3. Meshfree shape function construction 71

Now applying Equation (3.32) to these nDB DB-nodes, we have

() () ()DB DB DB
i i i) () () () (

xi yil l()()
xi y y

() ()()) ()u() ()()()()()l i()
xixi yixx yy

(() ()()) () ()()) () ()) (()()()
(3.50)

and n is the vector of unit outwards normal, and lxil and lyill are the direction
cosines for the outward normal at the DB-node at (DBDD

ix , DBDD
iy), which are

defined by

cos(,)

)

DBD
xi i

DBD
yi i

l xcos(,xi

l ycos(,yi
(3.51)

Using Equation (3.50) for all DB-nodes, we can obtain

1
1 2 1 3 1 4 1 1 1 1

2
1 2 2 3 2 4 2 2 2 2

1 2 3 4

()1 0 ()1

()2 0 ()2

()
0 ()DB

DB DB DB DB DB DB

DB
DB DB

x y x y1 3 1 4 1 1 11 3 1 4 1 1 1

DB
DB DB

x y x y2 3 2 4 2 2 22 3 2 4 2 2 2

DB
n DB DB

xn yn33DB nDB DB DBDB DB

u ((1 21 22 1 3 1 4 1 1 11 3 1 4 11 3 1 4 1 1 11 3 1 4 13 1 4 1 1 1

u ((1 21 22 2 3 2 4 2 2 22 3 2 4 22 3 2 4 2 2 22 3 2 4 23 2 4 2 2 2

u
(y4 (41 21 22 33333 nDB DB DBDB

)10 (((1 2 1 3 1 4 1 1 12 1 3 1 4 1 1 12 1 3 1 4 1 11 3 1 4 1 1 11 3 1 4 13 1 4 1 1 13 1 4 1 1

)20 (((1 2 2 3 2 4 2 2 22 2 3 2 4 2 2 22 2 3 2 4 2 22 3 2 4 2 2 22 3 2 4 23 2 4 2 2 23 2 4 2 2

)0 (((1 2 3 42 32 3333

n

n

n

(3.52)

Equation (3.52) can be written as the matrix form of

s DU P as D (3.53)

where sU is the vector that collects all the normal derivatives of function
values at the DB-nodes

T
s

DBDB DB ()DB())2
u()DBuDB DB()DBu(()DBu(DB1 2() ()1 2 DB

)
DB

(() ()1 2 n(1u(1 (()1)DB)1U (3.54)

and the moment matrix PD is

D

() ()1
DB DB()pp (1

1 1
)10 m

x1 11 yl l l l1 1 11
m 1

x1 111 y
pm 1(1)1l l l p (m (1pp (p (

1yy x y1x y x1 11 yx yx yy1y

() ()DB DB()pp (2
2

)20 m
yl l l l2 2 22

m 2
x2 222 y

pm 2(2)pp (p (m (2pp (
2 2x2 22 yx yy2 20 x2 22 yl l l l2x2 222 y2x y x2 22 xx yyyy

()DB DB()pp (()
DBm n((

0
p p)m (

l l l lDBm np)
DBm n()pp ()m (pp (

xn yn xn yn0 xn yn xn ynl l l lxn yn xn yyn yDB DB DBxn ynDB xn x yDBynx yx yDBy

())11111

()) (()222)
PD

()) ((())

(3.55)

72 Chapter 3

The dimension of PD is (nDB m).

Combining Equations (3.48) and (3.53) gives

D
s

mm

D

mmU Pa aD
s

mm

D
(3.56)

where D
sU is the vector that collects all the nodal values of the function at n

nodes and all nodal normal derivatives of the function at the nDB DB-nodes,
i.e.,

T

D
s

DBDB ()DB()()1
uu DB ()DB()DB uu DB1()1)() (1

DB
()

DB()1() () nu
n1)n1() (1UD

s () () (() (1u()1()1() ()((3.57)

in which x1, x2~xn are coordinates for the n nodes in the support domain,

DB

DB DB DB
1 22 nx x xDB DBDB
1 , ~2 are coordinates of the DB-nodes whose normal derivatives

are considered as independent variables.
In Equation (3.56), P is the moment matrix that can be written as

DB(())DB))DB))))DB

()n m)(
()

m n m)(n m)

DB
()D n mDB

))(
P (3.58)

Equation (3.56) is a set of overdetermined system of equations due to
n+nDB>m meaning that the number of equations is larger than the number of
unknowns. We can obtain the solution for Equation (3.56) using the
standard weighted least squares method by minimizing the following
weighted discrete L2 norm of

DB DB
2

1 1

()DB

[]
DB hnn

j
j

i j1

J
1

()DBhu (h

[j[h 2() ()]2W [() ()]2
i i i[() ()]) (Wi[() ()]) (()W [() ()]() ()]2
i[() ()]) (()

(()DB))
) () () () () () (

n (3.59)

where iWi and DBDD
jWj are weight coefficients, and ui and

DB()DB
ju

n
 are the

nodal parameters of u at x=xi and the normal derivatives of u at x= DB
jx .

The stationary condition of J requiresJ

0JJJ
a

(3.60)

which leads to the following linear relation between a and D
sU

T T D
sP WPa P WUT T (3.61)

3. Meshfree shape function construction 73

where W is the diagonal matrix constructed using a weight function, i.e.,

DB DB

0

() ()DB DB

D

) () (DB) () () () () (DB

1W11

0
W11W1

00
WnWnW

1
DBW1
DB

1

0
1

00
DBW DBW
DBDBnWn
DBW

W 00W
0 WD

(3.62)

In which iWi (i=1,2, …, n) is the weight coefficient associated with the
function value for the ith node in the support domain, and DBDD

jWj (j((=1, 2, ..,
nDB) is the weight coefficient associated with the jth DB-node. The weight
function iWi can be obtained using any function such as the one given in
Equation (3.39), and DBDD

jWj can be given independently in the similar manner.

The weight function DBDD
jWj can also be obtained using jWj . For example, we

may define

1 ()DB D1 (D BD
j j(W WDB 1DD
j ((W (3.63)

where is the constant to be determined before analysis.
Considering the fact that W is a diagonal matrix, we now let

T T T() () ()T T TT() (m m D D D0) () (0A () () () () (T T TTT() () () () (0() ()()) (T TTT
0)0

T (3.64)

T T T() () ()T T TT
m D D0) () (0B () () () () (T T TTT) () () (0() ()()) (T TTT

0)0
T (3.65)

Solving Equation (3.61) for a yields
T 1 T() ()T 1 T1 D

sa P WP P W U() ()) (T 1 T11 (3.66)

or
1 D

sa A BU1 (3.67)

Substituting Equation (3.67) back into Equation (3.32), we have
T(h DT T 1() D

s su x p a p A BU) T T 1T 1) U (3.68)

The vector of shape functions can be expressed as follows
T T 1

1 DB

H H H
i n j n11 11 1

H H HH
j nj11p A BT 1Tp A B (3.69)

74 Chapter 3

where i (i=1,2, …, n) is the shape function corresponding to the ith node in
the support domain, and H

j
H (j((=1,2, …, nDB) is the shape function

corresponding to the jth DB-node.
Similar to the WLS shape functions, these Hermite-type WLS shape

functions do not have the Kronecker delta function property. Special
treatments are needed to enforce the essential boundary conditions.

3.2.2 Radial point interpolation shape functions

3.2.2.1 Conventional RPIM

In order to avoid the singularity problem in the polynomial PIM, the
radial basis function (RBF) is used to develop the radial point interpolation
method (RPIM) shape functions for MFree weak-form methods (GR Liu and
Gu, 2001c; Wang and Liu, 2000; 2002a,c). The RPIM shape functions will
be used frequently in this book for both MFree weak-form and strong-form
methods. The RPIM interpolation augmented with polynomials can be
written as

T T

1 1

() ()T T
n m

j j
i j1

()u()
1

()()i i R x a p x b() ()() (T T
j()j j()() ()()()T()()()()) ()()i i()()()()()()() (3.70)

where Ri(x) is a radial basis function (RBF), n is the number of RBFs, pjp (x)
is monomial in the space coordinates xT=[x[[, y], and m is the number of
polynomial basis functions. When m=0, pure RBFs are used. Otherwise, the
RBF is augmented with m polynomial basis functions. Coefficients ai and bjb
are constants yet to be determined.

In the radial basis function Ri(x), the variable is only the distance between
the point of interest x and a node at xi,

2 2() ()2
i ir x x(i) (() (2() () () () (for 2-D problems (3.71)

There are a number of types of radial basis functions (RBF), and the
characteristics of RBFs have been widely investigated (Kansa,1990; Sharan
et al.,1997; Franke and Schaback, 1997; etc.). Four often used RBFs, the
multi-quadrics (MQ) function, the Gaussian (Exp) function, the thin plate
spline (TPS) function, and the Logarithmic radial basis function, are listed in
Table 3.2. In utilizing RBFs, several shape parameters need be determined
for good performance. In general, these parameters can be determined by
numerical examinations for given types of problems (see, e.g., Wang and GR
Liu, 2000; 2002c). For example, in the MQ-RBF, there are two shape
parameters: c and q, to be determined by the analyst. When 0.5 , it is
the standard MQ-RBF. Wang and GR Liu (2001a, 2002c) left the parameter

3. Meshfree shape function construction 75

q open to any real variable, and found that q=0.98 or 1.03 led to good results
in the analysis of two-dimensional solid and fluid mechanics problems. This
will be investigated further in Chapter 4 and Chapter 5.

Table 3.2 Typical radial basis functions with dimensionless shape parameters

Name ††Expression Shape Parameters

1 Multi-quadrics
(MQ)

2 2))2 q
i i c cR x y r d2(,) ((,) ((2
i i c(,) (((,) (c((2((0c , q

2 Gaussian (EXP) 2(,) exp[()]2i
i c) exp[

c

riR (i (,,
dc

exp[exp[exp[c

3 Thin Plate Spline
(TPS) ()i i(R r) i,), r

4 Logarithmic () logi i i(,) logR r) log) i,) log,)

†† Note: dcdd is a characteristic length that relates to the nodal spacing in the local
support domain of the point of interest x, and it is usually the average nodal
spacing for all the nodes in the local support domain as discussed in Section 3.1.

Table 3.3. Formulations of the compactly supported radial basis function (CSRBF)

CSRBF Formulation Ref.

Wu-C2 2 3 4

2 3 4

(,) (1) (8 405

48 25 5)2 3 43

r r5) (8 405R x y(,,

r r r3
25 525 5

) (

2 3 433 43

(1) (8(1) (85

48 2525252 33

Wu(1995)

Wu-C4 2 3 4 5

2 3 4 5

(,) (1) (6 366

82 72 30 5)2 3 4 53 4

r r6) (6 366R x y(,,

r r r r3
72 30 572 30 5

) (

2 3 4 53 43 4 53 4

(1) (6(1) (66

82 72 3072 3072 302 3 433 4

Wu(1995)

Wendland-C2 (,) (1) (1 4)4r r4) (1 4) (1 44R x y(,, (1) (1(1) (14 Wendland
(1995)

Wendland-C4
2

2(,) (1) (3 18 35)6
2

r r r6) (3 18 35) (3 18 356R x y(,,) () (2(1) (3 18(1) (3 18) (3 186 Wendland
(1995)

Wendland-C6
2 3

2 3(,) (1) (1 8 25 32)8
2 3

r r r r8) (1 8 25 32) (1 8 25 328R x y(,,) () (2 33(1) (1 8 25(1) (1 8 25) (1 8 258
2

Wendland
(1995)

: the size of the local support

76 Chapter 3

In addition, the so-called compactly supported radial basis functions
(CSRBFs) have also been developed (Wu, 1995; Wendland, 1995). Several
CSRBFs are listed in Table 3.3. In contrast to the CSRBF, RBFs listed in
Table 3.2 can be called the classical RBFs. These CSRBFs are strictly
positive definite for all r less than or equal to some fixed value, and can ber
constructed to have desired amount of smoothness of 2k. In a CSRBF, there
is a shape parameter, , that determines the dimension of the local support
for the CSRBF. When r , their values is regarded as zero. Studies by
authors’ group (GR Liu and Gu, et al., 2004) failed to find clear advantages
of CSRBFs over the classic RBFs for their surface fitting and mechanics
problems.

The polynomial term in Equation (3.70) is not always necessary. Studies
have found the following conclusions.

1) The RPIM shape functions with pure RBFs usually cannot pass the
standard patch tests, meaning that they fail to reconstruct exactly a
linear polynomial field. Adding polynomial terms up to the linear
order can ensure the C1 consistency that is needed to pass the standard
patch test.

2) In general, adding polynomials can always improve the accuracy of the
results, at least no bad effect has been observed for MFree weak-form
methods.

3) Adding polynomial reduces the sensitivity of the shape parameters,
and will provide us much more freedom and a wider range in choosing
shape parameters. This is true at least for MFree weak-form methods.

4) Adding polynomial can improve the interpolation stability for some
RBFs. To ensure an invertible moment matrix of RBF, the polynomial
augmented into RBF cannot be arbitrary (Schaback and Wendland,
2000). A low degree polynomial is often used to augment RBF to
guarantee the non-singularity of the matrix (Cheng et al., 2003). For
example, for an MQ-RBF, the linear polynomial can ensure an
invertible moment matrix of RBF (Schaback and Wendland, 2000).

In order to determine ai and bjb in Equation (3.70), a support domain is
formed for the point of interest at x, and n field nodes are included in the
support domain. Coefficients ai and bjb in Equation (3.70) can be determined
by enforcing Equation (3.70) to be satisfied at these n nodes surrounding the
point of interest x. This leads to n linear equations, one for each node. The
matrix form of these equations can be expressed as

s m0U R a P bs m000 (3.72)

where the vector of function values Us is

3. Meshfree shape function construction 77

T{ }s n1 2{ 1 21 21 2U (3.73)

the moment matrix of RBFs is

0

()

1() () ()1 2 11 2 1R11() () () () (1 2 11 21 2 11 1 2 1 1) ()1 2 11 2 1

() () ()
n

R () () (()
1) ()1 2 11 2 1

1 2 2 2 2) ()2 2 22 2 2nR11() () () () (2 2 22 22 2 2)R () () () () (

() () ()R () () (()1)n n n n2 () () (21 () ()2 () () (2R1() () () () (2)R () () (()

R (3.74)

the polynomial moment matrix is

T

()

m

1 1 ... 1

1 2 ... nx x x1 2 ...x x x
y y y1 2 ... n1 21 2 ... ny y y1 2 ...1 2 ...

() () ()()m m m n1 2 ((p (m m1 2() () ...1 2() () ()p (

P

() () ...1 2) () () () () ()()) (1 2

(3.75)

the vector of coefficients for RBFs is
T

1 2{ ... }1 2 n......1 2a (3.76)

the vector of coefficients for polynomial is
T

1 2{ ... }1 2 m......1 2b (3.77)

In Equation (3.74), rkr ink Ri(rkr) is defined as k

2 2() ()2
k k i k irk k i kk() () () (() (2() () () (() () () ((3.78)

However, there are n m variables in Equation (3.72). The additional m
equations can be added using the following m constraint conditions.

T

1

() 0T
n

j i i m
i

p (j i())) T)) , j=1, 2, ..., m (3.79)

Combing Equations (3.72) and (3.79) yields the following set of equations in
the matrix form

0s
s 0 m

T
m

G

s 0 m0U Gs
s 0 m0 m

T
0 m0 mss aTT

m
T
m
T (3.80)

where
T
0 1 2{ }1 2 n m1 21 21 21 1 21 2a (3.81)

78 Chapter 3

0 0 0s n1 2u u u1 21 2U 0 0u (3.82)

Because the matrix R0 is symmetric, the matrix G will also be symmetric.
Solving Equation (3.80), we obtain

1
0 sa G U1
0 (3.83)

Equation (3.70) can be re-written as

T T T T() () () { () ()}T T T TT Tu
a

) () () { () () () () { () (T T T TT TT() ()() ()() ()T TTT
(3.84)

Using Equation (3.83) we can obtain

T T 1 T() { () ()} ()T T 1 TT
s su) { () ()}) { () ()}T T 1TT 1{ () ()}() ()} U)T (3.85)

where the RPIM shape functions can be expressed as
T T T 1() { () ()}T TT T G) { () ()}) { () (T TT TT T

1 2 ()n n n m1 21() () () ()() () ()2 n n()() nn11()1 () () () ()() () ()) () () (22 1()() ()1()1() ()()) (() ()
(3.86)

Finally, the RPIM shape functions corresponding to the nodal displacements
vector () are obtained as

T
1 2() () () ()n() ()() ()1 2() ()() ()1 2 () () ()() ()) (1 21 2 (3.87)

Equation (3.85) can be re-written as

T

1
() ()T

n

s i i
i

uis(u() ((U))U))) (3.88)

The derivatives of u(x) are easily obtained as
T

, ,() ()T
l l s,() (),u U)) (3.89)

where l denotes either the coordinatesl x or y. A comma designates a partial
differentiation with respect to the indicated spatial coordinate that follows.

Note that 1
0R usually exists for arbitrarily scattered nodes (Powell, 1992;

Schaback, 1994; Wendland, 1998). In addition, the order of polynomial
used in Equation (3.70) is relatively low. Therefore, in general, there is no
singularity problem in the RPIM as a small number of nodes (typically
10~40 for 2D problems) are used in the local support domain.

3. Meshfree shape function construction 79

Note that the moment matrix R0 can be badly conditioned when the
number of nodes increases. This is observed in MFree global collocation
methods that use all the nodes in the entire problem domain in the
formulation. One of the features of the global collocation methods is that a
symmetric formulation is possible (Wu, 1992). This book, however, will not
discuss these methods.

There are several advantages of using RBFs as a basis in constructing
PIM shape functions that use local compact support domains.

Using RBFs can effectively solve the singularity problem of the
polynomial PIM.

RPIM shape functions are stable† and hence flexible for arbitrary and
irregular nodal distributions.

RPIM shape functions can be easily created for three-dimensional
domains, because the only variable is the distance r in a RBF. For r
three-dimensional interpolation, we simply change the distance
expression to

2 2 2() () ()2 22
i i ir x x(i i) () () () (() () (()2 222() () () () () () () () () () (() (3.90)

RPIM shape functions are better suited than MLS functions for fluid
dynamics problems (see, Chapter 7).

However, RPIM also has some shortcomings, such as

RPIM shape functions usually give less accurate solutions for solid
problems compared to MLS and the polynomial PIM shape functions.

Some shape parameters must be determined carefully, because they
can affect the accuracy and the performance of the RPIM shape
functions used in MFree methods.

RPIM shape functions are usually computationally more expensive
than the polynomial PIM because more nodes are required in the local
support domain.

The properties of RPIM shape functions (GR Liu, 2002) are listed in this
section.

1) Delta function property

RPIM shape functions have the Kronecker delta function property.

† Small changes in nodes locations or number of nodes in the support domain will
not give rise to a big change in the RPIM shape functions created.

80 Chapter 3

2) Partitions of unity

RPIM shape functions have the property of partitions of unity, i.e.,

1

1
n

i
i

i (3.91)

if the linear polynomial terms are added in the basis (m=3 in Equation
(3.70)), and hence there is a constant term in the basis functions. The
property of partitions of unity can be easily proven using the properties of
reproduction of the RPIM shape functions.

If the pure RBF is used (m=0 in Equation, (3.70)), the property of
partitions of unity can be easily proven for CSRBFs, as there are clearly
constant terms in CSRBFs (see, Table 3.3). However, there is no constant
term explicitly shown in some RBFs, such as the MQ-RBF. Additional
treatment is needed for these RBFs to explicitly reveal the constant term.

An arbitrary function that has continous derivatives of all orders can be
expressed by an infinite Taylor series expansion. For example, for the MQ-
RBF, the Taylor series expansion in the vicinity of r=0 is

2

2 2

(0)() (0) (0)
2!
(0)()
2!

b (0)(0)b r b b r r() (0) (0)) (0) b

bC2C b (0)

2r r()(0) (0)(0)(0)

2C b r rb r2 ()(0)q

(3.92)

We clearly see that there is a constant term in Equation (3.92) because
0C in MQ-RBF. The presence of this constant basis facilitates the

reproduction of a constant field following the reproducibility property of the
RPIM shape functions. Note that the condition for the reproduction of a
constant field in the local domain is that all RBFs used in the RPIM have to
be evaluated exactly, meaning that the expansion in Equation (3.92) needs to
have infinite terms. This will be confirmed in the example presented in Sub-
section 3.2.3.3. Therefore, Equation (3.91) may not be satisfied “exactly”
but “approximately” in the numerical tests, because that there are always
numerical truncation errors in the computation of a RBF caused by the use of mm
finite terms in the Taylor series expansion.

Note here that TPS-RBF and Logarithmic-RBF do not satisfy the
condition of (0) 0b . Hence, the polynomial terms are needed in TPS-RBF
and Logarithmic-RBF to ensure the property of partitions of unity for the
RPIM shape functions.

3) Compact support

RPIM shape functions are compactly supported, as they are constructed
using nodes in a compact support domain, and they are not used or are
regarded as zero outside the support domain.

3. Meshfree shape function construction 81

4) Continuity

The RPIM shape functions usually possess higher continuity because of
the high continuity of the radial basis functions.

5) Reproducibility

The RPIM with at least polynomial terms can ensure an exact
reproduction of linear polynomials.

Note that some RBFs will not have linear reproducibility meaning the
RPIM cannot reproduce a linear field function without being augmented with
linear polynomial terms. For example, in the case of the MQ-RBF, there
exist no linear terms in its Taylor expansion form of Equation (3.92) due toaa

(0) 0b . This could be one of the major reasons for the poor h-
convergence in using MQ-RBFs. Hence, the linear polynomial terms are
sometimes added in the RPIM to improve the performance in this regard.

6) Compatibility

In using RPIM shape functions, the compatibility in the global domain is
not ensured when the local support domain is used, and the field function
approximated could be discontinuous when nodes enter or leave the moving
support domain.

3.2.2.2 Hermite-type RPIM

As shown in Figure 3.3, if there are DB-nodes within the support domain
of a point of interest, their normal derivatives are considered as the
additional unknowns. This implies that the DB-nodes not only have function
values but also normal derivatives as variables. This is achieved by adopting
the following Hermite-type interpolation using RBFs. The formulation
procedure is similar to those given in Sub-section 3.2.2.1, except that it takes
into consideration the additional normal derivative degrees of freedomrr
(DOFs) for DB-nodes, which is again similar to the Hermite–type WLS
discussed in section 3.2.1.3.

The approximation of a field function u(x) can be written in a linear
combination of RBFs at all the n nodes within the local support domain and
the normal derivatives at the DB-nodes, i.e.,

DB DB

1

()nn mDB DB ()n
h

k k
i j k1 11

R
p c()u ()h

kk ()
1 11

RR ()j
i i j

R
b

()
RR ()a bR a j

i i() j
R

a bb() j
i() j) ((

n (3.93)

where ai, bjb and ck are coefficients to be determined, n is the number of
nodes in the local support domain (including the DB-nodes), nDB is the
number of the DB-nodes in the local support domain, m is the number of

82 Chapter 3

polynomial terms for augmentation, pk is a monomial, and k n is the vector of
the unit outward normal on the boundary at the DB-node.

In Equation (3.93), ()i and DB ()jR are RBFs that have been
discussed in Sub-section 3.2.2.1. We have

() ()i i() (R ()i () (()) ((
DB DB() () DB
j j() (RDB ()j () (()) ((

DB DB DB ()DB
j j j() ()()

xj yjl ljj ()()
xj y y

DB () ()()DB
j () ()()RRDB () ()()DB
j () ()

l j
xjxj yjxx yy

(DB) ()()) (DB) ()()()) (
(3.94)

where xi is the coordinate for the ith node in the local support domain, DB
jx

is the coordinate for the jth DB-node, and cos(,)xj jcos(,cos(, and
)yj jl ycos(,yj are direction cosines.

Note that because the derivatives of the field function at the DB-nodes
are treated as unknowns, we use the derivatives of the same radial basis
functions as the basis in Equation (3.93) for the DB-nodes. One may choose
to use any other type of basis functions for these DB-nodes, as long as they
are independent of the other basis used in Equation (3.93).

Equation (3.93) can be re-written in the following matrix form
T

0()hu B aT) (3.95)

where the vector of basis function B has the form of

T
DBDB
DB1

1 1 ()1 ()1 ()BT DB1 1 (1111 (3.96)

and the vector of coefficients a0 is given by

DB

T
0 1 2 1 n mDB1 1... ...1 1a a a b b c c1 2 11 2 1... ...1 1... ...1 1a (3.97)

The coefficients ai, bjb and ck in Equation (3.93) are determined by makingk
the interpolations pass through all n nodal function values within the support
domain and equal the derivatives values of the function at the DB-nodes.

For all the n nodes in the local support domain (including the DB-
nodes), we have

DB DB

1

()
()

n mDB ()n DBn (h
l l() k l k

i j k1 11

R
()u uh

l () p c()k lk l()
1 11

RR
u ()h ()

)
() j l(

i l i()(j
R

()()(bj
Rj

ia()()(bj)) ((
n (3.98)

where l=1, 2, l …, n.

3. Meshfree shape function construction 83

For all the DB-nodes, we have
2 DB DBDB DB DB

1

)DB(()DBn mDB ()DBn DB 2DB()DB n
l

k
i j k1 11

R c()k lp

1 11

DB n
lu RRDB n
l p

i 1

()i
i jj2

R a bb
)j l(

i jj2
RR ()i l a bbj

i jj2
(k) m) p (kpppp(((RDB) DB)DB)) j (R

bb
)j (

ni 1 nn
(3.99)

where l=1, 2,l …, nDB.

To obtain a unique solution, we impose the following constraints.

DB

1 1

0
nn

k j j
i j1

()k j j()(()
1

()()(()k i ip a()k i i()) (())) , k=1, 2,kk …, m (3.100)

Arranging Equations (3.98)~(3.100) together leads to the following set of
equations in matrix form.

0

0s

s
0 DB m

ss
0 DB

T
m0 DB m

DBDB
DBcDB

T T 0DB 0m
T 000

aG

0 DB m

GR R PTUs
DBDB T

DB DBcDB
T a
T

Dm
T

(3.101)

where G is the generalized moment matrix that consists of:

the polynomial moment matrix evaluated at n nodes,

T

()

m

1 1 ... 1

1 2 ... nx x x1 2 ...x x x
y y y1 2 ... n1 21 2 ... ny y y1 2 ...1 2 ...

() () ()()m m m n1 2 ((p (m m1 2() () ...1 2() () ()p (

P

() () ...1 2) () () () () ()()) (1 2

(3.102)

and the moment matrix of the 1st derivatives of polynomials evaluated at nDB
DB-nodes,

DB

DB

()DBDB

DB()DB
1pl l pp 1

DB 1 DB 1
()10 m

x y1 DB1 DB
pl lDB 1 D1 D

()1m0 pl l p
yy

DB()DB
20 pl l pp 2

DB 2 DB 2
()20 m

x y2 DB2 DB
pl lDB 2 D2 D

()20 mpl l p
yy

DB()DB
DB

()
DB

DB

0 m n(p
l l

()DBpp
DB0 l lDB D

DB0 l lDB DB0 xn ynDBlDB DD

PD (3.103)

the moment matrix of RBFs evaluated at n nodes,

84 Chapter 3

0

()

1() () ()1 2 11 2 1R11() ()()1 2 11 1 2 1 1) ()1 2 11 2 1

() () ()
n

R () ()()
1) ()1 2 11 2 1

1 2 2 2 2) ()2 2 22 2 2nR1(2 2 2)R (

() () ()R () ()()1)n n n n2 () () (21 () ()2 () () (2R1() ()()2 ()R () ()()

() ()()) (1 2 121 2

() ()()) (() ()()) (2 2 222 2 () ()()) (
R

() ()()) (2

(3.104)

the moment matrix of 1st normal derivatives of RBFs evaluated at the DB-
nodes,

DB

T
DB

()DBDB

DBDB DB ()DB
1()DB

1 RRR()DBRR1()DB
11 1 2 1 ()1)1 2 11 2 n1 ()1)1 2 11 2 nRR1 11R1 1

DBDB DB ()DB
2()DB

2 RRR()DBRR1()DB
21 2 2 2 ()2)2 2 22 2 n1 ()2)2 2 22 2 nRR1 22R1 2

DB DB DB()DB() ()()DB DBRR () ()()DB DB
1 ()DB

DB DB DBn n n2 ())2DB DB n()DB
1 ()2 ()2RR1() ()()DB DB

2RR () ()()DB DB
DB DB DB

(2)DB
1 21

(2)DB
2 22

R

() ()()()) (DB DB
2

(3.105)

and the moment matrix of 2nd normal derivatives of RBFs evaluated at DB-
nodes,

DB DB()DB DB

c

DB

DBDB DB ()DB
1()DB RRR()DB ()DB()DBRR ()DB

2 1
()1()2 1()1 1)1 ()DB 1()1n ()1nRR()2 1(1)1)11)1R11 1R1(() ())() (() (

DBDB DB ()DB()DB RRR()DB ()DB()DBRR ()DB ()2() () ()) () (DB 21 2 2 2
()2) ()2 2 2 nR)2(RRR)2() ()1) ()2 2 2)1)2RR1(1 2RR (() () ()() () ()() () () () (

DB DB DBDB DB DB()DB

)
()n(

RDB DB DB() ()DB DBR R RR R R() ()DB DB
1(1 ()2)

()21 ()2R RR1() ()DB DB()2() () ()) () (DB DB DB DB1)
DB) () () () (DB DB2DB

()
DB2DB)DB

)
DB

(
((1)

()
DB2DB(1)

()
DB2DB() () ()() () () () (

()DB
2 (2)1)1)1

()DB (22 ()2)2)
R

(nRRR) ()) (DB DB
2 ()2

(3.106)

In Equation (3.101), the extended vector of nodal variables is

T
s

DBDB ()DB()DB uu DB1
()

DB()1() () 0 0n() (1

uu ()() uu)n1() (1)() (1UT
s () () (() (1u()1()1) 0((3.107)

the vector of nodal function variables is
T{ ... }s n1 2 3{ ...u u u1 2 32 ...1 2 32 ...U (3.108)

and the vector of nodal normal derivative variables is

3. Meshfree shape function construction 85

T

DB
DB

DB 2 n
DBDB DB

2 nuu1
DBu11 2 DB1 2 DBn111 (3.109)

It is clear that G in Equation (3.101) is symmetrical. For the same
reasons mentioned in Sub-section 3.2.2.1, G is also, in general, invertible.
Hence, we can solve Equation (3.101) for a0 to obtain

1
0 sa G U1
0 (3.110)

Substituting Equation (3.110) back to Equation (3.93) yields
T T 1 T

0()h
s su x B a B G UT T 1T 1

0()h
0 UT (3.111)

where is a vector of the shape functions given by

T T 1B GTT

() 1DB))
H H p pH H p pH p

DB1 i n n mDB1 11 DB1 1 111 DB

p
m1 1 11 1 1

H H p pH p
m1 111

pp (3.112)

Finally, the approximated function and its derivatives can be obtained
using Equation (3.111).

DB DB

1 1

()
nn

jh H() j
i j1

u
u ())h (H

j
1

i ii ii iui n

DB DB

1

() Hnnh
j j

i j1

uu H

1

H
j
H
jj

1i 1x x xx x x1 1i 1

i
iuii
iuuixxx n

DB DB

1

() Hnnh
j j

i j1

uu
y y y1i 1

H

1

H
j
H
jj

y y yy y y1 1i 1

i
iuii
iuuiyyy n

……

(3.113)

Because of the existence of 1G for arbitrarily scattered nodes, there is
no singularity problem in the process of computing the Hermite-type RPIM
shape functions. In addition, the Hermite-type RPIM shape functions are
stable and very flexible for arbitrary nodal distributions. They will be used
in the MFree collocation methods discussed in Chapter 6.

86 Chapter 3

3.2.3 Source code for the conventional RPIM shape
functions

In this section, a standard subroutine, RPIM_ShapeFunc_2D.f90, for
computing the conventional RPIM shape functions for two-dimensional
problems is provided. This subroutine is written in FORTRAN 90.

Note that all programs provided in this book are developed and tested
based on the MS Windows and MS Developer Studio 97 (Visual FORTRAN
Professional Edition 5.0.A) in a personal computer. After slight revisions,
these programs can also be executed in other platforms and systems, such as
the UNIX system on workstations. In our research group these codes are
frequently ported between Windows and UNIX systems, and there has been
no technical problem.

3.2.3.1 Implementation issues

1) Determination of the support domain

For a two-dimensional domain, , the support domain for a point of
interest can be of various shapes. Circular and rectangular support domains
are often used, and shown in Figure 3.1(a) and Figure 3.1(b), respectively.
The rectangular support domain is simple to construct and easy to
implement. Hence, in this section and following sections, the rectangular
support domains are used.

Using the rectangular support domain, the dimension of the support
domain is determined by dsxd and dsyd in x and y directions, respectively, i.e.,

sx sx cxss

sy sy cys

d dsx sx cs

d dsy sy cs
(3.114)

where sx and sys are the dimensionless sizes of the support domain in x and
y directions. For simplicity, one often uses sx= sys , and dcxdd and dcydd are the
nodal spacings in x and y directions in the vicinity of the interpolation point
at xQ. (see, Figure 3.1). If the nodes are uniformly distributed, dcxdd is simplyx
the distance in x direction between two neighboring nodes, and dcydd is simply
the distance in y direction between two neighboring nodes. When the nodes
are non-uniformly distributed, dcxdd and dcydd can be defined as an average nodal
spacing in the support domain of xQ using the simple procedure discussed inQ
Sub-section 3.1.3.

2) Shape parameters in radial basis functions

In the present subroutine of computing RPIM shape functions, the Multi-
quadrics (MQ)-RBF, Gaussian (EXP)-RBF, and Thin Plate Spline (TPS)-

3. Meshfree shape function construction 87

RBF, are coded. As shown in Table 3.2, the shape parameters in RBFs have
to be pre-determined.

For the MQ-RBF, there are two shape parameters: c and q. In the
standard RBF, 0.5q is often used. Wang and GR Liu (2001a,
2002c) have left q open to any real number and found q=0.98 or 1.03
good for solid and fluid mechanics. Both q and c are now
dimensionless constants, and will be investigated later in this chapter
for surface fitting and in Chapters 4, 5, 6 for mechanics problems. The
nodal spacing dcdd is calculated using

22
cycxc ddd 2

cxc dd 2
cx (3.115)

where dcxdd and dcydd are nodal spacings in they x and y directions efined in
Equation (3.114).

For the EXP-RBF, there is only one shape parameter, c; it is usually
a positive number smaller than 1.0.

For the TPS-RBF, the only shape parameter is .

Shape parameters affect the performance of RBFs. Generally, there are
no theoretically best values. They have been determined by intensive
numerical investigations for classes of problems for weak-from formulations
(GR Liu, 2002; Wang and GR Liu, 2002c). This issue will be further studied
in Chapters 4 and 5 for MFree weak-form methods, in Chapter 6 for MFree
strong-form methods, and in Chapter 7 for MFree weak-strong form
methods.

3) Calculation of RPIM shape function

Equation (3.86) is used to compute RPIM shape functions. Direct
inversion of G is avoided using a linear equation solver. Equation (3.86) can
be re-written as

T T T 1

T T

() { (), ()}T TT T

{ (), ()}T T

G G1) { (), ()}) { (), (T TT TT T

(), ((), (T T
(3.116)

Hence, we have
T T T T T(()) { (), ()}T T T TT T T)) { (), ()) { (), (T T TT T TT T T (3.117)

or

T ()
()()
()
()
()()
((

G
(

(3.118)

88 Chapter 3

Solving Equation (3.118) using a standard linear equation solver, we can
obtain RPIM shape functions directly without computing 1G .

Derivatives of the RPIM shape functions can be obtained using Equation
(3.118).

()

()
()()
() ()
()
()()

R(
((x

p((()x
(3.119)

or

T ()
()()()

()()()

(

G
(x

(3.120)

The 2nd derivative is

2
T

2
()

2 ()())
22

22 ()2 ()
2

(((

G
x (

(3.121)

Therefore, the derivatives of the RPIM shape functions can also be obtained
by solving Equations (3.120) and (3.121) using the standard linear equation
solver.

4) Flowchart of the subroutine

The flowchart of the subroutine RPIM_ShapeFunc_2D.f90 is shown in
Figure 3.4.

3.2.3.2 Program and data structure

The main subroutine RPIM_ShapeFunc_2D calls two subroutines that are
shown in Figure 3.4 and Appendix 3.1.

1) Main Subroutine RPIM_ShapeFunc_2D

This subroutine is used to compute RPIM shape functions and their
derivatives for a two-dimensional domain. In the current program, up to
second order derivatives of shape functions are given. The user can modify
this subroutine to compute higher-order derivatives of shape functions
without too much difficulty. In addition, the polynomial terms added in the

3. Meshfree shape function construction 89

radial basis are up to linear (mbasis=3). If mbasis=0 is used, the program
produces pure RPIM shape functions without polynomial augmentation.
The user can add more polynomial terms by changing the subroutine slightly.

The dummy arguments used in the subroutine RPIM_ShapeFunc_2D are
listed in Appendix 3.2. The source code of the subroutine
RPIM_ShapeFunc_2D is listed in Program 3.1.

Input data

Compute the basis

Compute matrix G

Compute shape function
and its derivatives

Return

Call Subroutine
Compute_RadialBasis

Call Subroutine
Gauss EqSolver_Sym

Figure 3.4. Flowchart of the program of RPIM_ShapeFunc_2D.f90 for computing RPIM
shape functions.

2) Subroutine Compute_RadialBasis

Source code location: Program 3.2.
Dummy arguments: Appendix 3.3.
Function: to compute RBF R(r) and its derivatives. In the current

program, MQ-RBF, EXP-RBF and TPS-RBF are included.
The user can change this subroutine slightly to include any
other RBF (e.g., CSRBF).

3) Subroutine GaussEqSolver_Sym

Source code location: Program 3.3.
Dummy arguments: Appendix 3.4.
Function: it is a standard equation solver using the Gauss elimination

method. To use this solver, the coefficient matrix must be
symmetric.

90 Chapter 3

3.2.3.3 Examples of RPIM shape functions

An example is presented to illustrate the properties of the conventional
RPIM shape function and its derivative created using 25 nodes in the support
domain. These 25 (5 5) nodes, as show in Figure 3.5, are regularly and
evenly distributed in a rectangular domain: [1, 1]i and [1, 1]iy .
The coordinates of these 25 nodes are listed in Table 3.4. The RPIM shape
functions created can be evaluated at any point in the domain, and plotted in
x-y- space. In this study, a total of 61 61 points is used to evaluate and plot
the shape functions.

A simple main program is listed in Program 3.4. In this program, the
influence domain is used as an alternative to the support domain. The
detailed discussions of comparisons between the support domain and the
influence domain are presented in Chapter 4. The size of the influence
domain for different field nodes is adjusted to ensure all 25 field nodes are
included in the interpolation for each evaluation point.

1) The RPIM shape functions and their derivatives

Three typical radial basis functions, MQ-RBF, Exp-RBF and TPS-RBF,
are used, and RPIM-MQ, RPIM-EXP and RPIM-TPS will be used in the
following to denote RPIM shape functions using MQ, EXP and TPS radial
basis functions, respectively.

Figure 3.6~Figure 3.8 show the RPIM-MQ shape functions and their
derivatives. The shape parameters, ac=2.0, dcdd =0.5, and q=0.5 are used with
mbasis=0 (no polynomial augmentation). Figure 3.9 shows the RPIM-EXP
shape functions. The shape parameters are ac=0.03, dcdd =0.5, and mbasis=0.
Figure 3.10 shows the RPIM-TPS shape functions. The shape parameters
are =4.001 and mbasis=0.

Appendix 3.5 lists a sample output of RPIM-MQ result from this
program for the sampling point at xT=[0.2, 0.4]. From this appendix, we can
observe that RPIM shape function satisfy the partitions of unity. As
discussed in Sub-section 3.2.2.1, however, Equation (3.91) may not be
satisfied exactly because there are always numerical truncation errors in the
computation of complex RBFs. The summation of shape functions is not
exact but approximate 1.0, as shown in Appendix 3.5.

Appendix 3.6 lists a sample output of RPIM-MQ for this same program
for the sampling point at xT=[0, 0]. This appendix shows that the RPIM
shape functions have the Kronecker delta function property. For example, ina
Appendix 3.6, at point xT=[0, 0] where node 13 is located, we have

13

13

1 13 ()13()
0 13 ()13

ii
13 (
13 (13 (

(3.122)

3. Meshfree shape function construction 91

This confirms numerically that that RPIM shape function possesses the t
Kronecker delta function property.

The distribution of and
xxx

 for the central node 13 along the line y=0

is plotted in Figure 3.11 and Figure 3.12.

Table 3.4. Coordinates of 25 field nodes shown in Figure 3.5

Node xIx yIyy Node xIx yIyy

1
2
3
4
5
6
7
8
9

10
11
12
13

-1
-1
-1
-1
-1

-0.5
-0.5
-0.5
-0.5
-0.5

0
0
0

1
0.5
0

-0.5
-1
1

0.5
0

-0.5
-1
1

0.5
0

14
15
16
17
18
19
20
21
22
23
24
25

0
0

0.5
0.5
0.5
0.5
0.5
1
1
1
1
1

-0.5
-1
1

0.5
0

-0.5
-1
1

0.5
0

-0.5
-1

x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

(-1, 0) (1, 0)

(0, 1)

(0, 1)

Figure 3.5. A total of 25 regularly distributed field nodes used to compute MFree shape
functions.

92 Chapter 3

2) The effect of shape parameters

The effects of shape parameters of RBFs are examined by plotting thef
shape function for the central node 13 along the line of y=0.

Figure 3.13 shows the RPIM-MQ shape functions for different
parameters of q= 0.5, q=0.5 and qd =1.03. It is found that there is a little
difference in the shapes of the shape functions for different q values.

Figure 3.14 shows the RPIM-EXP shape functions for different
parameters of c =0.03, c =0.1 and c =0.3. It is found that a small c leads
to a large negative value for the shape functions.

Figure 3.15 shows the RPIM-TPS shape functions for different
parameters of =4.001, =5.001 and =6.001. It is found that there is a
little difference in shape functions for different values.

The RPIM shape functions with different terms polynomial augmentation
of mbasis=0 and 3 are also obtained. It is found that the effect of mbasis on
the shape of shape functions is insignificant. Therefore, figures of different
mbasis are not plotted here.

Figure 3.6. RPIM shape function for node 13 at point xT=[0, 0] obtained using 25 nodes
shown in Figure 3.5 (MQ-RBF is used with shape parameters of 0.5q , 2.0c ,

0.5cdc , and 0 .).

3. Meshfree shape function construction 93

Figure 3.7. The first-order derivative of the RPIM shape function for node 13 at xT=[0, 0]
obtained using 25 nodes shown in Figure 3.5 in the support domain (MQ-RBF is used with

shape parameters of 0.5q , 2.0c , 0.5cdc , and 0mbasis .).

Figure 3.8. The second-order derivative of the RPIM shape function for node 13 at xT=[0, 0]
obtained using 25 nodes shown in Figure 3.5 in the support domain (MQ-RBF is used with

shape parameters of 0.5 , 2.0c , 0.5cdc , and 0 .).

94 Chapter 3

Figure 3.9. RPIM shape function for node 13 at xT=[0, 0] obtained using 25 nodes shown in
Figure 3.5 (EXP-RBF is used with shape parameters of 0.03c , 0.5cdc and

0mbasis .).

Figure 3.10. RPIM shape functions for xT=[0, 0] obtained using 25 nodes shown in Figure
3.5 (TPS-RBF is used with shape parameters of 4.001t , and 0).

3. Meshfree shape function construction 95

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

MQ
EXP

TPS

x

Figure 3.11. RPIM shape functions for the node 13 at xT=[0,0] along the line of y=0 obtained
using different RBFs.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-6

-4

-2

0

2

4

6

TPS

MQEXP

x

xxx

(b)

Figure 3.12. The 1st derivatives of RPIM shape functions for the node 13 at xT=[0,0] along
the line of y=0 obtained using different RBFs.

96 Chapter 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q= -0.5

q=1.03

q=0.5

x

Figure 3.13. RPIM-MQ shape function for node 13 at xT=[0,0] along the line of
y=0 obtained using different q

(in MQ-RBF, shape parameters. 2.0c , 0.5cdc , and 0).

Figure 3.14. RPIM-EXP shape function for node 13 at xT=[0,0] along the line of
y=0 obtained using different

(EXP-RBF with 0.5cdc , 0b).

0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8-1 - - - 0 1
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c =0.03

c =0.1c=0.3

x

3. Meshfree shape function construction 97

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

=5.001=4.001

=6.001

x

Figure 3.15. RPIM-TPS shape function for node 13 at xT=[0,0] along the line of y=0
obtained using different (TPS-RBF with 0).

3.3 MOVING LEAST SQUARES SHAPE FUNCTIONS

The moving least squares (MLS) approximation was devised by
mathematicians in data fitting and surface construction (Lancaster and
Salkausdas 1981; Cleveland 1993). It can be categorized as a method of
series representation of functions. An excellent description of the MLS
method can be found in a paper by Lancaster and Salkausdas (1981). The
MLS approximation is now widely used in MFree methods for constructing d
MFree shape functions.

3.3.1 Formulation of MLS shape functions

Consider an unknown scalar function of a field variable u(x) in the
domain, . The MLS approximation of u(x) is defined at x as

98 Chapter 3

T

1

() () () () ()T
m

h
j j

j

u (h p) () () () () () () () (T
j()()) p j () ()()()() (3.123)

where p(x) is the basis function of the spatial coordinates, xT=[x, y] for two-
dimensional problem, and m is the number of the basis functions. The basis
function p(x) is often built using monomials from the Pascal triangle to
ensure minimum completeness. In some special problems, enhancement
functions can, however, be added to the basis to improve the performance of
the MLS approximation. We use only pure polynomial bases in this book.

In Equation (3.123), a is a vector of coefficients given by

T
1 2() { () () ()}1 2 m() ()() ()1 2aT () { () () () { () () (() ()() ()) (1 2 (3.124)

Note that the coefficient vector a(x) in Equation (3.123) is a function of
x. The coefficients a can be obtained by minimizing the following weighted
discrete L2 norm.

T 2

1

()[() ()]T(
n

i i i)
i

J W ()[() ()T)))W ()[() ()[() (T
i i)[() ()[()[() ()[(() ()[() ()[() ()[() ()[(() ((3.125)

where n is the number of nodes in the support domain of x for which the
weight function () 0i) , and ui is the nodal parameter ofr u at x=xi.
Equation (3.125) is a functional, a weighted residual, that is constructed
using the approximated values and the nodal parameters of the unknown
field function. Because the number of nodes, n, used in the MLS
approximation is usually much larger than the number of unknown
coefficients, m, the approximated function, uh, does not pass through the
nodal values, as shown in Figure 3.16.

The stationarity of J with respect toJ a(x) gives

/ 0J (3.126)

which leads to the following set of linear relations.

A(x)a(x)=B(x)Us (3.127)

where sU is the vector that collects the nodal parameters of field function
for all the nodes in the support domain.

T
sU (3.128)

and A(x) is called the weighted moment matrix defined by

T

1
() () () ()T

n

i i i
i

() () () () (T
i i() () (() () () (A x() (3.129)

where

3. Meshfree shape function construction 99

iWi (x)= () i (3.130)

Figure 3.16. The approximate function uh(x(() and the nodal parameters ui in the MLS
approximation.

For a two-dimensional problem and using the linear basis (m=3) defined in
Equation (3.8), A is a symmetric 3 3 matrix that can be explicitly written as

T
3 3

1
() () () ()T

n

i i i
i

A x3 3 () () () () () () (T
i i() () (() () () (

1()W 1()1

1 21 11x11 x y21 1 2 2
2 2
1 2

x x x y W x x x y2 2
1 21 2

W (1 1 1 1 2 2 2 2 2x x x y W x x x yx x x y W1 1 1 11 1 1 2 2 2 22 2 2()2 x x x y2)x x x yx x x yx x x yx x x y2 W (W (
2 2

1 1 1 1 2 2 2 2y1 1 11 y2 2 22
2 2
1 2y x y y1 1 11 1 y x y y2 2 22 2

2

()nW ()n)
1 n nx y

2
n n

x x x y2
nn

W (n n n nx x x yn n nn n nx x x y2

2
n n n nyn n nn n

2
ny x y yn n nn n

(3 3)

n n n

Wi iy Wi iiW
1 1 1i i i1 111 11

n n n

Wi i ix y Wi i ii iW
1 1 1i i i1 111 11

2
n n n

y W22W2
iy Wi ii

1i i i1 111 1 1i 1 111 11
i ii i

W WWi i ii iW xWxWi i iii iW WW

2W WW2
i i i ii ixW x Wx W2
i i i ii ii iW WW2

y W x y Wx y WW WWy W x y Wx y Wi i i i ii i ii i ii i i i ii i iyi i i i ii i i

2

2

(3.131)

xi0

ui

x

uh(x)

uh(xi)ii

100 Chapter 3

The matrix B in Equation (3.127) is defined as

B(x)=[1W1 (x)p(x1) 2W2 (x)p(x2) … nWn (x)p(xn)] (3.132)

which is a 3 n matrix, and can be expressed explicitly as

B3 n(x)
1 11 1

()()()W () ()()()()1() () (1 n)W x W x W() () ()1)()W () ()()()() xW (1 2 2()()1 2 2()()()1 2 2) nxx

1 2y y1 2y y1 2y yyyy1 2 nynyy
)1 () (1 ((

(3)

W W W1 21 2 nW W W1 2 n

W W W
W W W1 2

1 1 2 2 n nx W x W x W1 1 2 21 2 n nW W W
W W W1 1 2 2 n ny W y W y W1 1 2 21 2 n ny W y W y W

(3.133)

Solving Equation (3.127) for a(x), we have
1() () ()1() () () sa x A x B x U() () ()) () (1 (3.134)

Substituting the above equation back into Equation (3.123), we obtain

T

1

() ()T()
n

h
i i s() ()()

i

()()u ()))((((()) U)) (3.135)

where (x) is the vector of MLS shape functions corresponding n nodes in
the support domain of the point x, and can be written as,

T T 1
1 2 (1)

1 3 33 3

() () ()T 1(n
n

1 2
33 3 3

p(1)() () () () () () (T 1
(1)) n1 2() ()() ()) (1 21 ()() ()() ()) (1 21 2 (3.136)

The shape function i(x) for the ith node is defined by

1

1

()(() ())1()
m

i j j() ()(() ()) i
j

i ()(() ()(() (1()(() ()(() ()) T 1)1
ip x A BT ()()(1 (3.137)

Note that the WLS formulation mentioned in Sub-section 3.2.1.2 is very
similar to the MLS formulation. In the MLS, the coefficient a is the function
of x which makes the approximation of weighted least squares move
continuously. Therefore, the MLS shape function will be continuous in the
entire global domain, as long as the weight functions are chosen properly.
This global continuity feature is preferred in the MFree global weak-form
methods (Chapter 4). In WLS, however, because the coefficient a in
Equation (3.32) is the constant, the WLS shape functions are piecewise
continuous, as discussed in Section 3.2.1.2. The WLS approximation can be
viewed as a special form of the MLS approximation.

3. Meshfree shape function construction 101

For the convenience in obtaining the partial derivatives of the shape
functions, Equation (3.136) is re-written as (Belytschko et al. 1996b)

T T() () ()T) () ((3.138)

where
T T 1p ATT (3.139)

Since A is symmetric, (x) can be obtained from Equation (3.139)

A p (3.140)

The partial derivatives of can then be obtained by solving the following
equations.

, , ,i i i, ,,A p Aii,i (3.141)

, ()ij ij i j j i ij, , , , , ,, , , , ,, , , , ,, , ,A (ij, ((ij ((3.142)

,

,

(

)
ijk ijk i jk j ik k ij ij k, , , , , , , , ,, , , , , , , ,

ik j jk i ijk, , , ,, , ,

ijk i jk j ik k ijijk i jk j ik k ij

ik j jk ijk i

A A(ijkijk, ((ijkijk (A A A
A A A

(3.143)

where i, j and k denote coordinatesk x and y, and a comma designates a partial
derivative with respect to the indicated spatial coordinate that follows. The
partial derivatives of the shape function can be obtained using the
following expressions.

T T T
, , ,i i, ,,

T
i

T
,i B (3.144)

T T T T T
,ij ij i j j i ij, , , , , ,, , , , ,

T T TT T
ij i j j ii j j i

T
,ij B (3.145)

T T T T
,

T T T T
,

ijk ijk ij k ik j jk i, , , , , , ,, , , , , ,

i jk j ik k ij ijk, , , , , ,, , , , ,

TT
ijk ij k ik jij k ik j

T T TT T
i jk j ik k ijj ik k ij

TT
,ijk B

B
(3.146)

In the MLS approximation, a support domain, defined in Equation (3.1),
can be formed for any point of interest. Field nodes included in this support
domain are used to perform the MLS approximation for the unknown function
at this point. The number of nodes, n, chosen in the support domain, should be
sufficient to ensure that the matrix A in Equation (3.134) is invertible, so as toA
provide the interpolation stability (Condition 2 in Sub-section 3.1.1). The
choice of n depends on the nodal distribution and the number of basis
functions, m. In order to ensure the existence of 1A and a well-conditioned
A, we usually let n m . Unfortunately, there is no theoretical best value of
n, and it has to be determined by numerical experiments.

102 Chapter 3

3.3.2 Choice of the weight function

Equation (3.137) shows that the continuity of the MLS shape function
is governed by the continuity of the basis function p as well as the
smoothness of the matrices A and B. The latter is governed by the
smoothness of the weight function. Therefore, the weight function plays an
important role in the performance of the MLS approximation. In the
reported studies so far, ()i is always chosen to have the following
properties.

 () 0i) within the support domain

 () 0i) outside the support domain

 ()i monotonically decreases from the point of
interest at x

 ()i is sufficient smooth, especially on the
boundary of s

(3.147)

The last condition in Equation (3.147) is to ensure a smooth inclusion and
exclusion of nodes when the support domain moves, so as to guarantee the
compatibility of the MLS shape function in the entire problem domain.

The choice of the weight function is more or less arbitrary as long as the
requirements in Equation (3.147) are met. The exponential function and
spline functions are often used in practice. Among them, the most
commonly used weight functions are listed below.

The cubic spline function (W1) has the following form of
2 3

2 3

2 /3 4 42

() 4 / 3 4 4 2

0

i i4

i i() i i

r4 i4

W r r r() 4 / 3 4 4 4 / 34 2
i () 4 / 3 4 i4 / 3

44 2

4 /3 4 444 4 24 /3 4

0.5

0.5 1

1

i

i

i

ri

ri

(3.148)

which has 2nd order continuity (see, e.g., GR Liu and Liu, 2003).

The quartic spline function (W2) is given by
2 3 41 6 2 33

()
0

i i i8 38
i

r3 i8 38Wi
6 2 3888 388 1

1
i

i

ri

ri

(3.149)

which has 3rd order continuity (see, e.g., GR Liu and Liu, 2003).

The exponential function (W3) is expressed as

3. Meshfree shape function construction 103

2(/)
()

0

i

i
eWi

1

1
i

i

ri

ri

(3.150)

Where is a constant of shape parameter, and

ii
i

w w

diri r rw w

x x
(3.151)

in which didd =|x xi| is the distance from node xi to the sampling point x,
and rwrr is the size of the support domain for the weight function.

As the derivatives of all orders of W3 are continuous within the support f
domain, it is continuous at all orders within the interior of the support
domain. However, all the derivatives even the functions itself are not
exactly zero on the boundary of the support domain. Therefore,
theoretically, W3 cannot provide compatibility of any order. Fortunately,
these non-zero values of the function and its derivatives are very small on aa
the boundary of the support domain. In practical numerical analyses, W3
provides very high order compatibility with a very small numerical error,
provided the support domain is sufficiently large.

Figure 3.17 plots all these three weight functions and their first
derivatives.

Note that it is easy to construct a weight function with a desired order of
continuity using the following common formulation (see, e.g., GR Liu and
Liu, 2003) of spline weight function.

0

1
()

0 1

l
j

j i i
ji

i

b r r0j
j iWi (3.152)

where l is the order of the spline function, andl bjb are the coefficients that can
be determined by the required conditions.

For example, a 4th order spline function can be written in the general
form of

2 3 4
0 1 2 3 4 0 1

()
10

ii2 3 42 3

i

i

b b r b rb b r2 333
0 1 2 3 41 2 3 i2 3 42 32 3

Wi

ri

b r b r b rb r b r b r2 33
1 2 31 2 31 2 32 32 32 32 3

(3.153)

104 Chapter 3

x
-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.80 1

0

0.2

0.4

0.6

0.8

1

W W 2

W 3

W 1

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

x

W1

W2
W3

dx
dW

(b)

Figure 3.17. Weight functions and their first order derivatives. W1: cubic spline; W2:
quartic spline; W3: exponential function (=0.3).

(a) weight functions; (b) the first order derivatives.

We now require the weight function to satisfy the following conditions.

Unity condition states that the weight function is one at the centre of
the support domain where 0iri :

3. Meshfree shape function construction 105

0
1

i
i ri

Wi (3.154)

Compact support condition states that 1st and 2t nd derivatives of thed
weight function are all zero at the boundary of the support domain
where 1iri . This compact support condition leads to the following
set of equations.

1

1

2

2
1

0

0

0

i

i

i

i ri

i

ri

i

ri

Wi

Wi

r

Wi

r

(3.155)

The condition of symmetry states that the 1st derivative of the weightt
function is zero at the centre of the support domain where 0iri . The
condition of symmetry gives the following equation.

0

0
i

i

ri

Wi

r (3.156)

Using Equations (3.154), (3.155) and (3.156), we can obtain the following
set of equations.

0

0

1

1

2

2
1

1

0

0

0

0

i

i

i

i

i

i ri

i

ri

i ri

i

ri

i

ri

Wi

Wi

r

Wi

Wi

r

Wi

r

or

0

1

0 1 2 3 4

1 2 3 4

2 3 4

1
0

0
02 3 4

2 6 12 02 3 4

b0

b1

b b b b b0 1 2 3 41 2 3

b b b b1 2 3 43 42 3 42 32 3

b b b6 126 122 3 433

4b b b bb b b1 2 3 41 2 31 2 3

42 3 43 432 3 42 32 33

46 12126 3 4333

(3.157)

Solving the above set of equations for bi yields

106 Chapter 3

0

1

2

3

4

1
0

6
8

3

b0

b1

b2

b3

b4

(3.158)

Substituting these coefficients back into Equation (3.153), we obtain the
following weight function.

2 3 41 6 2 33

()
0

i i i8 38
i

r8 3 i8 38Wi
6 2 3888 388 0 1

1
i

iri
(3.159)

This is the quartic spline weight function (W2) given by Equation (3.149).

Similarly, any other spline weight function (with required order of
continuity and shape profile) can be constructed. Atluri et al. (1999b) also
mentioned a similar method for constructing the weight function. More
details on systematic ways to construct weight (smoothed) functions can be
found in GR Liu and Liu (2003) including the construction of piecewise
weight functions.

3.3.3 Properties of MLS shape functions

1) Consistency

By the definition, the consistency of the MFree shape functions is the
ability of the shape functions to reproduce the complete order of polynomial.
The consistency of the MLS approximation depends on the complete order
of the monomial employed in the polynomial basis. If the complete order of
monomial is k, the shape function will possess C kC consistency. This can bek

easily demonstrated (Krongauz and Belytschko, 1996; GR Liu, 2002) as
follows.

Consider a field given by

1

k

j j
j

u p k m, k, (3.160)

Such a given field can always be written in the form of

1
() () () () 0

k m

j j l
j l1 k

u()
1

()() ()() ()j jp j j() ()()() ()() ())) (() ()() ()) (()()()() (3.161)

If we let ai(x) = j(x), j=1,2, …, k, J in Equation (3.125) will vanish and itJ
will necessarily be a minimum, which leads to

3. Meshfree shape function construction 107

k
h

j j
j

uh (3.162)

This proves that any monomial included in the basis of MLS will be exactly
reproduced by the MLS approximation.

2) Reproduction

In the MFree method, the concept of reproduction is separated from thatf
of the consistency (GR Liu, 2002). This is because different types of basis
functions can be used in constructing MFree shape functions. Reproduction
is the ability of the shape function to reproduce functions that are in the basis
function used to construct the shape functions. The function may not be a
polynomial, such as the radial basis function (RBF) in the radial point
interpolation method (RPIM). However, consistency emphasizes the
reproducibility of complete order of polynomials. This is the mainf
difference between consistency and reproduction.

Similar to the demonstration of consistency, it can be proven that the
MLS approximation can reproduce exactly any function that appears in the
basis. This property will be very useful in the practical application. For ff
example, we know that there is a singular stress field near the tip of a crack.
If only the normal polynomial basis is used, the computational error will be
certainly very large. If we can enrich the basis by including a singular
functions into the basis, the reproduction property of MLS will ensure the
reproduction of the singular field. As results, the solution accuracy can be
significantly improved without too much additional cost (see, e.g.,
Belytschko et al., 1995a,b). Of course, one has to ensure that the weighted
moment matrix computed using Equation (3.129) is still invertible and well-
conditioned when these enriched basis functions are included, which can
otherwise be a problem sometimes.

3) Partitions of unity

If the constant is included in the basis, the MLS shape function i x is
of the partition of unity, i.e.,

n

i
i

1

1)((3.163)

This can be proven easily from the reproducibility feature of the MLS
approximation. Detailed discussions can be found in Sub-section 3.2.1.1.

4) Lack of Kronecker delta function property

The MLS approximation is obtained by a special least squares method.
As shown in Figure 3.16, the function obtained by the MLS approximation is

108 Chapter 3

a smooth curve (or surface) and it does not pass through the nodal values.
Therefore, the MLS shape functions given in Equation (3.137) do not, in
general, satisfy the Kronecker delta condition. Thus,

1
0i j ij

i j
i j

()i j() ij (3.164)

This property will be demonstrated later in the numerical examples.

3.3.4 Source code for the MLS shape function

3.3.4.1 Implementation issues

1) Determination of the support domain

As for the RPIM subroutine discussed in Sub-section 3.2.3, the
rectangular support domains are used. The dimension of the support domain
is determined by dsxd andx dsyd in the x and y directions, respectively, which are
given by Equation (3.114).

2) Determination of weight functions

As discussed above, the weight function plays an important role in the
performance of the MLS approximation. All weight functions discussed in
Section 3.3.2 can be used. In the program given here, the weight functions
of the cubic spline function (W1, Equation (3.148)) and the quartic spline
function (W2, Equation (3.149)), are included. Because the rectangular
support domains are used, the weight functions need to be slightly modified.
We define now

() () () () ()i i() x i()()ii y i() (() (i x i) () (ii yiW () () () () (() () () (i () ()() () (() (() () (() ()(()) () (()) () () ()() (() (()()) ((3.165)

where ixWix and iyWiy are any of the standard 1D weight functions in x and y
directions, respectively, given in Sub-section 3.3.2 with

i
ix

sx

x x
ri ds

(3.166)

i
iy

sy

y y
ri ds

(3.167)

When cubic spline weight function (W1) is used, we have

3. Meshfree shape function construction 109

2 3

2 3

2 / 3 4 42 0.5

() 4 / 3 4 4 4 / 3 0.5 12 3

0 1

ix ix4 ix

ix ix ix ix ix

ix

r r4 ix4 i

4 / 3 4 4 4 / 3 0 52 3W () 4 / 3 4 4 4 / 3 0.54 4 / 3 0.54 4 / 34 4 / 34 / 3

ri

44 2

4 / 3 4 4 4 / 3 0.54 4 / 3 0.54 4 4 / 3 0.52 34 4 / 34 4 / 34 / 3 (3.168)

2 3

2 3

2 / 3 4 42 0.5

() 4 / 3 4 4 4 / 3 0.5 12 3

0 1

iy iy iy

iy iy iy iy/ iy

iy

r r4 iy4 iy

4 / 3 4 4 4 / 3 0 52 3W () 4 / 3 4 4 4 / 3 0.54 4 / 3 0.54 4 / 34 4 / 34 / 3

riy

44 2

4 / 3 4 4 4 / 3 0.54 4 / 3 0.54 4 4 / 3 0.52 34 4 / 34 4 / 34 / 3 (3.169)

When the quartic spline weight function (W2) is used, we have

2 3 4 0 11 6 2 33

()
0 1

ixix ix ix8 38
ix

ix

r3 i8 38W (
ri

6 2 3888 388 (3.170)

2 3 4 0 11 6 8 32 33

()
0 1

iyiy iy iy8 38
iy

iy

r3 i8 38W (
riy

6 86 2 388888
(3.171)

3) Calculation of MLS shape function

The MLS shape function is given by Equation (3.137). If we use this
equation to calculate the MLS shape function, 1A has to be computed,
which is not efficient. In addition, the computation of derivatives of the
MLS shape function is quite complex. Hence, the recurrence formulation
presented in Equations (3.140)~(3.146) is often preferred and used in the
program.

First, Equation (3.140) is solved by a standard linear equation solver to
obtain .

Second, Equations (3.141)~(3.143) are solved to obtain derivatives of .

Third, Equations (3.138) and (3.144) ~ (3.146) are used to calculate the
MLS shape function and its derivatives.

This procedure avoids direct inversion 1A ; it is efficient to obtain
arbitrary order derivatives of the MLS shape function.

4) Flowchart of the subroutine

The flowchart of the subroutine of the MLS approximation is shown in
Figure 3.18.

110 Chapter 3

Input data

Compute the basis

Compute matrices
A, B

Compute and its
derivatives

Compute shape function
and its derivatives

Return

Figure 3.18. Flowchart of the program of MLS_ShapeFunc_2D.f90 for computing the MLS
shape functions.

MLS_ShapeFunc_2D

Calculate_Basis

Calculate_AB

GaussEqSolver_Sym

Weight_W1

Return

Figure 3.19. Macro flowchart for subroutine MLS_ShapeFunc_2D.

3. Meshfree shape function construction 111

3.3.4.2 Program and data structure
The main subroutine MLS_ShapeFunc_2D calls several sub-subroutines.

The macro chart for the MLS_ShapeFunc_2D can be seen in Figure 3.19.
The functions of these sub-subroutines are listed in Appendix 3.7. The
subroutine GaussEqSolver_Sym of a standard equation solver has been
given in Sub-section 3.2.3.2.

1) Subroutines Weight_W1 and Weight_W2

Source code location: Program 3.5 and Program 3.6.
Dummy arguments: Appendix 3.8.
Function: to compute the cubic spline function (W1) and the quartic

spline function (W2) given in Equations (3.165)~(3.171).

2) Subroutine Compute_Basis

Source code location: Program 3.7.
Dummy arguments: Appendix 3.9.
Function: to compute the basis function and its derivatives. In the current

program, the basis of Equation (3.12) is used. In fact, the user
can easily change the number of basis functions through the
control constant, mm, that is the number of monomials used in
the basis functions (i.e., mm is the m used in Equation (3.123)).

3) Subroutine Compute_AB

Source code location: Program 3.8.
Dummy arguments: Appendix 3.10.
Function: to compute matrices A and B those are given in Equations

(3.129) and (3.132).

4) Main Subroutine MLS_ShapeFunc_2D

Source code location: Program 3.9.
Dummy arguments: Appendix 3.11.
Function: to compute MLS shape functions and their derivatives for a two-

dimensional domain.

3.3.4.3 Examples of MLS shape functions

An example is presented to illustrate the properties of the MLS shape
function, and its derivative are computed using 25(5 5) nodes. These 25
nodes are regularly distributed in a rectangular domain: [1, 1]i and

[1, 1]iy [, as shown in Figure 3.5. Coordinates of these 25 nodes are
listed in Table 3.4. To evaluate and plot the shape function and its
derivatives, a resolution of 61 61 points is used.

112 Chapter 3

The main program listed in Program 3.10, is used to evaluate MLS shape
functions. In the listed source code, the number of monomials used in the
basis function, m, is 3. The user can easily change m to 6.

1) MLS shape functions and their derivatives

The program obtains the MLS shape functions and their derivatives at
these 61 61 points first using m=3 and the weight function W1. The MLS
shape functions and their derivatives x/ xx and / yyy for the central
node 13 (see Figure 3.5) are plotted in Figure 3.20~Figure 3.22. The and

x/ xx for the central node 13 along the line y=0 are plotted in Figure 3.23.
Appendix 3.12 lists a sample output for shape functions at the evaluation
point xT=[0, 0]. Appendix 3.12 confirms that MLS shape functions have the
following properties.

First, by adding up the values of i at all the 25 nodes, we can confirm the
fact that the MLS shape function is of a partition of unity, i.e.

1

() 1
n

i
i

i (3.172)

Figure 3.20. MLS shape function for node 13 at xT=[0, 0] obtained using 25
nodes shown in Figure 3.5.

3. Meshfree shape function construction 113

Figure 3.21. The first-order derivative of the MLS shape function for node 13 at xT=[0,
0] obtained using 25 nodes shown in Figure 3.5.

Figure 3.22. The second-order derivative of the MLS shape function for node 13 at xT=[0,
0] obtained using 25 nodes shown in Figure 3.5.

114 Chapter 3

Second, in Appendix 3.12, the point xT=[0, 0] is located at the field node
13. However, 13(x)=0.1467 1.0. The MLS shape functions do not satisfy
the Kronecker delta condition.

Third, although only the low order basis is used, the MLS shape functions
have high order continuity due to the use of the weight function. In this
example, although only the linear basis function (m=3) is used, the shape
function has higher order continuity. This fact is evident from the values of

i x/i xx that are not constants but very smoothly, as also shown in Figure
3.21. Note that even the 2nd derivatives 2 2

i x2 /i xx of the shape functions are
also smooth as shown in Figure 3.22.

2) Effect of weight functions

Weight functions W1 and W2 are used to construct the shape functions. d
Results of and x/ xx for the central field node 13 along a line y=0 are
plotted in Figure 3.23. This figure shows that the weight function will affect
the MLS shape function. When the order of basis is the same, the shape
function will inherit the continuity of the weight functions. Because thesef
two weight functions (W1 and W2) have different shapes and order of
continuities, the MLS shape functions of different weightf functions shown in
Figure 3.23 are clearly different.

3) Effect of the order of basis functions

MLS shape functions and their derivatives using linear basis function
(m=3) and the quadric basis function (m=6) are computed. Results for the
central node 13 along the line y=0 and different m are plotted in Figure 3.24.
The basis function affects the MLS shape function. When m becomes larger,
the 13(x=0) increases. If m=n=25, the 13(x=0)=1. In this case, the MLS
approximation will become an interpolation of passing nodal values, and the
MLS shape function will become the PIM shape function that possesses the
Kronecker delta property if the moment matrix A is invertible. Of course,
when m>n, the MLS approximation will fail because 1A will not exist.

3.4 INTERPOLATION ERROR USING MESHFREE
SHAPE FUNCTIONS

The MFree methods firstly depend upon the quality of MFree shape
functions. Hence, the interpolation errors using MFree shape functions are
examined through surface fitting operations for given functions.

3. Meshfree shape function construction 115

x

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Weight Func. W1
Weight Func. W2

(a)

xxx

x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Weight Func. W1

Weight Func. W2

(b)

Figure 3.23. Effects of weight functions on the MLS shape function of node 13 and its
derivative. The results are plotted along the line of y=0 using different weight functions. (a)

the shape function; (b) the first-order derivative of the shape function.

116 Chapter 3

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Basis number m=3

Basis number m=6

(a)

xxx

x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1

Basis number m=3

Basis number m=6

(b)

Figure 3.24. MLS shape functions of node 13 obtained using different numbers of basis
functions m=3 and m=6. The results are plotted along the line of y=0. (a) the shape function;

(b) the first-order derivative of the shape function.

3. Meshfree shape function construction 117

The MLS and RPIM shape functions are studied here as they will be used
to develop MFree methods in the following chapters. A domain of (x((,
y) [0,10] [0,10] is considered for the surface fitting. The domain is
represented by 11 11 uniformly distributed field nodes with a constant nodal
distance dcdd =1.0. A total of 100 points of (x((, y) [0.4, 9.4] [0.4, 9.4] with
distance h=1.0 are considered as interpolation points; they are intentionally
chosen not to coincide with the field nodes to obtain a fair assessment of the
fitting accuracy. In order to perform the interpolation for an interpolation
point, a rectangular local support domain is used. The dimension of the local
support domain is defined in Equation (3.114), in which the nodal spacing
dcxdd and dcydd in the x and y directions, respectively, are all set to 1.0.

The RPIM-MQ augmented with linear polynomials and the MLS
approximation using the linear basis and the cubic spline weight (W1)
function are investigated. The approximated value of the field function f(x(()
for each interpolation point x can be interpolated using the nodes in the
support domain and the shape functions. Let the approximated function be
denoted by () , we then have

1
() ()

n

s i i
i

f fi(F)F)) (3.173)

where i is the MLS or RPIM shape function, and n is the number of field
nodes used in the support domain. The Fs is the vector that collects the true
nodal function values (calculated analytically using the given function) for
these n field nodes, and fff is the function value for thef ith field node.

The derivatives of f(ff x) at an interpolation point x can also be
approximated using shape functions, i.e.,

() () n
i

s i
i i i1i

f fix
()ff

s
i i i 1xx x xx x1iii 1i

Fs (3.174)

The following norms are used as error indicators. The average fitting
errors of function values over the entire domain are defined as

1

1 N
i i

t
ii

fi fiet N fi
(3.175)

where N is the total number of interpolaN tion points in the entire domain, fff isf
the exact values of function, and ifi is the approximated values of function.
In this example, N=100 is used. NN

The average fitting error of the 1st derivative of the approximated (fitted)
function at the interpolation point i is defined as

118 Chapter 3

1

1 N
i i

t
i i

fi fiet N fi

f
(3.176)

where ifi is the exact value of the 1st derivative of the function, and ifi is
values of the 1st derivative of the approximated function.

3.4.1 Fitting of a planar surface

A two-dimensional plane is considered first. i.e.,

1 1.0f x y x y1(,),) (3.177)

It can be observed that both RPIM-MQ and MLS can exactly fit the plane to
the machine accuracy (1610). This confirms the linear reproduction
property of these shape functions. It should be mentioned here that the
surface fitting for the plane will have errors (510 ~ 710) if the linear
polynomial term is not included in the RPIM-MQ. This is because the
RPIM-MQ without the augment of a linear polynomial term cannot exactly
reproduce linear polynomials, only a good approximation.

3.4.2 Fitting of a complicated surface

The following non-polynomial surface is fitted using the RPIM-MQ and
MLS shape functions.

2
2 2) 1.5
10 10

f x y x2 (,) sin()cos(,) sin()cos(2
10

) (22) ())sin()cos()cos(sin((3.178)

1) Shape parameters of the RPIM-MQ

The effects of two shape parameters, q and c, in the MQ-RBF are first
studied. In the studies of shape parameters, s=3.5 is used for the support
domain.

In the study of q, c=1.0 is fixed. The average fitting errors et aret
obtained for different q and plotted in Figure 3.25. It can be found that the
interpolation quality changes with q. The fitting error decreases when q is in
the vicinity of 1.0, 2.0 and 3.0. However, if q=1.0, 2.0, and 3.0, the RPIM-
MQ will fail due to the singularity of the moment matrix. When q>3.0, the
error is also very large due to the badly conditioned moment matrix.

In addition, the condition number of interpolation matrix of RPIM
becomes larger as q approaches 1.0 or 2.0 or 3.0. The preferred value of
parameter q is 1.0q or 2.0 (but not equal 1.0 or 2.0, say, 0.98 or 1.03 or
1.99). This confirms the feature of the RPIM shape functions that more

3. Meshfree shape function construction 119

accurate fitting results are obtained when the moment matrix approaches (but
is not yet) singular. However, when q is too close to 1.0 or 2.0 where the
moment matrix is nearly singular, the results are not stable due to the badly
conditioned moment matrix. Therefore, in using RPIM shape functions, one
needs to keep a balance between accuracy and stability. Hence, q=0.98 or
1.03 is recommended for many problems (GR Liu, 2002).

The fitting errors using different c are plotted in Figure 3.26. In the
studies of c, q=0.5 is fixed. It can be found that a smaller c leads to a
larger interpolation error. The effect of ac is less than that of q.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

E
rro

r

q

q=1.0,
singular

q=2.0,
singular

q=3.0,
singular

Figure 3.25. Error et of surface fitting using RPIM-MQ shape functions with t
different q. (MQ-RBF is used with shape parameters: 1.0c , 1.0cx cyd dcx cd ;

the size of support domain is 3.5s , and 0m .).

2) Comparation studies of accuracy

The interpolation errors of MLS and RPIM-MQ are compared in Figure
3.27. From these two figures, the following conclusions can be drawn.

a) The accuracy in the fitted function itself is higher than that in the
derivatives. The higher the derivatives, the lower the accuracy.

b) Using the RPIM-MQ shape functions gives satisfactory accuracy in
the surface fitting. The fitting accuracy improves with the increase
of the size of the support domain. In addition, the shape parameters
of RBF chosen affect the fitting results. The fitting accuracy is
unstable sometimes when the moment matrix is too close to singular.

120 Chapter 3

c) MLS with linear basis is less accurate in this example. The increase
in the size of the support domain cannot improve the fitting results.
Lower accuracy in surface fitting is because the MLS shape
functions do no pass through the nodal values.

3) Convergence studies

In the convergence study, regularly and evenly distributed 36 (6 6), 121
(11 11), 441 (21 21), 961 (31 31), 1296 (36 36), 1681 (41 41), and 6561
(81 81), nodes are used. The convergence curves are numerically obtained
are plotted in Figure 3.28. Note that in Figure 3.28 h is in fact the nodal
spacing dcdd defined in Sub-section 3.1.2. To coincide with the common
definition of h-convergence, h is used here and in the following chapters in
the studies of h-convergence. The following remarks can be made from
Figure 3.28.

The accuracy of RPIM-MQ is higher than that of the MLS.
However, the convergent process of RPIM-MQ is not very stable
when finer nodes are used, although the accuracy is still much better
than that of MLS. Further tuning of the shape parameters are
necessary.
The MLS has very steady convergence for the surface fitting.

0 1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

Er
ro

r

c

Figure 3.26. Error et of surface fitting using RPIM-MQ for differentt c .
(MQ-RBF is used with shape parameters: 0.5q , 1.0cx cyd dcx c ; the

size of support domain of 3.5s , and 0m .).

3. Meshfree shape function construction 121

Figure 3.27. Error et in surface fitting using MLS and RPIM-MQ shape t
functions created using different size of support domains.

In MQ-RBF, 1.03q , 4c , 1.0cx cyd d , and 0 are used; In MLS,
the linear basis is used.

122 Chapter 3

Figure 3.28. Error et in surface fitting using MLS and RPIM-MQ shape functions.t
(In MQ-RBF, q=1.03, 4c , 1.0cx cyd d , 3.5s , and 0 are

used; In MLS, the linear basis is used)

It should be mentioned here that the interpolation error is only one part
of total error in an MFree method in solving a problem of computational
mechanics. The studies of shape parameters presented in this section are
only for checking the interpolation quality and the producibility of MLS and
RPIM shape functions. The accuracy will be also studied in the following
chapters in the analysing actual problems of computational mechanics.

3.5 REMARKS

In MFree methods, the first and one of the most important problems that
we face is the MFree function approximation. In contrast to the FEM, there
is no pre-defined element in MFree models that can be used in the function
approximation. One of the challenges in MFree methods is how to construct
shape functions efficiently without using any pre-defined relations between
nodes.

3. Meshfree shape function construction 123

This chapter presents a number of ways to meet this challenge. These
MFree shape functions possess the following important features.

Reproducibility: they are capable of reproducing what is contained in
the basis; this is essential and crucial for any numerical method to
produce accurate solutions.

Convergence: this allows the error of the approximation of a function
that is sufficiently smooth to approach zero when the nodal spacing is
sufficiently reduced.

None of these shape functions depends upon any fixed relation between
nodes. This brings freedom in the formulation of an MFree method. It is
also easy to construct an MFree shape function with high orders; this is
needed for the solution of high order PDEs. The MFree shape functions
reduce the effort spent in post-processing. Unfortunately, these freedoms
also lead to some challenging problems, for example, compatibility,
efficiency, and accuracy.

124 Chapter 3

APPENDIX

Appendix 3.1. Subroutines used in the program of RPIM_ShapeFunc_2D.f90

Subroutines Functions

RPIM_ShapeFunc_2D Compute the RPIM shape function and their
derivatives.

Compute_RadialBasis Compute the basis function vector and its
derivatives for a point.

GaussEqSolver_Sym Solve the linear symmetric equation using Gauss
elimination.

Appendix 3.2. Dummy arguments used in the subroutine RPIM_ShapeFunc_2D

Variable Type Usage Function

nx Integer Input Dimension of this problem; nx=2 for
2D problem

numnode Integer Input Number of field nodes

ndex Integer Input Number of field nodes in the support
domain

mbasis Integer Input Number of monomials used in the
augmented RBF

nRBF Integer Input Types of RBF. nRBF=1: MQ; FF
nRBF=2: Exp;FF nRBF=3: TSP

alfc Long real Input Shape parameter of RBF

q Long real Input Shape parameter of RBF

dc Long real Input Nodal spacing

X(nx,
numnode)

Long real Input Coordinates x and x y for all field
nodes. x(1,i)=x= i; x(2,i)=y= i

Gpos(nx) Long real Input Coordinates of the point of interest.
gposgg (1)=x= , gpos(2)=y=

3. Meshfree shape function construction 125

Nv(ndex) Integer Input Field nodes in the local support
domain

Phi(10,

ndex)

Long real Output RPIM shape functions and their
derivatives. phi(1,i)~ phi(10, i):

i,
x

i

xx
,

y
i

yy
,

2

2

x
i

xx
,

yx
i

yx yx

2
,

2

2

y
i

yy

3

3

x
i

xx
,

yx
i

yx yx 2

3
,

2

3

yx
i

yx yx
,

3

3

y
i

yy

Appendix 3.3. Dummy arguments used in the subroutine Compute_RadialBasis

Variable Type Usage Function

ndex Integer Input Number of field nodes used in the support
domain

mbasis Integer Input Number of monomials used in the augmented
RBF

nRBF Integer Input Types of RBF. nRBF=1: MQ;FF nRBF=2: Exp;FF
nRBF=3: TSPFF

alfc Long real Input Shape parameter of RBF

q Long real Input Shape parameter of RBF

dc Long real Input Nodal spacing

x, y Long real Input Coordinates of the point considered.

Xv(ndex) Long real Input Coordinates x andx y for field nodes in the
support domain.

Rk(10,
ndex)

Long real Output RBF and its derivatives. rk(1,i)~ rk(10,kk i):

Ri, iR
x
RR
xx

, iR
y
RR
yy

,
2

2
iR

xxx
,

2
iR

x yxx yy
,

2

2
iR

yyy
, …

Appendix 3.4. Dummy arguments used in the subroutine GaussEqSolver_Sym

Variable Type Usage Function

n Integer Input Number of linear equations.

ma Integer Input Number of rows of matrix A.

126 Chapter 3

A(ma, n) Long real Input Coefficient matrix of Ax=B.

B(n) Long real Input
Output

Right-hand side vector of Ax=B
when input. The solution when
output.

ep Long real Input Required tolerance

kwji Integer Output Control constant.
When there is a unique solution,
kwij=0; Else kwij=1

Appendix 3.5. An output sample of the shape function for node 13 evaluated at
point T {0.2,0.4}x using the subroutine RPIM_ShapeFunc_2D and
25 field nodes shown in Figure 3.5 * +

1.00029i
i

ii

* Phi: ii ; dPhidx: i

xxx
; dPhidy: i

y
i

yy
; dPhidxx:

2

2
i

xxx
; dPhidyy:

2

2
i

yyy
+ MQ-RBF is used with 0.5q , 2.0c , 0.5cdc and mbasis=0

3. Meshfree shape function construction 127

Appendix 3.6. An output sample of the shape function for node 13 evaluated at
point {0.,0.}Tx using the subroutine RPIM_ShapeFunc_2D and
25 field nodes shown in Figure 3.5* +

1.00000i
i

ii

* Phi: i ; dPhidx: i

xxx
; dPhidy: i

yyy
; dPhidxx:

2

2
i

xxx
; dPhidyy:

2

2
i

yyy
+ MQ-RBF is used with 0.5q , 2.0c , 0.5cdc and mbasis=0

Appendix 3.7. Subroutines used in the program of MLS_ShapeFunc_2D.f90

Subroutines Functions

MLS_ShapeFunc_2D Compute the MLS shape function and their
derivatives

Compute_Basis Compute the polynomial basis vector and its
derivatives at a given point

Compute_AB Compute A and B matrices in the MLS given in
Equations (3.131) and (3.133)

Weight_W1(or
Weight_W2)

Compute the cubic spline function (W1) (or the
quartic spline function, W2) defined in Equations
(3.148) and (3.149), respectively

GaussEqSolver_Sym Solve the linear symmetric equation using the
Gauss elimination method

128 Chapter 3

Appendix 3.8. Dummy arguments used in the subroutines Weight_W1 and
Weight_W2

Variable Type Usage Function

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

numnode Integer Input Number of field nodes

ndex Integer Input Number of field nodes used in the
support domain

Nv(ndex) Integer Input Field nodes in the support domain

Dif(ff nx,ndex) Long real Input Distances:
Ixxidif xxii ,

Iyyidif yyii

Ds(nx,
numnode)

Long real Input The size of the support domain:
ds(1,i)=dsxid , ds(2,i)=dsyid

W(ndex,10) Long real Output Weight function and its derivatives:
(,1) iW i W(,1) i ; (, 2) /iW i W x(, 2) / xx/ ;
(3) iW i W y(,3) /i / yy/ ; 2 2(,4) /i xW (,4) 22 xx/2

2() iW i W x y(,5) /i /2 x yx y/2 ; 2 2(6) iW yW i W(,6) i
22 yy/2

Appendix 3.9. Dummy arguments used in the subroutine Compute_Basis

Variable Type Usage Function

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

mm Integer Input Number of monomials used in the basis

Gpos(nx) Long real Input Coordinates of the point of interest:
xgpos)1(, ygpos)2(

Gp(mm, 10)0 Long real Output Basis function and its derivatives:
gp(1,1)~(6,1)=pT={1,x, y,xy,x2,y2};
gp(1,2)~(6,2)= T)(

xxx
p ={0,1,0,y,2x,0};

gp(1,3)~(6,3)= T)(
yyy
p ={0,0,1,x,0,2y2 };

……

3. Meshfree shape function construction 129

Appendix 3.10. Dummy arguments used in the subroutine Compute_AB

Variable Type Usage Function

nx Integer Input Dimension of this problem; nx=2 for
2D problem

numnode Integer Input Number of field nodes

ndex Integer Input Number of field nodes in the support
domain

mm Integer Input Number of monomials used in the
basis

X(nx, numnode) Long
real

Input x and y coordinates for all field nodes:
x(1, i)=x= i; x(2, i)=y= i

Gpos(nx) Long
real

Input Coordinates of the point of interest:
xgpos)1(, ygpos)2(

Nv(ndex) Integer Input Field nodes used in the support
domain

Ds(nx, numnode) Long
real

Input The dimension of the support domain:
ds(1,i)=dsxid , ds(2,i)=dsyid

A(mm,mm,10) Long
real

Output A matrix and its derivatives:
A(i, j,1)~ A(i,j,10) are

Aij, ijx
)(

xx
A ,

ijy
)(

yy
A ,

ijx
)(2

2

xx
A ,

B(mm,mm,10) Long
real

Output B matrix and its derivatives:
B(i, j,1)~ B(i,j,10) are
Bij, ijx

)(
xx
B ,

ijy
)(

yy
B ,

ijx
)(2

2

xx
B ,

Appendix 3.11. Dummy arguments used in the subroutine MLS_ShapeFunc_2D

Variable Type Usage Function

nx Integer Input Dimension of this problem; nx=2 for 2D
problem

numnode Integer Input Number of field nodes

ndex Integer Input Number of field nodes in the support
domain

130 Chapter 3

mm Integer Input Number of monomials used in the basis

x(nx,
numnode)

Long real Input x and y coordinates for all field nodes:
x(1, i)=x= i; x(2 ,i)=y= i

Gpos(nx) Long real Input Coordinates of the point of interest:
xgpos)1(, ygpos)2(

Nv(ndex) Integer Input Field nodes used in the support domain

Ds(nx,
numnode)

Long real Input The dimension of the support domain:
ds(1,i)=dsxid , ds(2,i)=dsyid

Phi(10,
ndex)

Long real Output MLS shape functions and their
derivatives.

 Appendix 3.12. An output sample of the shape function for node 13 evaluated at
point T {0,0}x using the subroutine MLS_ShapeFunc_2D, 25 field
nodes shown in Figure 3.5, and weight function W1 and mm=3*

1.000000i
i

ii

* Phi: i ; dPhidx: i

x
i

xx
; dPhidy: i

yyy
; dPhidxx:

2

2
i

xxx
; dPhidyy: 2

2
i

y
i

yy

3. Meshfree shape function construction 131

COMPUTER PROGRAMS

Program 3.1. Source code of Subroutine RPIM_ShapeFunc_2D

 SUBROUTINE RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)
!--
! Compute RPIM shape functions and their derivatives
! Input--gpos,x,nv,ds,alfc,dc,q,nx,numnode,ndex,mm,nRBF,nbasis
! nRBF=1: MQ; 2: EXP; 3: TSP
! Output--phi
! From 1 to 10 of the two dimension of phi denotes
! phi,dphix,dphiy,dphixx,dphixy,dphiyy
! dphidxxx,dphidxxy, dphidxyy, dphidyyy
!--

implicit real*8 (a-h,o-z)
 dimension gpos(nx),x(nx,numnode),nv(ndex),rk(ndex+mbasis)
 dimension phi(10,ndex),xv(nx,ndex),rr(10,ndex+mbasis)
 dimension a(ndex+mbasis,ndex+mbasis),g0(ndex+mbasis,ndex+mbasis)

if(nrbf.eq.1) then
 rc=alfc*dc ! For MQ;

endif
if(nrbf.eq.2) then

q=alfc/dc/dc ! For EXP;
 endif
 ep=1.d-20
 mg=ndex+mbasis
 do i=1,mg
 do j=1,mg

g0(i,j)=0.
enddo

enddo
 do i=1,ndex
 nn=nv(i)
 xv(1,i)=x(1,nn)
 xv(2,i)=x(2,nn)

enddo
! ****************** Assemble the matrix of G0
 do i=1,ndex
 nn=nv(i)
 call Compute_RadialBasis(x(1,nn),x(2,nn),xv,rr,ndex,rc,q,nRBF,mbasis)
 do j=1,ndex

g0(i,j)=rr(1,j)
 enddo
 if(mbasis.gt.0) then

g0(i,ndex+1)=1.
g0(i,ndex+2)=x(1,nn)
g0(i,ndex+3)=x(2,nn)
g0(ndex+1,i)=1.
g0(ndex+2,i)=x(1,nn)
g0(ndex+3,i)=x(2,nn)

endif
enddo

! ****************** Solve linear equation to obtain shape function
 do i=1,mg
 do j=1,mg
 a(i,j)=g0(i,j)

enddo

132 Chapter 3

enddo
 call Compute_RadialBasis(gpos(1),gpos(2),xv,rr,ndex,rc,q,nRBF,mbasis)

 do i=1,mg
 rk(i)=rr(1,i)

enddo
 call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
 if(kwji.eq.1) then
 write(*,*)'Fail...'

pause
 endif
 do i=1,ndex
 phi(1,i)=rk(i)

enddo

! ****************** Solve linear equation to obtain dphidx
 do i=1,mg
 do j=1,mg
 a(i,j)=g0(i,j)

enddo
enddo

 do i=1,mg
 rk(i)=rr(2,i)
 enddo
 call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
 do i=1,ndex

phi(2,i)=rk(i)
 enddo

! ****************** Solve linear equation to obtain dphidy
 do i=1,mg
 do j=1,mg
 a(i,j)=g0(i,j)

enddo
enddo

 do i=1,mg
 rk(i)=rr(3,i)

enddo
 call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
 do i=1,ndex

phi(3,i)=rk(i)
enddo

! ****************** Solve linear equation to obtain dphidxx
 do i=1,mg
 do j=1,mg
 a(i,j)=g0(i,j)
 enddo

enddo
 do i=1,mg
 rk(i)=rr(4,i)

enddo
 call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
 do i=1,ndex

phi(4,i)=rk(i)
enddo

! ****************** Solve linear equation to obtain dphidxy
 do i=1,mg
 do j=1,mg
 a(i,j)=g0(i,j)
 enddo
 enddo
 do i=1,mg
 rk(i)=rr(5,i)
 enddo
 call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
 do i=1,ndex

phi(5,i)=rk(i)

3. Meshfree shape function construction 133

enddo

! ****************** Solve linear equation to obtain dphidyy
 do i=1,mg
 do j=1,mg
 a(i,j)=g0(i,j)
 enddo
 enddo
 do i=1,mg
 rk(i)=rr(6,i)
 enddo
 call GaussEqSolver_Sym(mg,mg,a,rk,ep,kwji)
 do i=1,ndex

phi(6,i)=rk(i)
enddo

 return
END

Program 3.2. Source code of Subroutine Compute_RadialBasis

 SUBROUTINE Compute_RadialBasis(x,y,xv,rk,ndex,R,q,nRBF,mbasis)
!--
! Compute radial basis after added linear polynomial.
! Input: x,y,xv[],ndex, r,q,nRBF,mbasis
! nRBF: 1: MQ; 2: Exp; 3: TPS
! Output--rk[10,ndex+mbasis]
! From 1 to 10 denotes
! r,drx,dry,drdxx,drdxy,drdyy
! drdxxx,drdxxy, drdxyy, drdyyy
!--

implicit real*8 (a-h,o-z)
 dimension xv(2,ndex),rk(10,ndex+mbasis)
 do i=1,ndex+mbasis
 do j=1,10
 rk(j,i)=0

enddo
enddo

 do 10 i=1,ndex
 rr2=(x-xv(1,i))**2+(y-xv(2,i))**2
 if(nRBF.eq.1) then ! MQ
 rk(1,i)=(rr2+R**2)**q
 rk(2,i)=2.*q*(rr2+R**2)**(q-1.)*(x-xv(1,i))
 rk(3,i)=2.*q*(rr2+R**2)**(q-1.)*(y-xv(2,i))
 rk(4,i)=2.*q*(rr2+R**2)**(q-1.)+4.*(q-1)*q* &
 (x-xv(1,i))**2*(rr2+R**2)**(q-2)
 rk(5,i)=4.*(q-1)*q*(x-xv(1,i))*(y-xv(2,i))* &
 (rr2+R**2)**(q-2)
 rk(6,i)=2.*q*(rr2+R**2)**(q-1.)+4.*q*(q-1)* &
 (y-xv(2,i))**2*(rr2+R**2)**(q-2)

endif

if(nRBF.eq.2) then ! EXP
 rk(1,i)=exp(-q*rr2)
 rk(2,i)=-2.*q*exp(-q*rr2)*(x-xv(1,i))
 rk(3,i)=-2.*q*exp(-q*rr2)*(y-xv(2,i))
 rk(4,i)=-2*q*exp(-q*(rr2))+4*q*q*(x-xv(1,i))**2*exp(-q*rr2)
 rk(5,i)=4.*q*q*exp(-q*(rr2))*(y-xv(2,i))*(x-xv(1,i))
 rk(6,i)=-2*q*exp(-q*(rr2))+4*q*q*(y-xv(2,i))**2*exp(-q*rr2)
 endif

 if(nRBF.eq.3) then ! TSP
 rk(1,i)=(rr2)**(0.5*q)

134 Chapter 3

 rk(2,i)=q*(x-xv(1,i))*(rr2)**(0.5*q-1)
 rk(3,i)=q*(y-xv(2,i))*(rr2)**(0.5*q-1)
 rk(4,i)=q*(rr2)**(0.5*q-1)+2.*q*(0.5*q-1)*(x-xv(1,i))**2*(rr2) &
 **(0.5*q-2)
 rk(5,i)=q*(0.5*q-1)*(x-xv(1,i))*(y-xv(2,i))*(rr2)**(0.5*q-2)
 rk(6,i)=q*(rr2)**(0.5*q-1)+2.*q*(0.5*q-1)*(y-xv(2,i))**2*(rr2) &
 **(0.5*q-2)

endif
10 continue

if(mbasis.gt.0) then
 rk(1,ndex+1)=1.
 rk(1,ndex+2)=x
 rk(1,ndex+3)=y
 rk(2,ndex+2)=1.
 rk(3,ndex+3)=1.
 endif
 return

END

Program 3.3. Source code of Subroutine GaussEqSolver_sym

 Subroutine GaussEqSolver_Sym(n,ma,a,b,ep,kwji)
!--
! Solve sysmmetric linear equation ax=b by using Gauss elimination.
! If kwji=1, no solution;if kwji=0,has solution
! Input--n,ma,a(ma,n),b(n),ep,
! Output--b,kwji
!--

implicit real*8 (a-h,o-z)
 dimension a(ma,n),b(n),m(n+1)
 do 10 i=1,n
10 m(i)=i
 do 120 k=1,n

p=0.0
 do 20 i=k,n
 do 20 j=k,n
 if(dabs(a(i,j)).gt.dabs(p)) then

p=a(i,j)
 io=i

jo=j
endif

20 continue
if(dabs(p)-ep) 30,30,35

30 kwji=1
 return
35 continue

if(jo.eq.k) go to 45
 do 40 i=1,n
 t=a(i,jo)
 a(i,jo)=a(i,k)
 a(i,k)=t
40 continue

j=m(k)
 m(k)=m(jo)
 m(jo)=j
45 if(io.eq.k) go to 55
 do 50 j=k,n
 t=a(io,j)
 a(io,j)=a(k,j)
 a(k,j)=t
50 continue
 t=b(io)
 b(io)=b(k)

b(k)=t
55 p=1./p

in=n-1
if(k.eq.n) go to 65

3. Meshfree shape function construction 135

 do 60 j=k,in
60 a(k,j+1)=a(k,j+1)*p
65 b(k)=b(k)*p

if(k.eq.n) go to 120
 do 80 i=k,in
 do 70 j=k,in
70 a(i+1,j+1)=a(i+1,j+1)-a(i+1,k)*a(k,j+1)
80 b(i+1)=b(i+1)-a(i+1,k)*b(k)
120 continue
 do 130 i1=2,n

i=n+1-i1
 do 130 j=i,in
130 b(i)=b(i)-a(i,j+1)*b(j+1)
 do 140 k=1,n

i=m(k)
140 a(1,i)=b(k)
 do 150 k=1,n
150 b(k)=a(1,k)
 kwji=0
 return

END

Program 3.4. Source code of main program of using RPIM subroutine
!--
! Main program for testing the RPIM shape function.
! Call Subroutine RPIM_ShapeFunc_2D().
! 25 field nodes (5X5) in domain [x,y]--[-1,1;-1,1].
! 61X61 sampling points are used to plot 2-D RPIM shape Func.
!--

implicit real*8 (a-h,o-z)
 parameter(nx=2,numnode=25)
 dimension x(nx,numnode),nv(numnode), gpos(nx),phi(10,numnode)
 open(2,file='phi.dat') ! Output file
 write(2,50)
 nRBF=1 ! Using MQ-RBF

q=0.5
alfc=2.0
dc=0.5

 mbasis=0 ! Number of basis
 xlength=2.

ylength=2.
 ndivx=4
 ndivy=4
 xstep=xlength/ndivx

ystep=ylength/ndivy
 nn=0
 do i=1,ndivx+1
 do j=1,ndivy+1
 nn=nn+1
 x(1,nn)=-1.+(i-1)*xstep !x coordinates of field nodes
 x(2,nn)=-1.+(j-1)*ystep !y coordinates of field nodes

enddo
enddo

 do i=1,numnode
 nv(i)=i ! Field nodes in support domain

enddo
 ndex=25
 nce=numnode/2+1 ! the node in the centre of 25 field nodes
 nm=61
 ste=2./(nm-1)
 do ix=1,nm
 do il1=1,numnode
 do il2=1,10

phi(il1,il2)=0
 enddo
 enddo

gpos(1)=-1.+ste*(ix-1)

136 Chapter 3

 do j=1,nm
 gpos(2)=-1.+ste*(j-1)

if((abs(gpos(1)).le.1).and.(abs(gpos(2)).le.1)) then
 call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)

else
endif

! ***********Output RPIM shape function
if((abs(gpos(1)).le.1.d-8).and.(abs(gpos(2)).le.1.d-8)) then

 do kk=1,ndex
 nd=nv(kk)
 write(2,100)nv(kk),x(1,nd),x(2,nd),phi(1,kk), &

phi(2,kk),phi(3,kk),phi(4,kk),phi(6,kk)
 enddo
 endif
 enddo
 enddo
 write(2,150)
50 format(1x,'Node', 5x,'x', 7x,'y', 8x,'Phi', 6x,'dPhidx', &
 5x,'dPhidy', 4x, 'dPhidxx', 4x,'dPhidyy',/,80('-'))
100 format(1x,i4, 2f8.3,5f11.5)
150 format(80('-'))

END

Program 3.5. Source code of Subroutine Weight_W1

 SUBROUTINE Weight_W1(dif,nv,ds,w,nx,ndex,numnode)
!--
! Cubic spline weight function
! input--dif,nv,ds,nx,ndex,numnode
! output--w
! from 1 to 10 column of w denotes w,dwdx,dwdy,dwdxx,dwdxy,dwdyy
!--
 implicit real*8 (a-h,o-z)
 dimension dif(nx,ndex),nv(numnode),ds(nx,numnode),w(ndex,10)
 ep=1.0e-20
 do 10 i=1,ndex
 nn=nv(i)
 difx=dif(1,i)
 dify=dif(2,i)

if(dabs(difx).le.ep) then
drdx=0.

else
 drdx=(difx/dabs(difx))/ds(1,nn)

end if
if (dabs(dify).le.ep) then

 drdy=0.
else

 drdy=(dify/dabs(dify))/ds(2,nn)
end if

 rx=dabs(dif(1,i))/ds(1,nn)
 ry=dabs(dif(2,i))/ds(2,nn)
 if(rx.gt.0.5) then
 wx=(4./3.)-4.*rx+4.*rx*rx-(4./3.)*rx*rx*rx
 dwxdx=(-4.+8.*rx-4.*rx*rx)*drdx
 dwxdxx=(8.-8.*rx)*drdx*drdx
 dwxdxxx=(-8.)*drdx*drdx*drdx
 else if(rx.le.0.5) then
 wx=(2./3.)-4.*rx*rx+4.*rx*rx*rx
 dwxdx=(-8.*rx+12.*rx*rx)*drdx
 dwxdxx=(-8.+24.*rx)*drdx*drdx
 dwxdxxx=(24.)*drdx*drdx*drdx

end if

3. Meshfree shape function construction 137

if(ry.gt.0.5) then
 wy=(4./3.)-4.*ry+4.*ry*ry-(4./3.)*ry*ry*ry
 dwydy=(-4.+8.*ry-4.*ry*ry)*drdy
 dwydyy=(8.-8.*ry)*drdy*drdy
 dwydyyy=(-8.)*drdy*drdy*drdy
 else if(ry.le.0.5) then
 wy=(2./3.)-4.*ry*ry+4.*ry*ry*ry
 dwydy=(-8.*ry+12.*ry*ry)*drdy
 dwydyy=(-8.+24.*ry)*drdy*drdy
 dwydyyy=(24.)*drdy*drdy*drdy
 end if
 w(i,1)=wx*wy
 w(i,2)=wy*dwxdx
 w(i,3)=wx*dwydy
 w(i,4)=wy*dwxdxx
 w(i,5)=dwxdx*dwydy
 w(i,6)=wx*dwydyy
 w(i,7)=wy*dwxdxxx
 w(i,8)=dwxdxx*dwydy
 w(i,9)=dwxdx*dwydyy
 w(i,10)=wx*dwydyyy
10 continue
 return

end

Program 3.6. Source code of Subroutine Weight_W2

 SUBROUTINE Weight_W2(dif,nv,ds,w,nx,ndex,numnode)
!--
! Quartic spline weight function
! input--dif,nv,ds,nx,ndex,numnode
! output--w
! from 1 to 10 column of w denotes w,dwdx,dwdy,dwdxx,dwdxy,dwdyy
!--

implicit real*8 (a-h,o-z)
 dimension dif(nx,ndex),nv(numnode),ds(nx,numnode),w(ndex,10)
 ep=1.0e-20
 do 10 i=1,ndex
 nn=nv(i)
 difx=dif(1,i)
 dify=dif(2,i)
 if(dabs(difx).le.ep) then
 drdx=0.

else
 drdx=(difx/dabs(difx))/ds(1,nn)

end if
if (dabs(dify).le.ep) then

 drdy=0.
else

 drdy=(dify/dabs(dify))/ds(2,nn)
end if

 rx=dabs(dif(1,i))/ds(1,nn)
 ry=dabs(dif(2,i))/ds(2,nn)
 wx=1.-6.*rx*rx+8.*rx*rx*rx-3.*rx*rx*rx*rx
 dwxdx=(-12.*rx+24.*rx*rx-12.*rx*rx*rx)*drdx
 dwxdxx=(-12.+48.*rx-36.*rx*rx)/(ds(1,nn)*ds(1,nn))
 dwxdxxx=(48.-72*rx)*drdx**3
 wy=1.-6.*ry*ry+8.*ry*ry*ry-3.*ry*ry*ry*ry
 dwydy=(-12.*ry+24.*ry*ry-12.*ry*ry*ry)*drdy
 dwydyy=(-12.+48.*ry-36.*ry*ry)/(ds(2,nn)*ds(2,nn))
 dwydyyy=(48.-72*ry)*drdy**3
 w(i,1)=wx*wy
 w(i,2)=wy*dwxdx
 w(i,3)=wx*dwydy

138 Chapter 3

 w(i,4)=wy*dwxdxx
 w(i,5)=dwxdx*dwydy
 w(i,6)=wx*dwydyy
 w(i,7)=wy*dwxdxxx
 w(i,8)=dwxdxx*dwydy
 w(i,9)=dwxdx*dwydyy
 w(i,10)=wx*dwydyyy
10 continue
 return
 end

Program 3.7. Source code of Subroutine Compute_Basis

 SUBROUTINE Compute_Basis(gpos,gp,nx,mm)
!--
! Compute basis functions and their derivatives
! Input-gpos,nx,mm
! Output-gp
! From 1 to 10 columns of gp: p,dpdx,dpdy,dpdxx,dpdxy,dpdyy,
! dpdxxx,dpdxxy,dpdxyy,dpdyyy
!--
 implicit real*8 (a-h,o-z)
 dimension gpos(nx),gp(10,mm)
 do i=1,mm
 do j=1,10

gp(i,j)=0.0
enddo

enddo
gp(1,1)=1.0
gp(1,2)=gpos(1)
gp(1,3)=gpos(2)
gp(1,4)=gpos(1)*gpos(1)
gp(1,5)=gpos(1)*gpos(2)
gp(1,6)=gpos(2)*gpos(2)
gp(2,2)=1.0
gp(2,4)=2.0*gpos(1)
gp(2,5)=gpos(2)
gp(3,3)=1.0
gp(3,5)=gpos(1)
gp(3,6)=2.0*gpos(2)
gp(4,4)=2.0
gp(5,5)=1.0
gp(6,6)=2.0

 return
end

Program 3.8. Source code of Subroutine Compute_AB

 SUBROUTINE Compute_AB(gpos,x,nv,ds,a,b,nx,numnode,ndex,mm)
!--
! Compute A matrix and B matrix and their derivatives
! input--gpos,x,nv,dm,nx,numnode,ndex,mm
! output--a,b
! From 1 to 10 of the third dimension of a denotes
! a,dax,day,daxx,daxy,dayy, dadxxx,dadxxy,dadxyy,dadyyy
! From 1 to 10 of the third dimension of b denotes
! b,dbx,dby,dbxx,dbxy,dbyy,dbdxxx,dbdxxy,dbdxyy,dbdyyy
!--

implicit real*8 (a-h,o-z)

3. Meshfree shape function construction 139

 dimension gpos(nx),x(nx,numnode),nv(numnode),ds(nx,numnode)
 dimension a(mm,mm,10),b(mm,ndex,10)
 dimension xv(nx,ndex),dif(nx,ndex),w(ndex,10),p(6,ndex),pp(mm,mm)

 do i=1,ndex
 nn=nv(i)
 xv(1,i)=x(1,nn)
 xv(2,i)=x(2,nn)

p(1,i)=1.0
p(2,i)=xv(1,i)
p(3,i)=xv(2,i)
p(4,i)=xv(1,i)*xv(1,i)
p(5,i)=xv(1,i)*xv(2,i)
p(6,i)=xv(2,i)*xv(2,i)

 dif(1,i)=gpos(1)-xv(1,i)
 dif(2,i)=gpos(2)-xv(2,i)

enddo
 call Weight_W1(dif,nv,ds,w,nx,ndex,numnode)
! ************* Compute b and its derivatives
 do 20 ii=1,mm
 do 20 jj=1,ndex
 do 20 kk=1,10
 b(ii,jj,kk)=p(ii,jj)*w(jj,kk)
20 continue
! ************* Compute a and its derivatives
 do 25 ie=1,mm
 do 25 je=1,mm
 do 25 ke=1,10
 a(ie,je,ke)=0.
25 continue
 do 30 iii=1,ndex
 do 40 ik=1,mm
 do 40 jk=1,mm
 pp(ik,jk)=p(ik,iii)*p(jk,iii)
40 continue
 do 50 ikk=1,mm
 do 50 jkk=1,mm
 do 50 kkk=1,10
 a(ikk,jkk,kkk)=a(ikk,jkk,kkk)+w(iii,kkk)*pp(ikk,jkk)
50 continue
30 continue
 return

end

Program 3.9. Source code of Subroutine MLS_ShapeFunc_2D()

 SUBROUTINE MLS_ShapeFunc_2D(gpos,x,nv,ds,phi,nx,numnode,ndex,mm)
!--
! Compute MLS shape functions and their derivatives
! Input--gpos,x,nv,ds,nx,numnode,ndex,mm
! Output--phi
! From 1 to 10 of the two dimension of phi denotes
! phi,dphix,dphiy,dphixx,dphixy,dphiyy
! dphidxxx,dphidxxy, dphidxyy, dphidyyy
!--

implicit real*8 (a-h,o-z)
 dimension gpos(nx),x(nx,numnode),nv(numnode)
 dimension ds(nx,numnode),xv(nx,ndex)
 dimension gp(10,mm),gam(mm,10),a(mm,mm,10)
 dimension b(mm,ndex,10),c(mm),aa(mm,mm),phi(10,ndex)
 do i1=1,mm
 do j1=1,10

gp(j1,i1)=0.0

140 Chapter 3

enddo
enddo

 call Compute_Basis(gpos,gp,nx,mm)
 call Compute_AB(gpos,x,nv,ds,a,b,nx,numnode,ndex,mm)
 ep=1.0e-20
 do 10 in=1,mm
 c(in)=gp(1,in)
10 continue
 do 20 i1=1,mm
 do 20 j1=1,mm
 aa(i1,j1)=a(i1,j1,1)
20 continue
 do i1=1,mm
 do j1=1,10
 gam(i1,j1)=0.0

enddo
enddo

! ************* Compute gam
 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
21 format(1x,' gam kwji=',i2)
 do 25 k1=1,mm

gam(k1,1)=c(k1)
25 continue
! ************* Compute dgamdx
 do 30 in=1,mm
 c(in)=0.
 do 30 jn=1,mm
 c(in)=c(in)+a(in,jn,2)*gam(jn,1)
30 continue
 do 35 kn=1,mm
 c(kn)=gp(2,kn)-c(kn)
35 continue
 do 40 i1=1,mm
 do 40 j1=1,mm
 aa(i1,j1)=a(i1,j1,1)
40 continue
 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do 45 k1=1,mm

gam(k1,2)=c(k1)
45 continue
! ************* Compute dgamdy
 do 50 in=1,mm
 c(in)=0.
 do 50 jn=1,mm
 c(in)=c(in)+a(in,jn,3)*gam(jn,1)
50 continue
 do 55 kn=1,mm
 c(kn)=gp(3,kn)-c(kn)
55 continue
 do 60 i1=1,mm
 do 60 j1=1,mm
 aa(i1,j1)=a(i1,j1,1)
60 continue
 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do 65 k1=1,mm

gam(k1,3)=c(k1)
65 continue
! ************* Compute dgamdxx
 do 70 in=1,mm
 c(in)=0.
 do 70 jn=1,mm
 c(in)=c(in)+a(in,jn,4)*gam(jn,1)+2.0*a(in,jn,2)*gam(jn,2)
70 continue
 do 75 kn=1,mm
 c(kn)=gp(4,kn)-c(kn)
75 continue
 do 80 i1=1,mm
 do 80 j1=1,mm

3. Meshfree shape function construction 141

 aa(i1,j1)=a(i1,j1,1)
80 continue
 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do 85 k1=1,mm

gam(k1,4)=c(k1)
85 continue
! ************* Compute dgamdxy
 do 90 in=1,mm
 c(in)=0.
 do 90 jn=1,mm
 c(in)=c(in)+a(in,jn,5)*gam(jn,1)+a(in,jn,2)*gam(jn,3)+ &
 a(in,jn,3)*gam(jn,2)
90 continue
 do 95 kn=1,mm
 c(kn)=gp(5,kn)-c(kn)
95 continue
 do 100 i1=1,mm
 do 100 j1=1,mm

 aa(i1,j1)=a(i1,j1,1)
100 continue
 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do 105 k1=1,mm

gam(k1,5)=c(k1)
105 continue

! ************* Compute dgamdyy

 do 110 in=1,mm
 c(in)=0.
 do 110 jn=1,mm
 c(in)=c(in)+a(in,jn,6)*gam(jn,1)+2.0*a(in,jn,3)*gam(jn,3)
110 continue
 do 115 kn=1,mm
 c(kn)=gp(6,kn)-c(kn)
115 continue
 do 120 i1=1,mm
 do 120 j1=1,mm
 aa(i1,j1)=a(i1,j1,1)
120 continue
 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do 125 k1=1,mm

gam(k1,6)=c(k1)
125 continue

! ************* Compute dgamdxxx
 do in=1,mm
 c(in)=0.
 do jn=1,mm
 c(in)=c(in)+a(in,jn,7)*gam(jn,1)+3*a(in,jn,4)*gam(jn,2)+ &
 3*a(in,jn,2)*gam(jn,4)

enddo
enddo

 do kn=1,mm
 c(kn)=gp(7,kn)-c(kn)

enddo

 do i1=1,mm
 do j1=1,mm
 aa(i1,j1)=a(i1,j1,1)
 enddo
 enddo

 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do k1=1,mm

gam(k1,7)=c(k1)
 enddo

! ************* Compute dgamdxxy

142 Chapter 3

 do in=1,mm
 c(in)=0.
 do jn=1,mm
 c(in)=c(in)+a(in,jn,8)*gam(jn,1)+ &
 a(in,jn,4)*gam(jn,3)+2*a(in,jn,5)*gam(jn,2)+ &
 2*a(in,jn,2)*gam(jn,5)+a(in,jn,3)*gam(jn,4)
 enddo
 enddo

 do kn=1,mm
 c(kn)=gp(8,kn)-c(kn)
 enddo

 do i1=1,mm
 do j1=1,mm
 aa(i1,j1)=a(i1,j1,1)

enddo
enddo

 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do k1=1,mm

gam(k1,8)=c(k1)
enddo

! ************* Compute dgamdxyy
 do in=1,mm
 c(in)=0.
 do jn=1,mm
 c(in)=c(in)+a(in,jn,9)*gam(jn,1)+ &
 a(in,jn,6)*gam(jn,2)+2*a(in,jn,5)*gam(jn,3)+ &
 2*a(in,jn,3)*gam(jn,5)+a(in,jn,2)*gam(jn,6)

enddo
enddo

 do kn=1,mm
 c(kn)=gp(9,kn)-c(kn)

enddo

 do i1=1,mm
 do j1=1,mm
 aa(i1,j1)=a(i1,j1,1)

enddo
enddo

 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do k1=1,mm

gam(k1,9)=c(k1)
 enddo
! ************* Compute dgamdyyy
 do in=1,mm
 c(in)=0.
 do jn=1,mm
 c(in)=c(in)+a(in,jn,10)*gam(jn,1)+ &
 3*a(in,jn,6)*gam(jn,3)+3*a(in,jn,3)*gam(jn,6)

enddo
enddo

 do kn=1,mm
 c(kn)=gp(10,kn)-c(kn)

enddo

 do i1=1,mm
 do j1=1,mm
 aa(i1,j1)=a(i1,j1,1)
 enddo
 enddo

 call GaussEqSolver_Sym(mm,mm,aa,c,ep,kwji)
 do k1=1,mm

gam(k1,10)=c(k1)
enddo

3. Meshfree shape function construction 143

!! ************* Compute Phi and their derivatives

 do 130 iph=1,ndex
 do iiii=1,10

phi(iiii,iph)=0.0
 enddo
 do 130 jph=1,mm

phi(1,iph)=phi(1,iph)+gam(jph,1)*b(jph,iph,1)
phi(2,iph)=phi(2,iph)+gam(jph,2)*b(jph,iph,1)+ &

gam(jph,1)*b(jph,iph,2)
phi(3,iph)=phi(3,iph)+gam(jph,3)*b(jph,iph,1)+ &

 gam(jph,1)*b(jph,iph,3)
 phi(4,iph)=phi(4,iph)+gam(jph,4)*b(jph,iph,1)+ &
 2.0*gam(jph,2)*b(jph,iph,2)+gam(jph,1)*b(jph,iph,4)
 phi(5,iph)=phi(5,iph)+gam(jph,5)*b(jph,iph,1)+ &
 gam(jph,2)*b(jph,iph,3)+gam(jph,3)*b(jph,iph,2)+ &
 gam(jph,1)*b(jph,iph,5)

phi(6,iph)=phi(6,iph)+gam(jph,6)*b(jph,iph,1)+ &
 2.0*gam(jph,3)*b(jph,iph,3)+gam(jph,1)*b(jph,iph,6)

phi(7,iph)=phi(7,iph)+gam(jph,7)*b(jph,iph,1)+ &
 3.0*gam(jph,4)*b(jph,iph,2)+3*gam(jph,2)*b(jph,iph,4)+ &

gam(jph,1)*b(jph,iph,7)
phi(8,iph)=phi(8,iph)+gam(jph,8)*b(jph,iph,1)+ &

 2.0*gam(jph,5)*b(jph,iph,2)+2*gam(jph,2)*b(jph,iph,5)+ &
gam(jph,1)*b(jph,iph,8)+gam(jph,4)*b(jph,iph,3)+ &
gam(jph,3)*b(jph,iph,4)

phi(9,iph)=phi(9,iph)+gam(jph,9)*b(jph,iph,1)+ &
 2.0*gam(jph,5)*b(jph,iph,3)+2*gam(jph,3)*b(jph,iph,5)+ &

gam(jph,1)*b(jph,iph,9)+gam(jph,6)*b(jph,iph,2)+ &
 gam(jph,2)*b(jph,iph,6)
 phi(10,iph)=phi(10,iph)+gam(jph,10)*b(jph,iph,1)+ &
 3.0*gam(jph,6)*b(jph,iph,3)+3*gam(jph,3)*b(jph,iph,6)+ &
 gam(jph,1)*b(jph,iph,10)
130 continue
 return

end

Program 3.10. Source code of main program of using MLS approximation

!--
! Main program for testing the MLS shape function.
! Call Subroutine MLS_ShapeFunc_2D().
! 25 field nodes (5X5) in domain [x,y]--[-1,1;-1,1].
! 61X61 interpolation points are used to plot 2-D MLS shape Func.
!--
 implicit real*8 (a-h,o-z)

parameter(nx=2,numnode=25)
 dimension x(nx,numnode),nv(numnode), gpos(nx)
 dimension phi(10,numnode),ds(nx,numnode)

 open(2,file='phi.dat') ! Output file
 write(2,50)
 mm=3 ! Number of basis
 xlength=2.

ylength=2.
 ndivx=4
 ndivy=4
 xstep=xlength/ndivx

ystep=ylength/ndivy
 nn=0
 do i=1,ndivx+1
 do j=1,ndivy+1

nn=nn+1
 x(1,nn)=-1.+(i-1)*xstep !x coordinates of field nodes

144 Chapter 3

 x(2,nn)=-1.+(j-1)*ystep !y coordinates of field nodes
enddo

enddo

 do i=1,numnode
 nv(i)=i
 ds(1,i)=0.
 ds(2,i)=0.

enddo
 ndex=25

 do j=1,numnode
 xn=x(1,j)

yn=x(2,j)
 rx0=abs(xn-1)

if(rx0.lt.abs(xn+1)) rx0=abs(xn+1)
 ry0=abs(yn-1)

if(ry0.lt.abs(yn+1)) ry0=abs(yn+1)
 ds(1,j)=rx0 ! rw for weight function (support domain)
 ds(2,j)=ry0
 enddo

 nce=numnode/2+1 ! the node in the centre of 25 field nodes
 nm=61
 ste=2./(nm-1)
 do ix=1,nm
 do il1=1,numnode
 do il2=1,10

phi(il1,il2)=0
enddo

 enddo
gpos(1)=-1.+ste*(ix-1)

 do j=1,nm
gpos(2)=-1.+ste*(j-1)
if((abs(gpos(1)).le.1).and.(abs(gpos(2)).le.1)) then

 call MLS_ShapeFunc_2D(gpos,x,nv,ds,phi,nx,numnode,ndex,mm)
 else

endif
! ***********Output MLS shape function

if((abs(gpos(1)).le.1.d-8).and.(abs(gpos(2)).le.1.d-8)) then
 do kk=1,ndex
 nd=nv(kk)
 write(2,100)nv(kk),x(1,nd),x(2,nd),phi(1,kk), &

phi(2,kk),phi(3,kk),phi(4,kk),phi(6,kk)
enddo

endif
enddo

enddo
 write(2,150)
50 format(1x,'Node', 5x,'x', 7x,'y', 8x,'Phi', 6x,'dPhidx', &
 5x,'dPhidy', 4x, 'dPhidxx', 4x,'dPhidyy',/,80('-'))
100 format(1x,i4, 2f8.3,5f11.5)
150 format(80('-'))
 end

Chapter 4

MESHFREE METHODS BASED ON GLOBAL
WEAK-FORMS

4 MFree methods based on global weak-forms

4.1 INTRODUCTION

MFree methods based on the global weak-form (or MFree global weak-
form methods) are usually based on the Galerkin weak-form defined over the
global problem domain, using locally supported MFree shape functions d
discussed in Chapter 3.

The first MFree global weak-form method was the diffuse element
method (DEM) proposed by Nayroles et al.(1992). In DEM, the MLS
approximation proposed by Lancaster and Salkauskas (1981) for surface
fitting was used to create the shape functions. The Galerkin weak-form over
the global problem domain is employed to construct the discretized system
equations.

In 1994, Belytschko et al. (1994a) proposed the element free Galerkin
(EFG) method in their important paper, in which the MLS approximation
was used in the Galerkin weak-form to establish a set of algebraic equations.
In the EFG method, the problem domain is represented by a set of properly
distributed nodes. The MLS approximation is used to construct shape
functions based only on a group of arbitrarily distributed nodes in a local
domain. A set of background cells are required to evaluate the integrals
resulted from the use of the Galerkin weak-form.

Belytschko and his colleagues have reported that the EFG method is very
accurate (Belytschko, et al, 1994a; 1996a), and the rate of convergence of

145

Chapter 4

the EFG method obtained from numerical tests is higher than that of FEM
(Belytschko, et al, 1994a). In addition, the irregularity of nodes does not
affect the performance of the EFG method (Belytschko, et al, 1994a). The
EFG method has been successfully applied to a large variety of problems
including two-dimensional (2-D) and three-dimensional (3-D) linear and
nonlinear elastic problems (Belytschko, et al, 1994a; Lu et al., 1994;
Belytschko et al., 1997; Jun, 1996; Chen and Guo, 2001), fracture and crack
growth problems (Belytschko, et al, 1994b; Belytschko, et al, 1995a, 1995b,
1995c; Krysl and Belytschko 1999; Lu et al., 1995), plate and shell
structures (Krysl and Belytschko, 1995; 1996; GR Liu and Chen, 2000, 2001;
Liu L and GR Liu et al., 2001, 2002a,b; Chen and GR Liu et al., 2001,2003;),
electromagnetic field problems (Cingoski et al., 1998), piezoelectric
structures (GR Liu and Dai et al., 2004, 2003), and so on. In addition,
techniques of coupling EFG method with FEM (Belytschko and Organ, 1995;
Hegen, 1996) and with BEM (GR Liu and Gu, 2000c, 2000d; Gu and GR
Liu, 2001b; 2003a) have also been proposed. All these applications and
extensions indicate that the EFG method is gradually becoming a mature and
practical computational approach in the area of computational mechanics,
thanks to the use of the MLS approximation to achieve stability in function
approximation, and use of Galerkin procedure to provide stable and well-
behaved discretized global system equations.

In developing the EFG method, the following issues have been or still are
under intensive study.

1) EFG shape functions constructed using the MLS approximation lack
the Kronecker delta function property. Special techniques are,
therefore, needed in the implementation of essential boundary
conditions. Several techniques have been developed to enforce
essential boundary conditions in EFG and will be discussed in Section
4.3.

2) Global numerical integrations are needed for calculating the system
matrices. Hence, a global background cell structure has to be used for
these integrations, so that the method is not truly meshless. The
issues in the global numerical integration of the EFG method have
been studied by some researchers. Beissel and Belytschko (1996)
have proposed a stabilized nodal integration procedure to avoid the
use of background cells

3) The EFG method is computationally more expensive than FEM. This
is because a) a set of algebraic equations has to be solved for each
sampling point to construct the MLS shape functions; b) the node
searching has to be performed during the construction of the MLS
shape functions; c) the resultant system matrix has, in general, a

146

4. Meshfree methods based on global weak-forms 147

larger bandwidth due to the fact that more nodes are used in the
construction of the MLS shape functions.

GR Liu and Gu (1999, 2001a) proposed the MFree point interpolation
methods (PIM) based on the Galerkin weak-form. In PIM, the problem
domain is represented by properly distributed nodes. The polynomial point
interpolation method (PIM) is used to construct shape functions based only
on a group of nodes arbitrarily distributed in a local domain. A global
background cell structure is required to evaluate the integrals in the Galerkin
weak-forms.

The main feature of PIM is that their shape functions possess Kronecker
delta function property. Essential boundary conditions can be easily
enforced as in FEM. However, in the polynomial PIM, the moment matrix
can be singular. Hence, a two-stage matrix triangularization algorithm
(MTA) is proposed to overcome this problem automatically excluding the
nodes and the terms of the polynomial basis used in the formation of the
moment matrix (Liu and Gu, 2003a). The MTA is a novel approach to solve
the problem of the singular moment matrix in the construction of PIM shape
functions. However, due to the incompatibile nature of the polynomial PIM
shape functions, the PIM based on the Galerkin weak-form is not robust for
irregular nodal distributions, especially when too many nodes are used in the
local support domain resulting in too high order of polynomials, which leads
to a too drastic variation in the PIM shape functions.

The radial point interpolation method (RPIM) (GR Liu and Gu, 2001c;
Wang and GR Liu, 2000; 2002a) that uses radial basis functions (RBF) is
also proposed to overcome the singularity issue. RPIM is stable and robust
for arbitrary nodal distributions. Therefore, RPIM is currently used more
widely than the polynomial PIM. RPIM has been successfully applied to 2D
and 3D solid mechanics (GR Liu and Gu, 2001c; GR Liu and Yan et al.,
2002; GR Liu and Zhang et al, 2003a), geometrically nonlinear problems
(GR Liu and Dai and Lim, 2003), problems of smart materials (GR Liu and
Dai et al., 2002, 2003), plate and shell structures (Liu L and GR Liu et al.,
2002a; Chen, 2003), material non-linear problems in civil engineering
(Wang et al., 2001b; 2002b), and so on.

Note that the shape parameters of the RBFs have to be properly selected
in RPIM. In addition, the RPIM shape functions do not possess global
compatibility (GR Liu, 2002; GR Liu and Gu, 2004b), which can have some
effects when it is used in a global energy principle such as the Galerkin
weak-form. Note that the global compatibility is not an issue when a local
weak-form or a collocation procedure is used.

 In this chapter, two MFree global weak-form methods, the RPIM and the
EFG methods, will be presented and examined in detail. We choose to
discuss RPIM first because its formulation procedure is closer to the

148 Chapter 4

standard FEM procedure, and easier to comprehend. It should be noted that
historically the RPIM is based on the EFG method by replacing MLS shape
functions with the RPIM shape functions, and using the Galerkin weak-form.

4.2 MESHFREE RADIAL POINT INTERPOLATION
METHOD

4.2.1 RPIM formulation

Consider the following standard two-dimensional problem of linear
elasticity defined in the domain bounded by . The partial differential
equation and boundary conditions for a two-dimensional solid mechanics
problem have been given in Sub-section 1.2.2 and can be written in the form
of

Equilibrium equation: T 0L bT in (4.1)

Natural boundary condition: n t on t (4.2)

Essential boundary condition: u u on u (4.3)

where
L: differential operator defined by Equation (1.25);

T
xx yy xyxx yyyy : the stress vector;

T { }u : the displacement vector;
T { }x yb : the body force vector;

t : the prescribed traction on the traction (natural) boundaries;
u : the prescribed displacement on the displacement (essential)

boundaries;
n: the vector of unit outward normal at a point on the natural boundary

(see Figure 1.4).

The standard variational (weak) form of Equation (4.1) is posed as
follows (see Section 1.4).

T d 0T

t

dTT TT() ()d d) ()d d) ()d dT TTTTT T) ()d d) ()d d) ()dT dddTTT
(4.4)

where D is the matrix of elastic constants given in Equation (1.27) for the
plane stress and Equation (1.28) for the plane strain.

4. Meshfree methods based on global weak-forms 149

Note that Equation (4.4) is a weak-form defined over the global problem
domain, . In order to evaluate the integrals in Equation (4.4), the global
problem domain is discretized into a set of the so-called background cells
that are not overlapping, as shown in Figure 4.1. To evaluate the integrals
along the natural boundary, a set of curve (for 2D problem) background cells
(no overlapping) is used.

Figure 4.1. Background cells used in MFree global weak-form methods. The problem
domain is represented by field nodes. The background cell structure is used to evaluate the

integrations in the weak-form.

The problem domain is now represented by a set of field nodes for the
purpose of field variable (displacement) approximation. These nodes are
numbered sequentially from 1 to N for the entire problem domain. TheN
RPIM shape functions presented in Sub-section 3.2.2 are used to
approximate the displacements at any point of interest using a set of nodes in
a local support domain of the point.

(2 1) (2 2) (2 1)
h

) (2) (2(21)

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u u (4.5)

Background cells
for quadrature

Field nodes

Problem
domain

: quadrature or sampling point: quadrature or sampling poin
: field node

150 Chapter 4

where is the matrix of shape functions, n is the number of nodes in the
local support domain, and u is the vector of the displacements at the n field
nodes in the support domain. In Equation (4.5), the numbers in parentheses
of the subscript denote the dimensions of matrices or vectors. The same
convention is used throughout this book. Equation (4.5) can also be written
in the following form of nodal summation.

(2 1)

n n
h

I I
I I

00 u
0 I I0 I IvIIIII

0I I0 uII III

0
I

v00
u u (4.6)

where I is the matrix of shape functions of node I, and II uI is the nodalI
displacements.

In Equation (4.6), uh is the approximated displacements of a point of
interest that can be a sampling point or a quadrature point.

From Equation (4.6), we can obtain

(2 1) (2 2) (2 1)

n
h

I I)) (2 1)) (2
I

I(2 1)1) (2 21) (2) (2) (2(2(2 1)(2 1)(2 2))u u (4.7)

Using Equations (1.23) and (4.6), the strains can be obtained using the
approximated displacements.

(3 1) (3 2) (2 2) (2 1)1) (3
h

) (2) (2Lu L u(3 2) (2 2)(3
h

)(

1

1

0

0
00 1

0 100
n

u
v1

u

1 011

01 01 0

(3 2) (2 1)) (2) (2

1u1 0 011 1

v
1

xx xx x
1vv

11
1v

0 10 1100
u

y yy yy y
nuu

11111 1 n nn1 11 n11
nnv

y yy x y xy x y xy x y x
u

B

B u(3 2))0 n0 n00

n

I I
I

B uI

(4.8)

4. Meshfree methods based on global weak-forms 151

where B is the strain matrix and BI is the strain matrix for nodeI I. Similarly,II

(3 2) (2 2) (2 1) (3 2) (2 1) (3 2) (2 1))
n

h
I (3 2)()(3) (2 1) (3 2) (2 1)) (2 1) (3 2) (2

I
() ((3

h ()(31)2) (2 22) (2) (2 1) (3 2) (2) (2 1) (3 2) (21) (3 2) (22) (2 22) (2) (2 1) (3 2) (2) (2 1) (3 2) (2(2 1) (3 2)1) (3 2) (2 (22)2)2)() ((3 2)()(3 2)2)L (2 2) (2 1) (3 2) (2 1)(2 1) (3 2)(2 1) (3 2)(3 2)
h

) (2 1) (3 2) (2 1)(2 1) (3 2)(2 1) (3 2)2) (2 22) (2) (2 1) (3 2) (2) (2 1) (3 2) (2(2 1) (3 2)1) (3 2) (2(2 1) (3 2)() () () ()() ()() ()() ((((4.9)

We can now obtain the stress vector using the constitutive equations for
the material at the point in the problem domain.

= D (3 3) (3 2) (2 1) (3 3) (3 2) (2 1)() ()
n

) (2) (2 (3 2)(3 2)
I

(23) (3 2) (2 1)3) (3 2) (2 (3 3)) (2) (2 (3 2)(3 2)(3 2)(3 2)(3 2)D(3 3) () () ((3 2)(3 2)(3 2)(3 2)(3 2)(3 3) (3 2)(3 2)D B u(3 3) (3 2) (2 1)(3 2)3) (3 2) (2 1)3) (3 2) (2(3 2)) (2) (2 (4.10)

Substituting Equations (4.8) and (4.9) into the first term of Equation (4.4),
we have

T T

() ()d

] dT

n n

J J
I J

n n

I I J J[]]
I J

(T (T
I I) (T() ()d) ()dT () (T) () ()d) (T

uT[]]T
I []]

(4.11)

Note that until this stage, I and I J are based on the local numbering systemJ
for the nodes in the local support domain. We can now change the
numbering system from the local one to the global one that records all the
field nodes in the entire domain in a unique manner from 1 to N, the totalNN
number of nodes in the problem domain†. Therefore, both I and I J inJ
Equation (4.11) can now vary from 1 to N. When nodeNN I and nodeI J are notJ
in the same local support domain, the integrand vanishes and hence the
integral. With this operation, Equation (4.11) can be expressed as

T T[] dT
N N

I I J J[]]
I J

T() ()dT) ()dT) () (T uT[]]T
I []] (4.12)

We now move the integration inside the summations to arrive at

T d)T

IJ

N N

I J Jd)
I JI J

T T() ()d (T
I () ()d) ()dT

K

) () (T ud)T d)((T (
(4.13)

where KIJK , which is a 2 2JJ matrix, is called the nodal stiffness matrix and is
defined as

† This can be done using an index matrix that gives the relationship between the
local node number and the global node number similar to that is done in the
conventional finite element method.

152 Chapter 4

T
2 3 3 3 3 2() () dT
2 3 3 3 3 2IJ I(J 333 3 33 33 3 33 3() () dT

3 233 3 33 3K IJ () () (T
2 3 3 33 3(3 3 33 33 3 (4.14)

Note that when node I and node I J are not in the same support domain of theJ
same quadrature point of integration, KIJK vanishes.J

Equation (4.13) can be now expressed as

T T() ()d
N N

I IJ J
I J

T) ()dT) () (T u K uT
I IJIJ (4.15)

Note that the summation in the right-hand-side of this equation is in fact an
assembly process. To view this, we perform the following operation.

1 11 1 1 12 2 1 1

2 21 1 2 22 2 2

2 2

2+

+

N N
T T T T
I IJ J N N

I J
T T T

NN

T T T
N N N N1 1 N NN N
T

1 11 1 1 12 2
T T TT T
I IJ J

2 21 1 2 22 2
T TT

2 2
T TT
N N N N1 1

u K u1 1
T

N1 11 1 1 12 21 1 12
T T TT TT T
I IJ JIJ 1 11 1 1 12 211 1 1 12

T TT TT T

u K u2 2
T

N2 21 1 2 22 221 1 2 22
T TTT

2 22 22 22
TTT

u K uT
N NNNN1 1 2 2

T TTT
N N N NN1 1 2 2

TTT
N NN

U KUT

(4.16)

Finally, Equation (4.13) becomes
T T() ()dT)T U KUT) ()d) (T

(4.17)

where K is theK global stiffness matrix in the form of

11 12 1

21 22
(2 2)

2

N

N
22

N N NN1 2

K K K11 12

K K K21 22K

K K K1 2N N1 2

(4.18)

The dimension of the matrix K should be (2K N)×(2NN N), because nodal stiffnessNN
matrix KIJK is of 2×2, and the total number J of nodes in the problem domain is N.NN

In Equation (4.17), the vector U is the global displacement vector that t
collects the nodal displacements of all the nodes in the entire problem
domain, which has the form of

(2 1)

1u
1

1

v
1

11
1v1v

2
1v1

22

uNuu
NN

NNvN

U (4.19)

4. Meshfree methods based on global weak-forms 153

The length of vector U should be (2N).NN

Substituting Equation (4.6) into the second term of Equation (4.4), and
using the same arguments in deriving the stiffness matrix, we have

T

d
n

I II I
I

I I
TT dT (4.20)

Using the same arguments given below Equation (4.11), Equation (4.20)
can be expressed as

T

d
N

I II I
I

I I
TT dT (4.21)

We now move the integration inside the summations to arrive at

T dT

b
I

N

I
II

dTT TT
I

T T

FI

T d
(4.22)

where ()
IFI is the nodal body force vector that is defined as

T db
I I

T dIFI b (4.23)

where b is the body force vector.

The last summation in Equation (4.22) can be expanded and then grouped
to produce of matrices as follows.

T

b
I

N N
b

I I
I I

TT
I I

T dT
I I

FI

u FT
I Id

T
1 1 2 2

b b bT TT
N N

T TTT
1 1 2 2 u FT

N N
T
1 1 2 21 2

TTTT
1 1 2 21 2

b bbTTTT

(1 2)

(2 1)

1
b

11

bb
N
b

111

N

T bU FT

(4.24)

where ()F is the global body force vector assembled using the nodal body

force vectors for all nodes in the entire problem domain, and ()F is defined
as

154 Chapter 4

(2 1)

b
1
b

11

bb
N
b

111

F

N

(4.25)

The length of vector ()F should be 2N.NN

The treatment for the last term in Equation (4.4) is exactly the same as
that for the second term of Equations (4.20)~(4.25), except that the body
force vector is replaced by the traction vector and the integrations are
replaced by the boundary integrations. Hence, we can obtained

()

T dT

t t

I

n

I
I

t
I

T TT
I

T

FI

T d

()

T T T ()

t

I

N

I
I

T
I

T T
I

T

FI

U FTTdd
(4.26)

where ()
IFI is the nodal traction force vector

() T
(2 1) dT()() d(2 1)

t

I I(2 1)))(2 1) dT
(4.27)

In Equation (4.26), ()F is the global traction force vector assembled using

the nodal traction force vectors. The length of vector ()F should be 2N.NN

Substituting Equations (4.17), (4.24) and (4.26) into Equation (4.4), we
have

T T ()b t) T (T T (b) U F 0()tT (TT T (T)b) ()() (4.28)

or

T ()[]()b t) () (U KU F F 0T[]() ()) (]() (4.29)

Because U is arbitrary, the above equation can be satisfied only if
() ()) () (KU F F 0() ()) () (() (4.30)

or
() ()) () (KU F F())()) (4.31)

4. Meshfree methods based on global weak-forms 155

It can be re-written as

KU F (4.32)

where F is the global force vector given by
() ()) () (F F F()) (4.33)

Equation (4.32) is the final discretized system equations for the MFree
RPIM. The nodal displacements can be obtained by solving Equation (4.32)
after enforcing the displacement boundary conditions that will be introduced
in the following section.

After obtaining nodal displacements, the strain and stress components
can be retrieved using Equations (4.8) and (4.10), respectively.

4.2.2 Numerical implementation

4.2.2.1 Numerical integration

In the above discussion, all integrations are over the global problem
domain and the global traction boundary t. In order to evaluate these
global integrals, the problem domain is discretized into a set of background
cells (see Figure 4.1). Hence, a global integration can be expressed as a
summation of integrals over these cells:

c

k

n

k

d
k

d
c

d Gd (4.34)

where nc is the number of background cells, G represents the integrand, and
k is the domain of thek kth background cell.kk

The Gauss quadrature scheme that is commonly used in the FEM is
employed to perform the integrations numerically over these cells. When ng
Gauss points are used in each background cell, Equation (4.34) becomes

1

()
gc c

k

nn nc
D

i Qi ik()
k k

k
ik

d
c

d G x J()i QiQi()widdd (4.35)

where iwi is the Gauss weighting factor for the ith Gauss point at xQi, and
D
ikJ is the Jacobian matrix for the area integration of the background cell k , k

at which the Gauss point xQi located.

Similarly, we can obtain the formulation of the curve Gauss quadrature as

156 Chapter 4

1

()
gtct ct

t tl

nn nct
B

i Qi il()
l l

l
i

t
l

d
ct

d G x J()i QiQi()widdd (4.36)

where iwi is the Gauss weighting factor for the ith Gauss point xQi, B
ilJ is the

Jacobian matrix for the curve integration of the sub-boundary (a 1D curve
for a 2D problem domain) l for the Gauss point at l xQi, nct is the number of t

the curve cells that are used to discretize boundary t, and ngt is number of t
Gauss points used in a sub-curve.

In order to obtain numerically the nodal stiffness matrix KIJK , theJJ
formulation of the numerical quadrature for Equation (4.14) can be written
as

T
(2 2)

1 1

() () ()
g gc g

ik
IJ

n nn gc gng
D i((k

IJ i I Qi J Qi ik() ()) () IJ
k i k i

wi
1

K

BT ())wi I ())wi ())i I ())wiK IJ ((()()()()()()()()()() (4.37)

where ik
IJK is defined as

T () ()ik D
IJ i I Qi J Qi ik() ()) (K B x DB x JT () ()) (ik
IJ i I Qi J QiI Qi J Qi() ()) () (wi (4.38)

and the dimension of ik
IJK is 2 2 .

Note that Equation (4.37) means that the nodal matrix IJK is obtained
numerically by the summation of contributions from all the quadrature
points whose local support domains include both the Ith and theII Jth nodes. JJ
If node I and node I J are not in the local support domain for the quadratureJ
point at xQi , ik

IJK vanishes.
Similarly, we can obtained the nodal body force vector ()

IFI given in
Equation (4.23)

()

() ()

1 1

() ()
g gc g

ik b(
I

n nn gc gng
DT () ()b) ik

I i I Qi Q) () (i ik I
k i kk i

wi
1

(Iiwi

FI

FI FIJJ) ()) (J) () D) ()) () () ((ik) ()) () () ((ik (4.39)

where ()ik b(
IFI is defined as

() T () ()ik b(D
I i I Qi I Qi ik() ()) (wiFI J) ()) () ()) () ((4.40)

and the lengeth of ()ik b(
IFI is 2 .

The nodal traction force vector ()
IFI given in Equation (4.27)

4. Meshfree methods based on global weak-forms 157

()

() ()

1 1

() ()
gt gtct ct

il t(
I

n ntn ngtct ngt
B) T () () il

I i I Qi Q) () (i il I
l i ll i

wi
1

(Iiwi

FI

FI FIJJ) ()) (B) ()) (J) ()) () ((il) ()) () () ((il (4.41)

where ()il t(
IFI is defined as

() T () ()il t(B
I i I Qi I Qi il() ()) (i (I (iwiFI J) ()) () ()) () ()) (4.42)

and the lengeth of ()il t(
IFI is 2 .

In the RPIM method, the matrices are assembled based on the quadrature
points. Note that different quadrature points use different support domains.
This means that the shape function matrix and the strain matrix B may be
different for different quadrature points. This is different from FEM where
all Gauss points in one element use the same nodes (of the same element) to
perform the interpolation.

The numerical integration in an MFree global weak-form method is one
of the most important numerical issues, and has been studied by many
researchers (Dolbow and Belytschko, 1999; GR Liu and Yan, 1999; GR Liu,
2002). Two conclusions may be drawn from their studies.

1) The total number of quadrature points nQ should be at least 2/3 of the
total number of the unfixed field nodes, N , in the problems domain, i.e.,

3 2Q un N N2Q u or 2
3Qn N2

Q for 2D problems (4.43)

Note that this rule is a necessary, not a sufficient requirement.

2) Other aspects (e.g., accuracy and convergence) should also be considered
to select a proper number of quadrature points. We have studied this
issue using benchmark problems. It has been found that the sufficient
requirement on the total number of quadrature points is (GR Liu, 2002)

(3 ~ 9)Qn N(3 ~ 9)Q for 2D problems (4.44)

Note that these studies were performed for the EFG method, but the
conclusions are largely applicable to RPIM.

4.2.2.2 Properties of the stiffness matrix

Since D is sysmmetric, we can get

158 Chapter 4

T T T T[] []T T T TT
I J J I] [] [] [] [T T T TTT T] [] [(4.45)

Hence, we have
T[]IJ JI]II KT]] (4.46)

which means that the global stiffness matrix K isK symmetric.

The global stiffness matrix K is assembled using the corresponding nodal
matrices, and 0IJKI only when the nodes I and I J are covered by theJ
support domain of at least one quadrature point. If nodes I and I J are far J
apart and they do not share the same support domain of any quadrature point,
KIJK vanishes. Therefore, as long the support domain is compact and does not J
cover too widely the problem domain, many KIJK will be zero, and the global
stiffness matrix K will beK sparse. If the nodes are properly numbered, K
will be also banded.

In summary, the global stiffness matrix K in the MFree RPIM method isK
banded, symmetric and sparse.

4.2.2.3 Enforcement of essential boundary conditions

This RPIM formulation, the traction boundary conditions (see Equation
(4.2)) has been naturally formulated into the discretized system equation
using the Galerkin weak-form. Therefore, the traction boundary condition is
often called the natural boundary condition. However, the displacementl
boundary conditions (see Equation (4.3)) are not treated in the formulation
process. It is, therefore, essential to impose them separately before or after l
Equation (4.32) is established. Hence, the displacement boundary condition
is termed as the essential boundary condition. Because RPIM shape
functions possess the Kronecker delta function property, the essentiala
boundary conditions can be easily enforced as in the FEM (see, e.g., GR Liu d
and Quek, 2003). The following two methods that are widely used in FEM
to enforce essential boundary conditions can be used in RPIM.

a) Direct method

The ith displacement component is prescribed by setting

i iu ui (4.47)

Such an essential boundary condition can then be enforced directly into the
system Equation (4.32) through the following modifications to the stiffness
matrix and the global force vector.

The global stiffness matrix, K, is changed to

4. Meshfree methods based on global weak-forms 159

11 1(1(2)0 1) 1(2K K K K11 1(1) 1(1) 10 ii1) 1(1) 101) 1(01) 1(011 1(1) () 1(2)i1) 1(1) 1(21) 1()1) 1(211 1(1) 1(

(1)(2)0 (K K K K(1)1 (1)(1) (1)(1)01)1 (1) (1) (1) (1)(1)1 (1)(1) (1)(1) (1)(2)

0 0 1 0 0
1)1 (1) (1) (1) (1)1 (1) (1) (1)(2)(1)(1) (1)(1)1 (1) (1) (K(1)(1) (1)(1)1 (1) (1) (1) (1)

0 0 1 0 000
0K K K K0(1)1 (1)(1) (1)(1) (1)(2)1)1 (1) (1) (K K K K(1)1 (1)(1) (1)(1)01)1 (1) (0 1)1)1 (1)1 (1) (01) (0 1) (1) (1)(2)K K K K(1)1 (1)(1) (1)(1)0

0K K K K0() ()() ()() ()()(2)1 (2)(1) (2)(1) (2)(2))1 (2 1) (2 1) (2K K K K(2)1 (2)(1) (2)(1)0)1 (2 1) (20 1))(1) (20)(1) (20K K K K0

K

K KK K0

K KK K0
0 1 00 1 00 1 00 1 0
K KK K0

K KK K0K KK K0

(4.48)

The components in the global force vector are changed to

i
j

j ji i

u i jiFj Fj K u i jji iK u iji iji
(4.49)

Solving Equation (4.32) using the modified stiffness matrix and the force
vector, we can obtain all the displacement components, and Equation (4.47)
is satisfied exactly.

The direct method can exactly enforce essential boundary conditions, but
changing matrices and vectors needs additional computational operations. In
addition, the algorithm of the direct method is also complicated.

b) Penalty method

The penalty method is a convenient alternative for enforcing the essential
boundary conditions, in which the diagonal entry, KiiKK , in the stiffness matrix,
is changed to

ii iiK Kii i (4.50)

where is the penalty coefficient that is the much larger number than the
components of the stiffness matrix K. The stiffness matrix, K, is then
changed to

K

11 1(1(2)1) 1(2K K K K K11 1(1) 1 1(1) 1i ii1) 1 1(1) 1i1) 1 1(i1) 1 1(K K KK K K11 1(1) 1 () 1(2)i i1) 1 1(1) 1(2i1) 1 1()1) 1(211 1(i1) 1 1(

(1)(2)(K K K K K(1)1 (1)(1) (1) (1)(1)(1)1)1 (1) (1) (((1)K K KK K K(1)1 (1)(1) (1) (1)(1) (1)(2)1)1 (1) (1) (((1) (

K K K K K
1)1 (1) (1) (1) (((1) (

K K K
1)(2)(1)(1) (1) (1)(1)1 (1) (1) (((K(1)(1) (1) (1)(1)1 (1) (1) (((1)1) (1)

()1 (1) () (2)i)1 i1) i i i1) KiK()1)1 (i1) i i 1)(iK K KK K K(1) (1)i i1) i i 1)K (i1) i iK (ii i1)K K K K KK K K
K K K K KK K KK K K

() () () ()

(1)1 (1)(1) (1) (1)(1) (1)(2)1)1 (1) (1) ((((1) (K K K K K(1)1 (1)(1) (1) (1)(1)(1)1)1 (1) (1) (((1)1)1 (1)1 (1) (1) (1) (((1) (1) (1) ((1) (1) (1)(2)K K K K K(1)1 (1)(1) (1) (1)(1)(1)

K K K K K() ()() () ()() ()()(2)1 (2)(1) (2) (2)()1 (2 1) (21) (2 (2(2K K K K(2)1 (2)(1) (2)(2))1 (2 1) (21) (2 1) (2)(2)i 1) (2KK K K K K

(4.51)

In the global force vector F, only the component FiFF is changed as follows

160 Chapter 4

ii i
j

j

K u i jii iFj Fj i j
K

(4.52)

We now solve Equation (4.32) using the modified stiffness matrix and
the force vector, all the displacement components can be obtained, and
Equation (4.47) is satisfied approximately.

The penalty method has some advantages: there are only two changes of
matrices, and the algorithm is very simple. However, the penalty method
can only approximately satisfy the essential boundary conditions. In
addition, the accuracy is affected by selection of the penalty coefficient; it
can be difficult to select a proper penalty coefficient. Ways of choosing the
penalty coefficient will be presented in Section 4.4.

4.2.2.4 Conformability of RPIM

The compatibility requirement is common to all the methods based on the
global energy principles, because a possible gap or overlap (incompatibility)
may affect the energy in the system and destroy the balance of the equation
of the energy principle. The remedy is to use the constrained form of energy
principles that takes into account the energy caused by incompatibility.
Because the RPIM interpolation is not always compatible in the global
domain (GR Liu and Gu, 2004a), the enforcement of the compatibility is
needed on the incompatible curve c in the problem domain to produce
the conforming RPIM (CRPIM). The constrained variational (weak) form of
CRPIM for two-dimension elasto-static problems is posed as follows using
the penalty method to ensure the compatibility.

T dT

t

dTT TT() ()d dT TTT) ()d d) ()d dT TTTTTT T) ()d d) ()d d) ()dT dddTTTT

() ()d 0
c

() () (() ()d) () (
(4.53)

where is the matrix of the penalty constants, and u+ and u are the
displacements on the two sides of the incompatible interface,f c . Hence,
the compatibility on the interfaces c of the neighboring integration cells is
enforced by the penalty term. If the last term in the left-hand-side of
Equation (4.53) is excluded, the formulation leads to the conventional non-
conforming RPIM (NRPIM).

The so-called CRPIM was proposed by GR Liu and Gu (2004b), and
further studies of CRPIM and NRPIM have concluded that CRPIM leads to
slightly more accurate results than the NRPIM. However, the NRPIM has
also been found to be convergent and lead to satisfactory results. The

4. Meshfree methods based on global weak-forms 161

NRPIM is simpler than the CRPIM. Hence, only the conventional RPIM or
NRPIM has been discussed in detail in this book.

4.3 ELEMENT FREE GALERKIN METHOD

4.3.1 EFG formulation

Consider a two-dimensional problem of solid mechanics in a domain
bounded by . The strong-form of system equation is given by Equations
(4.1)~(4.3). The element-free Galerkin (EFG) method uses the moving least
squares (MLS) shape functions (see Section 3.3). Because the MLS
approximation lacks the Kronecker delta function property, the constrained
Galerkin weak-form should be posed as follows.

 d

1 d 0
2

t

u

d

d

d Tdd

T

d d d d d d d

(4.54)

where 1 2 k1 2 is a diagonal matrix of penalty factors, where
k=2 for 2D, and kk k=3 for 3D. The penalty factorskk i (i=1, 2,…,k) can be akk
function of coordinates and can be different from each other, but must be
given. In practice, we often assign them the same constant of large positive
number.

Note that in using EFG, the global compatibility of the shape function is
ensured by the weight functions appropriately chosen in the MLS
approximation. Hence, the constrained term to ensure compatibility is not
required in the weak-form of Equation (4.54).

Using the MLS shape functions constructed using n nodes in the local
support domain (see Section 3.3), we have

(2 1) (2 2) (2 1)
h

) (2) (2(21)

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u u (4.55)

where is a matrix of the MLS shape functions arranged in the form of

162 Chapter 4

0n1 01

0 0
n1 n1

10 01 n110 0 (4.56)

In Equation (4.55), uI and I vIv are the parameters of displacements (not theI
nodal displacement, see Figure 3.16) for the Ith node, because the MLSII
shape functions do not have the Kronecker delta function property. It is
different from RPIM, in which uI and I vIv are the nodal displacements becauseI
RPIM shape functions have the Kronecker delta function property.

Substituting the foregoing expression for all the displacement
components of u into the weak-form Equation (4.54), and following the
exact procedure detailed in Subsection 4.2 yield the following global
discretized system equations of the EFG method.

U F F (4.57)

where U is the vector of nodal parameters of displacements for all nodes in
the entire problem domain, K is the global stiffness matrix assembled usingK
the nodal stiffness matrices, and F is the global external force vector
assembled using the nodal force vectors, Equations (4.23) and (4.27). The
additional matrix K is the global penalty stiffness matrix assembled in the
same manner as for assembling K using theK nodal penalty stiffness matrix
defined by

T d
u

IJ I JK T
II (4.58)

Note that IJIIK is a 2 2 matrix.
In Equation (4.57), the additional force vector F is caused by the

essential boundary conditions; it is formed in the same way as F, but using
the nodal penalty force vector IFI defined by

T d
u

I IFI
T
I u (4.59)

The length of IFI is 2.
Similar to Equations (4.37) and (4.41), the integrations in the penalty

stiffness matrix and the penalty force vector can also be obtained using the
standard Gauss quadrature. Note that, in Equations (4.58) and (4.59),
integrations are curve integrations for 2D problems. The integration is
performed along the essential boundary, and hence matrix K will have
entries only for the nodes near the essential boundaries u, which are
covered by the support domains of the Gauss quadrature points on u.

4. Meshfree methods based on global weak-forms 163

Equation (4.57) is the final discretized system equation for the EFG
method with the penalty method to enforce essential boundary conditions.
The Galerkin procedure makes the stiffness matrices K andK K symmetric.
If the problem domain is sufficiently supported without rigid body
movement, [K+ K] will be positive definite; a standard linear algebra
equation solver can be used to solve Equation (4.57) for the nodal
displacement parameters.

In order to obtain the integrals in the EFG method, a global background
mesh of cells is required, as in RPIM. The background mesh of cells can be
independent of the field nodes that are used for the field variable
approximation. In each cell, Gauss quadrature can be employed, and the
number of quadrature points depends largely on the nodal density, as
discussed in Sub-section 4.2.2.1.

In the present EFG formulation, the penalty method is used to enforce
essential boundary conditions. The advantage of using the penalty method is
that the dimension, symmetry and positive definite properties of the stiffness
matrix are achieved, as long as the penalty factors chosen are positive. In
addition, the symmetry and the bandness of the system matrix are preserved.

However, the penalty method has the following shortcomings.

Essential boundary conditions are imposed only approximately,
depending on the magnitude of the penalty coefficients. Theoretically,
the larger the penalty coefficients, the more accurate the enforcement
of the essential boundary conditions.

It is difficult to choose a set of penalty factors that are universally
applicable for all kinds of problems. One hopes to use large possible
penalty factors, but too large penalty factors often give numerical
problems, as we experienced in the imposition of multi-point
boundary condition in the finite element methods. Trials may be
needed to choose a proper penalty factor.

The results obtained are generally less accurate than those obtained
from the method of Lagrange multipliers (to be discussed in the
following sub-section).

Despite these disadvantages, the penalty method is widely used.

4.3.2 Lagrange multiplier method for essential boundary
conditions

The penalty method provides an efficient way to implement essential
boundary conditions, and is used by many researchers e.g., Zhu and Atluri

164 Chapter 4

(1998). Several other strategies have also been developed for alleviating its
defects, such as, the Lagrange multiplier method (Belytschko et al., 1994a),
the method using the modified variational principle (Lu et al., 1994), the
method coupling with the finite elements (Krongauz and Belytschko,1996),
the orthogonal transform technique (Atluri et al., 1999b), the constrained
MLS method (Yang, 1999), and so on. The Lagrange multiplier method is
introduced in this section.

The Lagrange multiplier method was used to enforce the essential
boundary condition in the EFG method by Belytschko et al. (1994a). The
functional related to the essential boundary condition, Equation (4.3), is
written in an integral form using the Lagrange multiplier :

T ()d
u

)d (4.60)

The weak-form Equation (4.54) can then be re-written as
T

T

dT d

d 0T

t

u uu

dT

dT

T TT() ()d d)T TTT) ()d d) ()d dTTT

TTT

T) ()d d) ()d d) ()dT dddTTTT

dd
(4.61)

The last two terms in Equation (4.61) are produced by the method of
Lagrange multipliers for handling essential boundary conditions for cases
when 0u u that violates the condition of Equation (4.3). The Lagrange
multipliers can be viewed as smart forces that force 0u u .

In order to obtain the discretized formulation, the Lagrange multipliers
in Equation (4.61), which are unknown functions of the coordinates, need to
be interpolated using their nodal values and shape functions for nodes on the
essential boundaries.

(2 2) (2 1)()h
) (2) (2) (2) (2) (2

1u1u1u

1v
1 0 0nN N1 0 n

1v
1 n1 nuu

0 N00 0 N0v 10 nN N1 01 n
un

vnvn

N (4.62)

where n is the number of nodes used for this interpolation, NINN is the shapeI
function for the Ith node on the essential boundary,II s is the arc-length along
the essential boundary, is the vector of the nodal Lagrange multipliers of
field nodes on the essential boundary. Equation (4.62) can also be written in
the following nodal matrix form. l

4. Meshfree methods based on global weak-forms 165

(2 1)

n n

I I
I I

0N uu

0 I0 INII IIIvI

0INI IuIuIuII

0 N0 N0 N
N (4.63)

where NI is the matrix of shape functions for node I on the essentialI
boundary.

In Equations (4.62) and (4.63), the shape function NINN (II s) can be the
Lagrange interpolants used in the conventional FEM. The Lagrange
interpolant of order n can be given in the general form of

0 1 1 1()() ()() ()0 11()
()() ()() ()

n n1 11) (1 1
k

k k k k k k k n0 1 1 11 1)() ()() ()() ()() (0 1 1 111

)() ()() ()() ()() (0 111)() ()() (1 11N (n
k)() ()() ()() ()() ()() ()() () ()() ()() ()() (0 1 1 11 11 11 1

1111

1111

)() ()() ()() ()() ()() ()() (
()())(

()())(()()()())()(()()
()())(()()()())()(()() (4.64)

If we choose to use the first order Lagrange interpolant (the linear
interpolation), we have n=1 and the Lagrange interpolants at point s=s0 and
s=s1 becomes

0
0

0 1 1 0

()0()1() , ()1
)1(

() ()1
0 1 1 0

()1N0 () , () , (1
1

()1

) () (1 1

)((
) () ((4.65)

In a simple case, the essential boundaries are discretized using line segments.
The Lagrange multiplier at s is interpolated using two nodes at the two ends of
this line segments.

Equation (4.62) gives the variation of the Lagrange multiplier as
h N (4.66)

Hence, Equations (4.55) and (4.66) give the fourth term in Equation (4.61):

T

T

T T

T T

1 1 1

T

1 1 1
T T

(2 2) (2 1)

d

dT d

(

u

u u

u u

IIJ

t t

t t

n n

I I J J I I
I J1 I

n nN

I I
I J1 I

nn

t tnt

t 2) (22) (22) (2) (2

T
I

u

1 1
u

I

1

2) (2) (2

d

Tn nnn

I I
1 1 1

u
I 1 I1I J11

I I

T
I dd

T (

I I J JI I J J ddI I JI I J J

T TTdI J J II J J I
T dI J JdT dI J d

T T
I IJ J
T T
I

qG

uIIdJ dJ d

uI
T

J I
T

qT
IIJ J

T
IJ JIJ

G U QT
(2 2) (2 1)2) (2) (22) (2) (22) (2) (2

T
(2 2) (2 1)2) (222) (2) (2 (2 1))t

(4.67)

where is a vector that collects the nodal Lagrange multipliers for all field
nodes on essential boundaries, n t is the total number of nodes on thet

essential boundary, and the nodal matrix IJIIG is defined as

166 Chapter 4

T T d
u

IJ I J
T dI JG NT

IJ (4.68)

which has the dimension 2 2. In Equation (4.67), qI is a vector defined as,I

T d
u

I I ddq I uI
T
I (4.69)

In Equation (4.67), G is the global matrix formed by assembling IJIIG
defined in Equation (4.68), and Q is the global vector formed by assembling
qI defined in Equation (4.69).

Similarly, the last term in Equation (4.61) becomes
T

T T

1 1

T

1 1

T

d

d

u u

u

IJ

t

n n

I J JdI
I J1

n N

I IJ J
I J1

s

t

u

1

1

nn

J J
I J

J J

dJ d

I II I
TT d

G

II
T d

I
T
Iu I

T
I

u GT
I

U GT
s

I

(4.70)

As in Equations (4.37) and (4.41), the integrations in the nodal matrix GIJG
and the nodal vector qI can also be obtained using the standard GaussI
quadrature scheme.

Substituting Equations (4.67) and (4.70) into Equation (4.61), we obtain
T T T[] () 0TT [] ()()T TT (T[T T))T))) T))T (4.71)

or
T T[] () 0T TT [][]T ()T][T TT (4.72)

where K is the global stiffness matrix andK F is the global force vector, both
of which have been discussed in Sub-section 4.3.1.

Because both U and are arbitrary, this equation can be satisfied
only if

T

0
0

KU G F
G U QT (4.73)

The above two equations can be written in the following matrix form of

4. Meshfree methods based on global weak-forms 167

(2 2) (2 2) (2 2) 1 (2 2) 1t t t t22 22t tt) () () () (2 2) (2 2) (2 2) (2 22) (2 22) (2(2) 1 (2 2)1 (2 2)222
T

(2 2) (2 2) (2 2) 1(2 2) 12) (2 2) (2 22) (2 2) (22) (2) (22) (2) (22) (2) (22) (2) (2(2) (2(2) 1222
TT (4.74)

Equation (4.74) is the final discretized system equations for the EFG
method using the Lagrange multiplier method. Solving Equation (4.74)
gives the results of nodal parameters of the displacements for this problem,
and the displacements at any point including at the field nodes in the
problem domain can be obtained from Equation (4.55).

The Lagrange multiplier method is accurate in imposing the essential
boundary conditions. However, it will increase the number of variables by

and the dimension of the system matrix. Depending on the number of the
nodes on the essential boundaries, the solution efficiency can be drastically
reduced. It also leads to an un-banded and non-positive definite stiffness
matrix, which reduces the efficiency significantly in solving the discretized
equations. Note that the enlarged system matrix is still symmetric.

4.4 SOURCE CODE

In this section, a computer source code, MFree_Global.f90, of these two
MFree global weak-form methods, RPIM and EFG, is provided. This code
is developed in FORTRAN 90 for easy comprehension. Combined with
subroutines RPIM_ShapeFunc_2D and MLS_ ShapeFunc_2D given in
Chapter 3, this source code performs computations with either the RPIM or
the EFG method.

4.4.1 Implementation issues

4.4.1.1 Support domain and the influence domain

In the construction of meshfree shape functions, one of the most
important issues is to determine the local support domain mentioned in Sub-
section 3.1.2. The concept of the influence domain is also used in the MFree
methods to construct the shape functions.

The influence domain is defined as a domain for a field node that it has
an influence upon. The centre of the influence domain is the field node. In
contrary, the support domain is the area chosen for the meshfree
interpolation for a point of interest at x (which is often a quadrature point xt Q).
The centre of the support domain is usually a quadrature point that can also

168 Chapter 4

be a field node. Figure 4.2(a) clearly shows the difference between an
influence domain and a support domain.

The influence domain, as shown in Figure 4.2(b), is used in the following
manner for selecting nodes for interpolation. To construct the MFree shape
function for a point of interest, a field node will be involved in the shape
function construction for this point when this point is in the influence
domain of this field node. In other words, if the influence domain of a field
node covers the point of interest, this field node will take part in the
construction of shape functions for this point. Using the influence domain to
replace the support domain has several advantages.

The influence domain works well for domains with irregularly
distributed nodes.
The influence domain is defined for every field node in the problem
domain, and it can be different from node to node to represent the area
of influence of the node. Since the dimension of the influence domain
can be different from node to node, some nodes can have more
influence than others, and to prevent unbalanced nodal distribution for
constructing shape functions.
Because the number of field nodes is usually much less than the
number of quadrature points, there are fewer influence domains than
support domains. This makes the procedure computationally more
efficient.

For these reasons, the influence domain is used in this book in the
development of computer code.

The influence domain for a field node can be arbitrary in shape, and its
dimensions of the influence domain can be determined using a similar
procedure described in Chapter 3. For a two-dimensional domain and when
a rectangular influence domain is used, the size of the influence domain is
determined by dixdd and diydd in the x and y directions, respectively, i.e.

ix ix cx

iy iy cy

d dix ix c

d diy iy c
(4.75)

where dcxdd and dcydd are, respectively, the nodal spacing in the x and y directions,
have been defined in Sub-section 3.1.2, and ix and iy are the dimensionless
sizes of the influence domain in x and y directions, respectively. They
control the actual sizes of the influence domain in relation to the nodal
spacing. If ix=2.5, for example, the size of the influence domain in the x-
direction is 2.5 times the nodal spacing.

Note that selecting nodes for the interpolation/approximation can be time
consuming for large scale problems, and hence special algorithm, such as the

4. Meshfree methods based on global weak-forms 169

bucket algorithm (GR Liu, 2002) and the tree algorithm (see, e.g., GR Liu
and Liu, 2003) should be used.

4.4.1.2 Background cells

To perform the numerical integrations in the MFree global weak-form
method, the global background cells, as shown in Figure 4.1 and Figure 4.2,
are needed.

The background cells can be rectangular or triangular for a two-
dimensional domain. Triangular background cells are well suited to
problems with complex geometry. For simplicity, the rectangular
background cells are, however, used in the book.

4.4.1.3 Method to enforce essential boundary conditions

The methods to enforce essential boundary conditions in the EFG method
have been discussed in Sub-sections 4.3.1 and 4.3.2. The penalty method is
used for the EFG method in the attached code.

Because the RPIM shape functions possess the Kronecker delta function
property, the essential boundary conditions can be enforced directly and
accurately without any additional treatment. For uniformity, the penalty
method that has been presented in Sub-section 4.2.2.3 is used in the RPIM to
enforce the special nodal displacements.

One major issue in using the penalty method is how to properly choose
the penalty coefficient. Based on the practice in FEM, the penalty
coefficient can be determined by

4 8
max10 ~ 10 ()4 8

II10 ~ 104 8 (4.76)

where max()II is the maximum diagonal element of the global stiffness
matrix.

4.4.1.4 Shape parameters used in RBFs

In the RPIM method, the radial basis functions are used to construct
MFree shape functions. In the subroutine of RPIM_ShapeFunc_2D, the
Multi-quadrics (MQ) RBF, Gaussian (EXP) RBF, and Thin Plate Spline
(TPS) RBF are used. For simplicity, only results of MQ-RBF are discussed
here. Results for other RBFs can be obtained similarly.

In the MQ-RBF, there are two shape parameters: c and q (see Sub-
section 3.2.2). Choices of these two shape parameters will affect the
performance of the RPIM. The parameters are studied by numerical
examinations because there are still no successful rigorous methods to
determine theoretically their best values.

170 Chapter 4

(a) The centre of the support domain is a quadrature or sampling point

(b) The centre of the influence domain is the field node

Figure 4.2. The background cells, the support domain, and influence domains used in the
MFree global weak-form methods.

Field nodes

Background cells
for quadrature

The influence
domains of the
field nodes

: quadrature or sampling point: quadrature or sampling poin
: field node

: quadrature or sampling point;
: field node

xQ

Background cells
for quadrature

The support
domains of

sampling
points xQ

4. Meshfree methods based on global weak-forms 171

4.4.2 Program description and data structures
The flowchart of the source code, MFree_Global.f90 is shown in Figure

4.3. The procedure of an analysis using MFree methods is as follows.

The geometry of the problem domain is created and a set of field
nodes is generated to represent the problem domain.
The global background cells are used for numerical integrations.
The system matrices are assembled through two loops. The outer
loop is for all the cells of the background mesh, and the inner loop is
for all the Gauss quadrature points in a cell.
The boundary conditions are enforced.
The system equation is solved using the standard Gaussian
elimination equation solvers.
The post-processing is performed to analyze the final results
(displacements and stresses) of the problem considered.

The procedure is similar to that in the conventional FEM. The head files
and main program of MFree_Global.f90 are listed in Program 4.1~Program ff
4.3, respectively.

The main program of the MFree_Global.f90 calls several subroutines.
The macro flowchart for the program is presented in Figure 4.4. The
functions performed by these subroutines are listed in Appendix 4.1.

1) Programs for the RPIM and EFG

The attached programs call the subroutine RPIM_ShapeFunc_2D for the
construction of RPIM shape functions. It can be easily changed to the
program of the EFG method by calling the subroutine MLS_ShapeFunc_2D
instead. Both subroutines, RPIM_ShapeFunc_2D and MLS_ShapeFunc_2D,
have been given in Chapter 3. It should be noted that RPIM_ShapeFunc_2D
is not only called in the main program of MFree_Global.f90 but also in some
other subroutines. Hence, to perform the computation using the EFG, all the
calls for RPIM_ShapeFunc_2D should be replaced.

2) Major variables

There are some major variables used in the main program and
subroutines. These variables are listed in Appendix 4.2; they can be largely
classified as follows:

Variables for describing the problem, for example, the material
constants, coordinates of field nodes, boundary conditions,
background cells, and so on;
Variables for computing system matrices, for example, the Gauss
points, influence domains, shape parameters, penalty coefficients,
shape functions and its derivatives, and so on;

172 Chapter 4

Input data

Search all influence domains to determine nodes involved in the
interpolation

Compute the stiffness matrix at the quadrature point

End of the loop for the quadrature points

End

Loop over
quadrature points

Loop over
background cells

Compute the MFree shape functions for the quadrature point

Assemble the global stiffness matrix

End of the loop for the background cells

Enforce boundary conditions

Solve the system equation for displacements and
then retrieve the stresses

Compute and assemble the distributed forces

Figure 4.3. Flowchart of the program of MFree_Global.f90

4. Meshfree methods based on global weak-forms 173

Figure 4.4. Macro flowchart of MFree_Global.f90

Variables for system matrices and vectors, for example, the global
stiffness matrix, the global force vector, and so on;
Variables related to the solutions, for example, nodal displacements,
nodal stresses, error in the energy norm, and son on.

As these global variables will be used in main program and subroutines,
they will not be explained again in the descriptions for the following
subroutines.

3) Subroutine Input

Source code location: Program 4.4.
Function: This subroutine is to input data from external file. In this

subroutine, the stress-strain matrix, D, is also computed.

4) Subroutine GaussCoefficient

Source code location: Program 4.5.

174 Chapter 4

Dummy arguments: Appendix 4.3.
Function: This subroutine is to set all coefficients of standard Gauss

quadrature.

5) Subroutines CellGaussPoints

Source code location: Program 4.6.
Dummy arguments: Appendix 4.4.
Function: This subroutine is to set the Gauss points in a background cell

and to calculate the Jacobian values at the Gauss points. In the
present program, quadrilateral background cells are used. The
background cells for other shapes (e.g. triangular and circular)
can also be used. Readers can modify this subroutine slightly
for other shapes of background cells.

6) Subroutine SupportDomain

Source code location: Program 4.7.
Dummy arguments: Appendix 4.5.
Function: This subroutine is to determine the support domain for an

interpolation point for the construction of MFree shape
functions. The influence domains are used in this book(Sub-
section 4.4.1.1). In the beginning of the computation (in the
main program), an influence domain is assigned to each field
node. The nodes involved in the interpolation are then found
through checking all influence domains for all field nodes. If
the interpolation point is located in the influence domain of a
field node, the field node will be recorded and used in the
interpolation for the construction of shape functions. Note that
rectangular influence domains are used in this code.

7) Subroutine PointStiffnessMatrix

Source code location: Program 4.8.
Dummy arguments: Appendix 4.6.
Function: This subroutine is to compute the stiffness matrix of a

quadrature point using Equation (4.37).

8) Subroutine EssentialBC

Source code location: Program 4.9.
Dummy arguments: Appendix 4.7.
Function: This subroutine is to enforce essential boundary conditions. In

the present program, the penalty method, which has been
discussed in Sub-sections 4.2.2.3 and 4.3.1, is used.

9) Subroutines NaturalBC_concentrated andd NaturalBC_distributed

Source code location: Program 4.10 and Program 4.11.

4. Meshfree methods based on global weak-forms 175

Dummy arguments: Appendix 4.8 and Appendix 4.9.
Function: These two subroutines are used, respectively, to implement

concentrated and distributed natural boundary conditions.
Readers can easily modify it for other types of natural
boundary conditions. In the subroutine NaturalBC_distributed,
the distributed natural boundary conditions used in Section 4.5
(Equation (4.84)) are used to compute the nodal force vector
using Equations (4.23) and (4.27). The global force vector is
obtained by assembling all nodal vectors.

10) Subroutine SolverBand

Source code location: Program 4.12.
Dummy arguments: Appendix 4.10.
Function: This subroutine is to solve the linear algebraic system

equation with an asymmetric banded matrix (e.g., Xu, 1995).
In fact, the stiffness matrix in an MFree global weak-form
method is symmetric (see Sub-section 4.2.2). However, an
asymmetric banded stiffness matrix has to be used in the
Chapter 5. To avoid listing too many standard routines that
are available in standard libraries, only the equation solver
for an asymmetric banded matrix is presented in this book.
Readers can replace this solver by simply calling other more
effective solvers in the computer system for symmetric
matrices.

Note that for easy comprehension of the program, the one-dimensional
storage technique that is also commonly available is not used in the present
program. The global stiffness matrix stored in a 2D array is formed in
exactly the same way as shown in the formulation, and the 2D stiffness
matrix is fed into the subroutine of the equation solver. In this subroutine,
the 1D stored banded matrix is first obtained from the original matrix. The
standard equation solver using the Gaussian elimination is used to obtain the
results. Readers can replace this solver with other more powerful solvers,
once the procedure is understood.

11) Subroutine GetDisplacement

Source code location: Program 4.13.
Dummy arguments: Appendix 4.11.
Function: This subroutine is to compute the actual displacements for any

point (including field nodes) of interest.

If only the field nodes are considered, this subroutine is useful only in the
EFG method. As discussed in Chapter 3, the MLS approximation does not
pass through the nodal function values. Hence, U that solved from Equation

176 Chapter 4

(4.57) are only the nodal parameters for displacements. In order to get the
actual displacements at any point (including the field nodes) in the problem
domain, we need to use the MLS approximation again, i.e.

1

1

(2 1)() ()(2 1)
h

n

u
v1

u

0n11 0u
)

u 1

0
n1

0
n1

v 10 n1 0110 0

nv

u() () ((2 1) (((2 1) (4.77)

where u(x) is the displacement vector of a point x, ii is the MLS shape
functions, iu is the nodal parameters obtained from Equation (4.57). The
presented subroutine computes the final nodal displacements for all the field
nodes.

This subroutine is unnecessary for the RPIM method to compute the
displacements for field nodes. Because the RPIM shape functions have the
Kronecker delta function property, U obtained from Equation (4.32) gives
already the actual nodal displacements. However, this subroutine is
necessary to obtain the displacements at a point that is not a field node.

12) Subroutine GetStress

Source code location: Program 4.14.
Dummy arguments: Appendix 4.12.
Function: This subroutine is to compute stress components for the point

of interest using Equation (4.10).

For the error analysis, we define the following energy norm as an error
indicator, as the accuracy in strains or stresses is much more critical than that
in the displacements.

Num Exact T Num Exact1 () ()dNum Exact T Num ExactT

2eee () ()d) (Num Exact T Num ExactT1 (4.78)

where Num andm Exact are strain vectors obtained by the numerical method and
the analytical method, respectively. In the presented subroutine, stress
components at all Gauss points and field nodes are computed.

In the subroutine GetStress, a subroutine to perform the inversion of a
matrix is used. The subroutine GetInvasy is presented in Program 4.15. In
this subroutine, the Gauss-Jordan method is adopted.

4. Meshfree methods based on global weak-forms 177

4.5 EXAMPLE FOR TWO-DIMENSIONAL SOLIDS – A
CANTILEVER BEAM

Numerical studies are conducted for a cantilever beam that is often used
for benchmarking numerical methods because the analytic solution for this
problem is known. The studies for this example have following purposes:

a) To demonstrate the standard analysis procedure using MFree global
weak-form methods;

b) To show the usage of the present programs of RPIM and EFG;
c) To study the effects of shape parameters of RPIM;
d) To investigate the effects of the size of support (influence) domain;
e) To examine the numerically the convergence of RPIM and EFG;
f) To study the efficiency of RPIM and EFG;

To provide a quantitative analysis, a cantilever beam subjected to a
parabolic traction at the free end as shown in Figure 4.5 is considered. The
beam has a unit thickness (t=1.0) and a plane stress problem is considered. t
The exact solution of this problem is available and listed as follows
(Timoshenko and Goodier, 1970).

Figure 4.5. Cantilever beam subjected to a parabolic traction at the free end.

The displacement in the x direction is given by:

()
6
Pyu x y(,),

6

2D(6 3) (2)(6 3) (2)(6 3) ()3) D(6 3) (2)3)3) (2 2
Dy DD

2y() ()() ()() ()
4

y
4444

(4.79)

where the moment of inertia I , for a beam with rectangular cross-section andI
unit thickness is given by

y

P
(parabolically
distributed)

x

L

D

178 Chapter 4

3

12
DI (4.80)

The displacement in the y direction:

()
6

Pv x y(,),
6

2
2D2 x 2) (4 5) (3)) ()3 (2 (3 2 x)) (4 53 ((223 23 2) (33 2) (4 5(43 ((2

4
()

4
) ()((4.81)

The normal stress on the cross-section of the beam

()(,)xx
P L x y)y,, I (4.82)

The normal stress in the y direction

0yy (4.83)

The shear stress on the cross-section of the beam

(,)
2xy
Py,,

2
2D 2

4
D y 2D
4

y
4

y
4 (4.84)

In this book, the units used are the standard international (SI) units unless
specially mentioned. In this example, the parameters for this cantilever
beam are

Loading (integration of the distributed traction): 1000
Young’s modulus: 73 10E 3
Poisson’s ratio: = 0.3
The height of the beam: 12
The length of the beam: 48
The thickness of the beam: unit.

On the right boundary (x=L((), the applied external traction force is
computed from the analytical formula Equation (4.84). The force is
distributed in the form of a parabola on the cross-section at the right end of
the beam

2xy x L

Pt
2xy L

2
2D 2y2D

44
y

4
(4.85)

At the left boundary (x=((0), the essential boundary conditions are given using
the analytic formulae Equations (4.79) and (4.81). i.e.,

0

(2)
6x

P(2)u 0

()
6x

2D22

4
D2y D2

44
(4.86)

4. Meshfree methods based on global weak-forms 179

2
0 2x

P Lv y
0 2x EIEE

P
(4.87)

4.5.1 Using MFree_Global.f90

In order to illustrate the present code, MFree_Global.f90, the above
mentioned two-dimensional beam is analyzed following the steps given
below:

Step 1: Preparation of the input data

The problem considered should be modelled in this step, which includes:
(1) Defining the geometry of the problem domain;
(2) Creating field nodes to represent the problem domain;
(3) Creating background cells for the numerical integration;
(4) Setting essential boundary conditions;
(5) Determining parameters, such as the number of Gauss points, the size

of influence domains, shape parameters of RPIM, penalty coefficients,
and so on.

This step prepares the input data file. For the cantilever beam problem,
the problem domain is simple. Hence, the geometry data file can be easily
obtained. For a complex practical problem, a pre-processor may be needed
to generate the input data file (e.g. field nodes, background cells, and so on).
MFree2D (introduced in Section 4.8) has a convenient pre-processor:
MFreePro that can be used for a generating the geometry data for complex
2D domain.

An example of the input data file is shown in Appendix 4.13. The
domain of the beam is represented by regularly distributed 175 (25 7) field
nodes as plotted in Figure 4.6. A total of 40 (10 4) regularly rectangular
background cells are used for the numerical integrations. Note that the
background cells are independent of the field nodes.

This data file contains largely three parts.

The parameters of problem description.

Data related field nodes and background cells.

Definition of the boundary conditions.

For this beam problem, the exact boundary conditions are the essential
boundary conditions on the left end obtained using Equations (4.86) and
(4.87), and the natural boundary conditions on the right end of this beam
obtained using Equation (4.85). There is no concentrated nodal force in this
example.

180 Chapter 4

Figure 4.6. Nodal arrangement and the background cells for the cantilever beam. A total of
175 (25 7) regular field nodes and 40 (10 4) background cells are used.

Step 2: Execution of the program.

The output results of RPIM and EFG are listed in Appendix 4.14~
Appendix 4.17. The error in the energy norm given in Equation (4.78) is
also presented.

Step 3: Analysis of the output data.

This step can be performed using a post-processor like MFree Post (GR
Liu, 2002). Since this example problem is simple, and the output date file is
small, any other commercial program, such as Matlab, MS-Excel, etc., can
be used to produce the drawing of the results.

Results obtained using the RPIM method are plotted in Figure 4.7~Figure
4.9. The deflection of the beam is plotted in Figure 4.7 and Figure 4.8. For
comparison, the analytical results of displacements computed using
Equations (4.79) and (4.81) are also plotted in the same figure. There is
good agreement between the RPIM method results and the analytical results.
The results of stress, xx , and shear stress, xy , are plotted in Figure 4.9.
Compared with the analytical results, the RPIM method produces very good
results even for stresses.

Results of the EFG method are plotted in Figure 4.10 and Figure 4.11.
The deflection of the beam is plotted in Figure 4.10. For comparison, the
analytical results of displacements given by Equation (4.79) and (4.81) are
also plotted in the same figure. The results of stress, xx , and shear stress,

xy , are plotted in Figure 4.11. Compared with the analytical results, the
EFG method has also produced very accurate stresses.

4. Meshfree methods based on global weak-forms 181

Two models with nodal distributions of 189 regular nodes and 189
irregular nodes shown in Figure 4.12 are used to test the present code.
Stresses xx and xy are first obtained using the RPIM method and plotted in
Figure 4.13. Stresses xx and xy are also obtained using the EFG method
and plotted in Figure 4.14; the nodal irregularity has little effect on the
results, and this is true for both the RPIM method and the EFG method.

For comparison, the conventional FEM results using bi-linear elements
are computed and results are plotted in Figure 4.15 and Figure 4.16. For the
regular nodal distribution of 189 nodes (160 bi-linear FEM elements), FEM
obtains less accurate but still acceptable results. However, for the irregular
nodal distribution of 189 nodes, the FEM results are very bad. This example
clearly demonstrates the advantage of MFree methods over the conventional
FEM on the robustness of using irregular field nodes in computing the
stresses.

Note that, in the conventional FEM, stresses at the field nodes are
obtained by simply averaging the nodal stresses of the surrounding elements.
Better stress results can, of course, be obtained by interpolation of the
stresses at the Gauss points or the so-called super-convergent points.

Note also that the performance of an MFree method is usually affected by
the parameters. In the following sections, the effects of some important
parameters used in both RPIM and EFG methods are studied using the
present code.

Analytical solutions RPIM solutions

Figure 4.7. Deflection of the beam obtained using RPIM and 175 field nodes. The
MQ-RBF is used in RPIM and the parameters used areaa c=1.0, q=1.03 and 3.0i .

The linear polynomial terms are added in the RPIM-MQ. Note that the
displacements plotted are magnified by 500 times.

182 Chapter 4

0 5 10 15 20 25 30 35 40 45 50
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
x 10

-3

RPIM result
Analytical result

x

D
ef

le
ct

io
n

Figure 4.8. Deflections v along the central axis at 0y of the beam obtained using
RPIM-MQ and 175 field nodes.

-140

-120

-100

-80

-60

-40

-20

0

-6 -4 -2 0 2 4 6

RPIM result
Exact result

St
re

ss
xy

y

Figure 4.9. Shear stress distributions on the cross-section of the beam at / 2
obtained using RPIM and 175 field nodes. The MQ-RBF is used in the RPIM andd
the parameters used are 1.0,c 1.03,q and 3.0i . The linear polynomial

terms are added in RPIM-MQ.

4. Meshfree methods based on global weak-forms 183

0 5 10 15 20 25 30 35 40 45 50
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
x 10

-3

EFG result
Analytical result

D
ef

le
ct

io
n

x

Figure 4.10. Deflections v along the central axis at 0 of the beam obtained using
EFG and 175 field nodes. The parameter used is 3.0i . The linear polynomial basis

is used in MLS.

-140

-120

-100

-80

-60

-40

-20

0

-6 -4 -2 0 2 4 6

EFG result
Exact result

St
re

ss

xy

y

Figure 4.11. Shear stress distributions on the cross-section of the beam at / 2
obtained using EFG and 175 field nodes. The parameter is 3.0i . The linear

polynomial basis is used in MLS.

184 Chapter 4

(a)

(b)

Figure 4.12. Nodal arrangements used to model the cantilever beam. (a) 189 regular
nodes; (b) 189 irregular nodes.

-6 -4 -2 0 2 4 6
-140

-120

-100

-80

-60

-40

-20

0

y

(regular 189 nodes)
MRPIM (irregular 189 nodes)
Analytical results

St
re

ss
xy

RPIM
RPIM

Figure 4.13. Shear stress distributions on the cross-section of the beam at / 2
obtained using RPIM and 189 field nodes. The MQ RBF is used in RPIM and thed

parameters used are 1.0,c 1.03,q and 3.0.i The linear polynomial terms
are added in RPIM-MQ.

4. Meshfree methods based on global weak-forms 185

-6 -4 -2 0 2 4 6
-140

-120

-100

-80

-60

-40

-20

0

20

y

EFG (regular 189 nodes)
EFG (irregular 189 nodes)
Analytical results

St
re

ss

xy

Figure 4.14. Shear stress distributions on the cross-section of the beam at / 2
obtained using EFG and 189 field nodes. The parameter used is 3.0i . The linear

polynomial basis is used in MLS.

-6 -4 -2 0 2 4 6
-140

-120

-100

-80

-60

-40

-20

0

y

Analytical results
RPIM
EFG
FEM

St
re

ss
xy

Figure 4.15. Shear stress distributions on the cross-section of the beam at / 2
obtained using different methods and 189 regular field nodes (bi-linear elements

for FEM, for RPIM and EFG).3.5i =

186 Chapter 4

-6 -4 -2 0 2 4 6
-140

-120

-100

-80

-60

-40

-20

0

20

y

Analytical results
RPIM
EFG
FEM

St
re

ss

xy

Figure 4.16. Shear stress distributions on the cross-section of the beam at / 2
obtained using different methods and 189 irregular field nodes. The mesh distortion

effects on the FEM solution (using bi-linear elements) are obvious.

4.5.2 Effects of parameters

In the following studies, we consider the same cantilever beam problem
because we know the analytical solution. The problem domain is
represented by 189 (21 9) regularly distributed nodes, and 160 (20 8)
rectangular background cells are used for numerical integrations. In each
background cell, 4 4 Gauss points are employed. As the number of Gauss
points used satisfies the sufficient requirement given in Equation (4.44), we
considered the numerical integration to be sufficiently accurate. For
quantitative and accurate analysis, the exact essential boundary conditions
and exact natural boundary conditions are also used. In the exact natural
boundary conditions, the distributed traction is employed at the right end of
the beam. Hence, the curve integration is required on the boundary of the
right end of the beam. The error in the energy norm defined by Equation
(4.78) is used as an error indicator. In the RPIM method, the linear
polynomial terms are added in the RPIM-MQ. In the EFG method, the
linear basis and the cubic spline weight function (W1) are employed in the
MLS approximation.

4. Meshfree methods based on global weak-forms 187

4.5.2.1 Parameter effects on RPIM method

a) Shape parameters used in RPIM

Only MQ-RBF is studied in this sub-section. More detailed discussions
on the parameters of other RBF are presented in the paper by Wang and GR
Liu (2002c). In the MQ-RBF, there are two shape parameters (see Table 3.2)
to be investigated. The nodal spacing is a constant of / 20 2.4cd .

GR Liu (2002) and co-workers have found that parameter q has great
influence on the performance of RPIM than that of parameter c. Therefore,
q is investigated first with c fixed at 1.0, 2.0 and 4.0. Errors in the energy
norm defined by Equation (4.78) for five different values of q (0.5q , 0.5,
0.98, 1.03 and 1.2) are computed and plotted in Figure 4.17. When 0.5
and 0.5, they are the classical MQ-RBFs. Wang and Liu (2002c) have
discovered that when q=0.98 and 1.03 the RPIM-MQ performs the best.
From Figure 4.17, it can be confirmed that q=0.98 and 1.03 give good
results. GR Liu (2002) also found that the RPIM results become better when
q is near the integers (e.g. 1.0) and the condition number of the RPIM
moment matrix is large. However, when q equals an integer (e.g., q=1), the
moment matrix is singular and the computation fails. We state without
showing the data that when q is too large the error will significantly increase
because of the too large condition number of the moment matrix.

-0.5 -0.2 0.1 0.4 0.7 1
10

-2

10
-1

10
0

q

Er
ro

r i
n

en
er

gy
 n

or
m

c=1.0
 c=2.0
 c=4.0

Figure 4.17. Influence of q on the RPIM-MQ, in which 1.0c , 2.0 and 4.0 are used. It
can be found that q=0.98 and 1.03 give accurate results.

188 Chapter 4

Figure 4.18. Influence of c on the RPIM-MQ in which q=0.98 and 1.03 are used. It can be
found that the results for 3.0 ~ 7.0c are more accurate.

GR Liu (2002) has found that c should be in the range of 1.0~6.0. In
this study, c is further studied for a wider range of 0.5~7.0. Errors in the
energy norm for different values of c are plotted in Figure 4.18. It is found
that all c in the range studied can lead to satisfactory results, 3.0 ~ 7.0c

are preferred.
Hence, q=1.03 and 4.0c are used in the following studies.

b) Dimension of the influence domain

The dimension of influence domains is defined in Equation (4.75), where
dcxdd and dcydd are nodal spacing in x and y directions near the field node i. In
this study, / 20 2.4cx / 20 and /8 1.5cx /8 are used. The actual
dimension of influence domains will be determined by changing ix and iy,
which are dimensionless sizes in x and y directions. For simplicity,

ix= iy= i is used in this study.

Errors in the energy norm computed using different i are plotted in
Figure 4.19. The shape parameters of MQ-RBF are 1.03 and 4.0c .
It can be found that the error changes with i, and the results of i 2.0, 3.0
and 4.0 are all very accurate. The error for 1.5i and i 2.5, 3.5 or 4.5
are relative large. The reason of bad results of 1.5i is that the influence

4. Meshfree methods based on global weak-forms 189

domain is too small, and there are not enough field nodes included for
interpolation. Although the influence domains of i 2.5, 3.5 or 4.5 are big
enough, the accuracy is also not very good. We suspect the reason is that

i 2.5, 3.5 or 4.5 cannot match well with shape parameters. A more
detailed study is needed.

Errors in the energy norm obtained using the RPIM with the parameters
of 1.03q and 1.0c are plotted in Figure 4.20. It can be found that the
error ee is more stable for this set of shape parameters and results of 3.0i

are very good. The aim of these studies is to show that some parameters
must be carefully selected in RPIM-MQ to obtain good results. It is
fortunate that the range of parameters is usually quite wide.

From the results of Figure 4.19 and Figure 4.20, 3.0i are used in the
following studies. In addition, considering the results presented in Figure
4.17~Figure 4.20 and the conclusions obtained by GR Liu (2002), q=1.03
together with 4.0c is generally stable and accurate for many problems
considered. Hence, q=1.03 and 4.0c are used in the following studies.

1 1.5 2 2.5 3 3.5 4 4.5
10-2

10-1

100

i

En
er

gy
er

ro
r

Figure 4.19. The effects of the dimension of influence (support) domain i on the
RPIM-MQ (q=1.03, 4.0c).

190 Chapter 4

1 1.5 2 2.5 3 3.5 4 4.5
10-2

10-1

100

E
rro

r i
n

en
er

gy
 n

or
m

i

Figure 4.20. The effects of the dimension of influence (support) domain i on the
RPIM-MQ (1.0c and q=1.03).

c) Convergence

The convergence of RPIM is numerically studied using regularly
distributed 18 (3 6), 55(5 11), 112(7 16), 189(9 21), 403(13 31) and 697
(17 41) field nodes. The convergence curves are shown in Figure 4.21. For
comparison, the convergence curve for FEM that uses the bi-linear elements
is also plotted in the same figure. In this figure, h is in fact the nodal
spacing, dcdd , and it is equivalent to the element size (in x direction) in the
FEM analysis in this case. The convergence rates, R, computed by linear
regression are given in Figure 4.21. Note that the method of calculating the
convergence rate can affect very much the values of the convergence rate
due to the nature of the convergence process. In the early stage, the error
reduces much faster than in a later stage, where the results are very close to
the exact solution that is in polynomial form. For example, if only the right-
most two points are used to calculate the convergence rate, the R value can
be much higher. This is probably one of the reasons why different
convergence rates are reported in different references.

Figure 4.21 shows the following conclusions:

The accuracy of the RPIM method is much higher than that of FEM.

4. Meshfree methods based on global weak-forms 191

The convergence rates of the RPIM are much higher than that of the
Galerkin FEM, which is 1.0 for bi-linear elements.

Note again that the shape parameters chosen in the MQ-RBF will affect
the convergence rate and the accuracy of the RPIM method.

Figure 4.21. Numerical convergence of RPIM-MQ in error er e in energy norm. The
parameters used are 4.0,c and 3.0i . Linear polynomial terms are added in RPIM-

MQ. R is the convergence rate computed by linear regression using all points in the figure.r

4.5.2.2 Parameter effects on EFG method

1) Dimension of the influence domain

The size of influence domains is defined in Equation (4.75) where
/ 20 2.4cxd Lcx / 20L and /8 1.5cx /8 for this problem. Errors of the energy

norm for different i are plotted in Figure 4.22. It can be found that the error
changes with i and the results for 2.0 4.0i are very good. When the
influence domain is too small (2.0i) or too big (4.0i), the error of
EFG results increases.

When the influence domain is too small (2.0i), there are not enough
nodes used to perform the function approximation for the field variables.
The smoothness of MLS shape functions reduces. When the influence

192 Chapter 4

domain is too large (4.0i), the MLS shape functions become too smooth
to represent the local properties of the field variables. In addition, large
influence domains will also increase the computational cost. Hence, a
proper influence domain should be used in the EFG method, and 2.5i is
found by this and other studies to be very good for many problems, and will
be used in the following studies of the EFG method.

1 1.5 2 2.5 3 3.5 4 4.5
10-2

10-1

100

i

En
er

gy
er

ro
r

Figure 4.22. Effects of the dimension of influence (support) domain i on EFG.

2) Convergence

The convergence of EFG is numerically studied using regularly
distributed 18 (3 6), 55(5 11), 112(7 16), 189(9 21), 403(13 31) and 697
(17 41) nodes, and the convergence curves are plotted in Figure 4.23. The
convergence rate, R, is computed via linear regression. From Figure 4.23, it
is observed that convergence rates of the EFG method is about 1.45 and is
higher than that of the Galerkin bi-linear FEM. It should be mentioned here
that only the linear basis is used in MLS to obtain the EFG results of Figure
4.23. The higher convergence rate of EFG is due to the fact that the MLS
shape functions possess higher order smoothness inherited from the weight
function used. Note also that the accuracy of the EFG method is much
higher than that of the FEM.

4. Meshfree methods based on global weak-forms 193

Figure 4.23. Numerical convergence of EFG results. The parameter used is 2.5i . The
linear polynomial basis is used in the MLS approximation. R is the convergence rate

computed by linear regression using all the points in the figure.

4.5.3 Comparison of convergence

For comparison, the numerically obtained convergence curves of RPIM,
EFG and FEM are computed and plotted in Figure 4.24. From this figure,
the following remarks can be made:

a) Both the convergence rates and the accuracies of RPIM and EFG are
better than those of the bi-linear FEM. This is because the MFree shape
functions have higher interpolation accuracy than the bi-linear FEM
shape functiond, due to the use of more nodes in the construction of
MFree shape functions.

b) The convergence rate and accuracy of the RPIM method are slightly
better than those of the EFG method.

It should be mentioned here that the convergence is studied numerically
based on regularly distributed nodes. If the irregularly distributed nodes are
used, the convergence and accuracy of RPIM method and the EFG method
will be much better than those of FEM, as shown, for example, in Figure
4.24.

194 Chapter 4

Figure 4.24. Comparison of numerical convergences of RPIM, EFG and linear FEM in
error er e of energy norm. R is the convergence rate.

4.5.4 Comparison of efficiency

The computational cost vs. the accuracy is a fair indicator to evaluate
numerical methods. A successful numerical method should obtain high
accuracy at a low computational cost. Regularly distributed 18, 55, 189 and
403 nodes are used to calculate the curves of error against the CPU time of
RPIM, EFG and FEM. These curves obtained and plotted in Figure 4.25,
where 3.0i and 2.5i are used in RPIM and EFG, respectively.

It should be noted that the computational cost of an MFree method
mainly comes from two parts:

1) The first part is the cost of the interpolation, which mainly comes
from computing the inverse of the moment matrix. Therefore, the
cost of the interpolation is mainly determined by the dimension of the
moment matrix. The dimensions of the moment matrices of RPIM
are n n (n is the number of the field nodes in the support domain),
and the dimension of the moment matrix of EFG is m m (m is the
number of basis, 3 for the linear basis). Because of n m , the
interpolation cost of RPIM is usually much higher than that of EFG.

2) The second part is the cost to solve the final discretized system
equation, which depends on the maximum bandwidth of the global
stiffness matrix. The maximum bandwidth of the final stiffness

4. Meshfree methods based on global weak-forms 195

matrix increases with the number of nodes chosen in the support
domains, for a given numbering system. The support domains used
in RPIM is usually bigger than those used in EFG. The
computational cost of RPIM in solving the final system equation is
therefore higher.

The RPIM is first compared with the EFG method, in which the penalty
method is used to enforce the essential boundary conditions. From Figure
4.25, the following remarks can be observed:

a) For a desired accuracy (such as 10-1 error in the energy norm), the cost
of EFG (with penalty method) is the lower than that of RPIM.

b) For a given cost (say 20 s), the accuracy of EFG is better than that of
RPIM.

For this discussion, one can conclude that the efficiency of the EFG
method (using penalty method to enforce essential boundary conditions) is
better than that of the RPIM method.

Figure 4.25. Comparison of the computational efficiencies of RPIM, EFG and FEM in
error er e in energy norm. In RPIM-MQ, the parameters are 4.0,c 1.03,q 3.0i ,

and m=3. In EFG, the parameter is 2.5i , the weight function W1 and the linear
polynomial basis are used in the MLS approximation. In FEM, bi-linear elements are used.

If the Lagrange multiplier method is used, the dimension of the global
stiffness matrix will increase, and the stiffness matrix will become an

196 Chapter 4

unbanded matrix as shown in Equation (4.74). This will significantly
increase the computational cost of the EFG method especially for large
systems. To prove this point, the curves of error against the CPU time of the
EFG method using the Lagrange multiplier method is also plotted in Figure
4.25. It is found that the EFG method using the Lagrange multiplier method
is less efficient than RPIM.

For comparison, the curves of error against the CPU time of the
conventional FEM using bi-linear elements are also plotted in Figure 4.25.
It is found that FEM needs more CPU time to obtain the desire
computational accuracy than both RPIM and EFG; the conventional FEM is
less efficient than RPIM or EFG.

4.6 EXAMPLE FOR 3D SOLIDS

Because of the robustness and effectiveness of the MFree RPIM method,
the RPIM has successfully been applied to many types of problems (see, e.g.,
Chapter 2). In this section a simple example problem of a three-dimensional
(3D) solid is solved using the RPIM. The materials used in this section are
largely from the work by GR Liu and Zhang et al. (2003), where more
examples can be found.

The standard basic equations of 3D elastic solids were given in Sub-
section 1.2.1. The procedures used in Section 4.2 gives the discretized
system equations of the RPIM for 3D elastic solids. Detailed discussions are
omitted because it is largely similar to the 2D case. Readers may derive
these formulations following the procedures given in Section 4.2. Note that
the construction of RPIM shape functions for 3D domain is very similar to
the 2D RPIM shape functions, and the RBFs are distance functions; need
only change the formula for calculating the distance.

Consider a 3D cantilever beam (shown in Figure 4.26) with a circular
hole subjected to a uniformly distributed load of f =125. The left end of the
beam is fixed, and the right end of the beam is a half circle. The geometric
and material constants for the beam are: length (to the centre of the internal
circle): L=48; height: D=12; width: T=8; radius of the outer half-circle:TT R=6;
radius of the internal circle: r =2; Young’s modulus: 73 10E 3 , and
Poisson’s ratio: = 0.3.

The results of displacements and stresses are computed for all field nodes
using both RPIM and the FEM. For simplicity, only the results of the
vertical displacement at point A at (48, 4, 8) (see, Figure 4.26) are presented

4. Meshfree methods based on global weak-forms 197

here. The FEM results, obtained using the commercial software package
ANSYS with a very fine mesh of 11109 elements (Solid92-type 10-node
tetrahedral element) shown in Figure 4.27, are taken as the reference solution
for the comparison study. The FEM reference solution is found as

Ref 2
A 0.11211 10vA 0.11211 .

Figure 4.26. A 3D cantilever beam subjected to a uniformly distributed load.

Figure 4.27. FEM mesh for the 3D cantilever beam.

The RPIM-MQ is used to solve this problem. In the MQ-RBF, the shape
parameters used are q=1.03 and c=4.0. Irregularly distributed nodes shown
in Figure 4.28 are used. The tetrahedral background cells are used for the
numerical integrations. In each tetrahedral background cell, 4 Gauss points
are employed.

Figure 4.28. Irregular nodal arrangements for the 3D cantilever beam.

z

y

x
L

R

T

f

198 Chapter 4

Results of displacements obtained using RPIM are listed in Table 4.1.
The FEM results obtained using ANSYS (using 4-node elements) with the
same nodes as those used in RPIM are also listed. From this table, it can be
found that the RPIM gives much better results than that of the FEM.

Table 4.1. Vertical displacement at point A, vA, obtained using the RPIM and FEM
using exactly the same sets of nodes

 RPIM(1) RPIM(2) ANSYS
Number of

nodes
(number of

cells)
vAv Error

(%)
vAv Error

(%)
vAv Error

(%)
196

(538) -0.1109E-2 1.07 -0.1125E-2 0.40 -0.8307E-3 25.89
1146

(4685) -0.1133E-2 1.06 -0.1137E-2 1.46 -0.1046E-2 6.63
1596

(6815) -0.1125E-2 0.41 -0.1134E-2 1.16 -0.1060E-2 5.41
1999

(8771) -0.1125E-2 0.38 -0.1137E-2 1.43 -0.1067E-2 4.78

(1): 70 nearest nodes are used to construct RPIM shape functions;
(2): 50 nearest nodes are used to construct RPIM shape functions.

(3) Ref Ref
A A AError v v vv e
A A AAvA .

(4) Reference solution: Ref 2
A 0.11211 10v 0.11211 obtained using ANSYS and very fine

mesh (11109 elemets).

4.7 EXAMPLES FOR GEOMETRICALLY NONLINEAR
PROBLEMS

The purpose of this section is to show some simple examples of the
applications of the RPIM to geometrically nonlinear solid mechanics
problems. The detailed description of this work can be found in a paper by
Dai et al. (2003). For applications to material non-linear problems, readers
may refer to the recent work by Dai et al. (2004).

The standard Newton-Raphson iteration procedure and the formulation in
material description are used in the study. The standard basic equations and
formulation procedures are largely the same as those used in the FEM (e.g.,
Zienkiewicz and Taylor, 2000). The difference is mainly in the creation of
the shape functions. Hence, detailed discussions are omitted here. Readers
are recommended to refer to the books on nonlinear FEM (see, e.g.,
Zienkiewicz and Taylor, 2000).

4. Meshfree methods based on global weak-forms 199

In these examples, compressible hyperelastic neo-Hookean materials are
used with Lame constants of 4 20.5 104 N cm/0.5 and 24 /10)3/1(4 cm/)3/1(.
The plane strain state is considered in this section.

The RPIM-MQ shape functions are computed with q = 1.03 and c=1.0
augmented with six (2nd order) monomials. In the following studies,

5.1s is used for the local support domains. Gauss quadrature using
44 Gauss points is employed in each background cell.

4.7.1 Simulation of upsetting of a billet

A two-dimensional billet subjected to deep compression is studied using
RPIM. The initial dimensions of the billet are 4cm wide and 6cm high
shown in Figure 4.29. The domain is initially represented by 6 uniform
nodes, and 5 rectangular background cells are used for the integration.
The billet is loaded via displacement control on the upper surface with the
bottom surface fully fixed. A Newton-Raphson iteration procedure is used
with increments of vertical displacement equal to 0.2cm. Figure 4.30 shows
the progression of deformation at different steps. It is seen that the billet is
compressed as much as 56% compared to its original height. The same
problem is also analyzed using the conventional non-linear FEM. It is found
that when the FEM is used (Zienkiewicz and Taylor, 2000), the convergence
stops at the amount of 50% of compression. An irregular node distribution
is also used in the RPIM for the simulation, and results are plotted in Figure
4.31.

Figure 4.29. Schematical drawing of the initial and deformed billet subjected to deep
compression.

cm

4 cm

d

200 Chapter 4

(a) d = 2.0 cm (b) d = 2.8 cm

Figure 4.30. Deformed profile of a compressed billet simulated using RPIM and 6 6 regular
nodes.

Figure 4.31. The deformed profile of a compressed billet simulated using RPIM and
irregular nodes. Circles: initial positions of the nodes; Diamonds: positions of nodes in the

deformed billet.

4.7.2 Simulation of large deflection of a cantilever beam

In this example, a large deformation analysis is performed for a
cantilever beam subjected to a progressively increasing load at the middle
point on the cross-section at the free end with each load step of F = 16.0 F N.NN
The dimensions of the beam are (cmcm 210cm) and it is initially represented
using (3) regularly distributed nodes (see Figure 4.32). The analysis is
carried out using twenty load incremental steps (n = 20). The simulation
converges very fast, and less than 4 iterations are needed in each load
increment.

4. Meshfree methods based on global weak-forms 201

Figure 4.33 illustrates different stages of deformation for the beam
obtained using RPIM. The tip deflections at different load steps are plotted
in Figure 4.33. It can be seen that, the nonlinear analysis reveals the stiffer
effect of the beam compared to the linear behavior.

4.7.3 Simulation of large deflection of a fixed-fixed beam

This example analyzes the large deformation of a beam with both left and
right sides fully fixed. The beam is subjected to a uniformly distributed and
progressively increasing load with each load step of f = 80.0f N/cm. After
twenty steps of loading, the final profile of the beam is shown in Figure 4.34.
The deflections at the mid-node at different load steps are plotted in Figure
4.35. Geometrically non-linear effects similar to the case of the cantilever
beam are observed.

Figure 4.32. Large deformations of a cantilever beam at different steps simulated usingm
RPIM.

4.8 MFREE2D

MFree2D is an adaptive stress analysis software package developed by
GR Liu and co-workers (GR Liu and Tu, et al., 2000) based on EFG and
RPIM. It was showcased in 1999 in the APCOM’99 conference.
MFree2D is designed for 2D stress and strain analysis in solid mechanics
and structural mechanics subjected to static loadings. The software consists

Initial
conficon guration

Step 5

Step 10

Step 15 Step 20

F

F

F

F
F

202 Chapter 4

of three major processors: MFreePre, MFreeApp and MFreePost.
MFreePre is a preprocessor to formulate the input required by MFreeApp;
the latter performs computations and yields results which are then fed to
MFreePost for post processing.t

Figure 4.33. Deflections at point A at the middle of the cross-section at the free end of a
cantilever beam simulated using RPIM.

Figure 4.34. Initial and final profiles of a fixed-fixed beam subjected to a uniformly
distributed load. RPIM is used and the loading keeps vertical in the loading process.

A

f

4. Meshfree methods based on global weak-forms 203

Figure 4.35. Deflections at point A at the middle of the central axis of the fixed-fixed beam
simulated using RPIM.

These three processors can work either in an integrated manner or
independently. One salient feature of MFree2D is that it is designed to be
user-friendly and thus, has few input requirements from users. The main
features of MFree2D include:

The problem domain is discretized using scattered nodes and the
discretization is fully automatic.
Adaptive refinement techniques are implemented to ensure the results
have a desired accuracy.
User-friendly graphical-user-interface (GUI).

In the current version of MFree2D , the RPIM method and the EFG
method are available, and Visual C++ is used as the programming language.
MFree2D can be downloaded from the website
(http://www.nus.edu.sg/ACES).

The source codes provided in this book are largely consistent with the
MFree2D . However, for easy understanding and comprehension, only
FORTRAN source codes are provided in this book for simple problems.

204 Chapter 4

4.9 REMARKS

MFree global Galerkin weak-form methods are discussed in this chapter.
The MFree RPIM method based on the radial point interpolation and the
EFG method based on the MLS approximation are detailed. A computer
code of RPIM and EFG for linear elasticity is provided. Numerical studies
are presented to show the implementation of the present code. The
performance and convergence of RPIM and EFG are studied numerically
and compared. It may be concluded that the accuracy, convergence, and
efficiency of RPIM and EFG are better than the conventional FEM.

From the studies in this chapter, we can make the following important
remarks:

a) The compatibility of the trial (shape) functions in the whole domain
is required in MFree global weak-form methods.

b) In RPIM, the recommended shape parameters for the MQ-RBF are
q=1.03 and c=4.0.

c) The accuracy of solutions changes with the sizes of the influence
domains i. In RPIM, i =3.0 is recommended. In EFG, we
recommend i =2.5.

d) The convergence rates of both the RPIM and EFG methods are good.
The convergence rate of the RPIM is better than that of EFG.

e) The efficiency of the EFG method (using penalty method to enforce
essential boundary conditions) is better than that of RPIM.

f) The EFG method with the Lagrange multiplier method for enforcing
the essential boundary conditions is much less efficient than RPIM.

g) The bi-linear FEM is less efficient than RPIM or EFG.

Note that as the solution for the cantilever beam has polynomial form,
methods using MLS shape functions (with polynomial basis) perform better
than methods using RPIM shape functions (with RBF basis). For more
complex problems whose solutions are not in the polynomial form, the
situation can change, as observed in the surface fitting tests presented in
Chapter 3.

4. Meshfree methods based on global weak-forms 205

APPENDIX

Appendix 4.1. Major subroutines used in MFree_Global.f90 and their functions

Subroutines Functions

Input Input data from an external input file

GaussCoefficient Obtain coefficients of Gauss points

CellGaussPoints Set Gauss points for a cell

SupportDomain Determine the support domain for an
interpolation point

MLS_ShapeFunc_2D
(or RPIM_ShapeFunc_2D)

Compute shape functions and their derivatives at
an interpolation point

PointStiffnessMatrix Compute the stiffness matrix for a quadrature
point

EssentialBC Enforce essential boundary conditions

NaturalBC Implement natural boundary conditions

SolveBand Solve system equation

GetDisplacement Obtain the final displacements using the RPIM or
the MLS shape functions

GetStress Retrieve the strain, stress, and compute error in
the energy norm

Appendix 4.2. The major variables used in MFree_Global.f90

Variable Type Usage Function

Young, anu Long real Input Young’s modulus and Poisson ratio

Dmat (3,3) Long real Compute The matrix of elastic constants

nx Integer Parameter Dimension of this problem; nx=2 for
2D problem

ng Integer Parameter Shape of the background cells, and
ng=4 is used for a rectangular cell

numnode Integer Input Number of field nodes

206 Chapter 4

x(nx,
numnode)

Long real Input Coordinates x and y for all field nodes: y
x(1,i)=x= i; x(2,i)=y= i

numq Integer Input Number of background points to form
background cells

xc(nx,
numnode)

Long real Input Coordinates x and y for background
points: xc(1,i)=x= i; xc(2,i)=y= i

numcell Integer Input Number of background cells

noCell(ng,
numcell)

Integer Input Node ID for background cells

nquado Integer Input Number of Gauss points used in one
dimension in a background cell. For
rectangular background cell, the total
Gauss points used for a 2D cell is
nquado nquado.

npEBCnum Integer Input Number of nodes with essential
boundary conditions

npEBC,
pEBC

Integer
long real

Input npEBC(1,i): ID of field nodes with
the essential boundary condition;
if npEBC(2,i)=1 then ux is prescribed x
in pEBC(1,i); if pEBC(3,i)=1 then uyu
is prescribed in pEBC(2,i)

npNBCnum Integer Input Number of nodes with natural
boundary conditions

npNBC,
pNBC

Integer
long real

Input npNBC(1,i): ID of field nodes with
the natural boundary condition:
if npNBC(2,i)=1 then fxff is prescribed
in pNBC(1,i); if pNBC(3,i)=1 then fyff
is prescribed in pEBC(2,i)

alfs Long real Input Dimensionless size of support
(influence) domain

pAlf Long real Input Penalty coefficient

Ds(nx,
numnode)e

Long real Compute The size of the influence domain:
ds(1,i)=dsxid , ds(2,i)=dsyid

ndex Integer Compute Number of field nodes in the support
domain for an interpolation point

Ph(10, ndex) Long real Compute Meshfree shape functions and their
derivatives.

Ak Long real Compute Global stiffness matrix

4. Meshfree methods based on global weak-forms 207

Force Long real Compute Global force vector

disp Long real Compute Displacement vector,
disp(2*i-1)=ui; disp(2*i-1)=vi

Stress Long real Compute The array to store the stress
components for all field nodes

Appendix 4.3. The dummy arguments used in the subroutine GaussCoefficient

Variable Type Usage Function

k Integer Input Number of Gauss points in 1D

v(2,k)kk Long
real

Output The array for the coefficient of Gauss
points,
v(1, i): coefficient for the coordinate of a
Gauss point; v(2, i): Gauss weight for this
Gauss point

Appendix 4.4. The dummy arguments used in the subroutine CellGaussPoints

Variable Type Usage Function

ibk Integer Input ID of the background cell considered

numgauss Integer Input Number of Gauss points in a cell

Gauss
(nx,nquado)

Long
real

Input The array for the coefficients of Gauss
points; Gauss(1, i): coefficient for the
coordinate of a Gauss point; Gauss (2, i):
Gauss weight for this Gauss point

gs(4,numg) Integer Output Array storing information of Gauss points
for a cell:
gs(1, i): coordinate x for Gauss point i;
gs(2, i): coordinate y for Gauss point i;
gs(3, i): Gauss weight for Gauss point i;
gs(4, i): Jacobian value for this cell

208 Chapter 4

Appendix 4.5. The dummy arguments used in the subroutine SupportDomain

Variable Type Usage Function

Gpos(nx) Long real Input Coordinates of a point of interest

ndex Integer Output Number of field nodes used in the
support domain

nv(ndex) Integer Output Node ID of field nodes selected for the
construction of shape functions

Appendix 4.6. The dummy arguments used in the subroutine PointStiffnessMatrix

Variable Type Usage Function

ndex Integer Input Number of field nodes used in
the local domain for the
construction of shape functions

Weight Long real Input Gauss weight for a Gauss point
ajac Long real Input Jacobian value for the cell
Ph(10, ndex) Long real Input Shape functions and their

derivatives.
GSPk(2*ndex,2*ndex) Long real Output Stiffness matrix for the Gauss

point

Appendix 4.7. The dummy arguments used in the subroutine EssentialBC

Variable Type Usage Function

numnode Integer Input Total number of field nodes
pAlf Long real Input Penalty coefficient
alfs Long real Input Dimensionless size for support

(influence) domain
Ds(nx, numnode) Long real Input The size of the influence

domain
npEBCnum Integer Input Number of nodes with essential

boundary conditions
npEBC(3,100),
pEBC(nx,100)

Integer,
long real

Input Essential boundary condition

4. Meshfree methods based on global weak-forms 209

Ak(2*numnode,
2*numnode)

Long real Input and
output

Global stiffness matrix

Force(2*numnode) Long real Input and
output

Global force vector

Appendix 4.8. The dummy arguments used in subroutine NaturalBC_concentrated

Variable Type Usage Function

numnode Integer Input Total number of field nodes
alfs Long real Input Dimensionless size for

support (influence) domain
Ds(nx, numnode) Long real Input The size of the influence

domain
npNBCnum Integer Input Number of nodes with

natural boundary conditions.

npNBC,
pNBC

Integer
long real

Input Natural boundary condition

ep Long real Input Tolerance
Force(2*numnode) Long real Input and

output
Global force vector

Appendix 4.9. The dummy arguments used in subroutine NaturalBC_distributed

Variable Type Usage Function

numnode Integer Input Total number of field nodes
alfs Long real Input Dimensionless size for

support (influence) domain
Ds(nx, numnode) Long real Input The size of the influence

domain:
ds(1,i)=dsxid , ds(2,i)=dsyid

x(nx, numnode) Long real Input Coordinates x and y for all
field nodes

numq Integer Input Number of background
points to form background
cells

xc(nx, numnode) Long real Input Coordinates x and y for

210 Chapter 4

background points
nquado Integer Input Number of Gauss points

used in one dimension in a
background cell.

Gauss
(nx,nquado)

Long real Input The array for the
coefficients of Gauss points:

in, jn Integer Input Two ends of the sub-
boundary t

Force(2*numnode) Long real Input and
output

Global force vector

Appendix 4.10. The dummy arguments used in the subroutine SolverBand

Variable Type Usage Function

neq Integer Input Number of equations
nmat Integer Input Number of rows of the array Aky
Ak(neq, neq) Long real Input Coefficient matrix of the

equation

fp Long real Input, output Input: the right hand side of the
equations;Output: the solution
of the equations

Appendix 4.11. The dummy arguments used in the subroutine GetDisplacement

Variable Type Usage Function

nx Integer Input nx=2 for 2D problem

numnode Integer Input Total number of field nodes
x(nx, numnode) Long real Input Coordinates x and y for

 all field nodes
alfs Long real Input Dimensionless size for support

(influence) domain
Ds(nx, numnode) Long real Input The size of the influence

domain
u2(nx, numnode) Long real Input Nodal parameters of

displacements for field nodes
Disp(nx,numnode) Long real Output Actual nodal displacements for

field nodes

4. Meshfree methods based on global weak-forms 211

Appendix 4.12. The dummy arguments used in the subroutine GetStress

Variable Type Usage Function

nx Integer Input nx=2 for 2D problem

numnode Integer Input Total number of field nodes

x(nx, numnode) Long real Input Coordinates x and y for all field nodes.
x(1,i)=x= i; x(2,i)=y= i

alfs Long real Input Dimensionless size of support
(influence) domain

Ds(nx, numnode) Long real Input The size of the influence domain.
ds(1,i)=dsxid , ds(2,i)=dsyid

Stress
(3,numnode)

Long real Output Array storing stress components of
field nodes

212 Chapter 4

Appendix 4.13. The iput data file: Input175_55.dat used in MFree_Global.f90. As
shown in Figure 4.6, A total of 175 regular field nodes and 40
background cells are used

*L,H,E,v,P,
 48.00000 12.00000 0.3000E+08 0.30000 1000.00000
*numnode, unuse
 175 0
*ndivx,ndivy

24 6
*numq,numcell

55 40
*ndivxq,ndivyq
 10 4
*nquado,alf
 4 100000000.000000
*Influ. domain: ALfs

3.0
*Field nodes: x[]

 1 0.00000 6.00000
2 0.00000 4.00000
3 0.00000 2.00000

 4 0.00000 0.00000
 5 0.00000 -2.00000

6 0.00000 -4.00000
 7 0.00000 -6.00000

8 2.00000 6.00000
9 2.00000 4.00000

 10 2.00000 2.00000
 11 2.00000 0.00000
 12 2.00000 -2.00000
 13 2.00000 -4.00000
 14 2.00000 -6.00000
 15 4.00000 6.00000
 16 4.00000 4.00000
 17 4.00000 2.00000
 18 4.00000 0.00000
 19 4.00000 -2.00000

20 4.00000 -4.00000
 21 4.00000 -6.00000

22 6.00000 6.00000
23 6.00000 4.00000
24 6.00000 2.00000
25 6.00000 0.00000
26 6.00000 -2.00000
27 6.00000 -4.00000
28 6.00000 -6.00000
29 8.00000 6.00000
30 8.00000 4.00000
31 8.00000 2.00000

 32 8.00000 0.00000
33 8.00000 -2.00000
34 8.00000 -4.00000
35 8.00000 -6.00000
36 10.00000 6.00000
37 10.00000 4.00000
38 10.00000 2.00000
39 10.00000 0.00000

 40 10.00000 -2.00000
 41 10.00000 -4.00000

 42 10.00000 -6.00000
 43 12.00000 6.00000
 44 12.00000 4.00000
 45 12.00000 2.00000
 46 12.00000 0.00000
 47 12.00000 -2.00000
 48 12.00000 -4.00000
 49 12.00000 -6.00000
 50 14.00000 6.00000
 51 14.00000 4.00000

52 14.00000 2.00000
 53 14.00000 0.00000
 54 14.00000 -2.00000
 55 14.00000 -4.00000
 56 14.00000 -6.00000
 57 16.00000 6.00000
 58 16.00000 4.00000
 59 16.00000 2.00000

60 16.00000 0.00000
61 16.00000 -2.00000
62 16.00000 -4.00000
63 16.00000 -6.00000

 64 18.00000 6.00000
65 18.00000 4.00000
66 18.00000 2.00000
67 18.00000 0.00000
68 18.00000 -2.00000
69 18.00000 -4.00000

 70 18.00000 -6.00000
 71 20.00000 6.00000
 72 20.00000 4.00000
 73 20.00000 2.00000
 74 20.00000 0.00000
 75 20.00000 -2.00000
 76 20.00000 -4.00000
 77 20.00000 -6.00000
 78 22.00000 6.00000
 79 22.00000 4.00000

80 22.00000 2.00000
81 22.00000 0.00000
82 22.00000 -2.00000

4. Meshfree methods based on global weak-forms 213

83 22.00000 -4.00000
84 22.00000 -6.00000
85 24.00000 6.00000
86 24.00000 4.00000
87 24.00000 2.00000
88 24.00000 0.00000
89 24.00000 -2.00000
90 24.00000 -4.00000
91 24.00000 -6.00000
92 26.00000 6.00000

 93 26.00000 4.00000
94 26.00000 2.00000
95 26.00000 0.00000
96 26.00000 -2.00000
97 26.00000 -4.00000
98 26.00000 -6.00000
99 28.00000 6.00000

 100 28.00000 4.00000
 101 28.00000 2.00000
 102 28.00000 0.00000
 103 28.00000 -2.00000
 104 28.00000 -4.00000
 105 28.00000 -6.00000
 106 30.00000 6.00000
 107 30.00000 4.00000
 108 30.00000 2.00000
 109 30.00000 0.00000
 110 30.00000 -2.00000
 111 30.00000 -4.00000
 112 30.00000 -6.00000
 113 32.00000 6.00000
 114 32.00000 4.00000
 115 32.00000 2.00000
 116 32.00000 0.00000
 117 32.00000 -2.00000
 118 32.00000 -4.00000
 119 32.00000 -6.00000
 120 34.00000 6.00000
 121 34.00000 4.00000
 122 34.00000 2.00000
 123 34.00000 0.00000
 124 34.00000 -2.00000
 125 34.00000 -4.00000
 126 34.00000 -6.00000
 127 36.00000 6.00000
 128 36.00000 4.00000
 129 36.00000 2.00000

 130 36.00000 0.00000
 131 36.00000 -2.00000
 132 36.00000 -4.00000
 133 36.00000 -6.00000
 134 38.00000 6.00000
 135 38.00000 4.00000
 136 38.00000 2.00000
 137 38.00000 0.00000
 138 38.00000 -2.00000
 139 38.00000 -4.00000
 140 38.00000 -6.00000
 141 40.00000 6.00000
 142 40.00000 4.00000
 143 40.00000 2.00000
 144 40.00000 0.00000
 145 40.00000 -2.00000
 146 40.00000 -4.00000
 147 40.00000 -6.00000
 148 42.00000 6.00000
 149 42.00000 4.00000
 150 42.00000 2.00000
 151 42.00000 0.00000
 152 42.00000 -2.00000
 153 42.00000 -4.00000
 154 42.00000 -6.00000
 155 44.00000 6.00000
 156 44.00000 4.00000
 157 44.00000 2.00000
 158 44.00000 0.00000
 159 44.00000 -2.00000
 160 44.00000 -4.00000
 161 44.00000 -6.00000
 162 46.00000 6.00000
 163 46.00000 4.00000
 164 46.00000 2.00000
 165 46.00000 0.00000
 166 46.00000 -2.00000
 167 46.00000 -4.00000
 168 46.00000 -6.00000
 169 48.00000 6.00000
 170 48.00000 4.00000
 171 48.00000 2.00000
 172 48.00000 0.00000
 173 48.00000 -2.00000
 174 48.00000 -4.00000
 175 48.00000 -6.00000

*Points for BK cells:xc[]
 1 0.00000 6.00000

2 0.00000 3.00000
3 0.00000 0.00000

 4 0.00000 -3.00000
 5 0.00000 -6.00000

6 4.80000 6.00000
 7 4.80000 3.00000

8 4.80000 0.00000
 9 4.80000 -3.00000
 10 4.80000 -6.00000
 11 9.60000 6.00000
 12 9.60000 3.00000
 13 9.60000 0.00000

29 24.00000 -3.00000
30 24.00000 -6.00000
31 28.80000 6.00000
32 28.80000 3.00000

 33 28.80000 0.00000
34 28.80000 -3.00000
35 28.80000 -6.00000
36 33.60000 6.00000
37 33.60000 3.00000
38 33.60000 0.00000
39 33.60000 -3.00000

 40 33.60000 -6.00000
 41 38.40000 6.00000

214 Chapter 4

 14 9.60000 -3.00000
 15 9.60000 -6.00000
 16 14.40000 6.00000
 17 14.40000 3.00000
 18 14.40000 0.00000
 19 14.40000 -3.00000

20 14.40000 -6.00000
21 19.20000 6.00000
22 19.20000 3.00000
23 19.20000 0.00000
24 19.20000 -3.00000
25 19.20000 -6.00000

 26 24.00000 6.00000
27 24.00000 3.00000
28 24.00000 0.00000

 42 38.40000 3.00000
 43 38.40000 0.00000
 44 38.40000 -3.00000
 45 38.40000 -6.00000
 46 43.20000 6.00000
 47 43.20000 3.00000
 48 43.20000 0.00000
 49 43.20000 -3.00000
 50 43.20000 -6.00000
 51 48.00000 6.00000
 52 48.00000 3.00000
 53 48.00000 0.00000
 54 48.00000 -3.00000
 55 48.00000 -6.00000

*Background cells: noCell[]
 1 1 2 7 6

2 2 3 8 7
3 3 4 9 8

 4 4 5 10 9
5 6 7 12 11
6 7 8 13 12

 7 8 9 14 13
8 9 10 15 14
9 11 12 17 16

 10 12 13 18 17
 11 13 14 19 18
 12 14 15 20 19
 13 16 17 22 21
 14 17 18 23 22
 15 18 19 24 23
 16 19 20 25 24
 17 21 22 27 26
 18 22 23 28 27
 19 23 24 29 28

20 24 25 30 29

21 26 27 32 31
22 27 28 33 32
23 28 29 34 33
24 29 30 35 34

 25 31 32 37 36
26 32 33 38 37

 27 33 34 39 38
28 34 35 40 39
29 36 37 42 41
30 37 38 43 42
31 38 39 44 43
32 39 40 45 44
33 41 42 47 46
34 42 43 48 47
35 43 44 49 48
36 44 45 50 49
37 46 47 52 51
38 47 48 53 52
39 48 49 54 53

 40 49 50 55 54
*Essential B.C.: numEBC

7
 *Node,iUx,iUy,Ux,Uy
 1 1 1 -0.00000E-25 -0.60000E-04

2 1 1 -0.70988E-05 -0.26667E-04
 3 1 1 -0.56790E-05 -0.66667E-05
 4 1 1 0.00000E-25 0.00000E-25
 5 1 1 0.56790E-05 -0.66667E-05

6 1 1 0.70988E-05 -0.26667E-04
 7 1 1 0.00000E-25 -0.60000E-04
*Concentrated Natural B.C.: numFBC

7
 *Node,iTx,iTy,Tx,Ty
 169 1 1 0.00000 0.0
 170 1 1 0.00000 0.0
 171 1 1 0.00000 0.0
 172 1 1 0.00000 0.0
 173 1 1 0.00000 0.0
 174 1 1 0.00000 0.0
 175 1 1 0.00000 0.0
*RBF shape parameters: nRBF ALFc Dc and q
1 1.0 2.0 1.03
Number of basis
3
*End of input

4. Meshfree methods based on global weak-forms 215

Appendix 4.14. A output sample for displacements obtained using RPIM-MQ

No. of field nodes u v
1
2
3
4
5
6
7
8
9

 10
11

 12
 13
14
15

 162
 163
 164
 165
 166
 167
 168
 169
 170
171
172
 173
174
 175

-0.14420E-12
-0.70988E-05
-0.56790E-05
0.27967E-25
0.56790E-05
0.70988E-05
0.14420E-12
0.13062E-03
0.80083E-04
0.37954E-04
-0.40548E-19
-0.37954E-04
-0.80083E-04
-0.13062E-03
0.25631E-03

0.15929E-02
0.10553E-02
0.52603E-03
0.15070E-16
-0.52603E-03
-0.10553E-02
-0.15929E-02
0.15958E-02
0.10573E-02
0.52704E-03
0.14420E-16
-0.52704E-03
-0.10573E-02
-0.15958E-02

-0.60000E-04
-0.26667E-04
-0.66667E-05
0.23162E-13
-0.66667E-05
-0.26667E-04
-0.60000E-04
-0.94703E-04
-0.61811E-04
-0.42925E-04
-0.36163E-04
-0.42925E-04
-0.61811E-04
-0.94703E-04
-0.17293E-03

-0.83322E-02
-0.83308E-02
-0.83301E-02
-0.83298E-02
-0.83301E-02
-0.83308E-02
-0.83322E-02
-0.88763E-02
-0.88767E-02
-0.88767E-02
-0.88772E-02
-0.88767E-02
-0.88767E-02
-0.88763E-02

* The parameters used are 1.03q , 1.0,c 2.0,cdc and 3.0s . The linear
polynomial terms are added in the RPIM-MQ.

216 Chapter 4

Appendix 4.15. A output sample for stress obtained using RPIM-MQ

No. of
field nodes

xx yy xy

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

0.10568E+04
0.75714E+03
0.37425E+03
-0.11539E-10
-0.37425E+03
-0.75714E+03
-0.10568E+04
0.10975E+04
0.73249E+03
0.37442E+03
0.21032E-11
-0.37442E+03
-0.73249E+03
-0.10975E+04
0.10131E+04
0.66202E+03
0.33873E+03
-0.47578E-10
-0.33873E+03
-0.66202E+03
-0.10131E+04
0.90478E+03
0.60570E+03
0.30801E+03
0.14495E-10
-0.30801E+03
-0.60570E+03
-0.90478E+03

-0.39596E+02
-0.10557E+01
-0.85657E+01
-0.25580E-10
0.85657E+01
0.10557E+01
0.39596E+02
-0.12785E+02
0.12724E+02
0.34166E+01
0.36380E-11
-0.34166E+01
-0.12724E+02
0.12785E+02
-0.12238E+02
0.13350E+02
0.35527E+01
-0.72987E-10
-0.35527E+01
-0.13350E+02
0.12238E+02
-0.17776E+02
0.64940E+01
0.16526E+01
-0.11369E-11
-0.16526E+01
-0.64940E+01
0.17776E+02

-0.29675E+02
-0.63827E+02
-0.10754E+03
-0.12147E+03
-0.10754E+03
-0.63827E+02
-0.29675E+02
-0.30017E+02
-0.62639E+02
-0.10795E+03
-0.12223E+03
-0.10795E+03
-0.62639E+02
-0.30017E+02
-0.31899E+02
-0.66944E+02
-0.11747E+03
-0.12724E+03
-0.11747E+03
-0.66944E+02
-0.31899E+02
-0.30125E+02
-0.69757E+02
-0.12693E+03
-0.13219E+03
-0.12693E+03
-0.69757E+02
-0.30125E+02

Energy error:= 0.9082E-01

* The parameters used are 1.03q , 1.0,c 2.0cdc and 3.0s . The linear
polynomial terms are added in the RPIM-MQ.

4. Meshfree methods based on global weak-forms 217

Appendix 4.16. A output sample for displacements obtained using EFG

No. of field
nodes

u v

1
2
3
4
5
6
7
8
9

 10
11
12

 13
14
15

 162
 163
 164
 165
 166
 167
 168
 169
 170
171
172

 173
174
175

-0.18141E-11
 -0.70988E-05
 -0.56790E-05
 -0.34940E-20
0.56790E-05
0.70988E-05
0.18141E-11
0.12862E-03
0.81176E-04
0.36948E-04

 -0.71820E-14
 -0.36948E-04
 -0.81176E-04
 -0.12862E-03
0.25717E-03

0.15972E-02
0.10576E-02
0.52674E-03
-0.13310E-13
-0.52674E-03
-0.10576E-02
-0.15972E-02
0.15999E-02
0.10594E-02
0.52766E-03
-0.13175E-13
-0.52766E-03
-0.10594E-02
-0.15999E-02

-0.60000E-04
-0.26667E-04
-0.66667E-05
0.41393E-12
-0.66667E-05
-0.26667E-04
-0.60000E-04
-0.93474E-04
-0.61905E-04
-0.43004E-04
-0.36360E-04
-0.43004E-04
-0.61905E-04
-0.93474E-04
-0.17076E-03

-0.83525E-02
-0.83511E-02
-0.83503E-02
-0.83500E-02
-0.83503E-02
-0.83511E-02
-0.83525E-02
-0.88983E-02
-0.88983E-02
-0.88983E-02
-0.88984E-02
-0.88983E-02
-0.88983E-02
-0.88983E-02

* The parameter used is 3.0s . The linear polynomial basis (3mbasis) and
the cubic spline weight function are used in the MLS approximation.

218 Chapter 4

Appendix 4.17. A output sample for stress obtained using EFGtt

No. of
field nodes xx yy xy

71
72
 73
74
75
 76
77
 78
 79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

0.11587E+04
0.78147E+03
0.39129E+03
-0.21668E-06
-0.39129E+03
-0.78147E+03
-0.11587E+04
0.10826E+04
0.72576E+03
0.36205E+03
0.19471E-06
-0.36205E+03
-0.72576E+03
-0.10826E+04
0.10055E+04
0.65869E+03
0.33011E+03
-0.15056E-06
-0.33011E+03
-0.65869E+03
-0.10055E+04
0.92005E+03
0.61740E+03
0.30798E+03
0.11759E-06
-0.30798E+03
-0.61740E+03
-0.92005E+03

0.61486E+00
-0.50179E+00
-0.23088E+01
-0.14721E-06
0.23088E+01
0.50179E+00
-0.61486E+00
0.32433E+01
-0.70275E+00
-0.10124E+00
0.12793E-06
0.10124E+00
0.70275E+00
-0.32433E+01
0.31019E+01
0.27783E+01
-0.18849E+01
-0.11161E-06
0.18849E+01
-0.27783E+01
-0.31019E+01
0.33212E+01
-0.44910E+00
0.24173E+00
0.90103E-07
-0.24173E+00
0.44910E+00
-0.33212E+01

-0.46400E+01
-0.69152E+02
-0.11362E+03
-0.12400E+03
-0.11362E+03
-0.69152E+02
-0.46400E+01
-0.11241E+02
-0.69979E+02
-0.11343E+03
-0.12696E+03
-0.11343E+03
-0.69979E+02
-0.11241E+02
-0.40273E+01
-0.67951E+02
-0.11189E+03
-0.12269E+03
-0.11189E+03
-0.67951E+02
-0.40273E+01
-0.18044E+01
-0.68726E+02
-0.11219E+03
-0.12345E+03
-0.11219E+03
-0.68726E+02
-0.18044E+01

Energy error:= 0.3280E-01

* The parameter used is 3.0s . The linear polynomial basis (3mbasis) and
the cubic spline weight function are used in the MLS approximation.

4. Meshfree methods based on global weak-forms 219

COMPUTER PROGRAMS

Program 4.1. Source code of Parameter.h

parameter(ninput=4,noutput=2, &
 nx=2,ng=4, &
 numd=1000,ncn=1000, numdq=1000,numc=1000, &
 nqc=4,numg=nqc*nqc, &
 ep=1.d-15)

Program 4.2. Source code of Variables.h

 dimension pEBC(2,100),npEBC(3,100),npNBC(3,100),pNBC(2,100)
 dimension Dmat(3,3)
 dimension x(nx,numd),noCell1(ng,ncn),ds(nx,numd)
 dimension xc(nx,numdq),noCell(ng,numc)
 dimension gauss(nx,nqc),gs(ng,numg)
 dimension gpos(nx),nv(numd),ph(10,numd)
 dimension ak(2*numd,2*numd),GSPk(4*numd*numd)
 dimension ne(2*numd),force(2*numd)
 dimension u2(nx,numd),disp(2*numd)
 dimension Stressnode(3,numd)
 common/para/xlength,ylength,p,young,anu,aimo
 common/rpim/ALFC,DC,Q,nRBF
 common /basis/mbasis

Program 4.3. The source code of the main program of MFree_Global.f90
!--
! main program--2D FORTRAN 90 CODE-MFree global weak-form methods
! Using square support domain and square background cells
! input file -- input.dat
! output file -- result.dat
! include file -- parameter.h, variable.h
!--

implicit real*8 (a-h,o-z)
include 'parameter.h'
include 'variables.h'

 open(ninput,file='Input175_55.dat')
 open(noutput,file='result.dat',status='unknown')
! ************* Input data
 call input(x,numd,nx,numnode,ndivx,ndivy,ndivxq,ndivyq,&
 nconn2,nquado,pAlf,Dmat,ALFs,numcell,numq,noCell,ncn,xc,&
 npEBCnum,npEBC,pEBC,npNBCnum,npNBC,pNBC)
 numgauss=nquado*nquado !total number of Gauss points in a cell

! ************* Determine sizes of influence domains -- uniform nodal spacing
 xspace=xlength/ndivx
 yspace=ylength/ndivy
 do i=1,numnode
 ds(1,i)=alfs*xspace

220 Chapter 4

 ds(2,i)=alfs*yspace
enddo

! ************* Coefficients of Gauss points,Weights and Jacobian for a cell
 call GaussCoefficient(nquado,gauss)
 do ik=1,ng
 do jk=1,numgauss

gs(ik,jk)=0
 enddo
 enddo
 do ik=1,2*numd
 force(ik)=0.
 do jk=1,2*numd
 ak(ik,jk)=0.

enddo
enddo

! ************* Loop for background cells
 do 10 ibk=1,numcell
 write(*,*)'Cell No.=',ibk
! ************* Set Gauss points for this cell
 call CellGaussPoints(ibk,numcell,nquado,numq,numgauss, &
 xc,noCell,gauss,gs)
! ************* Loop over Gauss points to assemble discrete equations
 do 20 ie=1,numgauss

gpos(1)=gs(1,ie) ! Gauss point x
gpos(2)=gs(2,ie) ! Gauss point y

 weight=gs(3,ie) ! weight coefficent
 ajac=gs(4,ie) ! Jacobian
! ************* Determine the support domain of Gauss point
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do ik=1,3*ndex
 do jk=1,10
 ph(jk,ik)=0.

enddo
enddo

! ************* Construct RPIM shape functions for a Gauss point
 call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)

 do ik=1,2*ndex
 ne(ik)=0

enddo
 do ine=1,ndex
 n1=2*ine-1
 n2=2*ine
 ne(n1)=2*nv(ine)-1
 ne(n2)=2*nv(ine)
 enddo
 mbdb=4*ndex*ndex
 do kbdb=1,mbdb
 GSPk(kbdb)=0.

enddo
! ************* Compute the stiffness matrix for a Gauss point
 call PointStiffnessMatrix(ndex,weight,ajac,ph,Dmat,GSPk)
 nb=2*ndex
 do ikk=1,nb
 do jkk=1,nb
 m1=ne(ikk)
 m2=ne(jkk)
 nbdb=(jkk-1)*nb+ikk
 ak(m1,m2)=ak(m1,m2)+GSPk(nbdb)
 enddo
 enddo
20 continue ! end of loop for Gauss points
! ************* Implement natural BC
 in=0

jn=0
 nn=noCell(3,ibk)

if(xc(1,nn).eq.xlength) in=nn

4. Meshfree methods based on global weak-forms 221

 nn= noCell(4,ibk)
if(xc(1,nn).eq.xlength) jn=nn
if((in.ne.0).and.(jn.ne.0)) then

 call naturalBC_distributed(numnode,numq,in,jn, &
 alfs,x,xc,ds,gauss,nquado,force)

endif
10 continue ! end of loop for cells

! ************* Boundary conditions: essential BC
 write(*,*)' Boundary conditions....'
 nak=2*numd
 call EssentialBC(numnode,pAlf,alfs,x,ds,ak,force,npEBCnum,npEBC,pEBC)

! ************* Boundary conditions: concentrated natural BC
 call NaturalBC_concentrated(x,nx,numnode,force,ds,alfs,npNBCnum,npNBC,pNBC)
 nak=2*numd

b=1.d-10
! ************* Solve equation to get the solutions
 write(*,*)' Solving....'
 call SolverBand(ak,force,2*numnode,2*numd)
 nnn=2*numd
 do ik=1,nx
 do jk=1,numnode
 u2(ik,jk)=0.
 enddo
 enddo
 do ik=1,numnode

jk=2*ik-1
 u2(1,ik)=force(jk)
 u2(2,ik)=force(jk+1)

enddo
! ************* Get the final displacement
 call GetDisplacement(x,ds,u2,disp,alfs,nx,numnode)

! ************* Get stress
 call GetStress(x,noCell,ds,Dmat,u2,alfs,nx,numnode,numgauss,&
 xc,gauss,nquado,ng,numq,numcell, ENORM,Stressnode)
STOP
END

Program 4.4. Source code of Subroutine Input()

 SUBROUTINE Input(x,numd,nx,numnode,ndivx,ndivy,ndivxq,ndivyq,&
 nconn2,nquado,pAlf,Dmat,ALFs,numcell,numq,noCell,ncn,xc,&
 npEBCnum,npEBC,pEBC,npNBCnum,npNBC,pNBC)
!--
! Input data from outside
! Output—all variables are output
!--

implicit real*8 (a-h,o-z)
 common/para/xlength,ylength,p,young,anu,aimo
 COMMON/rpim/ALFC,DC,Q,nRBF
 common /basis/mbasis

CHARACTER*40 NAM
 dimension npEBC(3,100),pEBC(2,100),npNBC(3,100),pNBC(2,100)
 dimension x(nx,numd),Dmat(3,3),noCell(4,ncn),xc(nx,numd)

 read(4,10)nam
 read(4,*) xlength,ylength,young,anu,p
 read(4,10)nam
 read(4,*)numnode,nconn2
 read(4,10)nam
 read(4,*) ndivx,ndivy
 read(4,10)nam

222 Chapter 4

 read(4,*)numq,numcell
 read(4,10)nam
 read(4,*)ndivxq,ndivyq
 read(4,10)nam
 read(4,*)nquado,pAlf
 read(4,10)nam
 read(4,*)ALFs
 numgauss=nquado*nquado
 read(4,10)nam
 do i=1,numnode
 read(4,*)j,x(1,i),x(2,i)

enddo
 read(4,10)nam
 do i=1,numq
 read(4,*)j,xc(1,i),xc(2,i)

enddo
 read(4,10)nam
 do j=1,numcell
 read(4,*)i,noCell(1,j),noCell(2,j),noCell(3,j),noCell(4,j)
 enddo
 read(4,10)nam
 read(4,*)npEBCnum
 read(4,10)nam
 do i=1,npEBCnum
 read(4,*)npEBC(1,i),npEBC(2,i),npEBC(3,i),pEBC(1,i),pEBC(2,i)

enddo
 read(4,10)nam
 read(4,*)npNBCnum
 read(4,10)nam
 do i=1,npNBCnum
 read(4,*)npNBC(1,i),npNBC(2,i),npNBC(3,i),pNBC(1,i),pNBC(2,i)

enddo
 read(4,10)nam
 READ(4,*)nRBF, alfc,dc, q
 read(4,10)nam
 READ(4,*)mbasis

! ************* Compute material matrix D[] for the plane stress
you=young/(1.-anu*anu)

 aimo=(1./12.)*ylength**3
 Dmat(1,1)=you
 Dmat(1,2)=anu*you
 Dmat(1,3)=0.
 Dmat(2,1)=anu*you
 Dmat(2,2)=you
 Dmat(2,3)=0.
 Dmat(3,1)=0.
 Dmat(3,2)=0.
 Dmat(3,3)=0.5*(1.-anu)*you
 10 format(a40)

RETURN
END

Program 4.5. Source code of Subroutine GaussCoefficient()

 SUBROUTINE GaussCoefficient(k,v)
!--
! This subroutine returns a matrix with Gauss points and their weights
! input--k: k -- number of Gauss points;
! output--v(2,k): weight matrix of k Gauss points
!---
 implicit real*8 (a-h,o-z)
 dimension v(2,k)
 SELECT CASE (k)

4. Meshfree methods based on global weak-forms 223

 Case (2)
 v(1,1)=-.57735
 v(1,2)=-v(1,1)
 v(2,1)=1.00000
 v(2,2)=v(2,1)
 Case (3)
 v(1,1)=-.77459
 v(1,2)=-.00000
 v(1,3)=-v(1,1)
 v(2,1)=.55555
 v(2,2)=.88888
 v(2,3)=v(2,1)
 Case (4)
 v(1,1)=-.86113
 v(1,2)=-.33998
 v(1,3)=-v(1,2)
 v(1,4)=-v(1,1)
 v(2,1)=.34785
 v(2,2)=.65214
 v(2,3)=v(2,2)
 v(2,4)=v(2,1)
 Case (6)
 v(1,1)=-.93246
 v(1,2)=-.66120
 v(1,3)=-.23861
 v(1,4)=-v(1,3)
 v(1,5)=-v(1,2)
 v(1,6)=-v(1,1)
 v(2,1)=.17132
 v(2,2)=.36076
 v(2,3)=.46791
 v(2,4)=v(2,3)
 v(2,5)=v(2,2)
 v(2,6)=v(2,1)
 Case (8)
 v(1,1)=-.96028
 v(1,2)=-.79666
 v(1,3)=-.52553
 v(1,4)=-.18343
 v(1,5)=-v(1,4)
 v(1,6)=-v(1,3)
 v(1,7)=-v(1,2)
 v(1,8)=-v(1,1)
 v(2,1)=.10122
 v(2,2)=.22238
 v(2,3)=.31370
 v(2,4)=.36268
 v(2,5)=v(2,4)
 v(2,6)=v(2,3)
 v(2,7)=v(2,2)
 v(2,8)=v(2,1)

end select
 RETURN
 END

Program 4.6. Source code of Subroutine CellGaussPoints

 SUBROUTINE CellGaussPoints(ibk,numcell,k,numq,numgauss,xc,noCell,gauss,gs)
!--
! This subroutine to set up Gauss points,Jacobian and weights for a cell
! input--ibk: the No. of the consider cell;
! numq: number of points for background cells;
! numcell: number of background cells;
! numgauss: number of Gauss points in a cell;
! k: number of Gauss points used, numgauss=k*k for 2D cell;
! xc(nx,numq): coordinates of points for background cells;

224 Chapter 4

! noCell(ng,numcell): No. of points to form this cell;
! gauss(2,k): coefficients of Gauss points;
! nx,ng: parameters are defined in file parameter.h.
! output--gs(ng,numgauss): coordinate of the Gauss points, weight and Jacobian
!---

implicit real*8 (a-h,o-z)
include 'parameter.h'

 dimension xc(nx,numq),noCell(ng,numcell),gauss(nx,k),gs(ng,numgauss)
 dimension psiJ(ng),etaJ(ng),xe(ng),ye(ng),aN(ng),aNJpsi(ng),aNJeta(ng)

index=0
psiJ(1)=-1.
psiJ(2)=1.
psiJ(3)=1.
psiJ(4)=-1.

 etaJ(1)=-1.
 etaJ(2)=-1.
 etaJ(3)=1.
 etaJ(4)=1.

l=k
ie=ibk

 do j=1,ng
je=noCell(j,ie)

 xe(j)=xc(1,je)
ye(j)=xc(2,je)

enddo

 do 10 i=1,l
 do 10 j=1,l

index=index+1
 eta=gauss(1,i)

psi=gauss(1,j)
 do ik=1,ng
 aN(ik)=.25*(1.+psi*psiJ(ik))*(1.+eta*etaJ(ik))
 aNJpsi(ik)=.25*psiJ(ik)*(1.+eta*etaJ(ik))
 aNJeta(ik)=.25*etaJ(ik)*(1.+psi*psiJ(ik))
 enddo
 xpsi=0.
 ypsi=0.
 xeta=0.
 yeta=0.
 do jk=1,ng
 xpsi=xpsi+aNJpsi(jk)*xe(jk)

ypsi=ypsi+aNJpsi(jk)*ye(jk)
 xeta=xeta+aNJeta(jk)*xe(jk)

yeta=yeta+aNJeta(jk)*ye(jk)
enddo

 ajcob=xpsi*yeta-xeta*ypsi
 xq=0.

yq=0.
 do kk=1,ng
 xq=xq+aN(kk)*xe(kk)

yq=yq+aN(kk)*ye(kk)
 enddo

gs(1,index)=xq
gs(2,index)=yq
gs(3,index)=gauss(2,i)*gauss(2,j)
gs(4,index)=ajcob

10 continue
 RETURN
 END

Program 4.7.77 Source code of Subroutine SupportDomain

4. Meshfree methods based on global weak-forms 225

 SUBROUTINE SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
!--
! This subroutine to determines nodes in the support domain of a Gauss point
! input--numnode: total number of field nodes;
! nx=2: for 2D problem;
! x(nx,numnode): coordinates of all field nodes;
! numgauss: number of Gauss points in a cell;
! gpos(2): x and y coordinate of a Gauss point;
! ds(nx,numnode): sizes of support domain;
! input and output-- ndex: when input ndex=0;
! when return ndex is the number of nodes in the support domain
! output--nv(ndex): No. of field nodes in the support domain
!---

implicit real*8 (a-h,o-z)
 dimension gpos(nx),x(nx,numnode),ds(nx,numnode),nv(numnode)
 eps=1.e-16
 ndex=0
 do ik=1,numnode
 nv(ik)=0

enddo
 do ik=1,numnode
 dx=ds(1,ik)-dabs(gpos(1)-x(1,ik))
 dy=ds(2,ik)-dabs(gpos(2)-x(2,ik))

if((dx.ge.eps).and.(dy.ge.eps)) then
 ndex=ndex+1
 nv(ndex)=ik

end if
enddo

RETURN
END

Program 4.8. Source code of Subroutine PointStiffnessMatrix

 SUBROUTINE PointStiffnessMatrix(ndex,weight,ajac,ph,Dmat,GSPk)
!--
! This subroutine to calculate sparse stiff matrix
! input--ndex: the number of nodes in the support domain;
! weight: weight of Gauss quadrature;
! ajac: Jacobian;
! dphix: first dirivetive of x of shape function;
! dphiy: first dirivetive of y of shape function;
! Dmat(3,3): the matrix of strain-stress;
! output--GSPk(2ndex,2ndex): sub-stiffness matrix of the Gauss point
!---

implicit real*8 (a-h,o-z)
 dimension ph(10,ndex),Dmat(3,3),GSPk(2*ndex,2*ndex)
 dimension bmat(3,2*ndex),dphix(ndex),dphiy(ndex)
 nb=2*ndex
 do i=1,ndex
 dphix(i)=ph(2,i)
 dphiy(i)=ph(3,i)
 enddo
 do ib=1,3
 do jb=1,nb
 Bmat(ib,jb)=0.
 enddo
 enddo
 do in=1,ndex

j=2*in-1
 k=2*in
 Bmat(1,j)=dphix(in)
 Bmat(1,k)=0.
 Bmat(2,j)=0.
 Bmat(2,k)=dphiy(in)
 Bmat(3,j)=dphiy(in)

226 Chapter 4

 Bmat(3,k)=dphix(in)
 enddo
 do ii=1,nb
 do jj=1,nb
 GSPk(ii,jj)=0.
 enddo

enddo
 do ii=1,nb
 do jj=1,nb
 do kk=1,3
 do mm=1,3
 GSPk(ii,jj)=GSPk(ii,jj)+weight*ajac*Bmat(kk,ii)* &
 Dmat(kk,mm)*Bmat(mm,jj)

enddo
enddo

enddo
enddo

RETURN
END

Program 4.9. Source code of Subroutine EssentialBC

 SUBROUTINE EssentialBC(numnode,pAlf,alfs,x,ds,ak,af,npEBCnum,npEBC,pEBC)
!--
! This subroutine to enforce point essential bc's using penalty method;
! input--numnode: total number of field nodes;
! pAlf: penalty Fac; npEBCnum: number of e. b.c points
! alfs: coefficient of support domain
! x(nx,numnode): coordinates of all field nodes;
! input and output-- ak[]: stiffness matrix;
! af{}:force vector.
!---

implicit real*8 (a-h,o-z)
include 'parameter.h'

 COMMON/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 dimension npEBC(3,100),pEBC(2,100)
 dimension x(nx,numnode),ds(2,numnode),ak(2*numd,2*(numnode)),af(2*numnode)
 dimension nv(numnode),ph(10,numnode), x2(2)

 maxak=0.
 do iebc=1,2*numnode
 if(abs(ak(iebc,iebc)).gt.maxak) maxak=abs(ak(iebc,iebc))
 enddo

 do 10 iebc=1,npEBCnum
ie=npEBC(1,iebc)

 x2(1)=x(1,ie)
 x2(2)=x(2,ie)
 ndex=0
! call support(x2,x,ds,nv(1),numnode,nx,ndex)
 call SupportDomain(numnode,nx,x2,x,ds,ndex,nv)
 do ik=1,ndex
 do jk=1,10

ph(jk,ik)=0.
enddo

enddo
 call RPIM_ShapeFunc_2D(x2,x,nv,ph,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)

 do iee=1,ndex
 ine=nv(iee)
 do ii=1,ndex

jne=nv(ii)
 if(npEBC(2,iebc).eq.1) then

4. Meshfree methods based on global weak-forms 227

 ak((ine*2-1),(jne*2-1))=ak((ine*2-1),(jne*2-1))-pAlf*maxak* &
ph(1,iee)*ph(1,ii)

endif
if(npEBC(3,iebc).eq.1) then

 ak((ine*2),(jne*2))=ak((ine*2),(jne*2))-pAlf*maxak* &
ph(1,iee)*ph(1,ii)

 endif
 enddo
 if(npEBC(2,iebc).eq.1) then
 uu=pEBC(1,iebc)
 af(ine*2-1)=af(ine*2-1)-pAlf*uu*maxak*ph(1,iee)
 endif

if(npEBC(3,iebc).eq.1) then
 uu=pEBC(2,iebc)
 af(ine*2)=af(ine*2)-pAlf*uu*maxak*ph(1,iee)

endif
enddo

 10 continue
 RETURN
 END

Program 4.10. Source code of Subroutine NaturalBC_concentrated

 SUBROUTINE NaturalBC_concentrated(x,nx,numnode,af,ds,alfs,npNBCnum,npNBC,pNBC)
implicit real*8 (a-h,o-z)

 dimension npNBC(3,100),pNBC(2,100)
 COMMON/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 dimension af(2*numnode),x(nx,numnode),ds(nx,numnode)
 dimension ph(10,numnode),gpos(2),nv(numnode)
 do 10 iebc=1,npNBCnum

ie=npNBC(1,iebc)
 gpos(1)=x(1,ie)
 gpos(2)=x(2,ie)
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,3*ndex
 do ik=1,10

ph(ik,kph)=0.
enddo

enddo
 call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)
 do iee=1,ndex

ie=nv(iee)
 uu=pNBC(1,iebc)
 af(ie*2-1)=af(ie*2-1)+ph(1,iee)*uu
 uu=pNBC(2,iebc)
 af(ie*2)=af(ie*2)+ph(1,iee)*uu
 enddo
 10 continue
 RETURN
 END

Program 4.11. Source code of Subroutine NaturalBC_distributed

 SUBROUTINE naturalBC_distributed(numnode,numq,in,jn,alfs,x,xc,ds, &
 gauss,nquado,force)
!--

228 Chapter 4

! This subroutine to enforce point natural bc's;
! input—numnode, numq, in,jn,alfs,x,xc,ds,gauss, nquado.
! input and output-- force{}:force vector.
!---

implicit real*8 (a-h,o-z)
include 'parameter.h'

 common/para/xlength,ylength,p,young,anu,aimo
 COMMON/rpim/ALFC,DC,Q,nRBF
 COMMON /basis/mbasis
 dimension xc(nx,numq),gauss(2,nquado),force(2*numnode),x(nx,numnode)
 dimension ph(10,numnode),gpos(2),nv(numnode),ds(nx,numnode)
 ax=0.5*(xc(1,in)-xc(1,jn))
 ay=0.5*(xc(2,in)-xc(2,jn))
 bx=0.5*(xc(1,in)+xc(1,jn))
 by=0.5*(xc(2,in)+xc(2,jn))
 do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

 weight=gauss(2,il)
 ajac=0.5*sqrt((xc(1,in)-xc(1,jn))**2+(xc(2,in)-xc(2,jn))**2)
 aimo=(1./12.)*ylength**3
 ty=(-1000./(2.*aimo))*(ylength*ylength/4.-gpos(2)*gpos(2))
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,ndex
 do ik=1,10
 ph(ik,kph)=0.

enddo
enddo

 call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)
 do ie=1,ndex
 nn=nv(ie)
 force(2*nn)=force(2*nn)+weight*ajac*ph(1,ie)*ty

enddo
enddo

END

Program 4.12. Source code of Subroutine SolverBand

 SUBROUTINE SolverBand(ak,fp,neq,nmat)
!--
! Sloving linear equations; it calls BandSolver & GaussSolver
! input—ak,fp,neq,nmat
! output--fp
!--

 implicit real*8 (a-h,o-z)
 dimension ak(nmat,nEq),fp(nmat)
 real(8), allocatable :: tp(:,:)
 real(8), allocatable :: stfp(:,:)
 allocate (tp(1:neq,1:nmat))
 allocate (stfp(1:neq,1:neq))

 ep=1.d-10
 do i=1,nEq
 do j=1,nEq
 stfp(i,j)=0.
 tp(i,j)=0.

enddo
enddo

 do i=1,nEq
 do j=1,nEq
 stfp(i,j)=ak(i,j)
 enddo
 enddo
 ni=nEq

4. Meshfree methods based on global weak-forms 229

 Lp=0 ! half band width
 do 20 i=1,ni
 do j=ni,i,-1

if(stfp(i,j).ne.0.) then ! stfp[,] stifness matrix
if(abs(j-i).gt.Lp) Lp=abs(j-i)

go to 21
 endif
 enddo
21 continue
 do j=1,i
 if(stfp(i,j).ne.0.) then
 if(abs(j-i).gt.Lp) Lp=abs(j-i)
 go to 20

endif
enddo

20 continue

ilp=2*lp+1 ! band width
 nm=nEq

if(ilp.lt.nEq) then
 call BandSolver(stfp,fp,tp,nm,lp,ilp,nmat) ! solver for band matrix

else
 call GaussSolver(nEq,nmat,ak,fp,ep,kkkk) ! standard solver

endif
 deallocate (tp)
 deallocate (stfp)
END

 SUBROUTINE BANDSOLVER(A,F,B,N,L,IL,nmat)
!--
! Slover for banded linear equations
!--

implicit real*8 (a-h,o-z)
 DIMENSION A(N,N),F(N)
 DIMENSION B(N,nmat),d(n,1)
 M=1
 LP1=L+1
 DO I=1,N
 DO K=1,IL
 B(I,K)=0.
 IF(I.LE.LP1) B(I,K)=A(I,K)
 IF(I.GT.LP1.AND.I.LE.(N-L)) B(I,K)=A(I,I+K-LP1)
 IF(I.GT.(N-L).AND.(I+K-LP1).LE.N) B(I,K)=A(I,I+K-LP1)
 ENDDO
 ENDDO
 DO I=1,N
 D(I,1)=F(I)
 ENDDO
 IT=1
 IF (IL.NE.2*L+1) THEN
 IT=-1
 WRITE(*,*)'***FAIL***'
 RETURN

END IF
 LS=L+1
 DO 100 K=1,N-1
 P=0.0
 DO I=K,LS
 IF (ABS(B(I,1)).GT.P) THEN
 P=ABS(B(I,1))
 IS=I

END IF
 ENDDO
 IF (P+1.0.EQ.1.0) THEN
 IT=0
 WRITE(*,*)'***FAIL***'
 RETURN
 END IF

230 Chapter 4

 DO J=1,M
 T=D(K,J)
 D(K,J)=D(IS,J)
 D(IS,J)=T
 ENDDO
 DO J=1,IL
 T=B(K,J)
 B(K,J)=B(IS,J)
 B(IS,J)=T
 ENDDO
 DO J=1,M
 D(K,J)=D(K,J)/B(K,1)
 ENDDO
 DO J=2,IL
 B(K,J)=B(K,J)/B(K,1)
 ENDDO
 DO I=K+1,LS
 T=B(I,1)
 DO J=1,M
 D(I,J)=D(I,J)-T*D(K,J)
 ENDDO
 DO J=2,IL
 B(I,J-1)=B(I,J)-T*B(K,J)
 ENDDO
 B(I,IL)=0.0
 ENDDO
 IF (LS.NE.N) LS=LS+1
 100 CONTINUE
 IF (ABS(B(N,1))+1.0.EQ.1.0) THEN
 IT=0
 WRITE(*,*)'***FAIL***'

RETURN
END IF

 DO J=1,M
 D(N,J)=D(N,J)/B(N,1)
 ENDDO

JS=2
 DO 150 I=N-1,1,-1
 DO K=1,M
 DO J=2,JS
 D(I,K)=D(I,K)-B(I,J)*D(I+J-1,K)
 ENDDO
 ENDDO
 IF (JS.NE.IL) JS=JS+1
 150 CONTINUE

 if(it.le.0) write(*,*) "BandSolver failed"
 DO I=1,N
 F(I)=D(I,1)
 ENDDO
 RETURN
 END

 SUBROUTINE GaussSolver(n,mk,a,b,ep,kwji)
!--
! Stnadard Gauss elimination slover for linear equations that are
! not suitably solved by BandSolver.
!--

 implicit real*8 (a-h,o-z)
 dimension a(mk,mk),b(mk)
 integer, allocatable :: m(:)
 allocate (m(2*mk))
 ep=1.0e-10
 kwji=0
 do i=1,n
 m(i)=i

enddo

4. Meshfree methods based on global weak-forms 231

 do 20 k=1,n
 p=0.0
 do 30 i=k,n
 do 30 j=k,n

if(abs(a(i,j)).le.abs(p)) goto 30
 p=a(i,j)

io=i
jo=j

 30 continue
if(abs(p)-ep) 200,200,300

 200 kwji=1
 return
 300 if(jo.eq.k) goto 400
 do i=1,n
 t=a(i,jo)
 a(i,jo)=a(i,k)
 a(i,k)=t
 enddo

j=m(k)
 m(k)=m(jo)
 m(jo)=j
 400 if(io.eq.k) goto 500
 do j=k,n
 t=a(io,j)
 a(io,j)=a(k,j)
 a(k,j)=t

enddo
 t=b(io)
 b(io)=b(k)
 b(k)=t
 500 p=1.0/p

in=n-1
 if(k.eq.n) goto 600
 do j=k,in
 a(k,j+1)=a(k,j+1)*p
 enddo
600 b(k)=b(k)*p

if(k.eq.n) goto 20
 do i=k,in
 do j=k,in
 a(i+1,j+1)=a(i+1,j+1)-a(i+1,k)*a(k,j+1)

enddo
 b(i+1)=b(I+1)-a(i+1,k)*b(k)

enddo
 20 continue
 do i1=2,n

i=n+1-i1
 do j=i,in
 b(i)=b(i)-a(i,j+1)*b(j+1)
 enddo
 enddo
 do k=1,n
 i=m(k)
 a(1,i)=b(k)
 enddo
 do k=1,n
 b(k)=a(1,k)

enddo
 kwji=0

deallocate (m)
 return

END

Program 4.13. Source code of Subroutine GetDisplacement

 SUBROUTINE GetDisplacement(x,ds,u2,disp,alfs,nx,numnode)
!--

232 Chapter 4

! This subroutine to get the final displacements from
! displacement parameters using the MFree interpolation;
! input--numnode: total number of field nodes;
! alfs: coefficent of support support
! x(nx,numnode): coordinates of all field nodes;
! u2(2*numnode): displacement parameters;
! input and output-- disp: final displacements.
!---

implicit real*8 (a-h,o-z)
 COMMON/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 dimension x(nx,numnode),ds(nx,numnode),gpos(nx),u2(nx,numnode)
 dimension disp(2*numnode)
 dimension ph(10,numnode), nv(numnode)

 write(2,*)'Displacements of field nodes'
 nn=2*numnode
 do i=1,nn
 disp(i)=0.
 enddo

ind=0
 do 50 id=1,numnode

ind=ind+1
gpos(1)= x(1,id)

 gpos(2)=x(2,id)
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,ndex
 do ik=1,10
 ph(ik,kph)=0.

enddo
enddo

 call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)
 nc1=2*ind-1
 nc2=2*ind
 do kk=1,ndex
 m=nv(kk)
 disp(nc1)=disp(nc1)+ph(1,kk)*u2(1,m)
 disp(nc2)=disp(nc2)+ph(1,kk)*u2(2,m)
 enddo
 50 continue
 do ii=1,numnode
 write(2,52) ii,disp(2*ii-1),disp(2*ii)

enddo
 52 format(1x,i5,2e20.5)

RETURN
END

Program 4.14. Source code of Subroutine GetStress

 SUBROUTINE GetStress(x,noCell,ds,Dmat,u2,alfs,nx,numnode,numgauss,&
 xc,gauss,nquado,ng,numq,numcell, ENORM,Stressnode)
!--
! This subroutine to get the stress and energy error;
! input--numnode: total number of field nodes;
! numcell: number of cells;
! numq: total number of points for cells;
! alfs: coefficent of support support;
! x(nx,numnode): coordinates of all field nodes;
! xc(nx,numcell): coordinates of all points for cells;
! u2(2*numnode): displacement parameters;
! ds(nx,numnode): sizes of influence domain;
! Dmat(3,3): material matrix;

4. Meshfree methods based on global weak-forms 233

! nquado: number of Gauss points in a cell;
! gauss(nx,nquado): coefficients of Gauss points;
! numgauss: total number of Gauss points in all cells;
! output-- Enorm: energy error;
! Stressnode:stress for field nodes;
! compute out--Stress: stress for Gauss points;
! stressex, strne: exact stresse for beam problem.
!---
 implicit real*8 (a-h,o-z)
 common/para/xlength,ylength,p,young,anu,aimo
 COMMON/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 dimension noCell(4,numcell),ds(nx,numnode),x(nx,numnode),u(2*numnode)
 dimension xc(nx,numnode),gauss(nx,nquado)
 dimension Dmat(3,3),u2(nx,numnode)
 dimension Stressnode(3,numnode),strne(3,numnode)
 dimension stress(3),stressex(3),err(3),Dinv(3,3),der(3)

integer, allocatable :: nv(:)
integer, allocatable :: ne(:)

 real(8), allocatable :: ph(:,:)
 real(8), allocatable :: gpos(:)
 real(8), allocatable :: gs(:,:)
 real(8), allocatable :: bmat(:,:)
 allocate (nv(1:numnode))
 allocate (ne(1:2*numnode))
 allocate (ph(1:10,1:3*numnode))
 allocate (gpos(1:nx))
 allocate (gs(1:ng,1:numgauss))
 allocate (bmat(1:3,1:2*numnode))

 close(37)
 open(37, file='midstr.dat')
 do id=1,3
 do jd=1,3
 Dinv(id,jd)=Dmat(id,jd)

enddo
enddo
invd=3

 ep=1.d-10
 call GetINVASY(invd,invd,Dinv,EP)
 do iu=1,numnode

ju=2*iu-1
 ku=2*iu
 u(ju)=u2(1,iu)
 u(ku)=u2(2,iu)
 enddo
 enorm=0.
!****************Compute energy error
 do 100 ibk=1,numcell

ind=0
 call CellGaussPoints(ibk,numcell,nquado,numq,numgauss,&
 xc,noCell,gauss,gs)
 do 200 is=1,numgauss
 do i=1,3
 stress(i)=0.
 stressex(i)=0.

enddo
ind=ind+1
gpos(1)= gs(1,is)
gpos(2)=gs(2,is)

 weight=gs(3,is)
 ajac=gs(4,is)
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,3*ndex
 do ik=1,10

ph(ik,kph)=0.
 enddo

enddo

234 Chapter 4

 call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)
 nb=2*ndex
 do in=1,nb
 ne(in)=0

enddo
 do ine=1,ndex
 n1=2*ine-1
 n2=2*ine
 ne(n1)=2*nv(ine)-1
 ne(n2)=2*nv(ine)
 enddo
 do ib=1,3
 do jb=1,nb
 Bmat(ib,jb)=0.

enddo
enddo

 do inn=1,ndex
j=2*inn-1

 k=2*inn
 Bmat(1,j)=ph(2,inn)
 Bmat(1,k)=0.
 Bmat(2,j)=0.
 Bmat(2,k)=ph(3,inn)
 Bmat(3,j)=ph(3,inn)
 Bmat(3,k)=ph(2,inn)
 enddo
 do ii=1,3
 do kk=1,3
 do mm=1,nb
 mn=ne(mm)
 stress(ii)=stress(ii)+&
 Dmat(ii,kk)*Bmat(kk,mm)*u(mn)

enddo
enddo

enddo
!****************Exact stress for beam problem
 stressex(1)=(1./aimo)*p*(xlength-gpos(1))*gpos(2)
 stressex(2)=0.
 stressex(3)=-0.5*(p/aimo)*(0.25*ylength*ylength-gpos(2)*gpos(2))
 do ier=1,3
 err(ier)=stress(ier)-stressex(ier)

enddo
 do jer=1,3
 der(jer)=0.
 do ker=1,3
 der(jer)=der(jer)+Dinv(jer,ker)*err(ker)
 enddo
 enddo

err2=0.
 do mer=1,3
 err2=err2+weight*ajac*(0.5*der(mer)*err(mer))

enddo
enorm=enorm+err2

 200 continue
 100 continue

!****************Compute nodal stresses
 write(2,*)'Stress of field nodes'
 do is=1,numnode

gpos(1)= x(1,is)
gpos(2)=x(2,is)

 do ii=1,3
 Stressnode(ii,is)=0.
 enddo
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,3*ndex
 do ik=1,10

ph(ik,kph)=0.

4. Meshfree methods based on global weak-forms 235

enddo
enddo

 call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)

 nb=2*ndex
 do in=1,nb
 ne(in)=0

enddo
 do ine=1,ndex
 n1=2*ine-1
 n2=2*ine
 ne(n1)=2*nv(ine)-1
 ne(n2)=2*nv(ine)
 enddo
 do ib=1,3
 do jb=1,nb
 Bmat(ib,jb)=0.

enddo
enddo

 do inn=1,ndex
j=2*inn-1

 k=2*inn
 Bmat(1,j)=ph(2,inn)
 Bmat(1,k)=0.
 Bmat(2,j)=0.
 Bmat(2,k)=ph(3,inn)
 Bmat(3,j)=ph(3,inn)
 Bmat(3,k)=ph(2,inn)

enddo
 do ii=1,3
 do kk=1,3
 do mm=1,nb
 mn=ne(mm)
 Stressnode(ii,is)=Stressnode(ii,is)+&
 Dmat(ii,kk)*Bmat(kk,mm)*u(mn)
 enddo

enddo
enddo

 strne(1,is)=(1./aimo)*p*(xlength-gpos(1))*gpos(2)
 strne(2,is)=0.
 strne(3,is)=-0.5*(p/aimo)*(0.25*ylength*ylength-gpos(2)*gpos(2))

 write(2,220) is,Stressnode(1,is),Stressnode(2,is),Stressnode(3,is)
if(abs(gpos(1)-24).le.1.d-5) then

 write(37,240) is,gpos(2),Stressnode(1,is),Stressnode(2,is), &
 Stressnode(3,is),strne(1,is),strne(2,is),strne(3,is)

endif
enddo

 enorm=dsqrt(enorm)
 write(2,230) enorm
 220 format(1x,i5,3e20.5)
230 format(1x,'Energy Error=',e20.10)
 240 format(1x,i5,f8.3,6e15.5)
 deallocate (nv)

deallocate (ne)
deallocate (ph)
deallocate (gpos)
deallocate (gs)
deallocate (bmat)

 RETURN
END

Program 4.15. Source code of Subroutine GetInvasy

 SUBROUTINE GetInvasy(N,MA,A,EPS)

236 Chapter 4

!--
! This subroutine to get INVARSION OF A(N,N) USING THE GAUSS-JODON METHOD.
! MATRIX A MUST BE DEFINITE BUT MAY BE ASYMMETRIC.
! input--N: dimension of A;
! MA: max number of rows of A;
! EPS: tolerance;
! Input and output--A[N,N]: the matrix in the input and invarsion in output;
!---
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION A(MA,N)
 DO 10 K=1,N
 C=A(K,K)
 IF(DABS(C).LE.EPS)pause
 C=1.0/C
 A(K,K)=1.0
 DO J=1,N
 A(K,J)=A(K,J)*C
 ENDDO
 DO 10 I=1,N
 IF(I.EQ.K)GOTO 10
 C=A(I,K)
 A(I,K)=0.0
 DO J=1,N
 A(I,J)=A(I,J)-A(K,J)*C
 ENDDO
 10 CONTINUE

RETURN
END

Chapter 5

MESHFREE METHODS BASED ON LOCAL
WEAK-FORMS

5 MFree methods based on local weak-forms

5.1 INTRODUCTION

In Chapter 4, the MFree methods (EFG and RPIM) based on global
Galerkin weak-forms were introduced. In these MFree methods, global
background cells are needed for numerical integrations in computing the
system matrices. These MFree methods are, therefore, said not “truly”
MFree methods. The use of the global weak-form requires the system
equation in the global integral form to be satisfied over the entire problem
domain, and hence, a set of background cells has to be used for the
numerical integration. To avoid the use of global background cells, a so-
called local weak-form is used to develop the meshless local Petrov-Galerkin
(MLPG) method (Atluri and Zhu, 1998a, b; 2000a, b). Some other
variations of MLPG are also proposed. MFree methods based on local weak-
forms are called MFree local weak-form methods in this book.

When a local weak-form can be used for a field node, the numerical
integrations are carried out over a local quadrature domain defined for the
node, which can also be the local domain where the test (weight) function is
defined. The local domain can have a regular and simple shape (such as
spheres, rectangulars, ellipsoids, etc.) for an internal node, and the
integration can be done numerically within the local domain. For a node on
or near the boundary of complicated geometry, only a local mesh is required.

237

Chapter 5

Therefore, no global background mesh is required. As in the EFG method,
the MLS approximation is used to construct the shape functions in MLPG.

Atluri and Zhu (1998a) solved the Laplace equation, Poisson equation
and potential flow problems using MLPG. The MLPG method has been
improved and extended by Atluri’s group (Atluri et al., 1999b) and other
researchers over the years. MLPG has been applied to solve elastostatics
and elastodynamics problems of solids (Atluri and Zhu, 2000a,b; Gu and
GR Liu, 2001c), 4th order ODEs (or PDEs) for thin beams (Atluri et al,
1999a) and thick beams (shear deformable beams)(Cho and Atluri, 2001),
plate structures (Gu and GR Liu, 2001f; Long and Atluri, 2002), linear
fracture problems (Ching and Batra, 2001), fluid mechanics problems (Lin
and Atluri, 2000; 2001; GR Liu and Wu et al., 2001, 2002), and so on. An
error analysis of MLPG has been carried out by Kim and Atluri (2000).

MLPG does not need a global mesh for either function approximation or
integration. The procedure is quite similar to numerical methods based on
the strong-form formulation, such as the finite difference method (FDM).
However, because the MLS approximation is used in MLPG, special
treatments are needed to enforce the essential boundary conditions.

GR Liu and his co-workers applied the concept of MLPG and developed
two variations of MFree local weak-form methods, the local point
interpolation method (LPIM) (GR Liu and Gu, 2001b) and the local radial
point interpolation method (LRPIM) (GR Liu and Yan et al., 2002; GR Liu
and Gu, 2001c). In the LPIM, polynomial PIM shape functions (see, Sub-
section 3.2.1) that have the delta function property are used. However, as
polynomial basis functions are used, the interpolation moment matrix can be
singular and hence the matrix triangularization algorithm (MTA) (GR Liu
and Gu, 2001d, 2003a) has to be used. The radial PIM (RPIM) shape
function (see, Sub-section 3.2.2) that also has the delta function property is
another effective alternative, and has been used to formulate the local radial
point interpolation method (LRPIM) method (GR Liu and Gu, 2001c; GR Liu
and Yan et al., 2002) that is very robust for domains with randomly distributed
nodes because of the excellent interpolation stability of RBFs.

Note that in a local weak-form method, global compatibility is not
required.

LRPIM has been successfully applied to solid mechanics (e.g., GR Liu
and Gu, 2000b, 2001b,c,e, 2002a; Xiao et al., 2003a,b,c), soil mechanics
problems (Yan, 2001), fluid mechanics (GR Liu and Wu 2002), 4th order
ODEs (or PDEs) for beam structures (Gu and GR Liu, 2001d),
microelectronic mechanical system (MEMS) (Li and Wang et al., 2004), and
so on.

In this Chapter, MLPG and LRPIM are discussed in detail. Formulations
are obtained for two-dimensional elastostatics. A source code for these two
MFree local weak-form methods is provided with detailed descriptions.

238

5. Meshfree methods based on local weak-forms 239

Numerical examples are presented to examine the present code. The
formulations of MLPG and LRPIM are quite similar, and the difference is
mainly in the type of MFree shape functions used, and the resultant
differences in the formulation procedure (can consider LRPIM as a special
MLPG). LRPIM is first discussed because it is simpler in the formulation
than MLPG and hence easier to understand. Note that LRPIM was
developed after the MLPG by replacing MLS shape function with the RPIM
shape function.

5.2 LOCAL RADIAL POINT INTERPOLATION
METHOD

5.2.1 LRPIM formulation

Consider a solid mechanics problem defined in the domain shown in
Figure 5.1. For a field node I, the governing equation (Equation (4.1)) isII
satisfied using a locally weighted residual method, leading to a weak form
equation for this node. The local weighted residual form defined over a local
quadrature domain q bounded by q, (shown in Figure 5.1) has the
following form.

)d 0
q

I ij j i,(,W b(I ()d (5.1)

where IWI is the weight or test function centred usually at node I. EquationII
(5.1) is applied to all the nodes in the problem domain.

When the local weighted residual formulation rather than the global
energy principle is used to create the discretized system equations node by
node, the compatibility of the shape functions in the whole domain is not
required. As long as the field approximation is continuous at any point in the
local quadrature domain, the shape function is differentiable (for an
integration by parts) and the resultant integrand is integrable, the solutiont
will exist†. In other words, the MFree local weak-form method only requires
the local compatibility in the local quadrature domain. The RPIM shape
function satisfies all these requirements, in addition to its delta function
property. This feature of the local weighted residual formulation was

† Stabilization measures may be required depending on the type of problem. See, for
example, Section 6.4.

240 Chapter 5

follows the fact that the MFree local weak-form method using shape
functions of at least linear consistency can easily pass the standard patch
tests.

Figure 5.1. A problem domain and boundaries modeled using the MFree local weak-form
methods. Weight function domain w and quadrature domain q for field nodes, and the

support domain s for a Gauss quadrature point xQ.

The first term on the left hand side of Equation (5.1) can be integrated by
parts to arrive at

d
q q q

I j ij,I jI

q qq

dd ddI ij j I j ijI j ij,W dI ij j I j ijdij j I j ijij j I jI j ijd dddddddddddddd (5.2)

where jn is the jth component of the vector of the unit outward normal on
the boundary (see Figure 1.4 and Figure 5.1). Substituting Equation (5.2)
into Equation (5.1), we can obtain the following local weak-form.

d 0
q qq

dI j ij I i,I j ij I iWI jI ij jW n dI ij jn dij j (5.3)

Figure 5.1 shows that the boundary q for the local quadrature domain,
q has composed by three parts, i.e., q qi qu qtii , where

xQ

q

w

s

qi

qt

qu
t

u

Node I (xII)))II

Weight function
domain w

Quadrature domain q

Support domain s

t

Quadrature point

nyn
nx

5. Meshfree methods based on local weak-forms 241

qi is the internal boundary of the quadrature domain, which does not
intersect with the global boundary ;

qt is the part of the natural boundary that intersects with the quadrature
domain;

qu is the part of the essential boundary that intersects with the quadrature
domain.

Therefore, Equation (5.3) can be re-written as

d

d 0

qi qu qt

q

I ij jI ijI ijI

qi qu

d

b dW W bI j ij I i,WI j ij I iI iij I iIWI j iW W bI j ij I iI

d ddI ij j I ij jW n dI ij jn Wdij j I ij jdddddddd

(5.4)

For a local quadrature domain located entirely within the global domain,
there is no intersection between q and the global boundary . We then have

qi= q and there is no integral over qu and qt. In such a case, Equation (5.4)
becomes

d 0
qi qqi

dI j ij I i,I j ij I iIWI jI ij jW n dI ij jn dij j (5.5)

In this local weak-form, Equations (5.4) and (5.5), the Petrov-Galerkin
method can be used, in which the trial and test functions are selected from
different spaces. The weight function IWI is purposely selected so that it
vanishes on qi to simplify the local weak-form. Note that the weight
functions mentioned in Chapter 3, e.g. the cubic or quartic spline (W1 and
W2), can be chosen to be zero along the boundary of the internal quadrature
domains, hence they can be used as the weight functions in LRPIM. If the
weight function satisfies this property, the local weak-forms of Equations
(5.4) for a node whose local quadrature domain intersects with the global
boundaries can be re-written as

d 0
qu qt qqu qt

dI j ij I i,I j ij I iIWI jI ij j I ij jW n W nd ddI ij j I ij jn W nd dij j I ij jj I ijij j Id dddddd (5.6)

Equation (5.5) that is for a node whose local quadrature domain does not
intersect with the global boundaries can be re-written as

d 0
q

b dW W bI j ij I i,WI j ij I iI iij I iIWI j iW W bI j ij I iI (5.7)

We note the relation between the stress and the traction on the boundary

ij j in tjj (5.8)

242 Chapter 5

Imposing Equation (5.8) and the natural boundary condition Equation (4.2)
into Equation (5.4), we obtain:

d
q qi qu qt q

I iWI i

q qi qu qt

dI j ij, I i I i I iW W t W t W tW t W t W td d d dd dd d dI j ij I i I i I id d dd dd d dd d d (5.9)

Equation (5.9) suggests that the strong-form of the system equation given in
Equations (4.1) is changed to a relaxed weak-form with integrations over a
small local quadrature domain. This integral operation can smear out the
numerical error, and therefore make the discretized system more accurate
than the MFree procedures that operate directly on the strong-forms of
system equations. The LRPIM ensures the satisfaction of the equilibrium
equation at a node in an integral sense over a local quadrature domain, but it
does not ensure the satisfaction of the strong system equation exactly at the
node. The size of the local quadrature domain determines the extent of the
‘relaxation’.

In order to obtain the discretized system equations, the global problem
domain is represented by properly distributed field nodes. Using the RPIM
shape functions (see sub-section 3.2.2), we can approximate the trial
function for the displacement at a point x as

(2 1) (2 2) (2 1)()h
) (2) (21) (2()

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u(2 1) (h
1) (u (5.10)

where n is the number of nodes in the support domain of a sampling point at
x, and is the matrix of RPIM shape functions constructed using these
nodes. Note that these n field nodes are numbered from 1 to n, and it is a
local numbering system for the support domain. The field node also has a
global number that is uniquely given to all field nodes from 1 to N. ThisNN
global numbering system is used to assemble all the local nodal matrices to
form the global matrix. Hence, an index is needed to record the global
number for a field node used in the support domain for the purpose of
assembling the global matrixes.

As in Equations (4.8)~(4.10), we can obtain the strain and stress as

(3 1) (3 2) (2 1)) (2) (22) (22) (2) (2) (2B u(3 2)(3 2)2)) (5.11)

(3 1) (3 3)1) (31) (3D (3 1) (3 3) (3 2) (2 1)) (2) (21) (3 3) (3 2) (21) (3 3) (3 2) (2) (2) (2D B u(3 3) (3 2)(3 3) (3 2)(3 3) (3 2)3) (3(3 3) (3 2)) (5.12)

5. Meshfree methods based on local weak-forms 243

where D is the matrix of elastic constants of defined in Equation (2.27) or
(2.28), and B is the strain matrix given in Equation (4.8), i.e.

(3 2)

1 0 01

xx xx x
110 01 nn1 010

y yy yy y

1111 1 n n1 11 n11

y yy x y xy x y xy x y x

B (5.13)

We now change Equation (5.4) to the following matrix form to derive the
discretized system equations in a matrix form.

d
q qi qu qt q

I

q qi qu qt

dT d d d dd d dI I I II I Id d dd d dd d d bI
T dI I I II I II Id d d dd dd d dd dd d dd d dd d dd dd d dd dd d dd d dd d (5.14)

where W is a matrix of weight functions given by

(2 2)(,)I I(,
(,) 0W

(2 2))
(,) 0

0 ()
IW (,) 0W

0 (,)I0 ()
,,,,,,

W W(I (,,((
,,

(5.15)

In Equation (5.14), IVI is a matrix that collects the derivatives of the weight
functions:

(3 2)(,)(3 2)I I(,
(,) 0(,W,) 0
0 ()

x I(,W) 0x (,W
)(3 2) ,0 (,), y I(,(,0 ()

() ()W ()
, y

,)y I x I,(,) (,) (,,W y (,) ()W ()(

,,,,,,
V V(I (,,((,,

(,,,), (())
(5.16)

It is in fact the strain matrix caused by the variation of the weight (test)
functions.

The tractions t at a point x can be written as

(2 3) (3 3) (3 2) (2 1)
(2 3)

) (2) (23) (3 2) (23) (3 2) (2) (2) (2

0x x yt n n0x xx 0 xxxx
x

t
x

yy
x y

00
x y

y y xt n n0y yy0t n n0 yyyy

xy
n

nt x
yy

x y D B u (5.17)

in which),(yx ,,,,, is the vector of the unit outward normal on the boundary
(see Figure 1.4).

0x yn n0x 0
0
x yx y

0 y xn ny0 n n
n (5.18)

244 Chapter 5

Substitution of Equations (5.16)~(5.18) into Equation (5.14) leads to the
following discretized systems of equations for the Ith field node.II

T

T

dT

dT

q qi qu

qt q

I

I

q qi

qt

dT

T TTTTT
I II

T
I
T

uT
IddTTTT dI IIId dd

bI
T

I dT dI d

T

T
(5.19)

The matrix form of Equation (5.19) can be written as

2 1() () ()I n n I2 2 2 12 1)2 2 22 211 2 1) () ()) () (2 2 2 12 12 1)2 2 2 12 12 12 1 21 (5.20)

where KIK is a matrix called I nodal stiffness matrix for the Ith field node, II
which is computed using

T dT

q qi qu

I I

q qi

dTT TTTTTT TTTT
I II WI

TK I dI III dT d dddTTTTT
II d T

(5.21)

In Equation (5.20), fIf is aI nodal force vector with contributions from body r
forces applied in the problem domain, and tractions applied on the natural
boundary.

T dT

qt q

I I I

qt

dT
IIfI bI

T
III dT dII d (5.22)

In Equation (5.20), u is the vector collecting displacements for the field
nodes that are included in any of the support domains of the quadrature
points in the quadrature domain of the Ith field node. II

Equation (5.20) gives the general form of system equations for a field
node. For the local quadrature domain of a field node located entirely within
the global domain, there is no intersection between q and the global
boundary, , and the weak-form is given in Equation (5.5). In this case, KIK
and fIff can be obtained using, respectively,I

T dT

q qi

I I I

q

dTT
II
TK I I

T
III dT dII d (5.23)

and
T d

q

I I df W bI I
T
I (5.24)

We use Gauss quadrature to obtain the integrals in Equations (5.21) and
(5.22). Note that in the formulation for IK and IfI , there are area integrals,
and curve integrals. Consider a rectangular local quadrature domain, in the

5. Meshfree methods based on local weak-forms 245

standard Gauss quadrature, Equations (5.21) and (5.22) can be expressed as
follows.

T

1

T

1

T

1

() ()

() ()

() ()

g

gt

gt

n
D

I k I Qk Qk q() ()) (
k

n
B

k I Qk(Qk qi)
k
n

B
k I Qk(Qk qu)

k

wk

wk

V x DB x JT () ()) (k I Qk QkI Qk Qk() ()) () (wkK I

W x nDB x JT () ()) (I ()

W x nDB x JT () ()) (I ()

(5.25)

1

gt gn ngt
DT ()I k I Qk qt k I Qk q()

k k11

T
k I Qk qtk I Qk qtqt() W x b J()T ()k I QkI Qk()wkfI

T
k I Qk qtk I Qk qtI Qk qt()k I Qk qtI Qk qt()T ()w ()k I Qk qtI Qk qt()TTT (5.26)

where gn is the total number of Gauss points in the quadrature domain, ngt is t

number of Gauss points used in a sub-curve, kwk is the Gauss weighting factor
for Gauss point xQk, D

qJ is the Jacobian matrix for the area integration of the

local quadrature domain, and B
qiJ , B

quJ and B
qtJ are, respectively, the Jacobian

matrices for the curve integration of the sub-boundaries qi , qu and qt .
Note that different Gauss points in the same local quadrature domain may

use different support domains. This means that the matrices in Equations
(5.25) and (5.26) could be different for different Gauss points.

Equation (5.20) presents two linear equations for the Ith field node. II
Using Equation (5.20) for all the N field nodes in the entire problem domain,N
we obtain a total of 2N independent linear equations. Assemble all these 2N N
equations based on the global numbering system to obtain the final global
system equations in the form of

2 2N N2

I

I

N

u
vI

u

11 12 1(2 1(2)1) 1(2K K K K11 12 1(2 1) 11) 111 12 1(2 1) 1(2)1) 1(211 12 1(2)1) 1(2

(2 1)(2)(2 1)(21)(2K K K K(2 1)1 (2 1)2 (2 1)(2 1)1)1 (21)1 (2 1)(2 1)1)(2(2 1)1 (2 1)2 (2 1)(2 1) (2 1)(2)1)1 (21)1 (2 1)(2 1) (2 1)(21)(2 1) (2 1)(2

K K K K
1)2 (21)1 (2 1)(2 1) (21)(2 1) (21)(2 1) (2(2 1)1 (2 1)2 (2 1)(2 1) (2 1)(2)1)1 (21)1 (2 1)(2 1) (2 1)(21)(2 1) (2 1)(2K K K(2 1)1 (2 1)2 (21)1 (21)1 (2 1)(2 1)1)(2

(2)1 (2)2 (2)(2 1) (2)(2))1 (2)2)1 (2 (2)(2 1) (2)(2)(2 1) (2)(2K K K K(2)1 (2)2 (2)(2 1) ()1 (2)2)1 (2 (2)(2 1) ()(2K K K K() () ()() ()()

K K K K() () ()() ()()(2)1 (2)2 (2)(2 1) (2)(2))1 (2)1 (2)(2 1) (2)(2)(2 1) (2)(2K K K K(2)1 (2)2 (2)(2 1) ()1 (2)1 (2)(2 1) ()(2

K

2 1 2 1

1

1

N N

x

y

f1
f1

f

1u11

1v1v

IxfI

f
IxfI

IyfIf

fNxfNf
fNvN NyfNf

U F2

(5.27)

or

Ith nodeII

246 Chapter 5

2 2 2 1 2 1N N N N2 2 1 22 2 1 21 2K U F2 2 2 1 22 12 2 1 22 22 11 2 (5.28)

Equation (5.27) shows that the two nodal equations for the Ith node haveII
been assembled into the (2I-1)th and 2II Ith rows in the global equations.II

Note that the assembling to form Equation (5.28) is different from that in
the conventional FEM and the MFree global weak-form methods, such as
EFG. In the FEM and EFG, the element or nodal matrices are stamped
symmetrically into the global matrix. In the MFree local weak-form methods,
however, the nodal matrix is stacked together row-by-row to form the global
matrix. This stacking procedure is similar to that in the finite difference
method (FDM).

Equation (5.28) is the final discretized system equation of LRPIM. Note
that the essential boundary conditions, Equation (4.3), are not considered in
the LRPIM formulations. Because the RPIM shape functions have the
Kronecker delta function property, the essential boundary conditions can be
enforced in LRPIM as easily as in the RPIM or the conventional FEM. The
procedure has also been detailed in Sub-section 4.2.2. After enforcing
essential boundary conditions, we can solve the modified system equation
for displacements for all field nodes and then to compute the stresses using
Equations (4.10) and (5.12).

5.2.2 Numerical implementation

5.2.2.1 Type of local domains

Gauss quadrature is needed to evaluate the integrations in Equations
(5.21) and (5.22). As shown in Figure 5.1, for a field node xIx , a local
quadrature cell q is needed for the Gauss quadrature. For each Gauss
quadrature point xQ, the RPIM shape functions are constructed to obtain the
integrand. Therefore, for a field node xi, there exist three local domains:

a) the local quadrature domain q (size rqr);

b) the local weight (test) function domain w where wi 0 (size rwrr);

c) the local support domain s for xQ (size rsr).

These three local domains are arbitrary as long as the condition rqr rwrr is
satisfied. It has been noted that when an appropriate weight function is used,
the local weak-form, Equation (5.9), can be simplified because the
integration along the internal boundary qi vanishes. Hence, for simplicity in
this book, we always use rqr =rwrr .

The size of the local quadrature domain (rqr) for node I and the size of theI
support domain (rsr) are defined as

5. Meshfree methods based on local weak-forms 247

rqr = q dcIdd (5.29)

rsr = s dcIdd (5.30)
where dcIdd is the nodal spacing near node I I, which is defined in Sub-section II
3.1.3, q and s are dimensionless sizes chosen to control the actual domain
sizes. The effects of q and s will be investigated later.

5.2.2.2 Property of the stiffness matrix

The system stiffness matrix K in the present LRPIM is sparse as long as K
the support domain of RPIM is compact. If the field nodes are properly
numbered, K is banded. Note also that K is usually asymmetric (Atluri andK
Shen, 2002). The asymmetry has two causes:

1) The Petrov-Galerkin formulation uses different functions for the trial and
test functions. Furthermore, the sizes and/or the shapes of the local
support domains for constructing the trial and test functions can also be
different. In addition, the sizes and/or the shapes of the local quadrature
domain may differ for different field nodes. Hence, the domain
integration in Equation (5.21) is, generally, asymmetric, i.e.

(()

T dT

k l) (
q q

l k
())
q

dTT
k l l

TT dk ld (5.31)

where ()
q and ()

q are local quadrature domains for the kth and thekk lthll

field nodes, respectively, and kVk and lVl are matrices of derivatives of
the weight functions used for the kth and thekk lth field nodes, respectively. ll
Bl and l Bk are the strain matrices of thek lth and thell kth field nodes.kk

2) The part of K from the boundary integrations in Equation (5.21) isK
asymmetric. The sizes and/or shapes of the local quadrature domains
may be different for different field nodes; this means that boundary
integrations in Equation (5.21) are, in general, asymmetric, i.e.

() ()

() ()

T

T

dT

dT

k k) (
quqi

l l) (
quqi

k l

l kd

T
k l

T
l k

T
k

T dk ld

l
T

l kdT dl kdT
(5.32)

Therefore, K is asymmetric, i.e., K

kl lkK Kkl l (5.33)

248 Chapter 5

In conclusion, the stiffness matrix K in the LRPIM is generally sparse, K
banded and asymmetric.

Note that in LRPIM, the essential boundary conditions can be directly
implemented as in the RPIM and FEM due to the fact that the RPIM shape
functions possess the Kronecker delta function property. Because the system
equation of LRPIM is assembled based on nodes as in the finite difference
method (FDM), the rows in the matrix K for the nodes on the essentialK
boundary need not be computed. This can save some computational costs.
This simple treatment is possible because 1) the RPIM shape functions have
the delta function property and 2) the rows of the K are based on nodes.K

5.2.2.3 Test (weight) function

As LRPIM can be regarded as a local weighted residual method, the test
(weight) function plays an important role in the performance of this method.
Theoretically, any test function is acceptable as long as the condition of
continuity is satisfied. However, the local weak-form is based on a local
quadrature domain of a field node with the node at the centre. It can be
shown that test functions which decrease in magnitude with increasing
distance from the centre yield better results. We use the test functions that
depend only on the distance between the two points: the cubic spline
function (W1), the 4th-order spline weight function (W2) and other weight
function given in Sub-section 3.3.2.

To simplify Equation (5.9), we can deliberately select the test functions
so that they vanish over qi. This can be achieved using, for example, the
4th-order spline weight function (W2) with rqr =rwrr (see Sub-section 3.3.2)
because ()((is zero when r= rqr .

There is a wide range of weight functions that can be used in LRPIM,
including all weight functions that are used to form different weighted
residual methods (see, Section 1.4). Atluri and Shen (2002) used six weight
functions in MLPG. These weight functions can also be used in LRPIM.

Although there are many types of weight functions, the spline weight
functions (e.g., W1 or W2) are the most popular; it is the most convenient to
use and accurate. Hence, in this book, we focus on the use of these spline
weight functions.

5.2.2.4 Numerical integration

The integrations in LRPIM can be performed over regularly-shaped local
quadrature domains for internal nodes; circles, ellipses, rectangles, or
triangles in two-dimensional problems; spheres, rectangular parallelepipeds,

5. Meshfree methods based on local weak-forms 249

or ellipsoids in three-dimensional problems. These local domains can be
automatically generated during computation.

Issues of numerical integrations in MFree methods have been discussed
in detail in the existing publications (Atluri et al.,1999b; Dolbow and
Belytschko,1999; GR Liu, 2002). Insufficiently accurate numerical
integration may cause deterioration in the numerical solution and rank-
deficiency in the stiffness matrix. The difficulty of the numerical integration
for LRPIM comes mainly from the complexity of integrands. First, the shape
functions constructed are complicated, and have different forms in each
integration region. The derivatives of shape functions can even have
oscillations. Second, the overlapping of local support domains complicates f
the integrands further. In order to ensure the accurate numerical integration,

q should be further divided into small regular partitions (see Figure 5.8). In
each small region, the number of Gauss quadrature points should be chosen
to ensure sufficient accuracy (Atluri et al. 1999b).

If the rectangular quadrature domain is used, the standard Gauss
quadrature can easily be performed. Circles centred on the field node are
often used; they have no directional bias, and have simple weight functions.

To obtain the numerical integration for a circular quadrature domain, a
mapping technique has been used, as shown in Figure 5.2.

The circular quadrature domain is divided into four quarters.
The quarter is mapped into a rectangle region.
The rectangle region is mapped to a standard square for Gauss quadrature.
The standard Gauss quadrature is used.

For simplicity, the rectangular quadrature is used in the following study.

Figure 5.2. Transformation of a quarter circular domain into a standard square.

250 Chapter 5

5.3 MESHLESS LOCAL PETROV-GALERKIN METHOD

The MLPG is developed by Atluri et al. (Atluri and Zhu, 1998a,b; Alturi
and Shen, 2002); this section provides a concise introduction; the complete
record of MLPG is given in Atluri and Shen (2002).

5.3.1 MLPG formulation

Consider a two-dimensional problem of solid mechanics in domain
bounded by whose strong-form of governing equation and the essential
boundary conditions are given in Equations (4.1) to (4.3). In the MLPG, the
local weak-form can be obtained from the following weighted residual
method.

d 0
q qu

I i i

q

d)I ij j i,(,W b()dI ()d)d)d)d)d)d (5.34)

where W is the weight or test function. Note that the second integral in
Equation (5.34) is the curve integral to enforce the essential boundary
conditions, because the MLS shape functions used in MLPG lack the
Kronecker delta function property. In Equation (5.34), the penalty method is
used to enforce the essential boundary conditions. q is the local domain of
quadrature for node I,II qu is the part of the essential boundary that intersect
with the quadrature domain q, and is the penalty factor used in Chapter 4.
Here we use the same penalty factor for all the displacement (essential)
boundary conditions.

The displacements at a sampling point x are approximated using the MLS
shape functions (see, Section 3.3) in the following form

(2 1) (2 2) (2 1)()h
) (2) (2(21) ()

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u(2 1) (h
1) (u (5.35)

where I is the MLS shape function, and I is the matrix formed with MLS
shape functions.

5. Meshfree methods based on local weak-forms 251

Substituting the foregoing expression for all the displacement
components of u into the local weak-form Equation (5.34), and following the
exact procedure detailed in Sub-section 5.2.1 yield the following nodal
discretized system equations of MLPG for the Ith field node.II

KIK uI =fIf (5.36)I

where KIK is a matrix called theI nodal stiffness matrix for the Ith field node,II
T

T

dT

d

q qi qu

qu

I I

I

q qi

dT

T dI

T TTTTT
I II
T TTTTK V DB W nDB W nDBWI I

TdI III dT d dddTTTTT
II d

WII

T

(5.37)

and fIf is aI nodal force vector with contributions from body forces applied in r
the problem domain, tractions applied on the natural boundary, as well as the
penalty force term.

T dT

qt q qu

II

qt q

dTT TTTTT
I II I dddfI I III IdT d TT
II d uI

TT

(5.38)

Compared with Equations (5.21) and (5.22), the last terms in Equations
(5.37) and (5.38) are new. They are required for imposing the essential
boundary conditions. For a field node whose local quadrature domain lies
entirely within the global domain, there is no intersection between q and the
global boundary , and the local weak-form is given in Equation (5.5). In
this case, KIK and I fIff have the same formulations as Equations (5.22) and I
(5.23).

We use Gauss quadrature to obtain the integrals in Equations (5.37) and
(5.38); the algorithm is the same as that used in Equations (5.25) and (5.26)
for LRPIM.

Equation (5.38) presents two linear equations for the Ith field node.II
Using Equation (5.38) for all N field nodes in the entire problem domain and N
assembling all these 2N equations, we can obtain the final global system N
equations in the discretized linear algebraic form for MLPG, i.e.

2 2 2 1 2 1N N N N2 2 1 22 2 1 21 2K U F2 2 2 1 22 12 2 1 22 22 11 2 (5.39)

Solving the above equation, we can obtain the nodal parameters of
displacements and then compute the actual displacements at any point
(including field nodes) in the problem domain using Equation (5.35). Finally
the strains and stresses can be obtained using Equations (5.11) and (5.12).

252 Chapter 5

5.3.2 Enforcement of essential boundary conditions

In Sub-section 5.3.1, the penalty method has been used to enforce
essential boundary conditions in MLPG. In fact, other methods for enforcing
essential boundary conditions in EFG, which have been discussed in Section
4.3, can also be used in MLPG.

Note that, in MLPG, the system equation is constructed node by node.
There are only two rows in the global stiffness matrix and the global force
vector that are related to each field node. With this structural feature of the
system equation of MLPG, the following direct interpolation method can bed
used to enforce essential boundary conditions.

Assume the displacements at the Ith field node on the essential boundaryII
are prescribed as

h
I I
h
I I

u uh
I

v vI I

(5.40)

Using the MLS approximation, one has

h
I

1u11

1v1vh 0n11 0Iuh
Iu Iu1v1
IIu
h

I1

0
n1

0
n1

10 n1 0110 0hh
IvIuI

h
IvI

nuu

nnv

u (5.41)

Equation (5.41) produces two linear equations for the Ith field node, and canII
be re-written explicitly as

1 1 2 2

1 1 2 2

n n I

n n I

u un nn

v vn n In

1 1 2 21 1u u1 2 21 2

1 1 2 21 1v v1 2 21 2

un nuuu2 22

vn nvvv2 22
(5.42)

In Equation (5.40), both u and v of thev Ith node are prescribed. For someII
field nodes, it could be that only one of the two displacement components (u
or v) is prescribed. Therefore, only one of the linear equations in Equation
(5.42) can be obtained from the essential boundary condition for the
prescribed displacement component at this field node. The other equation
for the unprescribed displacement should still be obtained as in Equation
(5.4).

Equation (5.42) is assembled (stacked) directly into the system equations
for field nodes to obtain the modified global system equations of

2 2 2 1 2 1N N N N2 2 1 22 2 1 21 2K U F2 2 2 1 22 12 2 1 22 22 11 2 (5.43)

where the modified global stiffness matrix K isK

5. Meshfree methods based on local weak-forms 253

11 12 1(2 1) 1(2)1) 1(21) 1(2K K K K11 12 1(2 1) 11) 111 12 1(2 1) 1(2)1) 1(21) 1(211 12 1(2 1) 1(2)1) 1(21) 1(2

011 01 0
0

N1 0
0

01 0

10 N1 011 NN0 0

K K K K() () ()() ()()(2)1 (2)2 (2)(2 1) (2)(2))1 (2)2)1 (2 (2)(2 1) (2)(2)(2 1) (2)(2K K K K(2)1 (2)2 (2)(2 1))1 (2)2)1 (2 (2)(2 1))(2

K (5.44)

The modified global force vector F is

(2 1)

1xf11xf11xf1

IuIuI

IvIv

fff yNyfN

F (5.45)

For simplicity and without losing generality, 111 ~ NNN are used in Equation
(5.44). Note that because the MLS shape functions are constructed in a
compact support domain, the number of field nodes, n, selected in the
support domain for the Ith node will usually be much smaller than the totalII
number of field nodes, N (i.e.,N n N). Therefore, many of 111 ~ NNN will be
zero.

This direct interpolation method for the treatment of essential boundary
condition is straightforward and very effective. It was used in the boundary
node method (BNM) by Mukherjee and Mukherjee (1997), suggested for
MLPG by Atluri et al. (1999b), and implemented in the MLPG for 2D solids
by GR Liu and Yan (2000).

5.3.3 Commons on the efficiency of MLPG and LRPIM

There are many advantages in using MFree local weak-form methods, e.g.
LRPIM and MLPG.

1) No global background cell is needed for the integrations.

2) The implementation procedures are as simple as numerical methods
based on the strong-form formulation, such as the FDM.

3) No global compatibility of the shape functions is required, because no
global energy principle is used in the formulation.

(2I-1)th row II
2Ith row II

(2I-1)th rowII

2Ith rowII

254 Chapter 5

However, these advantages of MFree local weak-form methods do not
come without some cost. The following study shows the fact that the MFree
local weak-form method is generally less efficient than the MFree global
weak-form method, and of course the FEM.

5.3.3.1 Comparison with FEM

Compared with FEM, the LRPIM and MLPG are computationally more
expensive if the same field nodes are used. The additional computational
computation cost mainly comes from: 1) the MFree interpolation, 2) the
numerical integrations, and 3) solving the asymmetric stiffness matrix. A
detailed study on the efficiency is conducted by comparing with FEM, and
the results are presented using the numerical examples given in Sub-section
5.5.4.

5.3.3.2 Comparison with MFree global weak-form methods

Compared with MFree global weak-form methods, such as EFG and
RPIM, discussed in Chapter 4, the major disadvantages of LRPIM and
MLPG are the additional parameters introduced and the asymmetric system
matrix. The additional parameters in LRPIM and MLPG include the sizes of
local quadrature domains and the choice of the test function, etc. The
asymmetric matrix will increase the computational cost in LRPIM and
MLPG, as will be shown in the example problems given in Sub-section 5.5.4.

5.4 SOURCE CODE

In this section, a standard source code, MFree_Local.f90, of the MFree
local weak-form method is provided and described in detail. This code is
developed using FORTRAN 90. Combined with some of the subroutines
given in Chapter 3 and Chapter 4, the code functions as either LRPIM or
MLPG, respectively.

5.4.1 Implementation issues

1) Local quadrature domains

To perform the integrations for the local weak-form, local quadrature
domains are needed. The local quadrature domain can be as simple as
possible for the internal nodes. Rectangular domains are simple and easy to
use, and they are used in this book.

5. Meshfree methods based on local weak-forms 255

For a rectangular quadrature domain, the dimension of the quadrature
domain can be determined by rqxr and rqyr in x and y directions, respectively.

qx qx cx

qy qy cy

r dqx qx c

r dqy qy c (5.46)

where qx and qy are dimensionless sizes of the quadrature domain in x and
y direction, respectively, and dcxdd andx dcydd are the local nodal spacings in x and
y directions, which have been defined in Sub-section 3.1.3.

2) Method to enforce essential boundary conditions

The methods of enforcing essential boundary conditions in the LRPIM
and MLPG have been discussed in Sections 5.2 and 5.3. The direct
interpolation method is one of the most efficient methods for MLPG; it is
used in this code.

3) Global error in energy norm

For the error analysis, the energy norm defined in Equation (4.78) is used
as an error indicator, as the accuracy in strains or stresses is much more
critical than the displacements. Note that the integration in Equation (4.78) ist
over the global domain. Hence, in order to get the global error in energy
norm, global background cells, that can be the same as those used in the
RPIM (or EFG), have to be used purely for the error assessment.

4) Flowchart of the subroutine

The flowchart of the computer code, MFree_Local.f90, is plotted in
Figure 5.3. The procedure of LRPIM is very different from that of FEM and
RPIM (EFG).

The major steps in a LRPIM analysis are as follows
The geometry of the problem domain is modelled and a set of field
nodes is generated to represent the problem domain;
The influence domains are set for all field nodes;
The system matrices are assembled through two loops;

o The outer loop is for all the field nodes. At the beginning of
this loop, a local quadrature domain is first constructed.

o The inner loop is for all the Gauss quadrature points in the
quadrature domain.

The boundary conditions are enforced;
The system equation is solved using the standard equation solver;
The post-processing is performed to plot the final results including
displacements, stresses, etc.

256 Chapter 5

5.4.2 Program description and data structures

The main program of MFree_Local.f90 calls several subroutines. The
macro chart for the program is given in Figure 5.4. The functions of these
subroutines used in the main program are listed in Appendix 5.1. The main
program is listed in Programs 5.1 and 5.2.

1) Programs for LRPIM and MLPG

The present program listed in the following Program calls the subroutine
RPIM_ShapeFunc_2D that is for the construction of RPIM shape functions.
Hence, the present program is for LRPIM. This program can be easily
changed to the program for MLPG by replacing all the subroutine
RPIM_ShapeFunc_2D with the subroutine MLS_ShapeFunc_2D. These two
subroutines, RPIM_ShapeFunc_2D and MLS_ShapeFunc_2D, have been
described in Chapter 3.

The source code of the main program is listed in Program 5.2.

2) Major variables

The major variables used in the program are listed in Appendix 5.2. The
include file of variables, variableslocal.h, is listed in Program 5.1.

a. Most global variables are similar to the global variables that are
presented in the program MFree_Global.f90 in Chapter 4.

Note that some of subroutines used in MFree_Local.f90 are the same as
those used in the program MFree_Global.f90 (see Appendix 5.1). Therefore,
the descriptions for these subroutines are not repeated here.

3) Subroutine Input

Source code location: Program 5.3.
Function: This subroutine performs simple operations of inputting data

from a given external data file, and hence is self-explanatory,
and easy to understand.

4) Subroutine Qdomain

Source code location: Program 5.4.
Dummy arguments: Appendix 5.3.
Function: This subroutine is to construct the local quadrature domain for

a field node, and it is designed to construct a rectangular
quadrature domain. Coordinates of four vertexes of the local
quadrature domain are stored in the array xc. Readers can
modify this subroutine slightly for creating other shapes of
quadrature domains.

Note here that one of major challenges in MFree local weak-form
methods is to develop an efficient algorithm for automatically forming the

5. Meshfree methods based on local weak-forms 257

local quadrature domains, especially for nodes on or near boundaries of a
problem domain of a complex shape.

Input data

Search all influence domains to determine nodes involved in interpolation

Compute sub-stiffness matrix of the quadrature point

End of the loop for the quadrature point

End

quadrature points

Loop over
field nodes

Compute meshfree shape functions for the quadrature point

Assemble the nodal stiffness matrix into the global stiffness matrix

End of the loop for the field nodes

Enforce essential boundary conditions

Solve the system equation to obtain displacements and then the stresses, etc.

ain for this field node

Figure 5.3. Flowchart of the program of MFree_Local.f90.

258 Chapter 5

Figure 5.4. Macro flowchart of the program of MFree_Local.f90.

5) Subroutine DomainGaussPoints

Source code location: Program 5.5.
Dummy arguments: Appendix 5.4.
Function: This subroutine is to set the Gauss points and calculate the

Jacobian for a local quadrature domain. In the present
program, rectangular local quadrature domains are used.
Hence, the subroutine is designed to set Gauss points for a
quadrilateral quadrature domain.

6) Subroutine TestFunc

Source code location: Program 5.6

5. Meshfree methods based on local weak-forms 259

Function: This subroutine is to compute test or weight functions (the
quartic spline function) and their derivatives. The field node is
at the center of the weight functions. Note that the weight
function domain is the same as the quadrature domain (rqr =rwrr)
defined in Equation (5.46).

7) Subroutine Integration_BCQuQi

Source code location: Program 5.7.
Dummy arguments: Appendix 5.5.
Function: This subroutine is to compute the integrations on the

boundaries, qu and qi, of the quadrature domain that intersect
with the global boundary. The integration is defined in the last
two terms in Equation (5.21). Because the rectangular
quadrature domains are used and the problem domain
considered is also a rectangle, the integrations on these sub-
boundaries are curve integrations along a line. These
integrations can be obtained using the standard curve Gauss
quadrature scheme. The main flowchart of this subroutine is
shown in Figure 5.5.

8) Subroutine Integration_BCQt

Source code location: Program 5.8.
Dummy arguments: Appendix 5.6.
Function: This subroutine is to compute the integrations on the boundary,

qt, of the quadrature domain that intersects with the global
force boundary. The integration is defined in the first term in
Equation (5.22). Because the rectangular quadrature domains
are used and the problem domain considered is also
rectangular, the integration on the sub-boundary qt is a curve
integration scheme. The flowchart of this subroutine is shown
in Figure 5.6.

Note here that subroutines of Integration_BCQu and Integration_BCQt
are two important subroutines used in MFree local weak-form methods. How
to efficiently achieve these boundary integrations is another major challenge
in MFree local weak-form methods, especially for a problem domain with a
complex geometry.

9) Subroutine EssentialBC

Source code location: Program 5.9.
Dummy arguments: Appendix 5.7.
Function: This subroutine is to implement the essential boundary

conditions.

260 Chapter 5

Input data

Determine local boundaries of qu and qi

Set Gauss points on qu and qi

Assemble the nodal stiffness
matrices into the global stiffness

matrix

Return

Loop over Gauss
points

Compute nodal matrices W, n and B for this
Gauss point

Figure 5.5. Flowchart of the subroutine Integration_BCQuQi.

10) Subroutine GetDisplacement

Source code location: Program 5.10.
Dummy arguments: Appendix 4.10.
Function: This subroutine is used only in MLPG to obtain the final

displacements. This subroutine is unnecessary for LRPIM if
only nodal displacements are interested, as the RPIM shape
functions possess the delta function property (Sub-section
3.2.2).

11) Subroutine GetNodeStress

Source code location: Program 5.11.
Dummy arguments: Appendix 5.8.
Function: This subroutine is to compute stress components at all field

nodes using Equations (4.10) and (5.12).

12) Subroutine Output

Source code location: Program 5.12.

5. Meshfree methods based on local weak-forms 261

Function: This subroutine performs the simple task of outputting the
results. The source code of this subroutine is listed.

Input data

Compute the intersection between q and the global
boundary t

Set Gauss points on qt

Compute the nodal force vector

Return

Loop over Gauss
points

Figure 5.6. Flowchart of the subroutine Integration_BCQt.

13) Subroutine TotalGaussPoints
Source code location: Program 5.13.
Function: This subroutine is to obtain Gauss points for a global

background mesh.

14) Subroutine GetEnergyError

Source code location: Program 5.14.
Function: This subroutine is to compute the global error in energy norm

of the solution using Equation (4.78).

15) Subroutine Dobmax andx GetInvasy

The source code of the subroutine Dobmax for computing multiplication
of two matrices is listed in Program 5.15. The subroutine GetInvasy that is
listed in Program 4.14 is used to compute the inversion of a matrix.

262 Chapter 5

5.5 EXAMPLES FOR TWO DIMENSIONAL SOLIDS – A
CANTILEVER BEAM

To provide a quantitative analysis, a cantilever beam subjected to a
parabolic traction at the free end as shown in Figure 4.5 is considered. The
beam has a unit thickness and is in a plane stress. The exact solution of this
problem is listed in Equations (4.79)~(4.84). The study of this simple
example has the following purposes.

a) To demonstrate the standard procedure of an MFree local weak-
form method;

b) To show the usage of the present programs, MFree_Local.f90, of
LRPIM and MLPG;

c) To investigate the effects of the shape parameters of MQ-RBF in
LRPIM;

d) To investigate the effects of the size of local domains;
e) To study numerically the convergence of LRPIM and MLPG;
f) To study the efficiency of LRPIM and MLPG.

5.5.1 The use of the MFree_local.f90

To use this program of MFree_local.f90, three steps, which are similar to
that discussed in Chapter 4, may be followed:

Step 1: Preparation of input file

The problem should be modeled in this step. The aim of this step is to
prepare the input data file for the program.

An example of input data file for the beam problem is listed in Appendix
5.9. The field nodes used in this file is plotted in Figure 5.7. The domain of
the beam is represented by regularly distributed 55 (11 5) field nodes. This
data file can be largely divided into five parts.

Part 1: this part includes the parameters of description of the problem
including: Length and Width of the problem domain; Young’s modules;
Poisson’s ratio; The distributed traction; Total number of field nodes; Global
boundary information (maxx , minx , miny , maxy).

Part 2: this part provides the parameters for determination of sizes of the
local domains, including: Sizes of the local quadrature domain (in x, y
directions); Number of sub-partitions used to divide the quadrature domain
(in x, y directions); Number of Gauss points used in each partition; Size of
the local influence domain.

5. Meshfree methods based on local weak-forms 263

Figure 5.7. An MFree model with 55 regular field nodes used to represent the problem
domain and boundaries.

Part 3: this part contains the detailed coordinates of field nodes: Number
of node, xi and yi.

Part 4: this part defines the essential boundary conditions and the natural
boundary conditions. The exact essential boundary conditions (see Equations
(4.79) and (4.81)) and natural boundary conditions (see Equation (4.84)) are
used to compute these values.

Part 5: this part includes the global background cells and the coordinates
of the vertexes of the background cells that are used only to compute the
global error in energy norm in the solution.

Step 2: Execution of the program

After the preparation of the input data file, the program can be executed
to obtain the results. LRPIM is first used, and results are listed in Appendix
5.10 and Appendix 5.11. In Appendix 5.10, the displacements at field nodes
are listed, and the stresses at the field nodes are listed in Appendix 5.11. In
the output, the error in energy norm is also presented in Appendix 5.11.

The MLPG method is also used, and results are listed in Appendix 5.12
and Appendix 5.13. The displacements at field nodes are listed in Appendix
5.12, and the stresses at field nodes are listed in Appendix 5.13 together with
the error in energy norm.

Step 3: Analysis of the output data

The task of this step can be performed using any post-processor like
MFree Post in the sofyware of MFree 2D (GR Liu, 2002).

Results of LRPIM are plotted in Figure 5.9~Figure 5.10. The MQ-RBF
with linear polynomial terms is used in LRPIM, and the parameters used are n

1.0,c 1.03,q and 3.0c . For the local influence domains, 4.8,cx

3.0,cydc and 3.0i are used. For local quadrature domains, 2.0q is
used. To ensure the accuracy of numerical integration, the local quadrature
domain is further divided into ndx ndy small sub-partitions, as shown in
Figure 5.8. In this study, we let dx dy dn n ndx dydynndd and 2d . In each sub-

264 Chapter 5

partition, a total of 16 (4 4) Gauss points are used. The cubic spline function
is used as the test function for the local Petrov-Galerkin weak-form.

Figure 5.8. A local quadrature domain is divided to dx dyn ndx sub-partitions. A total 4 4
Gauss points are used in each partition.

The deflection results are plotted in Figure 5.9. For comparison, the
analytical results of displacements are also plotted in the same figure. A
very good agreement can be found between LRPIM results and the analytical
results. The results of shear stress, xy , are plotted in Figure 5.10. Compared
with the analytical results, LRPIM gives a reasonably good result even for
stresses.

Results of MLPG are analyzed in Figure 5.11~Figure 5.12. In computing
the results shown in these figures, the linear polynomial basis and the cubic
spline weight function are used in the MLS approximation. For the local
influence domains, 4.8,cx 3.0,cyd and 3.0i are used. For local
quadrature domains, 1.5q , 4(2 2) sub-partitions, and 16 (4 4) Gauss
points in each partition are used. The cubic spline function is used as the test
function for the local weak-form. The deflection results are plotted in Figure
5.11. For comparison, the analytical results of displacements are also plotted
in the same figure. A very good agreement between MLPG result and the
analytical result is found. The results of the shear stress, xy , are plotted in
Figure 5.12. Compared with the analytical results, the results given by
MLPG are very good.

Two nodal distributions of 189 regular nodes and 189 irregular nodes
shown in Figure 5.13 are used to test the present code further. Shear stresses

xy are computed using LRPIM and plotted in Figure 5.14. The same stresses

ndx=2

ndy=2
IthII node

Quadrature
domain

Sub-partitions

Field nodes

Gauss points

5. Meshfree methods based on local weak-forms 265

xy are also obtained using MLPG and plotted in Figure 5.15. Compared with
analytical results, results of both LRPIM and MLPG are very good. It is seen
that the nodal irregularity has little effects on the results, and this is true for
both LRPIM and MLPG.

Figure 5.9. Deflections of the beam obtained using LRPIM and 55 regularly
distributed field nodes. Note that the displacements plotted are magnified by 500

times.

-140

-120

-100

-80

-60

-40

-20

0

-6 -4 -2 0 2 4 6

LRPIM
Analytical result

xy

y

Figure 5.10. Shear stress xy distribution on the cross-section at x=L= /2 of the beam
obtained using the LRPIM and 55 regular field nodes.

: Analytical solution; : Numerical solution.

266 Chapter 5

0 5 10 15 20 25 30 35 40 45 50
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
x 10-3

MLPG result
Analytical result

v

x

Figure 5.11. Deflections at the central axis at 0y of the beam obtained using the
MLPG and 55 regular field nodes.

-140

-120

-100

-80

-60

-40

-20

0

-6 -4 -2 0 2 4 6

MLPG
Analytical result

xy

y

Figure 5.12. Shear stress distribution on the cross-section at x=L= /2 of the beam obtained
using the MLPG and 55 regular field nodes.

5. Meshfree methods based on local weak-forms 267

(a) (b)

Figure 5.13. Nodal arrangements for the cantilever beam. (a) 189 regular nodes; (b) 189
irregular nodes.

Figure 5.14. Shear stress distributions on the cross-section at / 2 of the beam
obtained using the LRPIM and 189 field nodes.

5.5.2 Studies on the effects of parameters

In the following studies, the problem domain is represented using 189
(21 9) regular nodes. For quantitative and accurate analyses, the exact
essential boundary conditions and natural boundary conditions are used. The
error in energy norm, Equation (4.78), is used as an accuracy indicator. In

-6 -4 -2 0 2 4 6
-140

-120

-100

-80

-60

-40

-20

0

LRPIM (189 regular nodes)
LRPIM (189 irregular nodes)
Analytical
resultl

xy

y

268 Chapter 5

LRPIM, the linear polynomial terms are added in the RPIM-MQ. In MLPG,
the linear basis is used in the MLS approximation.

Figure 5.15. Shear stress distributions on the cross-section at / 2 of the beam
obtained using the MLPG and 189 field nodes.

5.5.2.1 Parameters effects on LRPIM

a) Shape parameters of RBF

The shape parameters of the MQ-RBF are studied. More detailed
discussion on the effects of RBF parameters for other RBFs are presented in
the paper by Wang and GR Liu et al. (2002c) and a book by GR Liu (2002).
Readers can also slightly modify the present codes and input data file to
conduct their own study on other RBFs.

In MQ-RBF, there are two shape parameters, c and q, that have been
discussed in Section 3.2. Because the regular nodes are used, dcdd that is a
parameter of the nodal spacing is a constant of / 20 2.4c . In this
study, 3.0i is used for the construction of support (influence) domains.

First, q is investigated, while c is fixed at 1.0, 2.0 and 4.0. Errors in energy
norm for five different values of q (0.5q , 0.5, 0.98, 1.03 and 1.2) are plotted
in Figure 5.16. From Figure 5.16, it can be confirmed that q=0.98 and q=1.03
with c=4.0 give better results for this problem. According to the conclusions of
the study by GR Liu (2002), q=1.03 is generally stable and accurate for many
problems. Hence, q=1.03 is used in the following studies.

5. Meshfree methods based on local weak-forms 269

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
10-2

10
-1

10
0

q

Er
ro

r i
n

en
er

gy
 n

or
m

c=1.0
c=2.0
c=4.0

Figure 5.16. Influence of q on the accuracy of the results obtained using the LRPIM-
MQ. It can be found that 4.0c , q=0.98 and 1.03 give accurate results.

Figure 5.17. Influence of c on the accuracy of the results obtained using LRPIM-MQ
(q=1.03). It can be found that the results of 3.0 ~ 5.0c are more accurate.

270 Chapter 5

In the study on c, the range of 0.5~7.0 with q fixed at 1.03 is now
considered. Errors in energy norm for different values of c are plotted in
Figure 5.17. From this figure, we can find that all c in the considered range
can lead to satisfactory results. The results of 3.0 ~ 7.0c are slightly
better. For convenience, 4.0c will be used in the following studies.

Comparing with those in Section 4.5, the findings from this study are
very much the same, and hence the same shape parameters are used for both
RPIM and LRPIM.

b) Effects of the size of local quadrature domain

The size of the local quadrature domain affects the accuracy of the
LRPIM solutions. The sizes of quadrature domains are defined in Equation
(5.29), in which / 20 2.4cx / 20 and /8 1.5cy /8 are used in this study.
The sizes of quadrature domains will be, therefore, determined by qx and qy,
which are dimensionless coefficients in x and y directions, respectively. For
simplicity, qx= qy= q is used. The errors in energy norms for different q
are obtained and plotted in Figure 5.18; the accuracy for solutions generally
is improved by increasing the size of the quadrature domain.

When the quadrature domain is too small (q 1.0), the error in results will
become unacceptably large. This is because a local residual formulation with a
very small quadrature domain for the weight function behaves more like a
purely strong-form formulation (a collocation method). Strong-form
formulation is usually less accurate than a weak integral form formulation, in
which the integration smears the error over the integral domain (Liu and Han,r
2003). More detail on this topic will be given in Chapter 6.

When the quadrature domain is large enough (q 1.5), results obtained
are very good. However, it is difficult to obtain accurate numerical
integrations for a large local quadrature domain (see Sub-section 5.2.2.4).
Because more regular small partitions and Gauss quadrature points are
needed, the numerical integration in a large quadrature domain becomes
computationally expensive and is not really necessary. Figure 5.18 shows
that a too large local quadrature domain is not necessary to give a significant
improvement in the accuracy. Hence, q=1.5-2.5 is an economical choice
that gives good results. In the following studies of LRPIM, q=2.0 is used.

c) Effects of numerical integration

As discussed above, there are difficulties in obtaining accurate numerical
integration because of the complexities of integrands (see Sub-section
5.2.2.4). To study effects of numerical integrations in more detail, a local
quadrature domain q withq q=2.0 is used. The local quadrature domain is
further divided into ndx ndy small partitions, as shown in Figure 5.8. In this
study, we let dx dy dn n ndx dydynndd . In each partition, 4 4 Gauss points are used.

5. Meshfree methods based on local weak-forms 271

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

En
er

gy
 e

rro
r

qq

Figure 5.18. Influence of the sizes of local quadrature domain on the accuracy
of the results obtained using LRPIM.

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

En
er

gy
 e

rr
or

nd

Figure 5.19. Influence of the number of sub-partitions on the accuracy of the
results obtained using LRPIM-MQ (q=1.03, c=4.0).

272 Chapter 5

Results of errors in energy norms for different nd are obtained and plottedd
in Figure 5.19. It can be observed that the accuracy of solutions improves
with the increase of nd due to the improvement of the accuracy of numericald

integrations. Hence, in order to ensure an accurate numerical integration, q
should be divided into some regular sub-partitions. In each sub-partition,
sufficient Gauss quadrature points should be used.

However, the increase of the number of sub-partitions and Gauss points
will increase the computational cost. A good and economical choice is nd=2.dd

d) Effects of the size of the influence domain

The size of influence domains is defined in Equation (4.75), dcxdd and x dcydd
are the nodal spacings in x and y directions near the field node I. In this study,II

/ 20 2.4cxd Lcx / 20L and /8 1.5cy are used. The size of influence
domains is determined by ix and iy, which are dimensionless coefficients
in x and y directions. For simplicity, we use ix= iy= i.

Errors in energy norms for different i are plotted in Figure 5.20 for two
cases. The shape parameters of MQ-RBF are 1.03 and 4.0c for case
1; 1.03q and 1.0c for case 2. It can be found that the accuracy
changes with i, and the results of 2.0i are very good. The reason of the
bad results obtained using 1.5i is that the influence domain is too small.
There are not enough field nodes included for interpolation. For a too large
influence domain, e.g. 4.0i , the accuracy is good, but the computational
cost will also increase accordingly for the inclusion of large number of nodes
in the interpolation. An economical choice is s=2.0~3.0 for reasonably
good results. In the following studies on LRPIM, 2.5i will be used.

e) Convergence
In the numerical convergence study, regularly and evenly distributed 18

(3 6), 28 (4 7), 55(5 11), 112(7 16), 189(9 21), and 403(13 31) field
nodes are used. The convergence curves obtained numerically are shown in
Figure 5.21, where h is equivalent to the element size (in x direction) in the
FEM analysis in this case. The convergence rate, R, that is computed via
linear regression is also given in Figure 5.21. From Figure 5.21, it is
observed that convergence rate of LRPIM is about 1.5. However, the
convergence is not a straight line.

It should be mentioned again that the shape parameters chosen in the
MQ-RBF will affect the convergence rate and the accuracy of the LRPIM.

5. Meshfree methods based on local weak-forms 273

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
En

er
gy

 e
rro

r

i

4.0c

1.0c

Figure 5.20. Influence of the sizes of local influence domain on the accuracy of the results
obtained using the LRPIM (q=1.03). The size of local influence domain is defined as:

ix i cxr dix i c and iy i cyr diy i c .

10
0

10
1

10
-2

10
-1

10
0

h

E
ne

rg
y

er
ro

r

LRPIM (R=1.50)

Figure 5.21. Numerical convergence of LRPIM-MQ in error er e of energy norm. R is the
convergence rate computed by linear regression.

274 Chapter 5

5.5.2.2 Parameter effects on MLPG

1) Effects of the size of local quadrature domain

In this study, / 20 2.4cx / 20 , /8 1.5cy /8 , and qx= qy= q are
used. Several quadrature domains with different q are investigated, and the
errors in the energy norm in the solution of the cantilever beam problem have been
plotted in Figure 5.22. From this figure, it can be found that the accuracy for
solutions generally improves with the increase of the size of the quadrature
domain. When the quadrature domain is too small (q<1.0), the error of the
results will become unacceptably large. When the quadrature domain is large
enough (q 1.5), results obtained are very good. The reasons are similar to
the discussions in LRPIM. However, a too large local quadrature domain
(q 3.0) does not necessarily lead to a significant improvement in the
accuracy. Hence, q=1.5-2.5 is an economical choice in MLPG for a
reasonably accurate solution. In the following studies on MLPG, q=1.5 is
used.

2) Effects of numerical integration

As discussed above in LRPIM, to obtain accurate numerical integrations,
the local quadrature domain is divided into ndx ndy small sub-partitions, as
shown in Figure 5.8. In this case, dx dy dn n ndx dydynndd is used, and there are 4 4
Gauss points in each partition. Results of errors in energy norms for different
nd are obtained and plotted in Figure 5.23. This figure shows that thed
accuracy of solutions improves with the increase of nd due to thed
improvement of the accuracy in the numerical integrations. However, the
increase of the number of sub-partitions and Gauss points will increase the
computational cost. In the following studies on MLPG, nd=2 is used.dd

3) Size of the influence domain

In the study of the effects of the influence domains, / 20 2.4cx ,
/8 1.5cyd Dcy /8D , and ix iy iiyiy are used. Errors in energy norm for

different i are plotted in Figure 5.24. It can be found that the accuracy
changes with i and the results for 2.0 4.0i are very good.

It is found that a too small influence domain (2.0i) leads to large
errors. The inaccuracy of a too small influence domain is caused by the fact
that there are not enough nodes to perform accurate approximation for the
field variables.

A too large influence domain (4.0i) will considerably increase the
computational cost. Hence, a proper influence domain should be used in

5. Meshfree methods based on local weak-forms 275

MLPG. Our studies have found that 2.5i is a good choice and will be
used in the following studies on MLPG.

0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
ne

rg
y

er
ro

r

qq

Figure 5.22. Influence of the sizes of local quadrature domain on the accuracy of the results
obtained using MLPG.

1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
ne

rg
y

er
ro

r

nd

Figure 5.23. Influence of the number of sub-partitions for numerical integrations on the
accuracy of the results obtained using the MLPG.

276 Chapter 5

1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
ne

rg
y

er
ro

r

i

Figure 5.24. Influence of the sizes of local influence domain on the accuracy of the
results obtained using the MLPG.

4) Convergence
The convergence of MLPG is studied numerically using regularly and

evenly distributed 18 (3 6), 28 (4 7), 55(5 11), 112(7 16), 189(9 21), and
403(13 31) field nodes. The convergence curve of MLPG results obtained
numerically is shown in Figure 5.25. The convergence rates, R, computed
via linear regression are also given in Figure 5.25. It is observed that the
convergence rate of MLPG is about 1.67. Note that only the linear basis is
used in the MLS approximation to obtain the MLPG results shown in Figure
5.25.

5.5.3 Comparison of convergence

For comparison between methods, an intensive numerical study has been
carried. The convergence curves of LRPIM, MLPG, RPIM, EFG and FEM
computed for the same cantilever beam under exactly the same conditions,
and are plotted together in Figure 5.26. The same results for RPIM, EFG and
FEM have already been presented in Sub-section 4.5.3. From Figure 5.26,
the following remarks can be made:

a) Both the convergence rates and the accuracies of LRPIM and MLPG
are much better than those of FEM using bi-linear elements.

5. Meshfree methods based on local weak-forms 277

10
0

10
1

10
-2

10
-1

10
0

h

En
er

gy
 e

rro
r

MLPG (R=1.67)

Figure 5.25. Numerical convergence of MLPG in error er e of energy norm. R is the
convergence rate computed by linear regression.

Figure 5.26. Comparison of convergence curves of LRPIM, MLPG, RPIM, EFG and bi-f
linear FEM in error er e of energy norm. R is the convergence rate.

278 Chapter 5

b) The convergence rate of MLPG is slightly better than that of LRPIM.
In addition, the convergence rate of MLPG is better than that of EFG
and their accuracies are very close.

c) Both accuracy and convergence rate of LRPIM are slightly worse
than those of RPIM. In addition, although the convergence rate and
the accuracy of LRPIM are very good, the convergence process of the
LRPIM slows down at finer nodal distributions.

5.5.4 Comparison of efficiency

A successful numerical method should obtain high accuracy at a lowerd
computational cost. For a fair comparison, both the accuracy in results and
the cost to get the results are investigated. Regularly distributed 18, 55, 189
and 403 nodes are used to calculate the error against the computation time
curves for LRPIM, MLPG, RPIM, EFG and bi-linear FEM. These curves are
plotted in Figure 5.27 for easy comparison. In this efficiency study, 2.5i

is used in LRPIM, RPIM, EFG, and MLPG.

Figure 5.27. Comparison of the computational efficiencies of LRPIM, MLPG, RPIM,
EFG and bi-linear FEM in error er e of energy norm.

It can be found form Figure 5.27 that
1) The efficiencies of MFree methods are better than that of FEM.
2) The EFG method shows the best performance.

5. Meshfree methods based on local weak-forms 279

3) LRPIM needs more computational time than MLPG. In other words,
the efficiency of MLPG is better than that of LRPIM. This is because
of their difference in the interpolations. RPIM shape functions need
more computation than the MLS shape functions.

4) The efficiencies of the MFree local Petrov-Galerkin weak-form
methods (LRPIM and MLPG) are lower than the corresponding
counter-part of the MFree global Galerkin weak-from methods
(RPIM and EFG). It is because the system matrices in the LRPIM
and MLPG are asymmetric. There seems to be a trade off between
the efficiency and the use of background mesh.

Note that when the Lagrange multiplier method is used in EFG or MLPG,
their efficiency will drop, as discussed in Section 4.5 and shown in Figure
4.24.

5.6 REMARKS

MFree local weak-form methods, LRPIM and MLPG, are presented in
this chapter. The numerical implementations of both LRPIM and MLPG
discussed. A computer code is provided. The present code is examined
using numerical examples. LRPIM and MLPG are studied to reveal the
effects of different parameters, convergence, performances, etc. From these
studies in this chapter, we can make the following important remarks:

a) The compatibility of the trial (shape) functions in the whole domain
is not required in MFree local weak-form methods.

b) For local weak-forms, the global background cells are successfully
avoided. The integration in the MFree local weak-form methods is
performed in a local quadrature domain with simple shapes for
internal nodes.

c) In LRPIM, the shape parameters of MQ-RBF are recommended with
the shape parameters fixed at q=1.03 and c=4.0.

d) When the local quadrature domains used in LRPIM and MLPG are
large enough (q 1.5), results obtained are very good, and q=2.0 is
recommended. In order to ensure accurate numerical integration, q

should be divided into some regular sub-partitions, and 2 2 is
recommended. In each sub-partition, sufficient Gauss quadrature points
should be used, and 16 (4 4) Gauss points are recommended.

280 Chapter 5

e) The accuracy of solutions change with the sizes of the influence
domains i and the results obtained using 2.0 4.0i are very
good. We recommend i=2.5.

f) The convergence rates of both the LRPIM and MLPG are very good.
They are all about 1.5. The convergence rate and the efficiency of
MLPG are slightly better than these of LRPIM.

Note that these remarks are based on the simple cantilever beam problem,
whose solution is of simple polynomial forms.

The present MFree local Petrov-Galerkin weak-form methods (e.g.
LRPIM and MLPG) possess the following advantages over their counterpart
of the MFree global Galerkin weak-form methods (e.g. RPIM and EFG).

1) No global background integration cells is needed, which is one step
closer to truly meshfree.

2) The implementation procedure is node based. It is similar to the
methods based on strong-forms, yet possesses high accuracy as long
as the local quadrature domains are sufficiently large.

However, MFree local weak-form methods possess some disadvantages.

1) Some parameters need to be determined via numerical tests, as these
parameters usually do not have theoretical optimum values.

2) The system matrix is usually asymmetric, which affects the
efficiency of the method.

Much more research work is needed to improve MFree local weak-form
methods, especially in dealing with the integrations for nodes near and on
the boundaries, and the asymmetry of the discretized system equations.

5. Meshfree methods based on local weak-forms 281

APPENDIX

Appendix 5.1. Major subroutines used in MFree_Local.f90 and their functions

Subroutines Functions Location
Input Input data from the external

data file
Program 5.3

Qdomain Set quadrature domain for a
field node

Program 5.4

GaussCoefficient Obtain coefficients of Gauss
points

Program 4.5

DomainGaussPoints Set Gauss points for a
quadrature domain

Program 5.5

SupportDomain Determine the support domain
for a quadrature point

Program 4.7

RPIM_ShapeFunc_2D
(or MLS_ShapeFunc_2D)

Compute shape functions and
their derivatives of an
interpolation point

Program 3.1
(Program 3.9)

TestFunc Compute the cubic spline
weight function

Program 5.6

Integration_BCQuQi Compute boundary
integrations on qu and qi

Program 5.7

Integration_BCQt Compute boundary integration
on qt

Program 5.8

EssentialBC Enforce essential boundary
conditions

Program 5.9

SolverBand Solve system equations Program 4.12
GetDisplacement Obtain the actual

displacements using the RPIM
or the MLS shape functions

Program 5.10

GetNodeStress Retrieve the strain and stress
for field nodes

Program 5.11

Output Output results Program 5.12
TotalGaussPoints Set Gauss points for global

cells
Program 5.13

GetEnergyError Compute error in energy norm Program 5.14
GetInvasy Obtain the inversion of a

matrix
Program 4.14

Dobmax Compute multiplication of
two matrices

Program 5.15

282 Chapter 5

Appendix 5.2. The global variables used in MFree_Global.f90

Variable Type Usage Function

numnode Integer Input Number of field nodes
x(nx, numnode) Long

real
Input Coordinates x and y for all field

nodes: x(1, i)=x= i; x(2, i)=y= i

xc(nx, 4) Long
real

Work
array

Coordinates x and y for a
rectangular quadrature domain:
xc(1,i)=x= i; xc(2,i)=y= i

ngx,ngy Integer Input Number of sub-partitions for a
quadrature domain in x and y
directions

nquado Integer Input Number of Gauss points used in
one dimension in a partition.

npEBCnum, Integer Input Number of field nodes with
essential boundary conditions

npEBC(3,100),
pEBC(nx,100)

Integer
long real

Input Essential boundary condition.

npNBCnum, Integer Input Number of field nodes with
natural boundary conditions

npNBC(3,100),
pNBC(nx,100)

Integer
long real

Input Natural boundary condition

alfs Long
real

Input Dimensionless sizes of support
(influence) domains

Ds(nx, numnode) Long
real

Work
array

The size of the influence domain:
ds(1,i)=dsxid , ds(2,i)=dsyid

ndex Integer Input Number of field nodes in the
local domain

Ph(10, ndex) Long
real

Output Shape functions and their
derivatives:

Ak(2*numnode,
2*numnode)

Long
real

Work
array

Global stiffness matrix

Force(2*numnode) Long
real

Work
array

Global force vector

disp(2*numnode) Long
real

Work
array

Displacement vector:
disp(2*i-1)=ui; disp(2*i-1)=vi

Stress(3, numnode) Long
real

Work
array

The array to store the stress
components for all field nodes

5. Meshfree methods based on local weak-forms 283

Appendix 5.3. Dummy arguments used in the subroutine Qdomain

Variable Type Usage Function

rqx, rqy Long real Input Sizes of the quadrature domain

xn,yn Long real Input Coordinates of the field node considered

xm(4) Long real Input Geometrical description of the global
boundary (designed for a rectangular
domain): xm(1)=x= min; xm(2)=x= max,
xm(3)=y= max; xm(4)=y= min

xc(nx, 4) Long real Output Coordinates x andx y for a rectangular
quadrature domain:
xc(1,i)=x= i; xc(2,i)=y= i

Appendix 5.4 Dummy arguments used in the subroutine DomainGaussPoints

Variable Type Usage Function

xc(nx, 4) Long real Input Coordinates x and y for a
rectangular quadrature domain:
xc(1,i)=x= i; xc(2,i)=y= i

Gauss(nx,nquado) Long real Input Coefficients of Gauss point
nquado Integer Input Number of Gauss points used in 1D

in the domain considered. For a
rectangular partition, total Gauss
points is nquado nquado.

numgauss Integer Input Total number of Gauss points for a
domain. It is nquado nquado.

nxc Integer Input nxc=4 for a rectangular quadrature
domain

gs(4, numgauss) Integer Output Gauss points for a cell:
gs(1,i): x for Gauss point i;
gs(2,i): y for Gauss point i;
gs(3,i): Gauss weighting factor;
gs(4,i): Jacobian value for this cell

284 Chapter 5

Appendix 5.5. Dummy arguments used in the subroutine Integration_BCQuQi

Variable Type Usage Function

nod Integer Input ID of the field node considered
numnode Integer Input Total number of field nodes
x(nx, numnode) Long real Input Coordinates x and y for all field

nodes. x(1,i)=x= i; x(2,i)=y= i

xc(nx, 4) Long real Output Coordinates x and y for a
rectangular quadrature domain:
xc(1,i)=x= i; xc(2,i)=y= i

nquado Integer Input Number of Gauss points used in
the domain considered.

xspace,yspace Long real Input Sizes of the quadrature domain
(e.g. rqx, rqy)

xm(4) Long real Input Geometrical description of the
global boundary (designed for a
rectangular domain):
xm(1)=x= min; xm(2)=x= max,
xm(3)=y= max; xm(4)=y= min

Ds(nx, numnode) Long real Input The size of the influence domain.
ds(1,i)=dsxid , ds(2,i)=dsyid

alfs Long real Input Dimensionless coefficient for
support (influence) domain

mk Integer Input Maxium number of rows of Ak
Ak Long real Input

output
Global stiffness matrix

Appendix 5.6. Dummy arguments used in the subroutine Integration_BCQt

Variable Type Usage Function

nod Integer Input ID of the field node considered
numnode Integer Input Total number of field nodes
x(nx, numnode) Long real Input Coordinates x and y
xc(nx, 4) Long real Output Coordinates x and y for a

rectangular quadrature domain
nquado Integer Input Number of Gauss points used in the

domain considered.
xspace,yspace Long real Input Sizes of the quadrature domain (e.g.

rqx, rqy)

5. Meshfree methods based on local weak-forms 285

xm(4) Long real Input Geometrical description of the
global boundary

Xcent(2) Long real Input x and y coordinates for the field
node considered

f(2)ff Long real output Nodal force vector

Appendix 5.7. Dummy arguments used in the subroutine EssentialBC

Variable Type Usage Function

numnode Integer Input Total number of field nodes
alfs Long real Input Dimensionless size for a

support (influence) domain
Ds(nx, numnode) Long real Input The size of the influence

domain
npEBCnum Integer Input Number of field nodes with

essential boundary conditions
npEBC(3,100),
pEBC(nx,100)

Integer,
long real

Input Essential boundary condition

mk Integer Input Maxium number of rows of Ak
Ak(2*numnode,

2*numnode)
Long real Input and

output
Global stiffness matrix

Fk(2*numnode) Long real Input and
output

Global force vector

Appendix 5.8. Dummy arguments used in the subroutine GetNodeStress

Variable Type Usage Function

nx Integer Input nx=2 for 2-D problem
numnode Integer Input Total number of field nodes
x(nx, numnode) Long real Input Coordinates x and y for

all field nodes
alfs Long real Input Dimensionless size for the

support (influence) domain
Ds(nx, numnode) Long real Input The size of the influence

domain
U2(2, numnode) Long real Input Displacement vector
Stress Long real Output Stress matrix

286 Chapter 5

Appendix 5.9. The data file:Local_Input55.dat used in MFree_Local.f90. A total of
55 regular field nodes is used

*L,H,E,v,P,
48. 12. 3.e7 .3 1000.
*numnode
55
* Global BC: Xmin,Xmax,Ymax, Ymin
0. 48. 6. -6.
* Nodal spacing: Dcx,Dcy
4.8 3.0
* Local quadrature domain: Aqx,Aqy
2. 2.
* Num. of sub-partitions: Nsx,Nsy
2 2
*Influence domain
3.
*Num. of Gauss Points
4
*RBF shape parameters: nRBF ALFc, dc and q
1 1.0 3.0 1.03
*Num. of Basis
3
*Field nodes: x[xi,yi]

 1 0.0000 6.0000
2 0.0000 3.0000
3 0.0000 0.0000

 4 0.0000 -3.0000
5 0.0000 -6.0000
6 4.8000 6.0000

 7 4.8000 3.0000
8 4.8000 0.0000
9 4.8000 -3.0000

 10 4.8000 -6.0000
 11 9.6000 6.0000
 12 9.6000 3.0000
 13 9.6000 0.0000
 14 9.6000 -3.0000
 15 9.6000 -6.0000
 16 14.4000 6.0000
 17 14.4000 3.0000
 18 14.4000 0.0000
 19 14.4000 -3.0000
 20 14.4000 -6.0000

21 19.2000 6.0000
22 19.2000 3.0000
23 19.2000 0.0000
24 19.2000 -3.0000
25 19.2000 -6.0000
26 24.0000 6.0000
27 24.0000 3.0000
28 24.0000 0.0000

29 24.0000 -3.0000
 30 24.0000 -6.0000

31 28.8000 6.0000
32 28.8000 3.0000
33 28.8000 0.0000
34 28.8000 -3.0000
35 28.8000 -6.0000
36 33.6000 6.0000
37 33.6000 3.0000

 38 33.6000 0.0000
39 33.6000 -3.0000

 40 33.6000 -6.0000
 41 38.4000 6.0000
 42 38.4000 3.0000
 43 38.4000 0.0000
 44 38.4000 -3.0000
 45 38.4000 -6.0000
 46 43.2000 6.0000
 47 43.2000 3.0000
 48 43.2000 0.0000
 49 43.2000 -3.0000
 50 43.2000 -6.0000
 51 48.0000 6.0000

52 48.0000 3.0000
 53 48.0000 0.0000
 54 48.0000 -3.0000
 55 48.0000 -6.0000

*Num. of Essential BC: numFBC
5
*Node,iUx,iUy,Ux,Uy
 1 1 1 0.000000000000E+00 -0.599999982119E-04

2 1 1 -0.718749978580E-05 -0.149999995530E-04
 3 1 1 0.000000000000E+00 0.000000000000E+00
 4 1 1 0.718749978580E-05 -0.149999995530E-04

5. Meshfree methods based on local weak-forms 287

 5 1 1 0.000000000000E+00 -0.599999982119E-04
*Num. of concentated loading: numFBC
5
*Node,iTx,iTy,Tx,Ty
51 1 1 0 0.0 52 1 1 0. 0.0
53 1 1 0. 0.0 54 1 1 0. 0.0
55 1 1 0. 0.0
* Num. of nodes and cells(for en. error)
55 40
*Nodes for cells: xc[]

 1 0.0000 6.0000
2 0.0000 3.0000
3 0.0000 0.0000

 4 0.0000 -3.0000
5 0.0000 -6.0000
6 4.8000 6.0000

 7 4.8000 3.0000
8 4.8000 0.0000
9 4.8000 -3.0000

 10 4.8000 -6.0000
 11 9.6000 6.0000
 12 9.6000 3.0000
 13 9.6000 0.0000
 14 9.6000 -3.0000
 15 9.6000 -6.0000
 16 14.4000 6.0000
 17 14.4000 3.0000
 18 14.4000 0.0000
 19 14.4000 -3.0000
 20 14.4000 -6.0000

21 19.2000 6.0000
22 19.2000 3.0000
23 19.2000 0.0000
24 19.2000 -3.0000
25 19.2000 -6.0000
26 24.0000 6.0000
27 24.0000 3.0000

 28 24.0000 0.0000

29 24.0000 -3.0000
30 24.0000 -6.0000
31 28.8000 6.0000
32 28.8000 3.0000
33 28.8000 0.0000
34 28.8000 -3.0000
35 28.8000 -6.0000
36 33.6000 6.0000
37 33.6000 3.0000

 38 33.6000 0.0000
39 33.6000 -3.0000

 40 33.6000 -6.0000
 41 38.4000 6.0000
 42 38.4000 3.0000
 43 38.4000 0.0000
 44 38.4000 -3.0000
 45 38.4000 -6.0000
 46 43.2000 6.0000
 47 43.2000 3.0000
 48 43.2000 0.0000
 49 43.2000 -3.0000
 50 43.2000 -6.0000
 51 48.0000 6.0000
 52 48.0000 3.0000
 53 48.0000 0.0000
 54 48.0000 -3.0000
 55 48.0000 -6.0000

*No. of nodes in cells[1,2,3,4]
 1 1 2 7 6
 2 2 3 8 7

3 3 4 9 8
 4 4 5 10 9

5 6 7 12 11
6 7 8 13 12

 7 8 9 14 13
8 9 10 15 14
9 11 12 17 16

 10 12 13 18 17
 11 13 14 19 18
 12 14 15 20 19
 13 16 17 22 21
 14 17 18 23 22
 15 18 19 24 23
 16 19 20 25 24
 17 21 22 27 26
 18 22 23 28 27
 19 23 24 29 28

20 24 25 30 29

21 26 27 32 31
22 27 28 33 32
23 28 29 34 33
24 29 30 35 34
25 31 32 37 36

 26 32 33 38 37
27 33 34 39 38

 28 34 35 40 39
29 36 37 42 41
30 37 38 43 42
31 38 39 44 43
32 39 40 45 44
33 41 42 47 46
34 42 43 48 47
35 43 44 49 48
36 44 45 50 49
37 46 47 52 51
38 47 48 53 52
39 48 49 54 53

 40 49 50 55 54
*END of data file

288 Chapter 5

Appendix 5.10. A output sample for displacements obtained using MQ LRPIM

No. of field nodes u v

1
2
3
4
5
6
7
8
9
10
……
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0.56898E-13
-0.71875E-05
-0.19977E-13
0.71875E-05
0.23840E-13
0.31081E-03
0.15043E-03
-0.11083E-13
-0.15043E-03
-0.31081E-03
……
0.13105E-02
0.64903E-03
0.29249E-14
-0.64903E-03
-0.13105E-02
0.14157E-02
0.70169E-03
0.27869E-14
-0.70169E-03
-0.14157E-02
0.14905E-02
0.73916E-03
0.28311E-14
-0.73916E-03
-0.14905E-02
0.15364E-02
0.76229E-03
0.28175E-14
-0.76229E-03
-0.15364E-02
0.15513E-02
0.76992E-03
0.28155E-14
-0.76992E-03
-0.15513E-02

 -0.60000E-04
 -0.15000E-04
0.11007E-13

 -0.15000E-04
 -0.60000E-04
 -0.20687E-03
 -0.16341E-03
 -0.15038E-03
 -0.16341E-03
 -0.20687E-03
……
-0.38899E-02
 -0.38727E-02
 -0.38668E-02
 -0.38727E-02
 -0.38899E-02
 -0.50129E-02
 -0.50000E-02
 -0.49955E-02
 -0.50000E-02
 -0.50129E-02
 -0.62077E-02
 -0.61990E-02
 -0.61960E-02
 -0.61990E-02
 -0.62077E-02
 -0.74499E-02
 -0.74455E-02
 -0.74440E-02
 -0.74455E-02
 -0.74499E-02
 -0.87164E-02
 -0.87171E-02
 -0.87169E-02
 -0.87171E-02
 -0.87164E-02

*The parameters used are
1.0,c 1.03q and 3.0idi for MQ RBF;
4.8,cxdc 3.0,cydc and 3.0s for the local influence domains;

2.0q and
2 2g gng 2gn

for local quadrature domains;.
The linear polynomial terms are added in MQ RPIM;
The cubic spline function is used as the test function for the local
Petrov_galerkin weak form.

5. Meshfree methods based on local weak-forms 289

Appendix 5.11. A output sample for stress obtained using MQ LRPIM

No. of field
nodes

xx yy xy

……
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
……

……
0.10836E+04
0.54814E+03
0.63871E-08
-0.54814E+03
-0.10836E+04
0.89328E+03
0.45566E+03
-0.34138E-08
-0.45566E+03
-0.89328E+03
0.71423E+03
0.36336E+03
0.16079E-08
-0.36336E+03
-0.71423E+03
0.53176E+03
0.27039E+03
-0.54533E-09
-0.27039E+03
-0.53176E+03
0.35854E+03
0.18269E+03
0.17923E-09
-0.18269E+03
-0.35854E+03
0.15814E+03
0.75874E+02
-0.68326E-10
-0.75874E+02
-0.15814E+03
……

……
-0.52377E+02
0.10130E+02
0.79569E-08
-0.10130E+02
0.52377E+02
-0.48896E+02
0.24844E+01
-0.16003E-08
-0.24844E+01
0.48896E+02
-0.36210E+02
0.50542E+01
0.45941E-09
-0.50542E+01
0.36210E+02
-0.28593E+02
0.25663E+01
0.11596E-10
-0.25663E+01
0.28593E+02
-0.17493E+02
0.15669E+01
-0.52410E-10
-0.15669E+01
0.17493E+02
-0.17753E+02
-0.36322E+01
0.85947E-10
0.36322E+01
0.17753E+02

……

……
 -0.69790E+02
 -0.95905E+02
 -0.14641E+03
 -0.95905E+02
 -0.69790E+02
 -0.68019E+02
 -0.90400E+02
 -0.13671E+03
 -0.90400E+02
 -0.68019E+02
 -0.66052E+02
 -0.89572E+02
 -0.13599E+03
 -0.89572E+02
 -0.66052E+02
 -0.65551E+02
 -0.87817E+02
 -0.13328E+03
 -0.87817E+02
 -0.65551E+02
 -0.64554E+02
 -0.86972E+02
 -0.13191E+03
 -0.86972E+02
 -0.64554E+02
 -0.66139E+02
 -0.88991E+02
 -0.13401E+03
 -0.88991E+02
 -0.66139E+02
……

Energy error:= 0.2419E+00

*The parameters used are
1.0,c 1.03q and 3.0idi for MQ RBF;
4.8,cxdc 3.0,cydc and 3.0s for the local influence domains;

2.0q and 2 2g gng 2gn for local quadrature domains;.
The linear polynomial terms are added in MQ RPIM;
The cubic spline function is used as the test function for the local
Petrov_galerkin weak form.

290 Chapter 5

Appendix 5.12. A output sample for displacements obtained using MLPG

No. of field nodes u v
1
2
3
4
5
6
7
8
9
10
……
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0.34272E-15
 -0.71875E-05
 -0.39980E-16
0.71875E-05

 -0.46273E-15
0.29397E-03
0.14080E-03
0.22333E-16

 -0.14080E-03
 -0.29397E-03
……
0.13229E-02
0.65460E-03

 -0.90234E-17
 -0.65460E-03
 -0.13229E-02
0.14346E-02
0.71048E-03

 -0.10666E-16
 -0.71048E-03
 -0.14346E-02
0.15146E-02
0.75033E-03

 -0.12135E-16
 -0.75033E-03
 -0.15146E-02
0.15619E-02
0.77406E-03

 -0.12619E-16
 -0.77406E-03
 -0.15619E-02
0.15784E-02
0.78212E-03

 -0.18770E-16
 -0.78212E-03
 -0.15784E-02

 -0.60000E-04
 -0.15000E-04
0.68236E-15

 -0.15000E-04
 -0.60000E-04
 -0.20657E-03
 -0.16710E-03
 -0.15389E-03
 -0.16710E-03
 -0.20657E-03
……
 -0.38436E-02
 -0.38257E-02
 -0.38197E-02
 -0.38257E-02
 -0.38436E-02
 -0.49791E-02
 -0.49657E-02
 -0.49612E-02
 -0.49657E-02
 -0.49791E-02
 -0.61915E-02
 -0.61826E-02
 -0.61796E-02
 -0.61826E-02
 -0.61915E-02
 -0.74550E-02
 -0.74506E-02
 -0.74491E-02
 -0.74506E-02
 -0.74550E-02
 -0.87437E-02
 -0.87439E-02
 -0.87438E-02
 -0.87439E-02
 -0.87437E-02

*The parameters used are
4.8,cxdc 3.0,cydc and 3.0s for the local influence domains;

1.5q and 2 2g gng 2gn for local quadrature domains;.
The linear polynomial basis and the cubic spline weight function are used in

the MLS approximation;
The cubic spline function is as the test function for the local weak form.

5. Meshfree methods based on local weak-forms 291

Appendix 5.13. A output sample for stress obtained using MLPG

No. of field
nodes

xx yy xy

……
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
……

……
0.11874E+04
0.59427E+03

 -0.25722E-10
 -0.59427E+03
 -0.11874E+04
0.99634E+03
0.49745E+03
0.31903E-11

 -0.49745E+03
 -0.99634E+03
0.79699E+03
0.39835E+03

 -0.20520E-10
 -0.39835E+03
 -0.79699E+03
0.59791E+03
0.29898E+03

 -0.56843E-11
 -0.29898E+03
 -0.59791E+03
0.39737E+03
0.19772E+03

 -0.10289E-10
 -0.19772E+03
 -0.39737E+03
0.19294E+03
0.97666E+02
0.79581E-12

 -0.97666E+02
 -0.19294E+03
……

……
0.68411E+01

 -0.78572E+00
 -0.10118E-10
0.78572E+00

 -0.68411E+01
0.62591E+01

 -0.23578E+00
 -0.27569E-11
0.23578E+00

 -0.62591E+01
0.48532E+01

 -0.34690E+00
0.63380E-11
0.34690E+00

 -0.48532E+01
0.35348E+01

 -0.27567E+00
 -0.97771E-11
0.27567E+00

 -0.35348E+01
0.24781E+01

 -0.17138E+00
0.14779E-11
0.17138E+00

 -0.24781E+01
 -0.39955E-01
 -0.45676E+00
0.86402E-11
0.45676E+00
0.39955E-01

……

……
 -0.18401E+02
 -0.88914E+02
 -0.12424E+03
 -0.88914E+02
 -0.18401E+02
 -0.16038E+02
 -0.86858E+02
 -0.12228E+03
 -0.86858E+02
 -0.16038E+02
 -0.18323E+02
 -0.90428E+02
 -0.12649E+03
 -0.90428E+02
 -0.18323E+02
 -0.16586E+02
 -0.88766E+02
 -0.12486E+03
 -0.88766E+02
 -0.16586E+02
 -0.19015E+02
 -0.92160E+02
 -0.12879E+03
 -0.92160E+02
 -0.19015E+02
 -0.16144E+02
 -0.88943E+02
 -0.12531E+03
 -0.88943E+02
 -0.16144E+02
……

Energy error:= 0.5573E-01

*The parameters are
4.8,cxdc 3.0,cydc and 3.0s for the local influence domains;

1.5q and 2 2g gng 2gn for local quadrature domains;.
The linear polynomial basis and the cubic spline weight function are used in

the MLS approximation;
The cubic spline function is as the test function for the local weak form.

292 Chapter 5

COMPUTER PROGRAMS

Program 5.1. The include file VariablesLocal.h

 parameter(nx=2,ng=4,ndim=600)
 common/para/xlength,ylength,p,young,anu,aimo
 common/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 common/localdomains/dcx,dcy,dex,dey,ngx,ngy
 dimension Dmat(3,3),x(nx,ndim),conn(ng,ndim),xBK(nx,ndim)
 dimension npEBC(3,100),pEBC(2,100)
 dimension nbc(100),ibcn(2,100),bcn(2,100),xnbcl(2,100)
 dimension nv(ndim),gpos(nx),gauss(nx,20),xm(4)
 dimension phi(10,ndim),ds(2,ndim)
 dimension gss(4,ndim), gst(4,10*ndim)
 dimension ak(2*ndim,2*ndim),fk(2*ndim)
 dimension xc(2,4),xcc(2,4),dsi(2),xcent(2),f2(2)
 dimension fbcl(2,4)
 dimension u2(2,ndim),u22(2,ndim),displ(2*ndim),stress(3,ndim)
 dimension bb(3,2),bbt(2,3),ww(3,2),ek(2,2),bd(2,3)

Program 5.2. The main program of MFree_local.f90
!--
! main program--2D FORTRAN 90 CODE-MFree local weak-form methods
! Using rectangular support domain and rectangular background cells
! input file -- input.dat
! output file -- result.dat
! include file -- variablelocal.h
!---

implicit real*8 (a-h,o-z)
include 'variableslocal.h'
ir=4

 open(ir,file=' Local_Input55.dat ',status='old')
 open(2,file='result.dat',status='unknown')
 maxmatrix=2*ndim

! ************** Input boundaries / parameters
 call Input(ir,x,ndim,nx,numnode,xm, &
 nquado,Dmat,ALFs,numcell,numq,xBK,conn,&
 npEBCnum,npEBC,pEBC,npNBCnum,nbc,ibcn,bcn)

! ************** Determine domains of influence--uniform nodal spacing
 xspace=dcx*dex

yspace=dcy*dey
 xstep=xspace/dex

ystep=yspace/dey
 do j=1,numnode
 ds(1,j)=alfs*xstep
 ds(2,j)=alfs*ystep

enddo
! ************* Coefficients of Gauss points,Weights and Jacobian for each cell
 call GaussCoefficient(nquado,gauss)
 eps=1.e-16
 b=-100*eps
 do iak=1,2*numnode
 fk(iak)=0.0
 do jak=1,2*numnode
 ak(iak,jak)=0.

5. Meshfree methods based on local weak-forms 293

enddo
enddo

! ************* Loop for field nodes
 do 100 nod=1,numnode
 write(*,*)'Field Node=',nod
 xn=x(1,nod)

yn=x(2,nod)
 xss=xspace

yss=yspace
 numgauss=nquado*nquado
 call QDomain(xss,yss,xn,yn,xm,xc) ! Local quadrature domain
 nxc=ng ! for the rectangular domain
! ************* Local quadrature domain is divided to sub-paritions
 xgs=(xc(1,4)-xc(1,1))/ngx
 ygs=(xc(2,1)-xc(2,2))/ngy
 x0=xc(1,1)
 do 60 iix=1,ngx
 xx=x0+(iix-1)*xgs

y0=xc(2,1)
 do 60 jjy=1,ngy

yy=y0-(jjy-1)*ygs
 xcc(1,1)=xx
 xcc(2,1)=yy
 xcc(1,2)=xx
 xcc(2,2)=yy-ygs
 xcc(1,3)=xx+xgs
 xcc(2,3)=yy-ygs
 xcc(1,4)=xx+xgs
 xcc(2,4)=yy
 call DomainGaussPoints(xcc,gauss,gss,nx,ng,nxc,nquado,numgauss)

! ************* Loop quadrature points
 numgauss=nquado*nquado
 do 30 ie=1,numgauss

gpos(1)=gss(1,ie)
gpos(2)=gss(2,ie)

 weight=gss(3,ie)
 ajac=gss(4,ie)
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,ndex
 do ii=1,10

phi(ii,kph)=0.
 enddo
 enddo
 dsi(1)=xspace
 dsi(2)=yspace
 xcent(1)=xn
 xcent(2)=yn
 call TestFunc(dsi,xcent,gpos,w,wx,wy)
 Call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)
ik1=nod*2-1
ik2=nod*2

! ************* Get Stiffness Matrix
 do ine=1,ndex
 n1=2*nv(ine)-1
 n2=2*nv(ine)
 do ii=1,3
 do jj=1,2
 bbt(jj,ii)=0.
 bb(ii,jj)=0.
 ww(ii,jj)=0.
 enddo
 enddo
 bb(1,1)=phi(2,ine)
 bb(2,2)=phi(3,ine)
 bb(3,1)=phi(3,ine)
 bb(3,2)=phi(2,ine)

294 Chapter 5

 ww(1,1)=wx
 ww(2,2)=wy
 ww(3,1)=wy
 ww(3,2)=wx
 do ii=1,3
 do jj=1,2
 bbt(jj,ii)=ww(ii,jj)
 enddo
 enddo
 call DOBMAX(bbt,2,3,2,dmat,3,3,bd,2)
 call dobmax(bd,2,3,2,bb,2,3,ek,2)
 ak(ik1,n1)=ak(ik1,n1)+weight*ajac*ek(1,1)
 ak(ik1,n2)=ak(ik1,n2)+weight*ajac*ek(1,2)
 ak(ik2,n1)=ak(ik2,n1)+weight*ajac*ek(2,1)
 ak(ik2,n2)=ak(ik2,n2)+weight*ajac*ek(2,2)

enddo
 30 continue !End of integration for local quadrature domain

! ************* B.C. Integrations
 NNQ=nquado
 call Integration_BCQt(nx,ng,xcc,f2,x,numnode,NNQ,&
 xm,xss,yss,xcent)
 fk(2*nod-1)=fk(2*nod-1)+f2(1)
 fk(2*nod)=fk(2*nod)+f2(2)
 call Integration_BCQuQi(nx,ng,nod,xcc,x,numnode,nNQ,dmat,xm,xss&

,YSS,ak,maxmatrix,alfs,ds)
 60 continue
 100 continue ! End of loop for field nodes

! ************* Boundary conditions: essential
 call EssentialBC(x,numnode,ak,fk,maxmatrix,ds,alfs,npEBCnum,npEBC,pEBC)

! ************* Solve equation to get the solutions
 ep=1.0e-20
 neq=2*numnode
 write(*,*)'Solve equation...'
 call SolverBand(ak,fk,neq,maxmatrix)
 do kk=1,numnode
 u2(1,kk)=fk(2*kk-1)
 u2(2,kk)=fk(2*kk)

enddo
! ************* get the final displacement
 call GetDisplacement(x,ds,u2,displ,alfs,nx,numnode)
 do kk=1,numnode
 u22(1,kk)=displ(2*kk-1)
 u22(2,kk)=displ(2*kk)
 enddo

! ************* Get stress
 call GetNodeStress(x,ds,Dmat,u2,Stress,alfs,nx,numnode)
 call Output(x,numnode,u2,u22,Stress) ! ouput results

! ************* Get energy error using global BK cells
 write(*,*)'Computing global energy error...'
 ngst=numcell*nquado**2
 call TotalGaussPoints(xBK,conn,gauss,gst,nx,ng,&
 numq,numcell,nquado,ngst)
 call GetEnergyError(nx,ng,xBK,numq,u2,dmat,ds,&
 ngst,gst,alfs)

 write(*,*)'THE END'
STOP
END

Program 5.3. Source code of Subroutine Input

 SUBROUTINE Input(ir,x,numd,nx,numnode,xm,nquado,Dmat,ALFs,numcell,numq,&

5. Meshfree methods based on local weak-forms 295

 xc,conn,npEBCnum,npEBC,pEBC,npNBCnum,nNBC,npNBC,pNBC)
!--
! This subroutine is to input data from data file
! input—-ir
! output—all other variables
!---

 implicit real*8 (a-h,o-z)
 common/para/xlength,ylength,p,young,anu,aimo
 COMMON/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 common/localdomains/dcx,dcy,dex,dey,ngx,ngy

CHARACTER*50 NAM
 dimension npEBC(3,100),pEBC(2,100)
 dimension nNBC(100),npNBC(2,100),pNBC(2,100)
 dimension x(nx,numd),Dmat(3,3),xm(4)
 dimension conn(4,numd),xc(nx,numd)
 read(4,10)nam
 read(ir,*) xlength,ylength,young,anu,p
 read(ir,10)nam
 read(ir,*)numnode
 read(ir,10)nam
 read(ir,*)xm(1),xm(2),xm(3),xm(4)
 read(ir,10)nam
 read(ir,*)dcx,dcy
 read(ir,10)nam
 read(ir,*)dex,dey
 read(ir,10)nam
 read(ir,*)ngx,ngy
 read(ir,10)nam
 read(ir,*)ALFs
 read(ir,10)nam
 read(ir,*)nquado
 read(ir,10)nam
 READ(ir,*)nRBF, alfc,dc,q
 read(ir,10)nam
 READ(ir,*)mbasis
 read(ir,10)nam
 do i=1,numnode
 read(ir,*)j,x(1,i),x(2,i)

enddo
 read(ir,10)nam
 read(ir,*)npEBCnum
 read(ir,10)nam
 do i=1,npEBCnum
 read(ir,*)npEBC(1,i),npEBC(2,i),npEBC(3,i),pEBC(1,i),pEBC(2,i)
 enddo
 read(ir,10)nam
 read(ir,*)npNBCnum
 read(ir,10)nam
 do i=1,npNBCnum
 read(ir,*)nNBC(i),npNBC(1,i),npNBC(2,i),pNBC(1,i),pNBC(2,i)

enddo
 read(ir,10)nam
 read(ir,*)numq,numcell
 read(ir,10)nam
 do i=1,numq
 read(ir,*)j,xc(1,i),xc(2,i)

enddo
 read(ir,10)nam
 do j=1,numcell
 read(ir,*)i,conn(1,j),conn(2,j),conn(3,j),conn(4,j)
 enddo

! ************* Compute material matrix D[] for the plane stress
you=young/(1.-anu*anu)

 aimo=(1./12.)*ylength**3
 Dmat(1,1)=you
 Dmat(1,2)=anu*you
 Dmat(1,3)=0.

296 Chapter 5

 Dmat(2,1)=anu*you
 Dmat(2,2)=you
 Dmat(2,3)=0.
 Dmat(3,1)=0.
 Dmat(3,2)=0.
 Dmat(3,3)=0.5*(1.-anu)*you
 10 format(a50)

RETURN
END

Program 5.4. Source code of Subroutine Qdomain

 SUBROUTINE QDomain(xs,ys,x,y,xm,xc)
!--
! This subroutine is to construct local quadrature domain for a field node
! input—xs, ys: sizes of quadrature domain;
! x,y: coordinates of the field node;
! xm(4): (xmin, xmax,ymax,ymin) for the global boundary;
! output-- xc(2,4): coordinates of points for the quadrature domain;!
!---

implicit real*8 (a-h,o-z)
 common/para/xlength,ylength,p,young,anu,aimo
 common/node/numnode,numcell,dex,dey,nquado
 dimension xm(4),xc(2,4)
 xl=x-xs
 xr=x+xs

yu=y+ys
yd=y-ys
if(xl.le.xm(1)) xl=xm(1)
if(xr.ge.xm(2)) xr=xm(2)
if(yu.ge.xm(3)) yu=xm(3)
if(yd.le.xm(4)) yd=xm(4)

 xc(1,1)=xl
 xc(2,1)=yu
 xc(1,2)=xl
 xc(2,2)=yd
 xc(1,3)=xr
 xc(2,3)=yd
 xc(1,4)=xr
 xc(2,4)=yu
RETURN
END

Program 5.5. Source code of Subroutine DomainGaussPoints

 SUBROUTINE DomainGaussPoints(xc,gauss,gs,nx,ng,nxc,k,numgauss)
!--
! This subroutine is to set up Gauss points,Jacobian and weights
! for a the local quadrature domaincell
! input--nxc: number of vertexes of the local quadrature domain, nxc=4;
! numgauss: number of Gauss points in the domain;
! k: number of Gauss points used, numgauss=k*k for 2-D domain;
! xc(nx,nxc): coordinates of points for background cells;
! gauss(2,k): coefficients of Gauss points;
! nx,ng: parameters are defined in file parameter.h.
! output--gs(ng,numgauss): coordinate of the Gauss points, weight and Jacobian
!---

implicit real*8 (a-h,o-z)
 dimension xc(nx,nxc),gauss(nx,k)
 dimension gs(ng,numgauss),psiJ(ng),etaJ(ng),xe(ng),ye(ng),aN(ng)
 dimension aNJpsi(ng),aNJeta(ng)
 index=0
 psiJ(1)=-1.

5. Meshfree methods based on local weak-forms 297

psiJ(2)=1.
psiJ(3)=1.
psiJ(4)=-1.

 etaJ(1)=-1.
 etaJ(2)=-1.
 etaJ(3)=1.
 etaJ(4)=1.

l=k
 do j=1,ng
 xe(j)=xc(1,j)

ye(j)=xc(2,j)
 enddo
 do 80 i=1,l
 do 80 j=1,l

index=index+1
 eta=gauss(1,i)
 psi=gauss(1,j)
 do ik=1,ng
 aN(ik)=.25*(1.+psi*psiJ(ik))*(1.+eta*etaJ(ik))
 aNJpsi(ik)=.25*psiJ(ik)*(1.+eta*etaJ(ik))
 aNJeta(ik)=.25*etaJ(ik)*(1.+psi*psiJ(ik))

enddo
 xpsi=0.

ypsi=0.
 xeta=0.

yeta=0.
 do jk=1,ng
 xpsi=xpsi+aNJpsi(jk)*xe(jk)

ypsi=ypsi+aNJpsi(jk)*ye(jk)
 xeta=xeta+aNJeta(jk)*xe(jk)
 yeta=yeta+aNJeta(jk)*ye(jk)

enddo
 ajcob=xpsi*yeta-xeta*ypsi
 xq=0.
 yq=0.
 do kk=1,ng
 xq=xq+aN(kk)*xe(kk)

yq=yq+aN(kk)*ye(kk)
enddo
gs(1,index)=xq
gs(2,index)=yq
gs(3,index)=gauss(2,i)*gauss(2,j)
gs(4,index)=ajcob

 80 continue
RETURN
END

Program 5.6. Source code of Subroutine TestFunc

 SUBROUTINE TestFunc (dsi,xcent,xg,w,wxx,wyy)
!--
! Cubic spline test (weight) function
! input—dsi: size of weight domain;
! xcent: center of the weight domain;
! xg: coordinate of point considered;
! output—w, wxx,wyy
!--

 IMPLICIT REAL*8(A-H,O-Z)
 dimension dsi(2),xcent(2)
 dimension xg(2)
 ep=1.e-15
 difx=xg(1)-xcent(1)
 dify=xg(2)-xcent(2)
 if(dabs(difx).le.ep) then
 drdx=0.

else

298 Chapter 5

 drdx=(difx/dabs(difx))/dsi(1)
end if
if (dabs(dify).le.ep) then

 drdy=0.
else

 drdy=(dify/dabs(dify))/dsi(2)
 end if
 rx=abs(xg(1)-xcent(1))
 ry=abs(xg(2)-xcent(2))
 rx=rx/dsi(1)
 ry=ry/dsi(2)

if (rx.gt.0.5) then
 wx=(4./3.)-4.*rx+4*rx*rx-(4./3.)*rx**3
 dwx=(-4.+8.*rx-4.*rx*rx)*drdx

else
 wx=(2./3.)-4.*rx*rx+4.*rx**3
 dwx=(-8.*rx+12.*rx*rx)*drdx

endif
if (ry.gt.0.5) then

 wy=(4./3.)-4.*ry+4*ry*ry-(4./3.)*ry**3
 dwy=(-4.+8.*ry-4.*ry*ry)*drdy

else
 wy=(2./3.)-4.*ry*ry+4.*ry**3
 dwy=(-8.*ry+12.*ry*ry)*drdy
 endif

if(rx.gt.1.) wx=0.
if(ry.gt.1.) wy=0.

 w=wx*wy
 wxx=wy*dwx
 wyy=wx*dwy
RETURN
END

Program 5.7. Source code of Subroutine Integration_BCQuQi

 SUBROUTINE Integration_BCQuQi(nx,ng,nod,xc,x,numnode,nquado,dmat,&
 xm,xspace,yspace,ak,mk,alfs,ds)
!---
! The subroutine is to compute the integrations on the internal
! and the essential sub-boundaries;
! input—nx,ng,nod,xc,x,numnode,nquado,dmat,xm,xspace,mk,alfs,ds
! Input & output—ak
!--

implicit real*8 (a-h,o-z)
 common/para/xlength,ylength,p,young,anu,aimo
 common/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 dimension x(2,numnode),nv(50),xc(2,4),gauss(2,20)
 dimension xcent(2),dsi(2),ak(mk,mk),ek(2,2)
 dimension gs(4,100),gpos(2),xm(4),dmat(3,3)
 dimension phi(10, numnode),ds(2,numnode)
 dimension bb(3,2),bn(2,3),bnd(2,3),ebb(2,2),ss(2,2)
 call GaussCoefficient(nquado,gauss)

ik1=2*nod-1
ik2=2*nod

 xcent(1)=x(1,nod)
 xcent(2)=x(2,nod)
 do i=1,2
 do j=1,2
 eK(i,j)=0.
 enddo
 enddo
 dsi(1)=xspace
 dsi(2)=yspace

5. Meshfree methods based on local weak-forms 299

! ****************INTEGRATION FOR LEFT B.C. Qu

 do i=1,2
 do j=1,3
 bn(i,j)=0.
 bb(j,i)=0.
 bnd(i,j)=0.
 enddo
 enddo
 ax=0.5*(xc(1,4)-xc(1,1))
 ay=0.5*(xc(2,4)-xc(2,1))
 bx=0.5*(xc(1,4)+xc(1,1))
 by=0.5*(xc(2,4)+xc(2,1))
 do il=1,nquado
 gpos(1)=ax*gauss(1,il)+bx
 gpos(2)=ay*gauss(1,il)+by
 weight=gauss(2,il)
 ajac=0.5*sqrt((xc(1,4)-xc(1,1))**2+(xc(2,4)-xc(2,1))**2)
 call TestFunc(dsi,xcent,gpos,w,wx,wy)
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)
 do ine=1,ndex
 n1=2*nv(ine)-1
 n2=2*nv(ine)
 do i=1,2
 do j=1,3
 bn(i,j)=0.
 bb(j,i)=0.
 bnd(i,j)=0.

enddo
enddo

 do i=1,2
 do j=1,2
 eK(i,j)=0.
 ss(i,j)=0.

enddo
enddo

 bb(1,1)=phi(2,ine)
 bb(2,2)=phi(3,ine)
 bb(3,1)=phi(3,ine)
 bb(3,2)=phi(2,ine)
 bn(1,3)=1.
 bn(2,2)=1.

 IF(XC(2,1).lt.xm(3)) then
 ss(1,1)=1.
 ss(2,2)=1.

endif
 call DOBMAX(bn,2,3,2,dmat,3,3,bnd,2)
 call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
 call dobmax(ebb,2,2,2,ss,2,2,ek,2)
 ak(ik1,n1)=ak(ik1,n1)-w*weight*ajac*ek(1,1)
 ak(ik1,n2)=ak(ik1,n2)-W*weight*ajac*ek(1,2)
 ak(ik2,n1)=ak(ik2,n1)-W*weight*ajac*ek(2,1)
 ak(ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek(2,2)

enddo
enddo

! ****************INTEGRATION FOR DOWN B.C. Qu
 do i=1,2
 do j=1,3
 bn(i,j)=0.
 bb(j,i)=0.
 bnd(i,j)=0.
 enddo
 enddo
 ax=0.5*(xc(1,2)-xc(1,3))
 ay=0.5*(xc(2,2)-xc(2,3))
 bx=0.5*(xc(1,2)+xc(1,3))

300 Chapter 5

 by=0.5*(xc(2,2)+xc(2,3))
 do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

 weight=gauss(2,il)
 ajac=0.5*sqrt((xc(1,2)-xc(1,3))**2+(xc(2,2)-xc(2,3))**2)
 call TestFunc(dsi,xcent,gpos,w,wx,wy)
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)
 do ine=1,ndex
 n1=2*nv(ine)-1
 n2=2*nv(ine)
 do i=1,2
 do j=1,3
 bn(i,j)=0.
 bb(j,i)=0.
 bnd(i,j)=0.

enddo
enddo

 do i=1,2
 do j=1,2
 eK(i,j)=0.
 ss(i,j)=0.
 enddo
 enddo
 bb(1,1)=phi(2,ine)
 bb(2,2)=phi(3,ine)
 bb(3,1)=phi(3,ine)
 bb(3,2)=phi(2,ine)
 bn(1,3)=-1.
 bn(2,2)=-1.
 IF(XC(2,2).gt.xm(4)) then
 ss(1,1)=1.
 ss(2,2)=1.

endif
 call DOBMAX(bn,2,3,2,dmat,3,3,bnd,2)
 call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
 call dobmax(ebb,2,2,2,ss,2,2,ek,2)
 ak(ik1,n1)=ak(ik1,n1)-w*weight*ajac*ek(1,1)
 ak(ik1,n2)=ak(ik1,n2)-W*weight*ajac*ek(1,2)
 ak(ik2,n1)=ak(ik2,n1)-W*weight*ajac*ek(2,1)
 ak(ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek(2,2)
 enddo
 enddo

! ****************INTEGRATION FOR RIGHT B.C. Qu
 do i=1,2
 do j=1,3
 bn(i,j)=0.
 bb(j,i)=0.
 bnd(i,j)=0.

enddo
enddo

 ax=0.5*(xc(1,4)-xc(1,3))
 ay=0.5*(xc(2,4)-xc(2,3))
 bx=0.5*(xc(1,4)+xc(1,3))
 by=0.5*(xc(2,4)+xc(2,3))
 do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

 weight=gauss(2,il)
 ajac=0.5*sqrt((xc(1,4)-xc(1,3))**2+(xc(2,4)-xc(2,3))**2)
 call TestFunc(dsi,xcent,gpos,w,wx,wy)
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)

5. Meshfree methods based on local weak-forms 301

 do ine=1,ndex
 n1=2*nv(ine)-1
 n2=2*nv(ine)
 do i=1,2
 do j=1,3
 bn(i,j)=0.
 bb(j,i)=0.
 bnd(i,j)=0.
 enddo
 enddo
 do i=1,2
 do j=1,2
 eK(i,j)=0.
 ss(i,j)=0

enddo
enddo

 bb(1,1)=phi(2,ine)
 bb(2,2)=phi(3,ine)
 bb(3,1)=phi(3,ine)
 bb(3,2)=phi(2,ine)
 bn(1,1)=1.
 bn(2,3)=1.
 IF(XC(1,4).lt.xm(2)) then
 ss(1,1)=1.
 ss(2,2)=1.
 endif
 call DOBMAX(bn,2,3,2,dmat,3,3,bnd,2)
 call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
 call dobmax(ebb,2,2,2,ss,2,2,ek,2)
 ak(ik1,n1)=ak(ik1,n1)-w*weight*ajac*ek(1,1)
 ak(ik1,n2)=ak(ik1,n2)-W*weight*ajac*ek(1,2)
 ak(ik2,n1)=ak(ik2,n1)-W*weight*ajac*ek(2,1)
 ak(ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek(2,2)

enddo
enddo

! ****************INTEGRATION FOR LEFT B.C. Qu
 do i=1,2
 do j=1,3
 bn(i,j)=0.
 bb(j,i)=0.
 bnd(i,j)=0.

enddo
 enddo
 ax=0.5*(xc(1,2)-xc(1,1))
 ay=0.5*(xc(2,2)-xc(2,1))
 bx=0.5*(xc(1,2)+xc(1,1))
 by=0.5*(xc(2,2)+xc(2,1))
 do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

 weight=gauss(2,il)
 ajac=0.5*sqrt((xc(1,2)-xc(1,1))**2+(xc(2,2)-xc(2,1))**2)
 call TestFunc(dsi,xcent,gpos,w,wx,wy)
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&

q,nRBF, mbasis)
 do ine=1,ndex
 n1=2*nv(ine)-1
 n2=2*nv(ine)
 do i=1,2
 do j=1,3
 bn(i,j)=0.
 bb(j,i)=0.
 bnd(i,j)=0.
 enddo
 enddo
 do i=1,2
 do j=1,2

302 Chapter 5

 eK(i,j)=0.
 ss(i,j)=0.

enddo
enddo

 bb(1,1)=phi(2,ine)
 bb(2,2)=phi(3,ine)
 bb(3,1)=phi(3,ine)
 bb(3,2)=phi(2,ine)
 bn(1,1)=-1.
 bn(2,3)=-1.
 ss(1,1)=1.
 ss(2,2)=1.
 call DOBMAX(bn,2,3,2,dmat,3,3,bnd,2)
 call dobmax(bnd,2,3,2,bb,2,3,ebb,2)
 call dobmax(ebb,2,2,2,ss,2,2,ek,2)
 ak(ik1,n1)=ak(ik1,n1)-w*weight*ajac*ek(1,1)
 ak(ik1,n2)=ak(ik1,n2)-W*weight*ajac*ek(1,2)
 ak(ik2,n1)=ak(ik2,n1)-W*weight*ajac*ek(2,1)
 ak(ik2,n2)=ak(ik2,n2)-W*weight*ajac*ek(2,2)

enddo
enddo

 RETURN
 END

Program 5.8. Source code of Subroutine Integration_BCQt

 SUBROUTINE Integration_BCQt(nx,ng,xc,f,x,numnode,nquado, &
 xm,xspace,yspace,xcent)
!---
! The subroutine is to compute the integrations on the natural sub-boundary;
! input— nx,ng,xc, x,numnode,nquado,xm,xspace,yspace,xcent
! Input & output— f;
!--

implicit real*8 (a-h,o-z)
 common/para/xlength,ylength,p,young,anu,aimo
 common/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 dimension x(2,numnode),nv(50),f(2),xc(2,4),gauss(2,20)
 dimension xcent(2),dsi(2),fbcl(2,4)
 dimension gs(4,100),gpos(2),xm(4)
 dimension phi(10, numnode)
 call GaussCoefficient(nquado,gauss)
 do j=1,2
 f(j)=0.
 enddo
 dsi(1)=xspace
 dsi(2)=yspace
! **************** Set global force BC for a rectangular domain
 do j=1,4
 fbcl(1,j)=0.
 fbcl(2,j)=0.

enddo
 fbcl(2,2)=1.0 ! force in y direction at right end is not zero

! **************** INTEGRATION FOR UP B.C.
 IF(XC(2,1).GE.xm(3)) then
 txx=fbcl(1,3)
 tyy=fbcl(2,3)
 ax=0.5*(xc(1,4)-xc(1,1))
 ay=0.5*(xc(2,4)-xc(2,1))
 bx=0.5*(xc(1,4)+xc(1,1))
 by=0.5*(xc(2,4)+xc(2,1))
 do il=1,nquado

gpos(1)=ax*gauss(1,il)+bx
gpos(2)=ay*gauss(1,il)+by

 weight=gauss(2,il)

5. Meshfree methods based on local weak-forms 303

 ajac=0.5*sqrt((xc(1,4)-xc(1,1))**2+(xc(2,4)-xc(2,1))**2)
 call TestFunc(dsi,xcent,gpos,w,wx,wy)
 f(1)=f(1)+w*weight*ajac*txx
 f(2)=f(2)-w*weight*ajac*tyy

enddo
endif

! **************** INTEGRATION FOR DOWN B.C.
 IF(XC(2,2).lE.xm(4)) then
 txx=fbcl(1,4)
 tyy=fbcl(2,4)
 ax=0.5*(xc(1,2)-xc(1,3))
 ay=0.5*(xc(2,2)-xc(2,3))
 bx=0.5*(xc(1,2)+xc(1,3))
 by=0.5*(xc(2,2)+xc(2,3))
 do il=1,nquado
 gpos(1)=ax*gauss(1,il)+bx
 gpos(2)=ay*gauss(1,il)+by
 weight=gauss(2,il)
 ajac=0.5*sqrt((xc(1,2)-xc(1,3))**2+(xc(2,2)-xc(2,3))**2)
 call TestFunc(dsi,xcent,gpos,w,wx,wy)
 f(1)=f(1)+w*weight*ajac*txx
 f(2)=f(2)-w*weight*ajac*tyy

enddo
 endif

! **************** INTEGRATION FOR RIGHT B.C.
 IF(XC(1,4).GE.xm(2)) then
 txx=fbcl(1,2)
 tyy=fbcl(2,2)
 ax=0.5*(xc(1,4)-xc(1,3))
 ay=0.5*(xc(2,4)-xc(2,3))
 bx=0.5*(xc(1,4)+xc(1,3))
 by=0.5*(xc(2,4)+xc(2,3))
 do il=1,nquado
 gpos(1)=ax*gauss(1,il)+bx
 gpos(2)=ay*gauss(1,il)+by
 weight=gauss(2,il)
 ajac=0.5*sqrt((xc(1,4)-xc(1,3))**2+(xc(2,4)-xc(2,3))**2)
 call TestFunc(dsi,xcent,gpos,w,wx,wy)
 aimo=(1./12.)*ylength**3
 ty=-(-1000./(2.*aimo))*(ylength*ylength/4.-gpos(2)*gpos(2))
 f(1)=f(1)+w*weight*ajac*0.*txx
 f(2)=f(2)-w*weight*ajac*ty*tyy ! Exact force B.C.
 enddo
 endif
RETURN
END

Program 5.9. Source code of Subroutine EssentialBC

 SUBROUTINE EssentialBC(x,numnode,ak,fk,mk,ds,alfs,npEBCnum,npEBC,pEBC)
!--
! This subroutine to cenforce point essential bc's using the direct method;
! input--numnode: total number of field nodes;
! npEBCnum: number of e. b.c points
! alfs: coefficent of support support
! x(nx,numnode): coordinates of all field nodes;
! input and output-- ak[]: stifness matrix;
! fk{}:force vector.
!---
 IMPLICIT REAL*8(A-H,O-Z)
 common/para/xlength,ylength,p,young,anu,aimo
 common/rpim/ALFC,DC,Q,nRBF
 common /basis/mbasis
 dimension x(2,numnode),ds(2,numnode)

304 Chapter 5

 dimension npEBC(3,100),pEBC(2,100)
 dimension ak(mk,mk),fk(2*numnode)
 dimension f(2*numnode),phi(10,numnode),nv(numnode),gpos(2)
 nx=2
 eps=2.2204e-16
 do 135 ib=1,npEBCnum

in=npEBC(1,ib)
 ll=in*2-1
 lr=in*2

if(npEBC(2,ib).eq.1) f(ll)=pEBC(1,ib)
if(npEBC(3,ib).eq.1) f(lr)=pEBC(2,ib)

135 continue

 do 231 ib=1,npEBCnum
in=npEBC(1,ib)
gpos(1)=x(1,in)
gpos(2)=x(2,in)
ll=in*2-1

 lr=in*2
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 Call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&
 q,nRBF,mbasis)

if(npEBC(2,ib).eq.1) then
 do ii=1,2*numnode
 ak(ll,ii)=0.

enddo
 do ii=1,ndex
 mm=nv(ii)
 ak(ll,mm*2-1)=phi(1,ii)
 ak(ll,mm*2)=0.
 enddo
 endif

if(npEBC(3,ib).eq.1) then
 do ii=1,2*numnode
 ak(lr,ii)=0.

enddo
 do ii=1,ndex
 mm=nv(ii)
 ak(lr,mm*2)=phi(1,ii)
 ak(lr,mm*2-1)=0.

enddo
endif

231 continue

 do 165 ib=1,npEBCnum
in=npEBC(1,ib)
ll=in*2-1
lr=in*2

 if(npEBC(2,ib).eq.1) fk(ll)=f(ll)
 if(npEBC(3,ib).eq.1) fk(lr)=f(lr)
 165 continue
RETURN
END

Program 5.10. Source code of Subroutine GetDisplacement

 SUBROUTINE GetDisplacement(x,ds,u2,disp,alfs,nx,numnode)
!---
! The subroutine is to compute the final nodal displacements
! input— x,ds,u2, alfs,nx,numnode
! Output— disp;
!--

implicit real*8 (a-h,o-z)

5. Meshfree methods based on local weak-forms 305

 common/rpim/ALFC,DC,Q,nRBF
 common /basis/mbasis
 dimension x(nx,numnode),ds(nx,numnode),gpos(nx),u2(nx,numnode)
 dimension nv(numnode),phi(10,numnode),aa(nx,numnode),disp(2*numnode)
 do i=1,2*numnoden
 disp(i)=0.
 enddo

ind=0
 do 50 id=1,numnode

ind=ind+1
gpos(1)= x(1,id)
gpos(2)=x(2,id)

 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,ndex
 do ii=1,10
 phi(ii,kph)=0.

enddo
enddo

 call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&
q,nRBF, mbasis)

 nc1=2*ind-1
 nc2=2*ind
 do kk=1,ndex
 m=nv(kk)
 disp(nc1)=disp(nc1)+phi(1,kk)*u2(1,m)
 disp(nc2)=disp(nc2)+phi(1,kk)*u2(2,m)
 enddo
50 continue
RETURN
END

Program 5.11. Source code of Subroutine GetNodeStress

 SUBROUTINE GetNodeStress(x,ds,Dmat,u2,stress,alfs,nx,numnode)
!---
! The subroutine is to compute the nodal stress components.
! input— x,ds,Dmat,u2,alfs,nx,numnode;
! Output— stress;
!--

implicit real*8 (a-h,o-z)
 common/para/xlength,ylength,p,young,anu,aimo
 common/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 dimension ds(nx,numnode),gpos(nx),x(nx,numnode)
 dimension nv(numnode),phi(10,numnode),aa(nx,numnode),ne(2*numnode)
 dimension stress(3,numnode),Bmat(3,2*numnode)
 dimension Dmat(3,3),u2(nx,numnode),u(2*numnode)

 do iu=1,numnode
 u(2*iu-1)=u2(1,iu)
 u(2*iu)=u2(2,iu)

enddo
 do i=1,3
 do j=1,numnode
 stress(i,j)=0.

enddo
enddo

 ind=0
 do 200 is=1,numnode
 ind=ind+1

gpos(1)=x(1,is)
gpos(2)=x(2,is)

 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,ndex

306 Chapter 5

 do ii=1,10
phi(ii,kph)=0.

enddo
enddo

 Call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,alfc,dc,&
q,nRBF, mbasis)

 nb=2*ndex
 do in=1,nb
 ne(in)=0
 enddo
 do ine=1,ndex
 n1=2*ine-1
 n2=2*ine
 ne(n1)=2*nv(ine)-1
 ne(n2)=2*nv(ine)

enddo
 do ib=1,3
 do jb=1,nb
 Bmat(ib,jb)=0.

enddo
enddo

 do inn=1,ndex
j=2*inn-1

 k=2*inn
 m1=ndex+inn
 m2=2*ndex+inn
 Bmat(1,j)=phi(2,inn)
 Bmat(1,k)=0.
 Bmat(2,j)=0.
 Bmat(2,k)=phi(3,inn)
 Bmat(3,j)=phi(3,inn)
 Bmat(3,k)=phi(2,inn)

enddo
 do ii=1,3
 do kk=1,3
 do mm=1,nb
 mn=ne(mm)
 stress(ii,ind)=stress(ii,ind)+Dmat(ii,kk)*Bmat(kk,mm)*u(mn)

enddo
enddo

enddo
200 continue
 RETURN
END

Program 5.12. Source code of Subroutine Output

 SUBROUTINE Output(x,numnode,u2,u22,str)
!---
! The subroutine is to output resultscompute the final nodal displacements
! Output— all;
!--

 IMPLICIT REAL*8(A-H,O-Z)
 common/para/xlength,ylength,p,young,anu,aimo
 dimension x(2,numnode),u2(2,numnode),str(3,numnode),u22(2,numnode)
 write(2,*)'**************<DISPLACEMENT OF NODES>**************'
 do i=1,numnode

nn=2*i-1
kk=2*i

 write(2,10)i,x(1,i),x(2,i),u22(1,i),u22(2,i)
 enddo
 write(2,*)'**************<STRESSES OF NODES>**************8'
 do i=1,numnode

nn=2*i-1
 kk=2*i

5. Meshfree methods based on local weak-forms 307

 write(2,20)i,x(1,i),x(2,i),str(1,i),str(2,i),str(3,i)
enddo

10 format(1x,i3,1x,2f10.5,3E15.5)
20 format(1x,i3,1x,2f10.5,1x,3E15.5)
 RETURN
 END

Program 5.13. Source code of Subroutine TotalGaussPoints

 SUBROUTINE TotalGaussPoints(xc,conn,gauss,gs,nx,ng,numq,&
 numcell,k,numgauss)
!---
! The subroutine is to set up Gauss points,Jacobian and weights
! for the global background cells;
! input— xc,conn,gauss,nx,ng,numq,numcell,k,numgauss
! Output— gs;
!--

implicit real*8 (a-h,o-z)
 dimension xc(nx,numq),conn(ng,numcell),gauss(nx,k)
 dimension gs(ng,numgauss),psiJ(4),etaJ(4),xe(4),ye(4),aN(4)
 dimension aNJpsi(4),aNJeta(4)

index=0
psiJ(1)=-1.
psiJ(2)=1.
psiJ(3)=1.
psiJ(4)=-1.

 etaJ(1)=-1.
 etaJ(2)=-1.
 etaJ(3)=1.
 etaJ(4)=1.

l=k
 do 10 ie=1,numcell
! determine nodes in each cell
 do j=1,4

je=conn(j,ie)
 xe(j)=xc(1,je)

ye(j)=xc(2,je)
enddo

 do 30 i=1,l
 do 30 j=1,l

index=index+1
 eta=gauss(1,i)

psi=gauss(1,j)
! write(2,*)'psi,eta',psi,eta
 do ik=1,ng
 aN(ik)=.25*(1.+psi*psiJ(ik))*(1.+eta*etaJ(ik))
 aNJpsi(ik)=.25*psiJ(ik)*(1.+eta*etaJ(ik))
 aNJeta(ik)=.25*etaJ(ik)*(1.+psi*psiJ(ik))

enddo
 xpsi=0.

ypsi=0.
 xeta=0.

yeta=0.
 do jk=1,ng
 xpsi=xpsi+aNJpsi(jk)*xe(jk)

ypsi=ypsi+aNJpsi(jk)*ye(jk)
 xeta=xeta+aNJeta(jk)*xe(jk)

yeta=yeta+aNJeta(jk)*ye(jk)
 enddo
 ajcob=xpsi*yeta-xeta*ypsi
 xq=0.

yq=0.
 do kk=1,ng
 xq=xq+aN(kk)*xe(kk)

yq=yq+aN(kk)*ye(kk)
enddo
gs(1,index)=xq

308 Chapter 5

gs(2,index)=yq
gs(3,index)=gauss(2,i)*gauss(2,j)
gs(4,index)=ajcob

 30 continue
 10 continue
 RETURN
END

Program 5.14. Source code of Subroutine GetEnergyError

 SUBROUTINE GetEnergyError(nx,ng,x,numnode,u2,dmat,ds,numgauss,gs,alfs)
!---
! The subroutine is to compute the global energy;
! input- all;
!--

 IMPLICIT REAL*8(A-H,O-Z)
 common/para/xlength,ylength,p,young,anu,aimo
 common/rpim/ALFC,DC,Q,nRBF
 common/basis/mbasis
 dimension x(2,numnode),u2(2,numnode),dmat(3,3),str(3,numgauss)
 dimension ph(10,numnode),gs(4,numgauss)
 dimension bx(3,2*numnode),dipl(2*numnode),db(3,2*numnode)
 dimension dbu(3),gpos(2),nv(numnode)
 dimension err(3),Dinv(3,3),der(3),stressex(3,numgauss)
 dimension ds(2,numnode),ddd(3)

 enorm=0.
errext=0.

 do id=1,3
 do jd=1,3
 Dinv(id,jd)=Dmat(id,jd)

enddo
enddo
invd=3

 call getinvasy(INVD,INVD,Dinv,EP)
 do 10 nod=1,numgauss
 xn=gs(1,nod)

yn=gs(2,nod)
 weight=gs(3,nod)
 ajac=gs(4,nod)

gpos(1)=xn
gpos(2)=yn

 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do i=1,ndex
 nn=nv(i)
 n1=2*i-1
 n2=i*2
 dipl(n1)=u2(1,nn)
 dipl(n2)=u2(2,nn)

enddo
 do ii=1,10
 do jj=1,ndex

ph(ii,jj)=0.
enddo

enddo
 call RPIM_ShapeFunc_2D(gpos,x,nv,ph,nx,numnode,ndex,alfc,&
 dc,q,nRBF, mbasis) ! RPIM Shape function
! call MLS_ShapeFunc_2D(gpos,x,nv,ds,ph,nx,numnode,ndex,mbasis) ! MLPG
 do i=1,2*ndex
 bx(1,i)=0.
 bx(2,i)=0.
 bx(3,i)=0.
 enddo
 do i=1,ndex
 n1=i*2-1

5. Meshfree methods based on local weak-forms 309

 n2=2*i
 bx(1,n1)=ph(2,i)
 bx(2,n2)=ph(3,i)
 bx(3,n1)=ph(3,i)
 bx(3,n2)=ph(2,i)

enddo
 m=2*ndex
 nn=2*numnode
 call DOBMAX(dmat,3,3,3,bx,m,3,db,3)
 call DOBMAX(db,3,m,3,dipl,1,nn,dbu,3)
 str(1,nod)=dbu(1)
 str(2,nod)=dbu(2)
 str(3,nod)=dbu(3)
!******* Exact stress for beam problem
 stressex(1,nod)=(1./aimo)*p*(xlength-gpos(1))*gpos(2)
 stressex(2,nod)=0.
 stressex(3,nod)=-0.5*(p/aimo)*(0.25*ylength*ylength-gpos(2)*gpos(2))

 do ier=1,3
 err(ier)=str(ier,nod)-stressex(ier,nod)

enddo
 do jer=1,3
 der(jer)=0.
 ddd(jer)=0.
 do ker=1,3
 der(jer)=der(jer)+Dinv(jer,ker)*err(ker)
 ddd(jer)=ddd(jer)+Dinv(jer,ker)*stressex(ker,nod)

enddo
enddo
err2=0.

 eex=0.
 do mer=1,3
 err2=err2+weight*ajac*(0.5*der(mer)*err(mer))
 eex=eex+weight*ajac*(0.5*ddd(mer)*stressex(mer,nod))
 enddo
 enorm=enorm+err2
 errext=errext+eex
 10 continue
 enorm=dsqrt(enorm)
 errext=sqrt(errext)
 write(2,*)'**************<Global energy error>**************'
 write(2,180)enorm
180 format(1x,'The global energu error:',e20.8)
 RETURN
 END

Program 5.15. Source code of Subroutine Dobmax

 SUBROUTINE DOBMAX(A,N,M1,M3,B,M2,M4,C,M5)
! This subroutine is used to calculate A[N][M1]*B[M1][M2]=C[N][M2].
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION A(M3,M1),B(M4,M2),C(M5,M2)
 DO I=1,N
 DO J=1,M2
 C(I,J)=0.0
 ENDDO
 ENDDO
 DO I=1,N
 DO J=1,M2
 DO K=1,M1
 C(I,J)=C(I,J)+A(I,K)*B(K,J)
 ENDDO
 ENDDO
 ENDDO
RETURN
END

Chapter 6

MESHFREE COLLOCATION METHODS

6 Meshfree collocation methods

6.1 INTRODUCTION

MFree collocation methods (or MFree strong-form methods) have a long
history. To approximate strong-form of PDEs using MFree methods, the PDE
is usually discretized at nodes by some forms of collocation. There are
various MFree strong-form methods, e.g., the vortex method (Chorin, 1973;
Bernard, 1995), the finite difference method(FDM) with irregular grids or the
so-called general FDM (GFDM) (Girault,1974; Pavlin and Perrone,1975;
Snell et al,1981; Liszka and Orkisz,1977; 1980; Krok and Orkisz), the finite
point method (FPM) (Oñate et al., 1996,1998, 2001), the hp-meshless cloud
method (Liszka et al., 1996), the meshfree collocation method (Kansa, 1990;
Wu, 1992; Xu et al, 1999; Zhang et al.,2000; Liu X et al.,2002, 2003a-d), etc.

MFree strong-form methods have following advantages:

The procedure for discretizing the governing equations is
straightforward, and the algorithms for implementing the discretized
equation are simple. The discretized equations can be obtained
directly from the strong-forms of PDEs governing the problem.
They are, in general, computationally efficient. The PDEs are
discretized directly without using weak-forms, and hence no
numerical integration is required.
They are truly meshless: no mesh is used for both field variable
approximations and numerical integrations.

310

6. Meshfree collocation methods

Owing to these advantages, MFree strong-form methods have been studied
and used in computational mechanics with some success, especially in fluid
mechanics. There are, however, the following two major issues that have
prevented the use of collocation methods with irregular grids or nodes.

One such an issue is the singularity of the moment matrix arising in the
process of function approximation. The use of weighted least square method
(Krok and Orkisz, 1989) has provided an effective way to solve this problem.
The matrix triangularization algorithm (MTA) proposed by GR Liu and Gu
(2001d, 2003a) is a novel procedure to overcome the singularity problem in
the point interpolation method (PIM) that uses polynomial basis. The PIM
shape functions so created possess the delta function property (see, e.g.,
Section 3.2). Kansa (1990) has also solved this kind of singularity problem
using radial basis functions (RBFs). The Kansa method is a global
collocation method that uses all the grids in the problem domain, which
leads to a fully populated system matrix. Since the RBFs are used, the
moment matrix is, in general, not singular. A more stable symmetric
formulation has also been proposed by Wu (1992). In addition, RBF is also
used for creating RPIM shape functions using local nodes for MFreel
methods based on the global weak-form (GR Liu and Gu, 2001c; Wang et al.,
2000; 2002a, Section 4.2), local weak-form (GR Liu and Gu, 2000b, 2001b,
c,e, 2002a; GR Liu and Yan et al., 2000, 2002; Xiao and McCharthy,
2003a,b,c; Section 5.2) and strong-form (Liu X et al., 2002, 2003a~e,
Section 6.3).

Another key issue that has been preventing the idea of collocation
methods with irregular grids or nodes from practical applications is the
presence of derivative boundary conditions (DBCs). It is well-known that
the boundary conditions (BCs) are crucial in a collocation method. We
emphases specifically that it is the DBCs (not Dirichlet BCs) that are the true
culprit responsible for the poor accuracy and instability problems in the
MFree strong-form methods using arbitrary nodes. Therefore, we will
discuss this issue at great length with many examples of 1D and 2D
problems in the next section.

6.2 TECHNIQUES FOR HANDLING DERIVATIVE
BOUNDARY CONDITIONS

In using an MFree strong-form method to solve a problem governed by a
set of partial differential equations (PDEs), the problem is represented by a
set of nodes that are arbitrarily distributed in the problem domain and the

311

312 Chapter 6

boundaries. Strong-form methods can produce accurate results for PDEs,
when the boundary conditions are all of Dirichlet type†. If there is any
derivative boundary condition, the accuracy of the solution deteriorates
drastically, and the solution can be unstable: small changes in the setup of
the problem can lead to a large change in the solution. The discretized
system equation behaves, like an ill-posed problem in which errors
introduced into the system are magnified in the output.

For convenience, we denote the boundary with derivative boundary
conditions (BDCs) as the derivative boundary, and a node on the derivation
boundary as a “DB-node“ ”.

A number of strategies can be used to impose the DBCs in the strong-
form methods. Six of them are listed below.

1) The direct collocation (DC) method: The DBCs are discretized by
simple collocation to obtain a set of separate equations that are
different from the governing system equations. In other words, there
is no special treatment for DBCs.

2) The method using fictitious points (FP): along the derivative
boundaries, a set of fictitious points is added outside the problem
domain along the derivative boundary. In this case, two sets of
equations are established at each DB-node: one for the DBC, and the
other for the governing equation.

3) The Hermite-type collocation (HC) method: this uses additional
derivative variables for the DB-nodes to enforce the DBCs. This
treatment has been used by many researchers, such as Zhang et al.
(2000), etc.

4) The method using regular grids (RG): in this method, one or several
layers of regularly distributed nodes are used in the problem domain
along the derivative boundary. The standard differential scheme used
in FDM is adopted for these regular nodes. The DBCs can then be
implemented using the same procedure as that in the standard FDM.

5) The use of dense nodes (DN) in the derivative boundaries (see, e.g.,
Liszka et al., 1996).

6) The MFree weak-strong (MWS) form method: being a combination
of the local weak-form and the strong-form, the DBCs can be
naturally satisfied through the local weak-form. The MWS method is
proposed by GR Liu and Gu (2002d, 2003b). It can efficiently and

† We assume of course that the problem is well-posed, the moment matrix is not
singular or badly conditioned, and a reasonable collocation scheme is used.

6. Meshfree collocation methods 313

completely solve the problem of the enforcement of DBCs in the
strong-form methods, and it will be detailed in Chapter 7.

There are also other means to stabilize the solution of meshfree
collocation methods, such as adding in higher order differential terms in
strong form equations for stabilization (Oñate et al., 1998, 2001). In the
following sections, MFree strong-form methods with the first five types of
treatments for DBCs will be used to examine in detail for one-dimensional
(1D) and two-dimensional (2D) problems.

Note that the source code used in this chapter is not provided because 1)
it is very simple and straightforward; 2) Chapter 7 contains the same routines
for strong-form methods.

6.3 POLYNOMIAL POINT COLLOCATION METHOD
FOR 1D PROBLEMS

In this section, we use simple 1D problems to illustrate the collocation
procedure for establishing the discretized system equations together with
five different ways to deal with the DBCs.

For 1D problems, the polynomial PIM shape functions work best; we
will use these, and call the procedure as polynomial point collocation
method (PPCM). Other types of shape functions discussed in Chapter 3 are
of course applicable to 1D problems, and some of them will be used later for
2D problems.

6.3.1 Collocation equations for 1D system equations

6.3.1.1 Problem description

Consider problems governed by the following general second-order
ordinary differential equation (ODE) in 1D domain, .

2

2 1 02() () () () 0A
d u du2

()()A x A x A x u q2 1 02 () () () () () ()1 011 (A()()
dxdx

)() () (() () (() ()1 01 01 (6.1)

where u is the unknown scalar field function, the coefficients A0, A1 and A2
are given and may depend upon x, and qAqq is a given source term that can be
also a function of x. There are two-types of boundary conditions:

DBC:

314 Chapter 6

1 0
)() () () () 0)

B
du x((B x B x u x q1 0() () () () () ()0

() (B
(

dx
)(((6.2)

where x is a point on the derivative boundary DBDD , B0 and B1 are
given functions of x, and qB is a given source term on DBDD .

Dirichlet boundary condition:

() 0u()) (6.3)

where x is a point on the Dirichlet boundary denoted by u , and u is
the specified value for the field function.

6.3.1.2 Function approximation using MFree shape functions

Assume that there are NdNN internal (domain) nodes andd NbNN =NDBNN + NuNN
boundary nodes, where NDBNN is the number of DB-nodes and NuNN is the number
of nodes on the Dirichlet boundary. The collocation points could be
different (in term of both locations and numbers) from the field nodes, but
we always take them to be the same in this book.

For convenience, consider a 1D domain shown in Figure 6.1, and x1 is on
the Dirichlet boundary and xLx is on the derivative boundary. Therefore,
NDBNN =1 and NuNN =1. The problem domain is represented by N field nodesN
numbered sequentially with N Lx xL . Hence, there are 2N internal nodes.

Figure 6.1. Nodal distribution used in a 1D problem domain.

Using the MFree shape functions introduced in Chapter 3, we have the
following formulae for approximating the unknown function and their
derivatives at the collocation node at xIx .

T()h h
I I s()u u (I ())u ((u (6.4)

Th
I

s
u

xx xx x
u (6.5)

6. Meshfree collocation methods 315

2 2 T

2 2

h
I

s
u

x2x xx x
u (6.6)

where is the vector of shape functions, and su is the vector that collects
nodal values of the unknown function, i.e.,

T
1 2 n11 22 (6.7)

T
1 2s nu u u1 2u (6.8)

in which n is the number of nodes used in the local support domain of xIx
where the shape functions are created.

6.3.1.3 System equation discretization

For an internal node at xIx , Equation (6.4) gives the discretized governing
Equation (6.1) can be obtained by simple collocations at xIx :

()
I

I

s A I

fI

q ((s A I

2 T Td d2 T

A22 () () ()) () (1 0111 0()() ()() d ()A () () ()() (()1 011 (1 01 012 1 02 I1 01 dxdx2 I1 0)I0 (0112

K

ddT

() d()()
(6.9)

or in the matrix form

I s If IK uI (6.10)

where KIK is the nodal matrix for the collocation node atI xIx , which can be
written in detail as

2 T T

2 1 02() () ()I I I I2 1 01 (1 011
d d2 T

A () () (() (02 (1 0111 0()()
dxdx

A2 () ()) (()()111122 11111
ddT

()()K

2
1

2 1 02

2

2 1 02

() () ()1

() () ()

I1 01 (1 011

I1 01 (1 011

d d2

A2 () () ((1
1 01 (1 011 0dxdx

d d2

A22 () () () () (1 01()() (1 011 0dxdx

11d11111

d()()()()()()

A2 () ()) (()()1 1
111111111

1

()(()111()(111()(

(6.11)

The dimension of KIK is (1I n).

In Equation (6.9), fIff is given by I

()I A IfI q (A I((6.12)

Note that Equation (6.10) is established for all the internal nodes, and for
the DB-nodes if so required.

316 Chapter 6

6.3.1.4 Discretization of Dirichlet boundary condition

For a node at x1 that is on the Dirichlet boundary, the Dirichlet boundary
condition Equation (6.3) can be re-written as

1 1

T
1s

f1

u
K

u (6.13)

where K1 is the nodal matrix for the collocation node at x1 given by
T

1 1 2 n11 22K (6.14)

where i is created using n nodes in the support domain of node 1. In
Equation (6.13), f1ff is given by

1 1f1 u (6.15)

Note that if shape functions with the delta function property, such as PIM
and RPIM shape functions are used, we should have

TT
1K (6.16)

Without losing generalization, we use Equation (6.14).

6.3.1.5 Discretized system equation with only Dirichlet boundary
conditions

When the problem has only Dirichlet boundaries at both ends of the 1D
problem domain, we should also have the Dirichlet boundary condition
equation for node N:NN

T

N N

s N
fN

u
K

u (6.17)

where the nodal matrix for the collocation nodes at xNx isN

T
1 2N n11 22K (6.18)

where i is created using n nodes in the support domain of node N. In NN
Equation (6.17), fNff is given by N

N NfN u (6.19)

Assembling Equations (6.9), (6.13) and (6.17) for the corresponding
nodes, we can obtain the system equations as

() (1) (1)) (1) () (1) (1) (K U F() (1) ((1)) (1) () ((1)1) ((6.20)

where the global system matrix K has the form of K

6. Meshfree collocation methods 317

()

11 12 1(1) 1N1) 1K K K K11 12 1(1) 11) 111 12 1(1) 1N1) 1

K K K K
11 12 1(N1) 1

21 22 2(1) 2N1) 2K K K K21 22 2(1)1)K K K K

K K K K(1)1 (1)2 (1)(1) (1)1)2 (1)2 (1) (1) (NK K K K(1)1 (1)2 (1)(1)(1)2 (1)(1)1)2 (1)2 (1)1)1 (1)2 (1)(1) (1)1 (1)2 (1)(1) (1)2 (1)2 (1) (1) (K K K K
K K K K

() () ()() ()

()N N N N N1 2 (12 () NNNKN N N N1 2 (12 (2) NNNK K K K1 2 (12)N N N N1 2 (12 (2)

K

(6.21)

and the global vector F consist of

DC
(1)

1u1

()
1

)2q (A ()q (2)2Aq x(A

()q (1)1A Nq (A ()q (

NNu

F((6.22)

In Equation (6.20), U is the vector that collects all nodal values, i.e.

(1)

1u11

2uu2u

u 1Nuu

NNu

U (6.23)

6.3.1.6 Discretized system equations with DBCs

In the following, we discuss how to construct collocation system
equations for problems with both a Dirichlet BC at x1 and a derivative
boundary condition at the DB-node at xNx . The treatment for the governing
equations and the Dirichlet boundary condition is the same as for those
discussed in Sub-section 6.3.1.3 and 6.3.1.4. As discussed in Section 6.2,
some special treatments are needed to impose the DBC. Treatments (1)~(4)
listed in Section 6.2 are discussed here. Note that because the formulations
of the treatment (5) listed in Section 6.2 are exactly the same as those the
treatment (1) that is the direct collocation (DC) method, they are not
presented here.

1) The direct collocation (DC) method

Substituting Equation (6.4) into the DBCs, Equations (6.2), we have

Related to Dirichlet BC
from Equation (6.14)

Related to Dirichlet
BC from Equation
(6.18)

Related to the system
PDE from Equation
(6.11)

Related to Dirichlet BC
from Equation (6.15)

Related to Dirichlet BC
from Equation (6.19)

Related to the system PDE
from Equation (6.12)

318 Chapter 6

T
T

1(() ()) ()T
1

N
N

N N s0 B N

fN

d
1 q) ()) () ()) (T

N s0 ())))0 Bdx
())(())T

0 ())))0

K

dd
(6.24)

where KNK is the nodal matrix for the collocation node at N xNx , which can beNN
written as

T
T() ()N N N1 0 (0

dB () ((01 (0dx
B1()1

ddK

1 dd 11
n)((0()(1 11 (1 1 01B1 ()(0000000 1111 ()(1 () ()1 d() ()()1() dB () 1B1() 11B ()1 N0N N0 1 11 1N ndx dx1)N0 1 1 00 1 1 (0 1 1 00 1 10 1 1 n1 (0 1 1 00 1 10 1 11 1)

(6.25)

and fNff is given byN

()N B NfN q (B ((6.26)

Assembling Equations (6.9), (6.13) and (6.24) for the corresponding
nodes, we can obtain the discretized system equations as

DC DC DC
() (1) (1)) (1) () (1) (1) (K U FDC DCDC
() (1) ((1)) (1) () ((1)1) ((6.27)

where the global system matrix KDCKK has the form of

DC
()

11 12 1(1) 1N1) 1K K K K11 12 1(1) 11) 111 12 1(1) 1N1) 1

K K K K
11 12 1(N1) 1

21 22 2(1) 2N1) 2K K K K21 22 2(1)1)K K K K

K K K K(1)1 (1)2 (1)(1) (1)1)2 (1)2 (1) (1) (NK K K K(1)1 (1)2 (1)(1)(1)2 (1)(1)1)2 (1)2 (1)1)1 (1)2 (1)(1) (1)1 (1)2 (1)(1) (1)2 (1)2 (1) (1) (K K K K
K K K K

() () ()() ()

()N N N N N1 2 (12 () NNNKN N N N1 2 (12 (2) NNNK K K K1 2 (12)N N N N1 2 (12 (2)

K

(6.28)

and the global source vector FDC consists of

DC
(1)

u
())2q (A ()q (2)2Aq x(A

()q (1)1A Nq (A ()q (
())B NqB (()q (B (

F((6.29)

In Equation (6.27), UDC is the vector that collects all nodal values, i.e.

Related to Dirichlet BC
from Equation (6.14)

Related to DBC from
Equation (6.25)

Related to the governing
PDE from Equation
(6.11)

Related to Dirichlet BC
from Equation (6.15)

Related to DBC from
Equation (6.26)

Related to the system PDE
from Equation (6.12)

6. Meshfree collocation methods 319

DC
(1)

1u11

2uu2u

u 1Nuu

NNu

U (6.30)

Solving Equation (6.27) gives the nodal values of u for all field nodes,
provided KDCKK is not singular.

Note that the assembling is different from that in the conventional FEM t
and the MFree global weak-form methods, such as EFG and RPIM. In the
FEM, EFG and RPIM, the element or nodal matrices are stamped
symmetrically into the global matrix. In the collocation method, however,
the nodal matrix is stacked together row-by-row to form the global matrix,
which is very much similar to the procedure used in the MFree local weak-
form methods discussed in Chapter 5.

Note also that the global system matrix KDCKK given in Equation (6.28) is,
usually, sparse because of the use of the local support domain that contains
usually a very small portion of the field nodes, and many of entries in KDCKK
are zero. It is, however, asymmetric for the reasons given in Sub-section
5.2.2.

2) The method using the fictitious point (FP)

In order to impose the DBC, a fictitious point beyond the DB-node is
added outside the problem domain. The coordinate of this fictitious point is

1N N c1x x dN cNxN (6.31)

where dcdd is the nodal spacing given by

1c N Nd x xc NNxx (6.32)

Hence, an additional degree of freedom (DOF), uN+1 is added into the system,
and the discretized global system equation becomes

FP FP FP
(1) (1) (1) 1 (1) 11) (1) (1) 1 (1) (1) (1) 1 (1)1)1) (1) (1) 1 (1) (1) 1 (1) (1) (1)K U FFP FP
(1) (1) (1) 1 ((1) 11) (1) (1) 1 (1) (1) ((1) 11) (1) (1) 1 (1) (1) (1) (1)(1) 1 (6.33)

where the global stiffness matrix KFPKK becomes

320 Chapter 6

FP
(1) (1)1) (1) (1) (1)

11 12 1 1(1)N 1(K K K K11 12 1 1N 111 12 1 1(1)N 1(

K K K K
11 12 1 1)N 1(

21 22 2 2(1)N 2(K K K K21 22 2NK K K K

K K K K (1)N N N1 2 N N (NNK K K K1 2N N N1 2 NNK K K K
K K K K

()

(1)1 (1)2 (1) (1)(1)1)1 (1)2 (1) (1)(1)1 (1)2 (1) (1)(K(1)1 (1)2 (1)1)1 (1)2 (1)(1)2 (1)1)1 (1)2 (1) (1)(1)2 (1) (1)(1)1 (1)2 (1) (1)1 (1)2 (1)1)2 (1)(1)2 (1)1)1 (1)2 ((1)(1)(1)(1)(K K K K(1)1 (1)2 (1)(1)2 (1)1)1 (1)2 (1)1)1 (1)2 (1)(1)2 (1)

K

(6.34)

Note that there are two equations to be satisfied at the DB-node at xNx :
Equations (6.9) and (6.24). The global source vector F becomes

FP
(1) 11)1)

u
())2q (A ()q (2)2Aq x(A

()q ()A Nq (A ()q (
())B NqB (()q (B (

F((6.35)

where the global vector of nodal function values UFP is

FP
(1) 11)1)

1u11

2uu

1Nu

NuNuNu

1N 1Nu

U (6.36)

Solving these N+1 equations given in Equation (6.33) for the NN N+1 unknowns,NN
we obtain the nodal values for all field nodes including the fictitious point.

3) The Hermite-type collocation (HC) method

In the Hermite-type approximation, the derivative variable for the DB-
node is added as an additional DOF. For an internal collocation node at xt Ix , if
its local support domain does not include the DB-node, the conventional
MFree shape functions are used, and the Equations (6.9)~(6.12) are used to
derive the collocation equations. If its support domain includes the DB-node,
the following formulation is used based on the Hermite-type shape functions
(see, Chapter 3):

Related to DBC from
Equation (6.25)

Related to Dirichlet BC
from Equation (6.14)

Related to the system
PDE from Equation
(6.11)

Related to Dirichlet BC
from Equation (6.15)

Related to DBC from
Equation (6.26)

Related to the system PDE
from Equation (6.12)

6. Meshfree collocation methods 321

1

()h T()I s)
n

u

u (u

Nu

u (6.37)

where is the vector of shape functions obtained using the Hermite-type
approximation, HH is the shape function related to the derivative DOF Nu ,

su is the vector that collects nodal function values, and ()N
N

du x(u
dx

which

is the additional derivative DOF. Hence, the derivatives of u at the node I
can be approximated using

Th
I

s s

Th
Iu T HH

1111 n1 n1 n1 n1
sx xx x xx x xx x x

u us
1 n ,

2

2 2

h
I

s

22 22 h
Iu 2 T 22 2 HH22

1111 n
2 2 2
1 n1 n11

2 2x xx x 2 2 22 22 2 2x22 22 2x x xx x x2 22 2u u1
2 2 2

n

(6.38)

Therefore, for an internal node whose support domain includes the DB-
node, the nodal matrix KIK derived using EquationI (6.9) is re-written as

2 T T

02

2
1

2 1 02

2

2 1 02

2

2 1 02
1 (1)

() () ()

()1()

() () ()

() () ()

I 2 I1 0 (1 011

I1 01 (1 011

I1 01 (1 011

H H

I1 01 (1 011

d d2 T

A () () (() (02 (1 0111 0()()
dxdx

d d2

A2 () () ((1
1 01 (1 0111 0dxdx

d d2

A22 () () () () (1 01()() (1 0111 0dxdx
d 2 H

A22 () () () () (1 01 (1 0111 0dxdx

11d11111

d()()()()()()

Hd()
H

()()()
((

A2 () ()) (()()111122 11111

A22 () ()) (()()1 1
111111111

1

()(()111()(111()(

()(()111111()(

ddT

()()K

(6.39)

For the DB-node, the Hermite-type approximation, Equation (6.37), is
used. There are now two equations should be satisfied at the DB-node at xNx .
One is Equation (6.9) that results in the similar nodal matrix KIK presented in
Equation (6.39), and the other is Equation (6.24) where the nodal matrix
KN+1K for the collocation node at xNx can be re-written asN

322 Chapter 6

T
T

1

1
1 0 1

1

1
1 (1)

() ()

() ()1
00

() ()

() ()

N N N1 1 0() () (0

N N00000

N N0 (0 n

H
H

N N0 (0

dB () ((01() () (0dx
d

1 ((1
000000B ()

dx
dB1() () (0 (0dx
dB1() () (0 (0dx

11
11

)

H

) H

((

B1()1()

B1() 1

ddK

(6.40)

The discretized global system equation becomes
HC HC HC
(1) (1) (1) 1 (1) 11) (1) (1) 1 (1) (1) (1) 1 (1)1)1) (1) (1) 1 (1) (1) 1 (1) (1) (1)K U FHC HC
(1) (1) (1) 1 ((1) 11) (1) (1) 1 (1) (1) ((1) 11) (1) (1) 1 (1) (1) (1) (1)(1) 1 (6.41)

where the global matrix KHCKK is given by

HC
(1) (1)1) (1) (1) (1)

11 12 1 1(1)N 1(K K K K11 12 1 1N 111 12 1 1(1)N 1(

K K K K
11 12 1 1)N 1(

21 22 2 2(1)N 2(K K K K21 22 2NK K K K

K K K K (1)N N N1 2 N N (NNK K K K1 2N N N1 2 NNK K K K
K K K K

()

(1)1 (1)2 (1) (1)(1)1)1 (1)2 (1) (1)(1)1 (1)2 (1) (1)(K(1)1 (1)2 (1)1)1 (1)2 (1)(1)2 (1)1)1 (1)2 (1) (1)(1)2 (1) (1)(1)1 (1)2 (1) (1)1 (1)2 (1)1)2 (1)(1)2 (1)1)1 (1)2 ((1)(1)(1)(1)(K K K K(1)1 (1)2 (1)(1)2 (1)1)1 (1)2 (1)1)1 (1)2 (1)(1)2 (1)

K

(6.42)

the global vector UHC is given by

HC
(1) 11)1)

1u11

2uu

1Nuu

NuNuNu

NNu

U (6.43)

and the global vector FHC has the same form as FFP presented in Equation
(6.35).

Solving Equation (6.41) for N+1 unknowns, we can obtain the nodalNN
function values for all field nodes.

4) The method using regular grids (RG)

Three regularly distributed nodes, xN-x 2, xN-x 1, xNx are used inside the
problem domain near the derivative boundary. The following standard finite
difference scheme is used to construct the 1st derivative at the DB-node at xt N.x

Related to DBC from
Equation (6.40)

Related to Dirichlet BC
from Equation (6.14)

Related to the system
PDE from Equation
(6.11) or (6.39)

6. Meshfree collocation methods 323

2

2

(N N N N1))

N N

u
x

1() 3 4 N 1) 3) 3u x u u 1() 3 4) 3 N 1) 3 4) 3

Nx xx xN
(6.44)

Replacing Equation (6.5) with this equation, we can obtain the
discretized system equation for the DB-node from the DBC Equation (6.2).
Together with Equations (6.9), (6.13), and (6.24), we can obtain N equationsN
for N unknowns of nodal function values. Solving theseN N equations givesN
the nodal values for all field nodes. Note that the procedure for the RG
method is exactly the same as the DC method, except that the derivative for
the DB-node is approximated using Equation (6.44) instead of Equation
(6.5).

6.3.2 Numerical examples for 1D problems

In this section, several 1D examples are numerically analyzed reveal the
features of the collocation method with different treatments for the DBCs.
Because the analytical (exact) solutions are available, it is easy to conduct a
detailed analysis of errors in the numerical solutions. The following norms
are defined as error indicators in this chapter.

The error in the solution of function value is defined as e0:

2

1
0

exact 2

1

()exact

N

i
N

i
i

e (6.45)

where exact
iu is exact values of the function, and num

iu is numerical values of
function obtained using the numerical methods.

The errors in the 1st derivatives of the function is defined as exe

2

1

exact 2
,

1

()exact

N

i
x N

i x,,
i

ex (6.46)

where exact
,i x,u is the exact values of the 1st derivative, and num

,i x,u is the
numerical value of the 1st derivative obtained using the numerical methods.

The rates of h-convergence of the relative error norms in numerical
results, R(e), are defined as

324 Chapter 6

10 1
1

10

Log ()10()
Log ()10

i11
i i1
c c

11R(i 11 (6.47)

where e should be e0 or exe , and 1i
cdc and i

cdc are the uniform nodal spacing of
two consecutive nodes.

Example 6.1: Wave propagation problem with Dirichlet boundary
conditions

One-dimensional problem governed by the following second-order linear
ordinary differential equation (ODE) is solved by the polynomial point
collocation method (PPCM), where the polynomial PIM shape functions are
used in Equations (6.4)~(6.6) for the field function approximation.

2

2 0, (0,1)d u2

u 0,
dx

0,u 0,u (6.48)

which is subjected to the following Dirichlet boundary conditions

(0) 0, (1) 1.0u(0) 0, (1)0 (6.49)

Equation (6.48) governs different types of physical problems depends on
the value of . When >0, Equation (6.48) is the well-known 1D wave
propagation problem, and the exact solution can be easily found

exact sin()
sin

xue ac (x
(6.50)

Three models with 21, 41 and 81 regularly distributed nodes are used to
discretize the 1D problem domain. Three different kinds of interpolation
schemes using 3 nodes, 5 nodes and 7 nodes, as shown in Figure 6.2, are
adopted in the interpolations. There is no DBC in this example. The
conventional polynomial PIM is used to construct shape functions.

The errors in the numerical results of function u and its derivative u,x are
listed in Table 6.1~Table 6.2. For further illustration, some representative
results have also been plotted in Figure 6.3~Figure 6.4.

It can be found that very good (numerical) convergence rates have been
obtained using the PPCM.

1) For the 3-node interpolation scheme, the convergence rate of e0 is
about 2.0 and the convergence rate of exe is close to 2.0.

2) For the 5-node interpolation scheme, the convergence rate of e0 is
about 4.0-5.0 and the convergence rate of exe is the nearly same as e0.

6. Meshfree collocation methods 325

3) For the 7-node interpolation scheme, the convergence rate of e0 is
about 6.0-7.0 and the convergence rate of exe is the also same as its e0.

4) The error for the derivative solution is slightly bigger than that for
the corresponding function solution.

It can be found from these tables that the errors in the numerical results
obtained using the PPCM seems to be of the order 1()1p

cO d(for both the
field function and its derivatives, where dcdd is the nodal spacing. For example,
for the case of 5-node scheme (p((=4), when the nodal density is doubled, the

error decrease to
4 1 14 1

32
11
22

 times as shown in Table 6.1. For the case of

7-node scheme (p((=6), when the nodal density is doubled, the error decrease

to
6 1 16 1

128
11
22

 times as shown in Table 6.1. Note also that the errors for

the first derivatives of the field functions are also about the same order of
1()1p

cO d(, as seen in Table 6.2. This only exception is for the case of 3-nodell
scheme for which the error is of the order of ()p

c((. These facts
demonstrate that the collocation method is stable and convergent for
problems without DBCs.

Figure 6.2. Interpolation schemes with different sizes of support domains for 1D problems rr
(m: number of polynomial basis; p: complete order of the polynomial basis).

326 Chapter 6

Table 6.1. h- and p- convergence of u obtained numerically using different
interpolation schemes

1.0 10.0 100.0
Model e0(%) R e0(%) R e0(%) R

21 1.97 10-3 / 13.82 / 15.32 /
41 4.85 10-4 2.02 3.84 1.85 4.24 1.85

3-
no

de
sc

he
m

e
(p((

=2
)

81 1.20 10-4 2.02 0.99 1.96 1.09 1.96

21 2.72 10-6 / 0.043 / 0.36 /
41 9.23 10-8 4.88 2.40 10-4 7.49 7.88 10-3 5.51

5-
no

de
sc

he
m

e
(p((

=4
)

81 3.22 10-9 4.84 1.11 10-4 1.11 1.25 10-3 2.65
21 5.14 10-9 / 1.74 10-3 / 0.11 /
41 4.24 10-11 6.92 1.62 10-5 6.75 1.70 10-3 6.06

7-
no

de
sc

he
m

e
(p((

=6
)

81 1.36 10-12 4.97 1.53 10-7 6.72 1.69 10-5 6.65

R: the convergence rate

Table 6.2. h- and p- convergence of u,x obtained numerically using different
interpolation schemes

1.0 10.0 100.0
Model exe (%) R exe (%) R exe (%) R

21 4.12 10-2 / 13.99 / 16.97 /
41 1.03 10-2 2.00 3.89 1.85 4.74 1.84

3-
no

de
sc

he
m

e
(p((

=2
)

81 2.58 10-3 2.00 1.00 1.96 1.22 1.96

21 1.46 10-5 / 0.04 / 0.31 /
41 1.09 10-6 3.75 3.08 10-4 7.11 1.18 10-2 4.74

5-
no

de
sc

he
m

e
(p((

=4
)

81 7.43 10-8 3.87 1.16 10-4 1.41 1.73 10-3 2.77
21 2.28 10-8 1.75 10-3 0.12
41 2.64 10-10 6.43 1.63 10-5 6.75 1.83 10-3 6.04

7-
no

de
sc

he
m

e
(p((

=6
)

81 2.15 10-11 3.62 1.56 10-7 6.71 1.91 10-5 6.59
21 4.17 10-2 0.31 3.25
41 1.04 10-2 2.00 9.76 10-2 1.68 0.98 1.73

qu
ad

ra
tic

FE
M

81 2.60 10-3 2.00 2.56 10-2 1.93 0.257 1.93

R: the convergence rate

6. Meshfree collocation methods 327

Figure 6.3. h-convergence of the PPCM with different interpolation schemes (10),
where dcdd is the nodal spacing.

Figure 6.4. p-convergence of the PPCM using uniform 41 nodes for the wave propagationm
problems.

For comparisons, the results are also obtained using the quadratic FEM.
It is well-known that the convergence rate for the function value obtained

328 Chapter 6

using the FEM is of the order of 1()1pO h((Zienkiewicz and Taylor, 2000)
that is the same as that of the collocation method. Note also that in the
conventional FEM, the error in derivative results is of the order of ()p((†

which is surely higher than that of the collocation method that is of the order
of 1()1p

cO d(.

Note from this example that in the absent of the presence derivative
boundary conditions, the present PPCM can obtain stable and very accurate
solutions for the 1D problems. We have also studied the boundary layer
problems (when <0), and similar results were found.

Example 6.2: 1D truss member with derivative boundary conditions

Consider a truss member or bar with force (derivative) boundary
conditions, as shown in Figure 6.5. The mechanics of the bar were discussed
in Sub-section 1.4.6. The bar is governed by the following equations:

Governing equation in the form of ODE:
2

2

d () 0
d

uEA b2

d (u
xdd

)b((6.51)

where E is the Young’s modulus,E A is the cross-section area, u is the axial
displacement in the x direction, b is the body force in x direction, and L is
the length of the truss element. For simplicity, 1.0 , 1.0A , L=1.0.

Two cases of the b(x(() are considered. The source force term with the
polynomial form that was used in Section 1.4 is first considered. Due to
the reproducibility of the polynomial PIM, very accurate results were
obtained using the collocation method with different treatments for DBCs.

To study numerically the convergence and accuracy of the collocation
methods, a more complex source term of non-polynomial form

2() (2.3) sin(2.3)2b(is used in this study.

Displacement (Dirichlet) boundary condition is given by:

0
0

x
u (6.52)

which means that the bar is fixed at x=0 as shown in Figure 6.5.

Force (derivative) boundary condition is given by:

† The rate can change in the FEM, if the so-called super-convergence points can be
found. These kinds of special points may also exist in the collocation methods.
Here, we discuss only the results sampled at arbitrary points.

6. Meshfree collocation methods 329

d 2.3 cos(2.3)
dx x L

x L

uf A EAEAA
xdd

A cos(2.3cos(2.3EAA (6.53)

or

1

d 2.3 cos(2.3)
d x

u
xdd

(6.54)

which means that a concentrated force is applied at x=L= .

The exact solution of the problem can be easily obtained by solving
analytically ODE with these boundary conditions, which yields

exact () sin(2.3)ue c () sin(2.3 (6.55)

x

f
L

A y

b(x(()

Figure 6.5. A uniform truss member fixed at x=0 and subjected to an axial loading
distributed in x direction and a concentrated force at x=L= .

The same problem can be solved by imposing the following displacement
(Dirichlet) boundary conditions at x=L= .

1
sin(2.3)

x L
u

L (6.56)

which obtained simply using Equation (6.55). In this case, the problem can
be solved without using any derivative boundary conditions.

In seeking for an approximate numerical solution, we represent the 1D
truss member with regularly and irregularly distributed nodes shown in
Figure 6.6. The polynomial point collocation method (PPCM) is again used
to discretize Equations (6.51)~(6.54). The five different techniques
presented in Section 6.2 and Sub-section 6.3.1 are used to treat the force
(derivative) boundary condition in the following manner:

330 Chapter 6

(a) 10 regular nodes

(b) 10 irregular nodes

(c) 10 irregular nodes used in RG method

(d) 11 field nodes used in the method of use of dense nodes

Figure 6.6. Nodal distributions on the 1D truss member

1) In the direct collocation (DC) method, the conventional polynomial
PIM shape functions are used and the force boundary condition,
Equation (6.54), is directly discretized by collocation.

2) In the method using fictitious points (FP), a fictitious point is added at
x=1.1. Two equations, Equations (6.51) and (6.54), are imposed at the
DB-node at x=L= using the conventional polynomial PIM shape
functions.

3) In the Hermite-type collocation (HC) method, the Hermite-type
polynomial PIM (see Sub-section 3.2.2) shape functions are used.
The additional derivative variable, d / dx/ d/ d , at the DB-node is added
as an additional unknown or DOF.

0 L

x
DB-node

0 L

x
DB-node

0 L

x
DB-node

0 L

x
DB-node

6. Meshfree collocation methods 331

4) In the method using regular grid (RG): the conventional polynomial
PIM shape functions are used, and the standard finite difference
scheme given in Equation (6.44) is used to approximate the first order
derivative of the displacement at the DB-node.

5) The method of using dense nodes (DN) near the derivative boundaries,
one more node is used in the problem domain near the DB-node.

Three interpolation schemes shown in Figure 6.2 are used. To reveal the
effect of the DBC on the accuracy of the solution, the average relative error
is used as the error indicator, which is defined as

num exact

exact
1

1 N
i i

i i

u uie
N u

(6.57)

where num
iu and exact

iu are the displacement at the ith node obtained using the
numerical methods and the exact solution given in Equation (6.55),
respectively, and N is the number of field nodes. Note that the case 0 is for N
the problem with the Dirichlet boundary conditions, Equations (6.52) and
(6.56).

Table 6.3 lists the error in numerical results obtained using the
collocation methods and the 3-node interpolation scheme shown in Figure
6.2. From Table 6.3, we can make the following remarks.

1) If the problem is subjected only to Dirichlet BCs without any DBC,
the collocation method yields very good results. The error is small,
only e=0.51% for the regular model. The error for the irregular model
is 1.36%, which is about 2.7 times larger than that for regular nodes.
This is because the largest nodal spacing for the irregular model is
about 2.0 times that of the regular node model. This example
indicates the effects of the nodal irregularity on the accuracy of the
solution of the PPCM.

2) The presence of the DBC leads to large errors in the solution. If no
special treatment for the force boundary condition (the direct
collocation method) is used, the error of the direct collocation method
becomes 11.3%. The error magnification is more than 22 times.

3) Special treatments for handling the force (derivative) boundary
conditions can improve the accuracy of the solution.

4) The Hermite–type collocation method (HC) produces the accurate and t
stable results for both regular and irregular nodal distributions. The
error magnification is about 5 times for the regular nodal distribution.

332 Chapter 6

The error for the irregular nodal distribution is only slightly larger
than that without the DBC (case 0).

5) The FP method works reasonably well for the model of regular nodes,
but not very well for the irregular nodes.

6) The RG method has the same accuracy as the DC method for the
model of regular nodes because the three nodes closest to the
Derivative boundary are used in Equation (6.44) that results in the
same formulation as the DC in this case. To use the RG method, the
10 irregular nodes shown in Figure 6.6(c) (not Figure 6.6(b)) are used.
Table 6.3 shows that the RG method leads to large error for the
irregular model.

7) The DN method that uses one more node in the problem domain near
the DB-node shown in Figure 6.6(d) leads to good result. This
confirms that the use of dense nodes near the derivative boundaries
can improve the accuracy of solution. This may be because the use of
dense nodes can better approximate the derivative of the function.

8) For the DC and the HC methods, the results of the model of irregular
nodes are better than that for regular nodes. This maybe because, in
the irregular model shown in Figure 6.6 (b), the nodal spacing near the
DB-node is smaller than that in the regular model.

Table 6.3. Relative errors e (%) in the displacement results obtained using the
PPCM with different schemes handling the DBCs

Cases Schemes Regular nodes (Rm) Irregular nodes(Rm)

0 Dirichlet BC 0.51 (1.0) 1.36 (2.67)
1 DC 11.3 (22.2) 1.21 (2.37)
2 FP 1.63 (3.2) 7.96 (15.61)
3 HC 2.68 (5.3) 1.42 (2.78)
4 RG 11.3 (22.2) 6.12 (12.0)
5 DN 1.68 (3.3) /

3 nearest nodes are used in the local support domain
case_

case_0_regular

i
m

e
R

e
 is the error magnification rate.

To study the h-convergence of these methods for this 1D truss problem,
regularly distributed 6, 11, 21, 41 and 81 nodes are used. To study the p-
convergence, the models of 41 regular nodes with 3-node, 5-node and 7-
node interpolation schemes are used. The relative errors, e, in the

6. Meshfree collocation methods 333

displacement results obtained by four different methods (excluding the DN
method) are listed in Table 6.4 and plotted in Figure 6.7 and Figure 6.8. All
these results re-confirm the fact that these special treatments for enforcement
of the force boundary condition are necessary to improve the accuracy of the
solution. Again, the Hermite–type collocation method produces better
results for all these cases.

Table 6.4. h- and p- convergence of u using different methods with different
interpolation schemes and different nodal distributions

 Dirichlet BC DC FP HC RG

Number
of Nodes

e(%) e(%) e(%) e(%) e(%)

11 5.10E-1 1.13E+1 1.63E+0 2.68 1.13E+1

21 6.59E-2 1.21E+0 1.99E-1 2.72E-1 1.21E+0

41 8.37E-3 1.35E-1 2.46E-2 2.91E-2 1.35E-1

3-
no

de
 (p ((

=2
)

81 1.05E-3 1.58E-2 3.05E-3 3.31E-3 1.58E-2

11 6.30E-2 5.46E+0 5.70E-1 2.92E-1 7.56E+0

21 1.35E-3 1.73E-1 1.62E-2 7.58E-3 9.55E-1

41 3.21E-5 4.68E-3 4.06E-4 1.74E-4 1.10E-1

5-
no

de
 (p ((

=4
)

81 9.12E-07 1.29E-4 1.07E-5 4.28E-6 1.29E-2

11 4.31E-2 1.57E+0 8.46E-2 1.55E-2 9.92E+0

21 1.95E-4 2.24E-2 1.26E-3 1.01E-4 1.02E+0

7-
no

de
 (p ((

=6
)

41 9.33E-7 1.59E-4 8.42E-6 6.30E-6 1.12E-1

Table 6.4, Figure 6.7 and Figure 6.8 draw the following conclusions.

1) This example illustrate the dominant effects of the DBC

2) Although the accuracies of the different methods are different, their
convergence rates are nearly the same.

3) The errors in the numerical results obtained using the PPCM seems
again to be of the order of 1()1p

cO d(, where dcdd is the nodal spacing,
regardless the presence of the DBC.

334 Chapter 6

4) The RG method does not achieve the p-convergence (see, Figure 6.8)
because the three nodes closest to the derivative boundary are always
used in Equation (6.44) for all the different interpolation schemes
used for the internal nodes. Since the error is largely controlled by the
large error induced by the boundary conditions, the accuracy will not
be improved, despite the increase of the order of the interpolation for
all the internal nodes, and the p-convergence of the RG method is
poor as shown in Figure 6.8.

The simple 1D example demonstrates that the enforcement of derivative
boundary conditions (DBCs) is the major technical issue in the use and the
development of MFree strong-form methods. A special treatment is required
to enforce the DBCs, and for this 1D problem, the Hermite method seems to
work well for both regular and irregular nodes.

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Er
ro

r (
%

)

Dirichlet BC (R=3.0)
DC (R=3.1)
FP (R=3.0)
HC (R=3.2)
RG(R=3.1)

cdd =h

Figure 6.7. h-convergence in relative errors in the numerical results obtainedn
using the PPCM with different schemes handling the DBCs (3-node scheme). The

R is the convergence rate, and dcdd is the nodal spacing

6. Meshfree collocation methods 335

Figure 6.8. p-convergence of the PPCM using different schemes handling the DBCs
(41 regular nodes)

6.4 STABILIZATION IN CONVECTION-DIFFUSION
PROBLEMS USING MFREE METHODS

Many practical problems in engineering are governed by the so-called
convection-diffusion equations, and hence the convection-diffusion problem
is important in computational mechanics. In a convection-diffusion equation,
there are convective and diffusive terms, and there is a well-known technical
issue in the analysis for convection-diffusion problem using the numerical
methods: the instability in the solution when the problem becomesy
convection dominated. Much research has been performed to solve the
instability problem, and an overview on this topic can be found in the book
by Zienkiewicz and Taylor (2000). Many useful techniques have been
developed for stabilizing the numerical solution for FDM (Courant, et al.
1952; Runchall et al. 1969; Spalding, 1972; etc.), FEM (e.g., Zienkiewicz
and Taylor, 2000), FPM (Onate et al., 1996), and the GFDM (e.g., Cheng et
al., 1999, 2002). In GFDM used for CFD problems by Cheng et al. (1999,
2002), a simple idea similar to the upwind stabilization scheme is used by
choosing more nodes on the side of the support domain facing the flow. In
this section, the stability problem in the analysis of the convection-diffusion

336 Chapter 6

problem using MFree methods is discussed through a 1D example problem
of steady state convection-diffusion. The techniques studied are very simple
and easy to implement in MFree methods, and are in principle applicable
also to 2D or 3D problems. To simplify the issue, our discussion in this
section is confined for problems with only Dirichlet boundary conditions.

Consider a 1D steady-state convection-diffusion problem governed by
the following equations (Zienkiewicz and Taylor, 2000).

Governing equation:

0du d duV q())du d du(
dx dx dx

(()) , x (0, 1) (6.58)

where u is a scalar field variable, V,VV k andk q are all given constants,
and u, V,VV k and k q carry different physical meanings for different
engineering problems.

Dirichlet boundary condition:

0

1

0
1

x

x

u
u (6.59)

Equation (6.58) is an ordinary differential equation (ODE) of second
order with constant coefficients, and it is a special case of Equations (6.1).
The exact solution is

exact
1 2()

V x
kq ku x c e c1()

V V
kq c ec e1
kq (6.60)

where

1
1(1 /)

/ (1)V k//c V q1 (1 //
k h e/ ((

(1 (6.61)

2 1c kc V2 1 / (6.62)

The stability of the numerical solution of this problem depends on the so-
called the Peclet number

2
cVdcPe

k
(6.63)

where dcdd is the nodal spacing.

In this example, the problem domain is represented using 21 regularly
distributed nodes, and hence 0.05c , and PPCM is used. To simplify the
problem, the source term is omitted: q=0 is used. The support domain is

6. Meshfree collocation methods 337

defined to select 3 nearest nodes for computing the PIM shape functions.
Figure 6.9 shows the results of u obtained using the PPCM for different Peclet
numbers. The accuracy of solutions deteriorates as Pe increases, if no special
treatment is performed. When Pe is large, Equation (6.58) becomes
convection dominated, and the accuracy of the standard numerical result
becomes oscillatory. If only the conduction term is omitted (k=0), which leadskk
to Pe , the standard numerical procedure fails.

When the equation is convection dominated, the second term in Equation
(6.58) is negligible, and the down stream boundary condition

1
1,

x
u to

affects only a narrow region to form a thin boundary layer. The thin
boundary layer is difficult to reproduce by a standard numerical method, and
results become oscillatory.

This type of instability can occur in many numerical methods including
FEM, FDM and the MFree method if no special treatment is implemented.
The key to overcoming this problem is to effectively capture the upstream
information in the approximation of the field variables. The so-called
upwind scheme widely used in FDM was developed precisely for this
purpose (Courant, et al. 1952; Runchall et al. 1969; Spalding, 1972; etc.). In
the following, we discuss some simple strategies in MFree methods to deal
with this instability problem.

Figure 6.9. Results for the convection-diffusion problem with different Peclet numbers. Am
total of 21 regularly distributed nodes are used in the PPCM and the support domain is

defined to select 3 nearest nodes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

x

u

Exact results
Numerical results (Pe=0)
Numerical results (Pe=0.25)
Numerical results (Pe=1.25)
Numerical results (Pe=2.5)

338 Chapter 6

6.4.1 Nodal refinement

It is known that the instability is directly related to the Peclet number.
Therefore, a natural way to stabilize the solution is to reduce the Peclet
number by reducing the nodal spacing dcdd for given V andV k.

To confirm this argument, two models with 21 and 41 regularly
distributed nodes are used to solve the same problem. The local support
domain is defined to select the 3 nearest nodes, and results are plotted in
Figure 6.10. It can be found that using finer field nodes is one of the simple
ways to alleviate the instability problem. Note however that this is not an
effective way to solve the instability problem. Increasing the nodal density
only in the boundary layer can certainly be more efficient.

Figure 6.10. Results of the 1D convection-diffusion problem with different nodal
distributions. V=100 andVV kd =1 are considered and the supportkk domain is defined to select 3

nearest nodes.

6.4.2 Enlargement of the local support domain

The instability is caused by the failure to capture the upstream
information. The simplest way to capture the upstream information is
naturally to use more nodes in the interpolations. This may not be done
easily in FDM or FEM, but can be done without any difficulty in MFree
methods by simply enlarging the support domain of the collocation node
near the boundary layer.

Three types of local support domains, selecting 3, 5 and 7 nearest field
nodes, are used to solve the same problem, and results obtained using the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

x

u

Exact results
Numerical results (21 field nodes)
Numerical results (41 field nodes)

6. Meshfree collocation methods 339

PPCM are plotted in Figure 6.11. The accuracy and stability of solutions are
significantly improved by the enlargement of the local support domain.
Note that the overlap feature in the MFree interpolations may help also to
stabilize the solution.

Note that the enlargement of the local support domain needs to be done
only for the interpolation points (collocation nodes) that are in and near the
boundary layer.

Figure 6.11. Results of the convection-diffusion problem solved using the PPCM with
different support domains. Pe=2.5 is considered and a total of 21 regularly distributed

nodes are used.

6.4.3 Total upwind support domain

Similar to the upwind difference scheme used in the FDM, the local
upwind support domain, as shown in Figure 6.12(b), is proposed here and
implemented in the PPCM to stabilize the solution. Results for 0.25
and 2.5 are obtained and plotted in Figure 6.13. The upwind support
domain improves the accuracy and stability for large Peclet numbers
because it can fully capture the information from upstream. However, it
gives poor results for cases of smaller Peclet numbers because of the fully
asymmetric interpolation using the upwind support domain, which mis-
represents the conduction term that is a 2nd derivative operator and should
be symmetric. In contrast, when using the normal symmetric local support
domain, it gives good results for small Peclet numbers but unstable results
for large Peclet numbers. Hence, the ideal support domain should change

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

x

u

Exact results
Numerical results (n=3)
Numerical results (n=5)
Numerical results (n=7)

340 Chapter 6

with Peclet number, i.e., when Pe increases, the support domain should be
biased towards the upwind side. We term such a support domain an adaptive
upwind support domain.

(a) the normal support domain that is symmetric with respect to the collocation point

(b) the upwind support domain that is fully biased on the upwind side

(c) Construction of an adaptive upwind local support domain with an offset distance dudd

(d) Construction of a biased support domain by deliberately adding two more nodes in the
support domain in the upstream direction

Figure 6.12. Different types of local support domains.

Stream direction Collocation node

The biased support domain

The normal support domain

Stream direction Collocation node

Support domain dudd

New centre of the support domain

Stream direction Collocation node

Support domain

Stream direction Collocation node

Support domain

6. Meshfree collocation methods 341

(a) Pe=0.25

(b) Pe=2.5

Figure 6.13. Results of the convection-diffusion problem with normal and upwind support
domain. The support domain is defined to select 3 nearest nodes.

6.4.4 Adaptive upwind support domain

The adaptive upwind support domain can be defined using the following
formula (Zienkiewicz et al., 1975; Christie et al., 1976; Zienkiewicz and
Taylor, 2000; Atluri and Shen, 2002)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u
Exact results
Numerical results (normal support domain)
Numerical results (upwind support domain)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

x

u

Exact results
Numerical results (normal support domain)
Numerical results (upwind support domain)

342 Chapter 6

u s(co /)d Pe Pe r(coth 1/)1/(coth 1/)1/u s(cot /)/Pe PePe Pe(coth 1/)1/ (6.64)

where dudd is the central offset distance against the stream direction from the
collocation node as shown in Figure 6.12(c), and rsr is the dimension of the
support domain. Clearly Equation (6.64) satisfies the following two
conditions.

When Pe=0, the central support domain should be used and 0u .
When Pe= , fully upwind support domain should be used and u sd ru s .

Figure 6.14 shows that Equation (6.64) works well for both large and
small Peclet numbers (the results are not presented here). It is one of thet
most effective methods to ensure the stability of convection dominated
problems.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

u

Pe=0.05
Pe=1

Pe=100

Analytical solutions

Figure 6.14. Results of the convection-diffusion problem with adaptive upwind support
domain s.

6.4.5 Biased support domain

Another effective and simple way to establish a biased support domain is
to deliberately select more nodes in the upstream direction when
constructing the local support domain for a collocation node (Cheng and GR
Liu, 1999, 2002). Figure 6.12(d) shows a biased support domain based on a
normal support domain by adding two more nodes that are in the upstream

6. Meshfree collocation methods 343

direction. The PPCM with the biased support domain gives accurate result
both large and small Peclet numbers. Due to the freedom in selecting the
support domain in MFree methods, the method of using the biased support
domain is very effective and easy to use in practical applications (Cheng and
GR Liu, 1999, 2002).

In summary, using MFree methods to analyze the convection dominated
problem, the above mentioned simple methods can be used overcome the
instability issues in convection dominated problems. In these methods, the
adaptive upwind support domain and the enlargement of the local support
domain are the most effective methods and they are very easy to use because
of the freedom of selecting the support domain in an MFree method.
Comparing with the conventional FDM and FEM, the MFree method has a
very attractive advantage in solving the convection dominated problems
because it can easily overcome the instability problem even without the need
of any special treatment.

We have discussed MFree strong-form methods. MFree weak-form
methods can be modified in a similar way. Therefore, in solving a
convection-diffusion problem, the similar conclusions can be drawn for the
weak-form methods. In addition, the use of different weak-forms can be
other effective alternatives, as those used in the FEM (Zienkiewicz and
Taylor, 2000): the Petrov-Galerkin weak-form (Zienkiewicz et al., 1975;
Hughes and Brooks, 1982; Kelly et al., 1980), the finite increment calculus
(FIC) (Onate , 1998), etc.

6.5 POLYNOMIAL POINT COLLOCATION METHOD
FOR 2D PROBLEMS

This section introduces PPCM for solving 2D problems. When there is
only Dirichlet BC, the conventional polynomial PIM shape functions are
used. For problems with DBCs, the conventional PIM shape functions are
still used for all the nodes whose support domains do not contain any DB-
nodes, but for nodes whose support domains contain at least one DB-node,
shape functions created using the Hermite-type weighted least square (WLS)
polynomial approximation (see, Sub-section 3.2.1) are used.

344 Chapter 6

6.5.1 PPCM formulation for 2D problems

Let us consider problems governed by the following general second-d
order partial differential equation (PDE) defined in a 2D domain, :

2 2 2

11 2

10 00

() (,) 2 (,) (,)

(,) (,) (,) (,) 0A

uy11) (,) 2 (,) (,) (,) 2 (,)111 122 121 22x yy
uA x y A x y A x y u q x y101 00(,) (,) (,) (,,) (,) (,) (,20 000 Ax y

2 22

2 () ()u uu2 () ()()2 () (()2 ()2 () (2 ()()() (,)) (,(,)111 2 2)(,(,222222 12 222 12 222 12 22yx yx yx yx yx yx yx y
u ()()()())(,) (,) (,(,) (,) (,(,) (,)202 00020 yy20 (,)(,)20x yx y

(6.65)

where u is an unknown field function whose physical significance depends
on the physical problems, qAqq is a given source term, and the coefficients
A11~A~ 00 could depend upon x and y but are all given. There can be two-
types of boundary conditions:

Derivative boundary condition (DBC):

T() 0DB BL u u qT()DBD Bu quT on DBDD (6.66)

where Bq is the specified source term on the DBC DBDD , n is the
vector of the unit outward normal, and is the vector differential
(gradient) operator that is defined by

u
xx xxxxxxu x xxuu uu
y yyyy yy

(6.67)

Dirichlet boundary condition:

0u uu on u (6.68)

where u is the specified value of u on the Dirichlet boundary u .

Assume that there are N=NN NdNN +NbNN field nodes in total with NdNN internald
(domain) nodes and NbNN =NDBNN + NuNN boundary nodes, where NDBNN is the number
of DB-nodes and NuNN is the number of nodes on the Dirichlet boundary.
Hermite-type collocation (HC) is used to impose the DBC; the derivatives at
the DB-nodes shown in Figure 3.3 are considered as additional unknowns or
DOFs. For simplicity, we collocate at the field nodes.

6. Meshfree collocation methods 345

For the internal nodes and DB-nodes, the following NdNN +NDBNN equations
can be obtained using the following collocation approach.

2

2

10 00

() (,)

(,) (,) (,) (,)

0

h h h2 22
h i)i i i11

h h
hi

i i i i i A i i

u) ()) (,) 2 (,)) (,) 2 (,122 () (()i i i11) (,) 2 (,)) (,) 2 (,(,) 2 (,111 122 121 222x yy

uA x y A x y A x101 00(,) (,) (,) (,,) (,) (,) (,20 000()()i i,, ,, i i i A ii i A i,) (,,) () (,
x y

2 h hh222

)u uuh hh
i ii2 () ()2 () (()2 () (2 ()()() (,)) (,()11) (,)) (,(,(,)111 2 2) i)((22 (((,(,22222222222y22 122 122 12x yx yx yx yx yx yx y

huh
i ()()()(,) (,)(,) (,)(,) (,)202 000()(,, ,),))20 i iyy20 (,)(,)20 i i,,
x yx y

(6.69)

where i=1, 2, …, (N((dNN +NDBNN), h
iu is obtained using the Hermite-type WLS

shape functions, and its derivatives are obtained using the following
equations.

T()h h
i i s()u ui))((u u ,

Th
i

s
u

xx xx x
u ,

2 2 T

2 2

h
i

s
u

x2x xx x
u

Th
i

s
u
y yy yy y

u ,
2 2 Th

i
s

u
y x yxx y x yy x y

u ,
2 2 T

2 2

h
i

s
u
y y2y yy y

u
(6.70)

where is the vector of shape functions, and us is the vector that collects
the values of the unknown function at all nodes and the 1st derivatives of the
function at DB-nodes in the support domain if the Hermite-type shape
functions are used.

The following NDBNN equations can be obtained from the DBCs at the DB-
nodes.

T T T 0h
i B s Bi

T T
B s Bui qnT h
Bu qi , DB1,2, ,i ND1,2, , (6.71)

The following NuNN equations can be obtained from Dirichlet boundary
condition for nodes on the Dirichlet boundary:

T 0h
i su u ui su uu u , 1,2, , uN1,2, , u (6.72)

Following the procedure in Section 6.3 for 1D problems, we obtain a set
of discretized system equations. In the Hermite-type collocation, twon
equations are imposed at each DB-node: one equation resulting from the
DBC, and the other from the governing PDE.

When PDE is nonlinear in u, an iterative scheme, such as the well-known
Newton-Raphson iteration scheme, can be adopted to solve the nonlinear
discretized equations.

346 Chapter 6

6.5.2 Numerical examples

In the study of 2D problems, e0 given in Equation (6.45), exe given in
Equation (6.46) and eye is defined in the following are used as error indicators.y

2

1

exact 2

1

()exact

N

i
y N

i y,,
i

ey (6.73)

where eye is the relative error in the 1st derivative of the function with respect
to the y coordinate, exact

i y,u is the exact value of the 1st derivatives with

respect to the y coordinate, and num
i y,u is the numerical value obtained using

the collocation methods.

Example 6.3: PPCM for 2D nonlinear PDEs with Dirichlet BCs

We consider the following PDE that is often seen in chemical
engineering

2 nu ku2u (6.74)

where the parameter k is called thek Thiele modulus in chemical engineering
and represents the ratio of kinetic to transport resistances in the domain, and
n is the order of reaction. When the Thiele modulus is large, a boundary
layer with a thickness of the order of (1/k) is presented. The PPCM usingkk
the conventional polynomial PIM shape functions is again used to solve this
problem.

The problem domain is a cylindrical container that is idealized as unit
circle, and the following Dirichlet conditions on the entire circumferential
boundary are considered:

0.11ru (6.75)

This example can be found in the paper by Balakrishnan and
Ramachandran (2001). The first-order reaction (1n) and the second order
reaction (2n) are studied here. When 1n , the analytical solution is
available (Balakrishnan and Ramachandran, 2001).

In order to investigate the effect of the parameter k on the solution,k k=9kk
and 100 are chosen. When k=9, a coarse nodal distribution of 41 nodes and kk
a finer nodal distribution of 145 nodes shown in Figure 6.15 (a) and (b) are
adopted. In the computation, the sizes of support domain are adjusted to
select the 6 nearest neighboring nodes in the interpolation domain. The
polynomial basis used to construct PIM shape functions is

6. Meshfree collocation methods 347

2 2() 1 x y xy x yTp x(T (6.76)

which is of complete 2nd order (p((=2). The results obtained are listed in
Table 6.5. Comparing with the results provided by Balakrishnan and
Ramachandran (2001), the PPCM gives reasonably good results.

(a) 41 nodes (b) 145 nodes

Figure 6.15. Two models of different nodal distributions for the circular domain for the
problem defined in Example 6.3 with k=9.kk

Since the PIM shape functions are used, we can now perform a rough
error analysis based on the numerical results listed in Table 6.5. When 41
nodes are used, one can roughly estimate the nodal spacing using Equation
(3.3):

2

(41)
1 0.328

41 1 41 1c
Adc 1 411 41

(6.77)

When 145 nodes are used the estimated nodal spacing is

2

(145)
1 0.1605

145 1 145 1c
Adc 1 1451 145

(6.78)

Since the same number of nodes is used in the local support domains, we can
estimate numerically the convergence rate

2
(41) (41)

2
(145) (145)

)(41) (0.328) 4.176
) (0.1605)(145)

p
p

e p

e d(41) (
R

e d(145) (
() () ()

(6.79)

Compared with numerical results Re shown in Table 6.5, it is found this
rough estimation is good.

348 Chapter 6

Table 6.5. Results of u for Example 6.3 obtained using the PPCM and different
nodal distributions (k=9)kk

n r Reference
solution

u(r)
(41 nodes) (41)e (%) u(r)

(145 nodes) (145)e (%) Re

0.0 0.3955 0.4056 2.55 0.3983 0.71 3.59
0.25 0.4181 0.4287 2.54 0.4210 0.69 3.68
0.50 0.4943 0.5049 2.14 0.4976 0.67 3.19

2

0.75 0.6568 0.6678 1.67 0.6600 0.49 3.41
0.0 0.2048 0.2153 5.13 0.2076 1.37 3.74
0.25 0.2347 0.2456 4.64 0.2375 1.19 3.90
0.50 0.3373 0.3471 2.91 0.3404 0.92 3.161

0.75 0.5581 0.5678 1.74 0.5613 0.57 2.05

The support domain is so chosen to select 6 nearest nodes.
num ref
41

ref(41)
()num ref

4141e u ,
num ref
145

ref(145)
()num ref

145145e u , and (41)

(145)
e

eR e .

Table 6.6. Results of u for Example 6.3 obtained using the PPCM and different
nodal distributions (k=100)kk

n r Reference
solution

u(r)
(45 nodes) Error(%) u(r)

(221 nodes) Error(%)

0.0 0.0689 0.0947 37.446 0.0813 18.00
0.25 0.0783 0.1087 38.825 0.0923 17.88
0.50 0.1258 0.1617 28.537 0.1376 9.38
0.70 0.2480 0.2916 17.581 0.2363 -4.72

2

0.90 0.5289 / / 0.5423 2.53
0.0 3.55 10-4 0.0015 4.21 10-4 18.59

0.25 0.0017 0.0040 135.294 0.0014 -17.65
0.50 0.0097 0.0210 116.495 0.0111 14.43
0.70 0.0599 0.1158 93.322 0.0673 12.35

1

0.90 0.3884 / / 0.4041 4.04

The support domain is so chosen to select 6 nearest nodes.
num ref

ref
()num ref

Error u

When k=100, two nodal distributionskk of 45 nodes and 221 nodes shown
in Figure 6.16 (a) and (b) are used. The results are listed in Table 6.6. Table
6.6 shows that the accuracy is significantly reduced due to the presence of
the boundary layer. An improvement can be made by using finer nodes near
the circular boundary to capture the sharp variation of the thin boundary
layer.

6. Meshfree collocation methods 349

This example clearly shows that the PPCM using the conventional PIM
shape functions works well even for non-linear problems, as long as there
is no DBC.

(a) 45 nodes (b) 221 nodes

Figure 6.16. Two models of different nodal distributions for the circle domain for the
problem defined in Example 6.3 with k=100.kk

Example 6.4: Poisson’s equation with derivative boundary conditions

Consider the following PDE defined in a square domain.
yxeuu u2 , (,) 0,1 0,1y,, 0,10,1 (6.80)

with the following fixed boundary conditions:

Dirichlet boundary conditions

0),(0xyxu ,(, ; x
y xeyxu y 0)(yx yx (6.81)

Derivative boundary conditions

1

1

2 y

x

u e
xxx

; 1

1

x

y

xe
y
u

(6.82)

The exact solution for this problem is
exact () x yu x y xee ac (,), (6.83)

To show the effects of the presence of the DBCs, we conduct a study for
this problem with and without the DBC. To study the problem without the
DBC, the DBC in Equation (6.82) is replaced using the following Dirichlet
boundary conditions to achieve the identical analytical solution.

350 Chapter 6

1
1

y
x

u e
1

; 1
1

x
y xeu 1 (6.84)

Two models of regularly distributed 11 11 and 21 21 field nodes are
used to represent the square domain. The results obtained using the PPCM
for this problem with and without the DBC are listed in Table 6.7 for easy
comparison. This table shows that the presence of the DBC increases the
errors in the numerical results. This reconfirms that the DBC induce error in
the PPCM methods.

Table 6.7. Errors in the numerical results obtained using PPCM with and without
DBC (using 9 nodes in interpolation, p=2)

11 11 21 21

e0 (%) exe (%) eye (%) e0 (%) exe (%) eye (%)

Without DBC 0.67 3.00 6.84 5.4e-3 8.9e-2 4.9e-2

With DBC 1.82 3.24 7.60 0.20 0.16 0.39

We then study this problem with the DBC given in Equation (6.82);
special treatment is needed to enforce the DBCs.

If there is no DB-node included in the support domain of a collocation
node, the conventional polynomial PIM shape function discussed in Sub-
section 3.2.1 is used. The matrix triangularization algorithm (MTA) (GR
Liu, 2002) is used to avoid the singularity of the moment matrix. If there are
DB-nodes included in the support domain, the Hermite-type WLS
approximation discussed in Sub-section 3.2.1.3 is used to construct the shape
functions. Because the derivatives of DB-nodes are already the DOFs in thef
Hermite-type approximation, the derivative boundary conditions are
expected to be better enforced, as we discussed in the 1D problems.

For 11 11 regular nodes, there are 19 DB-nodes, and 19 additional DOFs
of normal derivative. The errors of numerical solutions obtained for
different weight coefficients j (see, e.g., Equation (3.63)) are listed in Table
6.8. In obtaining the results in Table 6.8, the dimensionless size of local
support domain is chosen as s=1.5, and dcdd =0.5 in Equation (3.39). For
comparison, the direct collocation (DC) method based on the conventional
PIM shape function (without Hermite-type approximation) is used to directly
enforce the derivative boundary conditions, and results are also listed in
Table 6.8. This table shows that the use of Hermite-type approximation can
improve the accuracy of the solution especially for reducing error in the
function value, e0, if a large (>103) is employed.

6. Meshfree collocation methods 351

For 21 21 regular nodes, there are 39 DB-nodes and 39 additional DOFs
for normal derivatives. The error results are listed in Table 6.9. The results
show that when weight coefficients j in Equation (3.63) are chosen as 103

or 104, the accuracy is improved by the use of Hermite-type approximation.

Table 6.8. Errors in the numerical results obtained using the PPCM with different
weight coefficients (11 11 regular nodes, s=1.5, c=0.5, p=2)

e0 (%) exe (%) eye (%)

1 4.90 4.47 10.72
101 3.36 3.78 8.76
102 2.08 3.39 7.54
103 1.15 3.23 7.02
104 0.90 3.22 6.94
105 0.86 3.22 6.93

without Hermite approximation 1.82 3.24 7.61

Table 6.9. Errors in the numerical results obtained using PPCM with different
weight coefficients (21 21 regular nodes, s=1.5, c=0.5, p=2)

e0 (%) exe (%) eye (%)

1 1.36 1.06 2.37
101 1.04 0.81 1.79
102 0.47 0.39 0.77
103 0.12 0.13 0.18
104 0.08 0.09 0.28
105 0.11 0.11 0.33

without Hermite approximation 0.20 0.16 0.39

Table 6.8 and Table 6.9 show that the results obtained using DC method
are acceptable because the regularly distributed nodes are used in the
computation. If the irregular nodes are used, the solution of the DC method
is inaccurate and often unstable†. In such cases, the collocation method with
Hermite-type approximation gives better results.

Table 6.8 and Table 6.9 show that the finer nodal distribution can lead to
a significant improvement on the accuracy of the numerical solutions both
for the function values and the derivatives. The rate of improvement for the
derivatives is better than that for the function values. This finding is true for ff
both with or without Hermite-type approximation. This could be because of

† Results can change significantly, even with small changes in nodal locations.

352 Chapter 6

the double positive effects of the refinement on the PDE approximation and
the treatment of the DBCs.

6.6 RADIAL POINT COLLOCATION METHOD FOR 2D
PROBLEMS

6.6.1 RPCM formulation

The radial point interpolation method (RPIM) was discussed in Sub-
section 3.2.2; the use of radial basis functions (RBFs) can overcome the
singularity of the moment matrix in the PIM. In this section, a radial point
collocation method (RPCM) is introduced. The procedures are largely the
same as those introduced in Section 6.5, except that the PIM shape function
is replaced by the RPIM shape function. Therefore, the detailed formulation
is omitted to allow more rooms for the discussions of example problems
solved using the RPCM with different ways to deal with the DBCs.

The material used in this section is largely based on the work by Liu X
and GR Liu et al. (2002, 2003c,d).

6.6.2 RPCM for 2D Poisson equations

In this section, several examples are used to study numerically the
performance of RPCM.

Example 6.5: Poisson’s equation with derivative boundary conditions

The 2D Poisson’s equation given by Equation (6.80) is considered againqq
with the following mixed boundary conditions.

Boundary condition I

Dirichlet boundary conditions

0() x
yu x y xe0(,), y ; 1

1() x
yu x y xe1(,), y (6.85)

DBCs

0

y

x

u e
xxx

; 1

1
2 y

x

u e
xxx

(6.86)

Boundary condition II

6. Meshfree collocation methods 353

Dirichlet boundary conditions:

0(,) 00xu x y(,, ; 0() x
yu x y xe0(,), y (6.87)

DBCs

1

1
2 y

x

u e
xxx

; 1

1

x

y

u xe
yyy (6.88)

The exact solution for this problem is given in Equation (6.83).
The RPCM-Exp method is used to analyze this problem, and the shape

parameter in Exp-RBF is chosen as c =1.0.
Regularly distributed 11 11 nodes are first used to represent the problem

domain, and 9 nodes are used in the interpolation scheme is employed. The
results obtained with two different shape functions: the conventional RPIM
and the Hermite-type RPIM shape functions, are listed in Table 6.10. From
this table, the relative errors of function using the conventional RPIM and ff
Hermite-type RPIM are 20.08% and 0.30%, respectively. This demonstrates
the fact that the Hermite-type interpolation significantly improves the
accuracy of the solution, because it can enforce DBCs more accurately.

Table 6.10 Errors in the numerical results obtained using RPCM-Exp without
polynomial and 121 regular nodes (9-node scheme and c=1.0)

 Boundary conditions I Boundary conditions II

e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

DC 8.47 8.53 36.92 20.08 16.10 40.32

HC 3.30 2.77 9.65 0.30 1.63 6.40

 *DC: using the conventional RPIM; HC: using Hermite-type RPIM

A total of 121 irregularly scattered nodes is used to investigate the
stability of the results obtained using the RPCM for an highly irregular nodal
distribution. The numerical results are listed in Table 6.11 for boundary II;
RPCM using the Hermite-type RPIM shape function is stable even for
highly irregularly scattered nodes. Hermite-type RPIM shape functions can
significantly improve the accuracy.

The influence of the size of the local support domain is studied and listed
in Table 6.11. The solution obtained using RPCM-Exp is closer to the exact
solution as the size of the support domain increases. This is true for both the
conventional RPIM and the Hermite-type RPIM shape functions. For the
former, the relative errors in the solution of function values are 14.98%,

354 Chapter 6

3.15% and 0.25%, respectively, for the support domain of s=1.0, 1.5 and
2.0; for the latter, the relative errors of function values are 2.34%, 0.10% and
0.03%, respectively, for the support domain of s=1.0, 1.5 and 2.0.

Table 6.11. Errors in the numerical results obtained using RPCM-Exp without
polynomial (c=1.0) and different sizes of the local support domainf
(using 121 highly irregular nodes; boundary condition II)

DC HC

s e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

1.0 14.98 11.77 28.80 2.34 3.31 13.57

1.5 3.15 3.03 10.30 0.10 0.50 1.14

2.0 0.25 0.23 0.63 0.03 0.14 0.20

6.6.3 RPCM for 2D convection-diffusion problems

6.6.3.1 Steady state convection-diffusion problem

The 2D steady state convection-diffusion problems are governed by
PDEs that are independent of time. They can be solved using the RPCM
based on both the conventional RPIM shape functions and the Hermite-type
RPIM shape functions.

Example 6.6: 2D steady state convection-diffusion problem

Consider a 2D problem governed by the following convection-diffusion
PDE.

),()(yxquuu ,(,)(uu) uu))) , 1,01,0),(y (6.89)

where

, {(3) (4)}, 1) (4) (4
0

{(3) (4)}{(3) (4)}) (4) (4
00

D , (6.90)

in which is a given diffusion coefficient. Two sets of boundary conditions
are considered.

Boundary condition I

Dirichlet boundary conditions:
0
1
1

0x
x
y

u (6.91)

6. Meshfree collocation methods 355

DBCs:

0
0

y

u
n (6.92)

Boundary condition II:

Dirichlet boundary conditions:

0
0
1
0

y
x
xu (6.93)

DBCs:

0
1yn

u
(6.94)

The exact solutions for these problem with these two types of boundary
conditions are the same and given by

exact sin()u xe ac sin()
2(1) 3(1)

2
x y) 3(1) 3(1

sin() 221 1e y ey1 121 1e ye yy1 1yyyy (6.95)

A total of 41 41 regularly distributed nodes is first used to represent the
problem domain. It is then solved using 1681 randomly distributed nodes
shown in Figure 6.17 that are created using the Halton random model. The
RPIM-Exp with the shape parameter c=10.0 is used in RPCM-Exp for both
the regular nodal model and the random nodal model. The 9 nodes in the
local support domains are applied to the regular model. The dimensionless
size of support domain is chosen as s=2.0 for the random nodal model.
Note that the total numbers of nodes used in both regular and irregular
models are roughly the same.

The results obtained using RPCM-Exp with two different shape functions,
the conventional RPIM (see Sub-section 3.2.2.1) and the Hermite-type
RPIM, are listed in Table 6.12 and Table 6.13. It is seen that the Hermite-
type RPIM shape functions give better results for large diffusion coefficients
of 10.0, 1.0 and 0.10 for both models of regular and random nodal
distributions.

Table 6.13 shows that the use of Hermite-type RPIM shape functions
improves accuracy slightly, especially for large diffusion coefficients. This
holds for both cases of boundary conditions when regular nodes are used.

Table 6.13 shows that the accuracy is not improved by the use of the
Hermite-type RPIM shape functions for the case of boundary condition I,
while the random nodal model is employed. For the random model with

356 Chapter 6

boundary condition II, the use of the Hermite-type RPIM shape function
gives better accuracy.

Figure 6.17. A total of 1681 randomly distributed nodes created using the Halton random
model (interior nodes: 1521; boundary nodes: 160).

Table 6.12. Errors in the numerical results obtained using the RPCM-Exp without
polynomial augmented (c=10.0) and 41 41 regular nodes (9-node
interpolation scheme)

Conventional RPIM
shape function

Hermite-type RPIM
shape function

Boundary condition I
 e0(%) exe (%) eye (%) e(%) exe (%) eye (%)

10.0 5.04 5.41 3.89 0.97 1.80 2.56
1.0 4.38 4.97 4.85 0.46 1.86 4.67
0.1 2.55 17.13 28.63 0.95 17.52 28.71
0.01 28.12 72.58 79.86 27.87 72.50 79.85

Boundary condition II
 e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

10.0 8.25 7.89 7.57 1.64 2.42 1.56
1.0 9.62 9.62 10.73 1.16 2.25 1.26
0.1 18.24 24.84 29.02 2.43 17.90 13.46
0.01 fail fail

: the diffusion coefficient.

Note that when is very small, the problem becomes convection
dominated, for which the instability in the solution has been very well
known for many numerical methods including the FDM and FEM, as
discussed in Section 6.4. It can be concluded that the instability problem can
be alleviated using enlarged local support domains or adaptive upwind
support domains in the MFree method. Table 6.14 lists the results of

6. Meshfree collocation methods 357

different sizes of support domains for the case of =0.01 that is a highly
convection dominated case. To obtain the results in Table 6.14, RPCM-Exp
with c=10.0 and 1681 regularly distributed nodes are used. This table
shows that the accuracy of solution significantly improves with the
enlargement of the local support domain. It confirms again that the
enlargement of the support domain can help to stabilize the solution of a 2D
convection dominated problem.

Table 6.13. Errors in the numerical results obtained using RPCM-Exp (c=10.0) and
1681 irregular nodes (the size of support domain: s=2.0)

Conventional RPIM
shape function

Hermite-type RPIM
shape function

Boundary condition I
 e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

10.0 0.08 0.19 0.15 0.08 0.19 0.14
1.0 0.06 0.17 0.12 0.06 0.164 0.12
0.1 0.15 2.67 2.27 0.15 2.67 2.27
0.01 fail fail

Boundary condition II
 e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)

10.0 0.26 0.82 0.76 0.13 0.24 0.14
1.0 0.27 1.21 0.98 0.10 0.29 0.14
0.1 3.85 12.08 5.96 1.63 3.55 2.29
0.01 fail fail

: the diffusion coefficient.

Table 6.14. Errors in the numerical results obtained using RPCM-Exp (c=10.0) and
1681 regular nodes for =0.01

Boundary condition I Boundary condition II

s e0(%) exe (%) eye (%) e0(%) exe (%) eye (%)
1.01 341.9 100.4 100.1 fail fail fail
1.45 27.8 72.5 79.8 fail fail fail
2.05 6.7 28.7 32.3 101.1 133.6 134.2
3.05 4.2 13.5 17.1 61.7 94.5 90.5

To study the efficiency of using the adaptive support domain discussed in
Sub-section 6.4.4, this problem with small values of is analyzed. For
simplicity, only the following Dirichlet boundary conditions are considered.

0
1
0
1

0x
x
y
y

u (6.96)

358 Chapter 6

The adaptive upwind support domain is defined by assuming the
following formula

u s(co /)d d(coth 1/)u s(cot))(coth /1/1/1//1/ (6.97)

where dudd is the central offset distance against the stream direction from the
collocation node as shown in Figure 6.18, Pe is the vector of the local Peclet
numbers, and dsd is the size of the local support domain.

Figure 6.18. Construction of an adaptive upwind local support domain in a 2D problem
domain using offset distance dudd .

Errors in the numerical results obtained using the RPCM-Exp with
different are listed in Table 6.15. Table 6.15 shows that the adaptive
upwind support domains can stabilize the solution, and gives the good
results for this convection-dominated problem.

In summary, for a PDE with DBCs, the RPCM based on the Hermite-
type RPIM shape functions produces better results than that based on the
conventional RPIM shape functions, because the DBCs can be more
accurately enforced using the Hermite-type interpolation. However, the use
of the Hermite-type RPIM shape functions for 2D cases is not as effective as
that observed for 1D cases. This may imply that the effects of the DBCs are
more severe in multi-dimensional problems.

Stream direction

dudd

Collocation point

Biased centre

Normal support domain

Adaptive upwind
support domain

6. Meshfree collocation methods 359

In addition, the instability problem in the 2D convection-dominated
problems can be alleviated using enlarged local support domains and
adaptive upwind support domains.

Table 6.15. Errors e0(%) in the numerical results obtained using the RPCM-Exp
(c=10.0) and 121 regular nodes for different

* The size of local support domain: dsd =2.0dcdd .

6.6.3.2 Linear dynamic convection-diffusion equations

Consider a 2D problem governed by the following time-dependent
convection-diffusion equation.

() (0T T() A
uL(q)
t

((T(Au qu)))) , in (6.98)

where D is defined in Equation (6.90), and qAqq are all given constants, v is
the vector of velocities

T
x yv vx yv (6.99)

The following boundary and initial conditions are considered.

DBC:
T

DB () 0BL u u qT
DB () Bu quT , on DB (6.100)

where n is the unit outward normal vector on the boundary, and Bq is
the specified source term on the derivative boundary.

Dirichlet boundary condition:

0ii uui , on u (6.101)

where u is the specified u.

Initial condition:

)(),(0
0u),() t (6.102)

= 210 = 310 = 410 = 610

0(%) e0(%) e0(%) e0(%)

Normal support domains 55.5 342.9 496.6 518.1

Adaptive support domains 2.0 2.1 2.1 2.1

360 Chapter 6

In Equation (6.98) the field variable u is a function of the spatial
coordinate and time.

The problem domain is now represented using NdNN internal (domain)d
nodes and NbNN =NDBNN + NuNN boundary nodes, which NDBNN is the number of DB-
nodes and NuNN is the number of the nodes on the Dirichlet boundaries.

For the approximation of the field function u in the space coordinates, the
conventional RPIM shape functions are used for all the internal nodes whose
support domains do not include DB-nodes, and the Hermite-type RPIM
shape functions are used for DB-nodes and internal nodes whose support
domains include at least one DB-nodes, as we have done for the static
problems. Using the RPCM, we can obtain a set of system equations at time
t.

For the internal nodes and DB-nodes, we have

0
h
i

i
u R
t iR , 1, 2, , di N1, 2, , d (6.103)

where h
imu is the approximate value of u at node i and time t, and

T h T h()i i i(AR qi i) T h(T ((uuh
i)))))) (6.104)

For DB-nodes, we have in addition to Equation (6.103)

0T h
i Bi
h

Bu qin DT , DB1,2, , NDi 1,2, , (6.105)

For nodes on the Dirichlet boundary u , we obtain

0h
i iu ui iu , 1,2, , ui N1,2, , u (6.106)

With the conventional and the Hermite-type RPIM shape functions, h
iu

can be approximated as

1

() () ()
n

h
i j i j() ()()

j

u () () () () (h
i () ()()) () (6.107)

and its derivatives can be obtained by following equations:

1

() () ()
n

h
i j() i j

j

() ((()h
i ()u ()h
i () (6.108)

where n is the number of nodes used in the local support domain. Note that
in these equations, additional derivative DOFs are included.

The standard Crank-Nicolson scheme is used to perform the time
integration, which leads to

6. Meshfree collocation methods 361

0)(
2
11)(

t
uu 1

h
m

h
m (6.109)

where the subscript represents the time sequence, and t is the time step. t
In the following, a numerical example will be used to study the

performance of the RPCM for linearly dynamic convection-diffusion
problems.

Example 6.7: Rotating Gaussian wave problem:

This problem is a special case of Equation (6.98) with coefficients given

as
0 0
0 00 0

D , =1, qAqq =0, vxv =y= , and vyv = x .

The problem domain is defined in a square domain of
, and the Dirichlet boundary conditions is given by on

the entire problem boundary :

(,) 0,u(, x) 0,, (6.110)

The initial condition is

2
0

2

2)0,(
r

etu)0,()0 (6.111)

where 2 2
0 0() ()2

0r x x0() () (0() (2() () () (0 is the distance between a point at (x((, y) and
the initial position of the center at)000 (0.5,0.0) , and 0 1/8 is the
constant controlling the size of the Gaussian wave.

Two regular nodal distributions of 33 33 nodes and 65 65 nodes are
used to represent the problem domain, and the conventional RPIM-MQ
shape functions are used for the spatial discretization of the field variables.
The dimension of the support domain of a collocation node to be processed
is so chosen in order to select 9 or 25 nearest nodes in the support domain.
Note that the results of RPIM-Exp can also be similarly obtained, although
only the results of RPIM-MQ are presented here.

The elevations of the rotating Gaussian wave are plotted in Figure 6.19
and Figure 6.20. Figure 6.19 is obtained using 33 33 nodes, in the
procedure of time integration, 100 time steps with time interval of

t=2tt /100, and shape parameters of 2 / 32, 3.0c c2 / 32,2 / 32,d , and q=0.5 are
employed. Figure 6.20 is obtained using 65 65 nodes model, 1000 time
steps with time interval of t=2tt /1000, and shape parameters of

2 / 64, 3.0c c2 / 64,dc 2 / 64 , and q=0.5. To compare the accuracy of the various

362 Chapter 6

schemes, the maximum and minimum values of the computed solutions and
the error by the present method are listed in Table 6.16~Table 6.18.

(c) Full revolution, 0 max min2 , 4.7%, 0.9876, 0.00450 max mint 2 , 4.7%, 0.9876,4.7%, 0.9876,0 max i4 7% 0 98764 7% 0 98764 7%2

Figure 6.19. The solution for the rotating Gaussian wave solved using RPIM-MQ shape
functions and 33×33 regular nodes.

Table 6.16. Errors in the numerical results obtained using the RPCM with RPIM-
MQ shape functions and 33 33 regular nodes with different shape
parameters c (9 nearest nodes selected in the support domain)

Half revolution

c e0(%) exe (%) eye (%) umax umin

3.0 31.42 48.77 67.54 0.8433 -0.1623
6.0 41.14 59.30 82.87 0.8279 -0.1650

Full revolution
3.0 31.44 48.80 67.60 0.8435 -0.1624
6.0 41.18 59.34 82.94 0.8283 -0.1641

 * The shape parameter used in MQ: q=0.5

6. Meshfree collocation methods 363

(a) Half revolution, ,

0 max min3.40%, 0.99, 0.0002max mine0 3.40%, 0.99,0 99,max i3 40% 0 990 99
(b) Full revolution, 2 ,

0 max min3.47%, 0.99, 0.0002max mine0 3.47%, 0.99,0 99,max i0 99

Figure 6.20. The solution for the rotating Gaussian wave solved using RPIM-MQ shape
functions and 65×65 regular nodes.

Table 6.17. Errors in the numerical results obtained using RPCM with RPIM-MQ
shape functions and 33 33 regular nodes for different shape parameters

c (25 nearest nodes selected in the support domain)

Half revolution

c e0(%) exe (%) eye (%) umax umin

3.0 4.68 7.80 10.45 0.9873 -0.0045
6.0 9.20 12.98 25.02 0.9569 -0.0172

Full revolution
3.0 4.68 7.80 10.45 0.9876 -0.0045
6.0 9.22 13.00 25.07 0.9571 -0.0173

* The shape parameter used in MQ: q=0.5

Table 6.18. Errors in the numerical results obtained using RPCM-MQ with RPIM-
MQ shape functions and 65 65 regular nodes for different shape
parameters c (25 nearest nodes selected in the support domain)

Half revolution

c e0(%) exe (%) eye (%) umax umin

3.0 3.41 2.99 5.15 0.9987 -0.00026
6.0 0.68 0.93 1.51 1.00039 -0.00001

Full revolution
3.0 3.47 3.01 5.18 0.9988 -0.00026
6.0 0.68 0.88 1.42 1.00050 -0.00001

* The shape parameter used in MQ: q=0.5

364 Chapter 6

Note that the problem designed in Example 6.7 is a purely convection
problem, which can clearly show the instability issue discussed in Section
6.4. We have reconfirmed from this example that the solution can be
stabilized using denser nodes in the model and more nodes in creating the
RPIM shape functions. The use of a large c in the RPIM-MQ can also
improve the accuracy in the stabilized solution as shown in Table 6.18. This
is because

1) The use of denser nodes produces better resolution for the Gaussian
wave.

2) The use of more nodes in the local support domain allows the local
convection effects farther.

3) A large c makes the RPIM shape functions have large values in the
distant area, which also allows the convection effects farther.

Note that the better way to avoid the instability in the convection
dominated problems is to use the adaptive upwind support domains
discussed in Section 6.4 and Example 6.8. Another effective method to
overcome the instability problem in the dynamic convection-dominated
problem is the characteristic-based method that is widely used in the FEM
(see, e.g., Zienkiewicz and Taylor, 2000), and the FPM (Onate , 1996).

6.7 RPCM FOR 2D SOLIDS

Applying MFree strong-form methods (collocation methods) to solids
mechanics problems is usually much more challenging, because of the
presence of both normal and shear force boundary conditions. These force
boundary conditions are all of derivatives types, and related to the
derivatives of the displacements in both normal and tangential directions at a
point on the derivative (or stress or traction) boundaries. This section will
discuss a number of attempts performed by Liu X and GR Liu et al. (2002,
2003c,d,e) in dealing with those problems, when a collocation method is
used.

6.7.1 Hermite-type RPCM
Consider a problem of two-dimensional elastostatics of isotropic

materials. The standard governing equations (strong-form) for the plane
stress case (Timoshenko and Goodier, 1970) defined in the x-y- plane can be
expressed explicitly as

6. Meshfree collocation methods 365

2 2 2

2 ()2 2 0
2221 x

v2E (bxx yx y

2 2222u uu u2 21 221)2 xbxx yx y2 22 2x yx 2
12 1

2
(6.112)

2 2 2

2 ())2 2 0
2221 y

E v v u2

(byx yy x

2 2222v vv v2 21 221)2 ybyx yx y2 22 2y xy 2
12 1

2 (6.113)

where E andE are Young’s modulus and Poisson’s ratio, u and v are thev
two components of the displacement in x and y directions, respectively, and
bx and byb are the two components of the external body forces applied at x and
y directions, respectively.

On the derivative (stress) boundaries, t, where the traction forces in two
directions are specified, the stress boundary conditions are

x xx y xy x

y yy x xy y

n n tx xx y xy x

n n ty yy x xy y

xx yxx yxx yxx y

yy xyy xyy xyy x

nn xyny

nn xynx
(6.114)

where x, y, and xy are stress components, xn and yn are two components
of the unit outward normal vector in x and y directions on the boundaryy t

(see Figure 1.4), and xtx and yty denote the prescribed tractions in x and y
directions, respectively.

Substituting the expressions of stresses in terms of displacement
components (see, e.g, Sub-section 1.2.2) into Equation (6.114), we can
obtain the strong-forms of the stress boundary conditions in term of
displacements:

21 x
E tx

u v u v1u v uu v u1 v
xnx

u v uu v u1
yynnyy

u v u vu v u vu v uu v u1u v uu v u1nnnnyyyyyyyyyyyyyy 2x yx yyx y y xyyyyyyyyyyy 2x y y xx y y x2yyyy 2yyyy 2yyyy 2
(6.115)

21 y
E ty

u v u v1u v uu v u1 v
yny

u v uu v u1
xxnnxx

u v u vu v u vu v uu v u1u v uu v u1nnnnxxxxxxxxxxxxxx 2y xy x y x yxxxx 2x y x yx y x y222xxxx 2 (6.116)

Equations (6.115) and (6.116) can be written in the following matrix form

21
uE

1 1
yn

xx y xnx y xyn ny xy 2y x yy x2x y y xx y y x2 2y 2xtx x y y xxx y y xx y y x2 2x y y xx y y x2 2xx u
1 1t vyytyt

x y xy n n nx yx yny n nn nnx yxx yx y xx yx y y xxy x y y xx y y x2 22x y xx y2x y y xx y y x2 22

1nn

1nn
(6.117)

366 Chapter 6

These equations show that the boundary conditions are given in terms of
derivatives of the field variable (displacements) with respect to both
coordinates. It is therefore a typical type of DBC for solids mechanics
problems; is also termed as natural boundary conditions in the context of l
weak-form formulation (see also Section 1.5).

Equations (6.112), (6.113), (6.115) and (6.116) are for plane stress
problems. For plane strain problems, the strong-forms of governing
equations and stress or natural boundary conditions can be easily obtained
from Equations (6.112), (6.113), (6.115) and (6.116) by replacing the
Young’s modules E withE

21
EE 2 (6.118)

and the Poisson ratio with

1
(6.119)

The displacement boundary conditions can be expressed as:

u= u , on u (6.120)

v= v , on u (6.121)

where u and v are the displacements in the x and y directions specified on
the displacement boundaries. Equations (6.120) and (6.121) are the essential
boundary conditions in the context of weak-form formulation (see also
Section 1.5).

These equations are directly approximated using MFree shape functions,
such as the MLS approximation, the RPIM, etc., and discretized by
collocating at the field nodes. Note that special treatments are needed for the t
discretization of the equations of the stress (derivative) boundary conditions
Equations (6.115) and (6.116). In this section, the Hermite-type RPIM
discussed in Sub-section 3.2.2.2 is used for the implementation of the stress
boundary conditions.

For the internal nodes or nodes on the displacement boundaries whose
support domains do not include DB-nodes, the conventional RPIM shape
functions are used. The displacement at a point x can be approximated as

6. Meshfree collocation methods 367

1

1
T() s

n

u
v1

u

0n11 01

0
n1

0
n1

10 n1 0110 0

nv

u(u (6.122)

where is the matrix of the conventional RPIM shape functions, and su is
the vector that collects all nodal displacements at the n nodes in the local
support domain.

Substituting Equation (6.122) into Equations (6.112), (6.113), (6.115) qq
and (6.116), we can obtain a set of discretized system equations for these
nodes. Detailed procedures are similar to those presented in Sub-section
6.3.1 for 1D problems.

For DB-nodes and internal nodes whose support domains include DB-
nodes, the displacement at a point x can be approximated using the Hermite-
type RPIM shape functions (see Sub-section 3.2.2.2) to arrive at

suu T)(x (6.123)

where the matrix of shape functions is obtained using equations given in
Sub-section 3.2.2.2, i.e.,

T
0H H

11 0 0 00 011
H H00

DB1 0n n11 011 01 01 01

0 H H0 00 0 H H0
DB1 n n11 1

H0 n1 0 0 00 01 11 1
H01 01

0 000 0

0 000 0
(6.124)

In Equation (6.123), su is the vector that collects all nodal displacements at
the n nodes in the local support domain and nodal normal derivatives of the
DB-nodes on the stress boundaries in the support domain.

T

s

DB DBDB DB DB
1 n nvv1

DBDB DB vv nun
DBuu1

DBu1 1 DB DB
n1 1 nu v u v1 1 n1 1

1 1 DB DBn nDB11u1
n1 1 nn1 1 n nn n nn n

u u v (6.125)

The displacement at a collocation node x can be re-written as

1

DB

DB
j

nn

DB
i 1 j j

u
n

v11j1

0H
j
H0 u()u 0j

DB
n()

()
()u j

H

0j
H0 H()v() 0 j
H
j0 HH0 HH0 H

n

i0i 0 uiii iiii0 iiii

0
i

000
(6.126)

368 Chapter 6

The governing Equations (6.112) and (6.113) are discretized at all DB-
nodes and the internal nodes whose support domain contain DB-nodes using
Equation (6.126) and the similar procedures presented in Sub-section 6.3.1.

For the DB-nodes, the stress boundary conditions, Equations (6.115) and
(6.116), are also imposed using the Hermite-type RPIM shape functions.
Substituting Equation (6.126) into Equation (6.117), we have

2
1

2

1

1

n
i

i

uE

E

ii
xi yi xi yin n n ni i i
xi yi xi x

in nn nni iii i
yi xi2 2yi xi yix y y xx y y x2 2y

xtx x y y xxx y y xx y y x2 2x y y xx y y x2 2y

2

y yxx iui

it ivyytyt i
yi xi yi xin n n ni i i
yi xi yi

in nn nni iii i
xi yixi yi xiy x y y xxyi x y y xx y y x2 22 2xi yi xix y y xx y y x2 2

i i i i11 1i i i1i i iii i ii ii iii i 1111i iii ii iii iii ii

1 1i i i i1i i iii i ii i 1i iii i 11i iii ii iii ii iii ii
2

2
1

DB

b
j

n

b
j j

u
n
v j

H H H H
j

H H H HH H
j1 1H H HH HH1 1j j j1 111 j

yjnj
xj yj xjn n nj
xj yj xjn njj

yj xj
j

yjyj xj
j 1j 1 j jj jj jj jj jjj j 11 jj 1 1

xj x y y x2 2yjx y y xx y y x2 2yjxj 2yj2yj xj

HH 1 H H HH
jn jj 1n nj j jn1 j

yjn xj yj xjn n nxj yj nn n nnyj xj nxx 2 y yxyj xx 2xj y y xy 22yj xj xx2

H H HHH 11 j11j jj jjj j 1111

(6.127)
Using Equation (6.127), the force (derivative) boundary conditions can be
implemented. Some numerical examples will be presented in the following.

Example 6.8: 2D Cook membrane’s problem

The Cook membrane’s problem shown in Figure 6.21 is solved using the
radial point collocation method (RPCM). The membrane is subjected to a
uniformly distributed shear load at the free end. The parameters are E=1,EE

=1/3, and F=1. A reference solution for this problem was given by Hueck FF
and Wriggers (1995) using FEM with a fine mesh of 128 128 elements.
The vertical displacement at point C is found in the FEM analysis as vc
=23.96; the maximum principal stresses at the point A is Amax=0.2369, and
the minimum principal stresses at the point B Bmin= 0.2035 .

The thin plate spline (TPS) RBF augmented with the constant term (m=1)
is used in the construction of the Hermite-type RPIM shape functions. Two
nodal distributions of 9×9 nodes and 17 17 nodes shown in Figure 6.22 are
used. The numerical results obtained are plotted in Figure 6.23~Figure 6.25
for different sizes of local support domains. The solutions obtained using
the finer nodal distribution are generally much better than those from the
coarser nodal distributions. The results obtained using the RPCM converge
with the increase of the size of the support domain. The accuracy of the
solution is poor if s<4.5. Note that for most problems studied in this book
or the book by GR Liu (2002), s 3.0 is usually used. It shows that solving
solid mechanics problems using collocation methods is generally much more

6. Meshfree collocation methods 369

demanding on the number of nodes used in the support domain, compared
with the weak-form methods.

The convergence is not monotonic. This is a typical feature of the
collocation methods or MFree strong-form method in general, in contrast to
the methods based on the energy principles where the convergence is usually
monotonic, and hence it is easier for error bound estimation. Finally, we
mention, without showing detailed results, that if the direct RPCM is used
for this problem, the results are poor. The use of the Hermite-type
interpolation is essential for this problem due to the presence of the complex
DBCs.

Figure 6.21. Cook’s membrane problem.

(a) 9 9 nodes (b) 17 17 nodes

Figure 6.22. Two nodal distributions used in the RPCM.

B

A44l

16l

44l

48l

C
F

240.5
80

.5

370 Chapter 6

2.5 3.0 3.5 4.0 4.5 5.0
10

15

20

25

30

v c

s

vvc (81 nodes)
vvc (289 nodes)

Figure 6.23. The vertical displacement at point C for the Cook’s membrane problem
solved using Hermite-type RPCM-TPS with shape parameter of =4.

2.5 3.0 3.5 4.0 4.5 5.0
-0.25

-0.20

-0.15

-0.10

-0.05

B
m

in

s

Bmin (81 nodes)

Bmin (289 nodes)

Figure 6.24. The minimum principal stress at point B for the Cook’s membrane
problem solved using Hermite-type RPCM-TPS with shape parameter of =4.

6. Meshfree collocation methods 371

2.5 3.0 3.5 4.0 4.5 5.0
0.10

0.15

0.20

0.25

0.30

Am
ax

s

Amax (81 nodes)

Amax (289 nodes)

Figure 6.25. The maximum principal stress of at point A for the Cook’s membranet
problem solved using the Hermite-type RPCM-TPS with shape parameter of =4.

6.7.2 Use of regular grid (RG)
FDM is successful for both fluid and solids mechanics problems with

DBCs (e.g. Klerber, 1998). This is because regular grids are used, and a
proper procedure for implementing the DBC can be formulated. This fact
has motivated many to use FDM grids in the MFree methods on the
derivative boundary to handle the DBCs in CFD problems (Liszka and
Orkisz, 1977; Cheng and GR Liu, 1999, 2002). This section reports the
attempts made by Liu X et al. (2003e) for solids mechanics problems using
regular nodes on and near derivative boundaries. The conventional RPCM
procedure is used for all the other nodes that may not be regularly distributed.

The force boundary conditions are given in Equations (6.115) and
(6.116), and involve the 1st derivatives of both displacements. In order to
approximate these derivatives, several layers nodes regularly distributed are
placed along the force boundaries. The standard difference scheme used in
FDM is then employed for these nodes to construct the discretized equations
for these derivatives. The force boundary conditions are then enforced in a
similar manner used in the conventional FDM, while other nodes in the
problem domain can still be irregularly distributed.

372 Chapter 6

Two types of boundary shapes are considered in this study: the straight
boundary as shown in Figure 6.26 and the curve (circle) boundary as shown
in Figure 6.27.

Figure 6.26. Regular grids used to approximate the DBCs on a straight boundary.

Figure 6.27. Regular grids used to approximate the DBCs on a curves boundary.

When the force boundary is straight, three layers of regular nodes are
used, as shown in Figure 6.26.

xIxJ

I1

I2II

I3II I4II

J1JJ

J2JJ

J3JJ J4JJ

Force
boundary

 collocation node; regular field nodes;
 irregular field nodes

6. Meshfree collocation methods 373

For a collocation node at xIx that is not at the corner, four nodes,I I1II , I2II ,
I3II and I4II , around xIx are used to approximate the 1st derivatives of I
displacements, u and v, using the standard difference scheme:

4 3 1 2

4 3 2

3 4
,I4 3 I I I1 2

I4 3 I I2

u uIu
x x x y y y

3I I4 3 I2

3 4u4 I3I4 3
u uu 3I I4 3
u uI ,

x x x y yx x x y yI I I

4 3 1 2

4 3 2

3 4
,I4 3 I I I1 2

I4 3 I I

v vI Iv
x x x y y y

3I I4 3 I

3 4v4 I3I4 3
v vv 3I I4 3
v vI I ,

x x x y yx x x y yI I I

(6.128)

For a collocation node at xJx that is at the corner, four nodes,J J1JJ , J2JJ , J3JJ
and J4JJ , around xJx are used to approximate the 1st derivatives of J
displacements, u and v, using the standard difference scheme:

3 4 1 2

4 2

3 4 3 4
,J J3 4 J J J1 2

J4 J2

u u4 Ju
x x x y y yJ J4 J2

3 4u4 J4
3 4J J3 4

uu 4
3 J J J3 4

uJJ43 4u43 u4 J4
,

x x x y yx x x y yJ J J

3 4 1 2

4 2

3 4 3 4
,J J3 4 J J J1 2

J4 J2

v vJ Jv
x x x y y yJ J4 J2

3 4v4 J4
3 4J J3 4

v
4v 3 J J J3 4

vJ JJ43 4v43 v4 J4
,

x x x y yx x x y yJ J J

(6.129)

Substituting Equation (6.128) or (6.129) into Equations (6.115) and (6.116),
we obtain a set of discretized equations for the force boundary conditions.

When the force boundary is a curve (e.g. circle), three layers of regular
nodes are used, as shown in Figure 6.27.

1) For a collocation node at xIx that is not at the corner, four nodes,I I1, I2II ,
I3II and I4II , around xIx are used to express the 1st derivatives of I
displacements, u and v, using the standard difference scheme in the
polar coordinates:

4 3 1 2

4 3 2

3 4
,I4 3 I I I1 2

I I4 3 I I2

u u4 Iu
rI

3 4u4 I3I4 3
u uu 3I I4 3
u uI ,

I Ir rII

4 3 1 2

4 3 2

3 4
,I4 3 I I I1 2

I I4 3 I I2

v v4 I Iv
rI

3 4v4 I3I4 3
v vv 3I I4 3
v vI I ,

I Ir rII

(6.130)

2) For a collocation node xJx that is at the corner, four nodes,J J1JJ , J2JJ , J3JJ and
J4JJ , around xJx are used to get the 1st derivatives of displacements,J u
and v, using the standard difference scheme in the polar coordinates:

374 Chapter 6

3 4 1 2

4 2

3 4 3 4
,J J3 4 J J J1 2

J J4 J J2

u u4 Ju
rJ

3 4u4 J4
3 4J J3 4

uu 4
3 J J J3 4

uJJ3 4u43 u4 J4
,

J Jr rJJ

3 4 1 2

4 2

3 4 3 4
,J J3 4 J J J1 2

J J4 J J2

v v4 J Jv
rJ

3 4v4 J4
3 4J J3 4

vv 4
3 J J J3 4

vJJ43 4v43 v4 J4
,

J Jr rJJ

(6.131)

For a circular boundary, the derivative for x and y can be obtained using the
following equations of coordinate transformation (Reddy, 1993).

cos

sin

u

u
y

sinu uu sincos
x r rx

cosiu uu cosisin
y r ry

(6.132)

cos

sin

v

v
y

sinsv vv sincos
x r rx

cosiv vv cosisin
y r ry

(6.133)

Substituting Equations (6.130)~(6.132) and (6.133) into Equations (6.115)
and (6.116), we find a set of discretized equations for the force boundary
conditions.

For all other nodes, the standard collocation scheme similar to that
presented in Sub-section 6.3.1 is employed using the conventional RPIM mm
shape functions.

For easy description, the above present method is terms as RPCM-RG in
the following numerical examples.

Example 6.9: An infinite plate with a circular hole

Consider a plate with a central circular hole of x2+y+ 2 a2 at the centre
subjected to a unidirectional tensile load of 1.0 in the x-direction as shown in
Figure 6.28. Due to symmetry, only the upper right quadrant of the plate is
modelled (see, Figure 6.29). Symmetry conditions are imposed on the left
and bottom edges. The inner boundary is traction free. Plane strain
conditions are assumed, and the material constants are E=1.0EE 103, and

=0.3.
When b/a 5, the solution of the finite plate is very close to that of the

infinite plate (Roark and Young, 1975), for which there is an analytical
solution:

6. Meshfree collocation methods 375

2 4

3

4ru rr

a a
r r

1 2r cos22
2

cos2
2

11111

4

3 cos 23
a222cos2cos2

(6.134)

4
u

2 4a a
3

a a
3r r3 sin 233

a a
4

(6.135)

where

3 4 plane strain
3 plane stress2
1

E
2

(6.136)

The analytical solution for the stresses of an infinite plate is
2 4

2 4
3 3(,) 1 { cos 2 cos4 } cos 42 42 2x

a a3 3{3,,
r r2 2

cos4 } cos 44 4
31 { cos 21 {2 cos4 }cos4cos4 } (6.137)

2 4

2 4
1 3(,) { cos2 cos 4 } cos 4{2 42 2y

a a1 3{1,,
r r2 2

cos 4 } cos 4cos 4 4
3cos 4 }cos 4 } (6.138)

2 4

2 4
1 3(,) { sin 2 sin 4 } sin 42 42 2xy

a a1 3{1,,
r r2 2

sin 4 } sin 4i 4 4
3{ sin 2{2 sin 4 }sin 4sin 4 } (6.139)

where (r,) are the polar coordinates with measured counter-clockwise
from the positive x axis.

The displacement boundary conditions are given by

0u , on the edge of x=0 (6.140)

0v , on the edge of y=0 (6.141)

which ensure the symmetry of the problem.
Traction (derivative) boundary conditions given by the exact solution

Equations (6.137)~(6.139) are imposed on the right (x((=5) and top (y((=5)
edges. Clearly, this problem has more complex traction (natural) boundary
conditions.

A total of 165 nodes are used to represent the problem domain, and the
nodal arrangement is shown in Figure 6.29. The displacements obtained by
RPCM-RG based on the RPIM-MQ shape functions and the analytical
methods are almost identical. As the stresses are more critical for accuracy

376 Chapter 6

assessment, detailed results of stresses distribution for stress xx along x=0
computed using the RPCM-RG with different parameters are shown in
Figure 6.30. Figure 6.30 shows that the RPCM-RG method yields
satisfactory results even for stresses for these sets of shape parameters used.
Note that these sets of good shape parameters are not the same as those
found in other examples. In addition, we have found again that when the RG
method is not used, the RPCM failed to give a reasonable result.

For comparison, results obtained using EFG and RPIM methods (see,
Chapter 4) are also plotted in Figure 6.30. It is shown that EFG and RPIM
produce more accurate stresses than the RPCM-RG method. This confirms
that a weak-form method is usually more accurate than a strong-form
method. It should be noted that in the weak-form methods, EFG and RPIM,
no special treatment is needed to enforce the force (derivative) boundary
conditions. The solutions obtained using these weak-form methods are
much less sensitive to the shape parameters, and wide ranges of good shape
parameters have been found and shared with many types of problems (GR
Liu, 2002). However, a background mesh is needed for the numerical
integrations.

Figure 6.28. A 2D solid with a central hole subjected to a unidirectional tensile
load. Only the upper right quadrant with dimension of 5 5 of the plate is modeled.

x

y

2a

oo

6. Meshfree collocation methods 377

Figure 6.29. One quarter model of nodes and boundary conditions in a finite 2D
solid with a central hole subjected to a unidirectional tensile load in the x direction.

RPCM (s=1.5, c=10)

1.0

1.4

1.8

2.2

2.6

3.0

3.4

0.8 1.3 1.8 2.3 2.8 3.3 3.8

y

S t
re

ss

Exact

RPCM (s=1.5, c=6)

RPCM (s=2.0, c=10)
RPCM (s=2.0, c=6)

EFG (s=2.0)
RPIM (s=2.0, c=4)

Figure 6.30. Normal stress (xx) of the plate along the section of x=0 obtained using
different methods (q=0.5, m=0).

txt =tytt =0

u x
=

0;
 t ytt

=
0

uyu =0; txt =0
b=4a=1

c=
5

y

x

xxxx

xy

yy

378 Chapter 6

6.8 REMARKS

In this Chapter, the MFree strong-form methods are discussed. Several
numerical examples are presented to study the performance and efficiency.
The strong-form method is a truly meshless method; there is no mesh for
function approximation or the numerical integration. It is usually efficient,
especially there are no DBCs.

However, the major technical issue for the strong-form methods is the
enforcement of the DBCs. The error induced from the DBCs cannot be
effectively controlled. This often leads to instability and. Several strategies
were introduced to treat the DBCs, and these methods were examined in
numerical examples. We draw the following conclusions:

1) The collocation method is able to reproduce the exact solution if it is
included in MFree shape functions (see, Section 1.4).

2) The direct collocation (DC) method is simple and straightforward,
and it is efficient for problems with only Dirichlet boundary
conditions. The DC method is usually unstable or inaccurate for
problems with DBCs.

3) The method using fictitious points (FP) can usually obtain
satisfactory results. However, it increases the number of equations
and needs additional meshing work.

4) The Hermite-type collocation (HC) method based on the Hermite-
type shape functions is effective to enforce DBCs when a set of
properly tuned parameters are used for a given problem. However, it
increases the number of degree of freedom and thus increases the
computational cost. The HC method works well for 1D problems,
but not so consistently well for 2D problems.

5) Although the method of using regular grid (RG) nodes can more or
less effectively handle the DBCs, additional meshing work is needed
and it is difficult to use for some problems. In addition, the coding
for the equations of DBCs is troublesome.

6) A good method for 1D problems may not be good for 2D problems.
In general, 2D problem with derivative boundary conditions are more
difficult to handle. The situation may be even worse for 3D problems.

7) The use of denser nodes on the derivative boundaries often improves
the solution.

6. Meshfree collocation methods 379

8) One of the most critical problems in use of the collocation methods is
the poor robustness. A method tuned for one problem, may not work
for others, and one set of parameters tuned for one problem may not
work well for others. This unfortunate feature of collocation
methods or MFree strong-form methods in general has not been
observed in MFree weak-form methods.

In summary, there is still no way to totally solve the DBC issue in strong-
form methods.

MFree method has clear advantages in handling instability issues in the
convection-diffusion problems. Our study has found that

Due to the overlap feature in the MFree interpolations
/approximations, the solution for convection dominated problems is
general stable and convergent as long as the shape function is of 2nd
order or higher, meaning that the solution approaches the exact
solution when the nodes are refined.

The solution can be further improved by using more nodes in the
interpolation/approximations; this can be done without any technical
difficulty in an MFree method, in which the nodes used in the support
domain are not prefixed and can be selected as desired manner.

More accurate solutions can be obtained using adaptive upwind
support domains.

Chapter 7

MESHFREE METHODS BASED ON
COMBINATION OF LOCAL WEAK-FORM
AND COLLOCATION

7 MFree methods based on local weak form/collocation

7.1 INTRODUCTION

MFree methods fall into three categories (Chapter 2): MFree collocation
methods (or MFree strong-form methods), discussed in Chapter 6; MFree
weak-form methods, such as the RPIM method, the EFG method, LRPIM
method and the MLPG method, discussed in Chapters 4 and 5; MFree
methods based on the combinations of both the strong-form and the weak-
form or short for MFree weak-strong form method.

An MFree weak-strong (MWS) form method was proposed recently by
GR Liu and Gu (2002d); it aimed to remove the background mesh for
integration as much as possible, and yet to obtain stable and accurate
solutions even for PDEs with derivative boundary conditions. The MWS
method has been successfully developed and used in solid mechanics (Gu
and GR Liu, 2005; GR Liu and Gu, 2003b) and fluid mechanics (GR Liu
and Wu et al., 2004; GR Liu and Gu et al., 2003c).

This chapter is devoted entirely to MWS. Justification and motivation
precede the formulation, implementation and coding issues. The
convergence of the MWS method is studied numerically by comparison with
other methods. Finally, examples from elastostatics, elastodynamics and
fluid mechanics are presented to illustrate its efficiency, accuracy, and
robustness.

380

7. Meshfree methods based on local weak form/collocation

7.2 MESHFREE COLLOCATION AND LOCAL WEAK-
FORM METHODS

The MWS method is designed to combine the advantages of strong-form
and weak-form methods and to avoid their shortcomings. This can be
performed only after a thorough examination of the features of both types of
methods, presented in the following two sub-sections.

7.2.1 Meshfree collocation method

The MFree strong-form methods were discussed in detail in Chapter 6,
where the strong-forms of the governing equations and boundary conditions
are discretized simply by collocation techniques. The MFree strong-form
methods possess the following attractive advantages:

They are truly meshless.

The procedure is straightforward, and the algorithms and coding are
simple, when there are only Dirichlet boundary conditions.
They are computationally efficient, and the solution is accurate when
there are only Dirichlet boundary conditions.

However, MFree strong-form methods have disadvantages:
They are often unstable and less accurate, especially for problems
governed by PDEs with derivative boundary conditions.
Derivative boundary conditions (DBCs) involve a set of separate
differential equations defined on the boundary; these are different from
the governing equations defined in the problem domain. These DBCs
require special treatments.
Unlike integration, which is a smoothing operator, differentiation is a
roughening operator; it magnifies errors in an approximation. This
magnified error is partially responsible for the instability of the solution
of PDEs (see discussions in Section 6.1). Hence, MFree strong-form
methods are often unstable. Special treatments such as those discussed
in Chapter 6 are employed to implement the derivative boundary
conditions in MFree strong-form methods. However, such treatments
cannot always control the error. As demonstrated in Chapter 6, a
technique suitable for one problem may not work for another, even one
of the same types. A set of parameters tuned for one problem may not
work for another.

381

382 Chapter 7

7.2.2 Meshfree weak-form method

MFree weak-form methods, such as the element-free Galerkin (EFG)
method, the radial point interpolation method (RPIM), the meshless local
Petrov-Galerkin method (MLPG), and the local radial point interpolation
method (LRPIM), were discussed in detail in Chapters 4 and 5. The
common feature of MFree weak-form methods is that the PDE (strong-form)
of a problem is first replaced by or converted into an integral equation
(global or local) based on a principle (weighted residual methods, energy
principle etc.). Weak-form system equations can then be derived by
integration by parts (see, Chapters 4 and 5).

A set of system equations of MFree weak-form methods can be obtained
from the discretization of the weak-form using meshfree interpolation
techniques.

There are four features of the local weak-form (see, Chapter 5).
1) The integral operation can smear the error over the integral domain

and, therefore improve the accuracy in the solution. It acts like some
kind of regularization to stabilize the solution.

2) The requirement of the continuity for the trial function is reduced or
weakened, due to the order reduction of the differential operation
resulting from the integration by parts.

3) The force (derivative) boundary conditions can be naturally
implemented using the boundary integral term resulting from the
integration by parts.

4) The system equations in the domain and the derivative boundary
conditions are conveniently combined into one single equation.

These features give MFree weak-form methods the following advantages.
They exhibit good stability and excellent accuracy for many
problems.
The traction (derivative) boundary conditions can be naturally and
conveniently incorporated into the same weak-form equation. No
additional equations or treatments are needed and no errors are
introduced in the enforcement of traction boundary conditions.
A method developed properly using a weak-form formulation is
applicable to many other problems. A set of parameters tuned for
one method for a problem can be used for a wide range of problems.
This robustness of the weak-form methods have been demonstrated
through many practical problems. It is this robustness that makes
the weak-form methods applicable to many practical engineering
problems.

7. Meshfree methods based on local weak form/collocation 383

However, MFree global weak-form methods are meshfree only in terms
of the interpolation of the field variables. Background cells have to be used
to integrate a weak-form over the global domain. The numerical integration
makes them computationally expensive, and the background mesh for the
integration means that the method is not truly meshless. To remove the
global integration background mesh, methods based on the local Petrov-
Galerkin weak-forms have been proposed, such as the meshless local
Petrov-Galerkin (MLPG) method discussed in Chapter 5, the local boundary
integral equation (LBIE) method (Zhu et al., 1998,1999), the method of
finite spheres (De and Bathe, 2000), the local point interpolation method
(LPIM) (Liu and Gu, 2001b), the local radial PIM (LRPIM) that developed
based on the idea of MLPG, etc.

In the MFree local weak-form methods, the local integral domain in the
interior of the problem domain is usually of a regular shape. It can be as
simple as possible and can be automatically constructed in the process of
computation. The MFree local weak-form methods have obtained
satisfactory results in solid mechanics and fluid mechanics (Atluri and Shen,
2002; GR Liu, 2002).

Although the MFree local weak-form methods made a significant step in
developing ideal meshfree methods, the numerical integration is still
burdensome, especially for nodes on or near boundaries with complex shape.
The local integration can still be computationally expensive for some
practical problems. It is therefore desirable to minimize the need for
numerical integrations.

7.2.3 Comparisons of Meshfree collocation and weak-formff
methods

Both MFree strong-form methods and MFree local weak-form methods
have their own advantages and shortcomings, as discussed in Sub-sections
7.2.1 and 7.2.2, and they are largely complementary. Therefore, their proper
combination could be beneficial.

Close comparison of the MFree strong-form methods and the MFree
local weak-form methods reveals the following facts.

1) The implementation schemes of these two types of MFree methods are
similar. They all construct the discretized equations one-by-one based on
the field nodes, and the system equation is assembled (stacked) in a node-dd
by-node manner. This is different from the MFree global weak-form
methods, in which the discretized equations are constructed and
assembled based on the integration cells and the quadrature points.

384 Chapter 7

2) If the delta function is used as the weight function in MFree local weak-
form methods, the MFree local weak-form method becomes an MFree
strong-form method. This can be easily demonstrated as follows.

Let the weight function be

()I I(WI ((((7.1)

The local weak-form becomes

()()d 0
q

I ij j i,)()(,()()()d)d)()((7.2)

The property of the delta function leads to

() () 0ij j I i I, () () (()()(()) (((7.3)

This is exactly the discretized strong-form equations or the collocation
formulation for node I.II

3) In the MFree strong-form method, instability and computational error are
mainly produced by the presence of DBCs. In the weak form methods,
by contrary, DBCs can be easily and accurately enforced by using a
sufficiently large local integral domain.

4) In the MFree strong-form method, the essential boundary conditions can
be imposed conveniently and accurately. In the MFree local weak-form
method, however, the essential boundary conditions require special
treatments (such as the penalty method or Lagrange multiplier method)
when MLS shape functions are used.

5) The number of field nodes on or near the derivative boundary is much
less than that of the internal nodes plus the nodes on the essential
boundaries. In the MFree local weak-form method, most computational
cost for numerical integrations comes from the integration for internal
nodes and the nodes on the essential boundary.

7.3 FORMULATION FOR 2-D STATICS

7.3.1 The idea

Consider the two-dimensional solid mechanics problem with a problem
domain shown in Figure 7.1. The problem domain and boundaries are
represented by sets of irregular field nodes. The key idea of MWS is that in

7. Meshfree methods based on local weak form/collocation 385

establishing the discretized system equations, both the strong-form and the
local weak-form are used for the same problem but for different sets of
nodes.

Figure 7.1. Concept of the MWS method: the local Petrov-Galerkin weak-form is used for
the field nodes (e.g. the Lth node) that are on or near the derivative boundaries. Strong-

form is used for all the rest nodes (e.g. the Ith and Jth nodes).II s is the local support
domain. q is the local quadrature domain.

For a field node, a simple quadrature domain (see Section 5.2) is defined
in Figure 7.1, where q denotes the local quadrature domain for the field
node. For a node whose quadrature domain q does not intersect with the
global derivative boundaries t, the strong-form (collocation) is used.
Otherwise, the local Petrov-Galerkin weak-form is used.

In MWS, for all the nodes whose local quadrature domains do not
intersect with derivative boundaries, no numerical integrations are needed.
The local integrations are needed only for the few nodes on or near the
derivative boundaries. The derivative boundary conditions can then be
easily imposed together with the system equation to produce stable and
accurate solutions. MFree interpolation techniques that have been discussed
in Chapter 3 can be used in the weak-strong-form. The detailed formulation
will be presented in the following section.

For convenience of description, we define DBR-nodes and collocatable
nodes. A DBR-node is a node on a problem boundary, on which the
derivative (natural) boundary conditions are specified, or an internal node
whose local quadrature domain intersects with the derivative boundaries.

Node I

q
qi

qt

ut

s

xQ Node J

Node L

t

386 Chapter 7

DBR stands for Derivative Boundary Related. A collocatable node is an
internal node that is not a DBR-node or a node on the essential boundaries.

In summary, the strategy of the MWS method is that the local weak-
forms are used to establish discretized system equations for all the DBR-
nodes and for collocatable nodes, the strong-form of PDEs will be directly
discretized by collocation using MFree shape functions.

7.3.2 Local weak-form

The local weak-form is used for all the DBR-nodes. We use the local
Petrov-Galerkin weak-form of the governing equations for 2D solids
presented in Sections 5.2 and 5.3. The local weak-form for Ith node can beII
written as

)d 0
q

I ij j i,(,W b(I ()d (7.4)

where W is the weight function. The Petrov-Galerkin weak-form was used
by Atluri et al. (1999b) to formulate the MLPG method, as detailed in
Section 5.3. Equation (7.4) is different from Equation (5.34) where there is
an additional term for imposing essential boundary conditions. In MWS,
however, the Petrov-Galerkin weak-form is used only on DBR-nodes where
there is no essential boundary condition.

The first term on the left hand side of Equation (7.4) can be integrated by
parts. The boundary q for the local quadrature domain usually comprises
three parts: the internal boundary qi, the essential boundary qu and the
derivative boundary qt; Equation (7.4) becomes

d
q qi qu qt q

I ibWI i

q qi qu qt

dI j ij, I i I i I iW W t W t W tW t W t W td d d dd d dI j ij dWdWdI i I i I id d dd dd d dd d d (7.5)

Equation (7.5) is the local Petrov-Galerkin weak-form to be used in
MWS. Equation (7.5) shows that the derivative (or traction) boundary
conditions have been incorporated naturally into the local weak-form of the
system equation. No additional equation for derivative boundary conditions
is needed.

The test (weight) function plays an important role in the performance of
the local weak-form. For simplicity, the test functions are selected such that
they vanish over qi. This can be easily done using the weight functions
given in Chapter 3, such as the 4th-order spline weight function (W2 given
in Equation (3.149)). Hence, Equation (7.5) can be simplified because the
integration along the internal boundary qi vanishes. We therefore have the
following local weak-form for all the DBR-nodes.

7. Meshfree methods based on local weak form/collocation 387

d
q qu qt q

I iW bI i

q qu qt

dI j ij, I i I iW W t W tW t W td d ddd dI j ij I i I id ddd dd d (7.6)

7.3.3 Discretized system equations

As shown in Figure 7.1, the global problem domain is represented by a
set of irregularly distributed field nodes. Using the MLS or RPIM shape
functions, we can have

(2 1) (2 2) (2 1)()h
) (2) (21) (2()

1u11

1v1v
0n11 0u 1v1u 1 n1

0 0
n1

v 10 n1 0110 00 0
unuu

nnv

u(2 1) (h
1) (u (7.7)

where n is the number of nodes in the support domain of a sampling point x.
 is the matrix of shape functions. The sample point is a field node when

the strong-form is used, and it is a Gauss point when the local weak-form is
used. Note that these n field nodes are numbered from 1 to n, and it is a
local numbering system for these field nodes used in the support domain.
The field node has also a global number that is uniquely given to all field
nodes from 1 to N. This global numbering system is used to assemble all theNN
local nodal matrices together to form the global matrix. Hence, an index is
needed to record the global number for a field node used in the support
domain.

With Equation (7.7) and the equations given in Sub-section 1.2.2, the
product of Luh , which gives the strains, becomes

(3 1) (3 2) (2 1)) (2) (22) (22) (2) (2) (2B u(3 2)(3 2)2)) (7.8)

where B is the strain matrix given in Sub-section 4.2.1. The stress vector
can be written as

(3 1) (3 3)1) (31) (3D (3 1) (3 3) (3 2) (2 1)) (2) (21) (3 3) (3 2) (21) (3 3) (3 2) (2) (2) (2D B u(3 3) (3 2)(3 3) (3 2)(3 3) (3 2)3) (3(3 3) (3 2)) (7.9)

where D is the matrix of elastic constants that is defined in Sub-section 1.2.2
for the plane stress problem and the plane strain problem. Substituting
Equations (7.7)~(7.9) into strong-form of the Equation (1.31), we can obtain

388 Chapter 7

s
I

T

1u0
00

1

v
1

xxx0
y

0 1v1v
()x (bxx yx y 0n1 0 1v1x yyx yx yx yx y)x (
()b0 00 10 n1 010 0 ()y I(by ()b

u
yyy00 nuu

y xxy xy xy xy x
nnvnyy xy xy x

b

LT

0
)

()
x I(

b
)x (

D n100 1 n1 n1
(7.10)

This can be written in the matrix form

(2 2)

T
(2 3) (3 3) (3 2) (2 2) (2 1)()

s
I (2 2

s
I(2 2) (2 1)(2 2) (23) (3 3) (3 2)3) (3 3) (3 (2 2) (2(2 2) (22) (2

K

L D LT
(2 3) (3 3)(3 3)3) (3 3)3) (3(3 3) u b 0(2 2) (2 1)) s

I(2 2) (2 1)(2 2) (2) (22) (2 (7.11)

where the superscript s stands for strong-form, and s
IK and s

Ib are,
respectively, the nodal stiffness matrix and the nodal body force vector for
the Ith node obtained by the strong-form (collocation) method. EquationII
(7.11) can be re-written as

() ()) () (
I IK u b 0() ()) () (
I I

()(
I (7.12)

where
T

(2 2) (2 3) (3 3) (3 2) (2 2)()s
I (2 2 (2 2(2 2) (2 3) (3 3) (3 2)3) (3 3) (32 (2K L D LT
(2 2) (2 3) (3 3)(2 3) (3 3)

s
I (2 2) (2 3) (3 3)3) (3(2 3) (3 3)2 (7.13)

(2 1)
s
I

()b ()x (bx

()b
)x I()x (

()by)(y I(by ()b
b (7.14)

Equation (7.12) is the discretized system equations for the Ith field nodeII
created using the strong-form and simple collocation procedure. It consists
of two linear equations that are for the Ith field node. No numericalII
integration is needed to obtain Equation (7.12), and only simple collocations
are performed.

Using the similar algorithm as that in Chapter 5, we can obtain the
following formulation for the local Petrov-Galerkin weak-form for Equation
(7.5) for the Ith DBR-nodeII

T

T

dT

dT

q qi qu

qt q

I

I

q qi

qt

dT

T TTTTT
I II

T
I
T

uT
IddTTTT dI IIId dd

bI
T

I dT dI d

T

T
(7.15)

7. Meshfree methods based on local weak form/collocation 389

where W (defined in Sub-section 5.2.1) is a matrix of weight functions, V
(defined in Sub-section 5.2.1) is a matrix that collects the derivatives of the
weight functions, the vector of tractions t at point x is defined in Equation
(5.17), and n is a matrix defined in Sub-section 5.2.1 collecting the
components of the unit outwards normal vector on the boundary.
Substituting Equation (7.7) into Equation (7.15) leads to the following
discretized systems of linear equations for the Ith node.II

() ()) () (
I IK u f())
I I (7.16)

where the superscript w stands for weak-form , and ()
IK is the nodal

stiffness’ matrix for the Ith field node created using the local weak-form. ItII
can be expressed as

() T dT d
q qi qu

I I I I

q qi

dTT Td ddTT d ddT
I II I I

TK ()
I I II II d ddT d dddT

II d dddT
(7 .17)

and ()
IfI is a nodal force vector for the Ith field node created using the localII

weak-form:
() T dT

qt q

I I I

qt

dT dII bI
Tf ()

I III dT dII d (7.18)

This consists of contributions from body forces applied in the problem
domain and tractions applied on the derivative boundary.

Equation (7.16) is a set of the discretized system equations for the IthII
field node using the local Petrov-Galerkin weak-form. It consists of two
linear equations for the Ith DBR-node.II

Using Equations (7.12) and (7.16), we can express the discretized system
equations for the Ith field node in the following general formII

I IK u fI I (7.19)

where
()

()
I q I t, ()(

I
I q I t, ()(

() t()(

() t()(

K ()
I , ((

K
K ()

I , ((
(7.20)

or in detail
T

T

d (T)

()
q qi qu

I qdd I t

I

q I t()
q qi

()I t

t

T TTTTT
I II dTT TT d dT
I d ddddTTT dd

K
L DLT

T

(7.21)

390 Chapter 7

and
()

()

, (

, (
I q, I t)

I
I q, I t)

() t)

() t)

F()
I , (

FI F()
I , (

(7.22)

or in detail
T

()

(

()
qt q

I q I t)
I

I q I t

qt

T d ()T d t)

t

T
I d (d (T ddT dI d

FI

(b()
I q

(7.23)

With Equation (7.19) for all N field nodes in the entire problem domain,N
and assembling all these 2N equations together, we obtain the final global N
system equations and expressed in the following form.

(2 2) (2 1) (2 1)2) (2 1) (22) (2 1) (21) (2K U F(2 2) (2 1) ((2 1)2) (2 1) (2) (2(2 1)1) ((7.24)

where K is the global stiffness matrix and K F is the global force vector.
Solving this equation for U after imposing essential boundary conditions, we
can obtain the displacements for all the field nodes and then can retrieve the
stresses using Equations (4.10) and (5.12).

Note that it is easy to enforce the essential boundary conditions, because
the strong-form method is used. If the MFree shape functions possess the
delta function property, the equations for the nodes on the essential boundary
need not even be created. If the shape functions do not possess the Delta
function property, the direct interpolation method can be used. Detailed
discussions can be found in Chapter 6.

7.3.4 Numerical implementation

7.3.4.1 Property of stiffness matrix

From Equations (7.21) and (7.24), it can be easily seen that the system
stiffness matrix, K, in MWS is sparse and banded as long as the support
domain of meshfree interpolation is compactly supported. However, K isK
usually unsymmetric.

The global stiffness matrix in MWS comprises two parts: the nodal
stiffness matrices obtained from the strong-form and the local weak-form.
The asymmetry of the stiffness matrix is inherited from the nature of the
local Petrov-Galerkin weak-form, which has been discussed in Sub-section
5.2.2. The portion of the stiffness matrices coming from the use of strong-
form may be symmetric if the same support domains are used for all the field
nodes. However, this requirement usually cannot be met unless one uses a
set of regular grids as in the conventional FDM model. Therefore, the global

7. Meshfree methods based on local weak form/collocation 391

stiffness matrix in MWS is usually unsymmetric. Making the global
stiffness matrix symmetric would improve the efficiency and the stability† of
the MWS method.

7.3.4.2 Type of local domains

In MWS, the local weak-form is used for the DBR-nodes. Similar to the
MFree local weak-form methods, for any DBR-node at xIx , there exist three
local domains as discussed in Sub-section 5.2.2.

For all collocatable nodes, the strong-forms are used via the collocation
procedure. As shown in Figure 7.1, there is only one local domain, the
support domain s used for field variable approximation, for a collocatable
node. The size of the local support domain has been defined in Equation
(5.30), and the suggested size is 1.5 ~ 3.0s .

7.3.4.3 Numerical integration

Integrations in MWS are performed only for the few DBR-nodes.
However, care should still be taken to obtain accurate numerical integrations.
As discussed in Sub-section 5.2.2 (see Figure 7.1), the local quadrature
domain q should be sufficiently large (1.5 ~ 2.0q is recommended), and
it should be divided into small partitions, and sufficient Gauss quadrature
points should be used in each of the small partitions. A more detailed
discussion of local numerical integrations can be found in the book by GR
Liu (2002). For complex quadrature domains, triangular background cells
may be used.

7.4 SOURCE CODE

In this section, a standard computer code, MFree_MWS.f90, of the MWS
method is given. This code is developed using FORTRAN 90. Combined
with Subroutines RPIM_ShapeFunc_2D and MLS_ShapeFunc_2D given in
Chapter 3, the code can perform the task of the MWS method using both
RPIM and MLS shape functions. For the convenience of description in later
comparison studies, we use MWS-RPIM to denote the MWS method using
RPIM shape functions, and MWS-MLS to denote the MWS method using
the MLS shape functions.

† It is generally true that a symmetric system seems to be more stable than an
unsymmetric one.

392 Chapter 7

7.4.1 Implementation issues

Numerical implementations used in the code MFree_MWS.f90 are
similar to those used in the code MFree_Local.f90 presented in Sub-section
5.4.1. Hence, numerical implementations of MFree_MWS.f90 are only
briefly described here.

As in the discussions in Sub-section 4.4.1, the influence domains are used
for construction of the meshfree shape functions. The dimensions of the
influence domain can be determined as in Sub-section 4.4.1. In the code
MFree_MWS.f90, rectangular influence domains are used. The dimension
of the influence domain is defined in Equations (4.75).

Because the requirement for the consistency of trial functions in the
strong-form is higher (e.g., 2nd order for 2D solids) than that in the weak-
form (e.g. 1st order for 2D solids)†, a basis with higher order should be used
in the MLS approximation. The parabolic polynomial basis (mbasis=6) is
therefore used in the MWS-MLS. In addition, the 4th-order spline weight
function is used as the weight function in computing the MLS shape
functions.

In the present MFree_MWS.f90 code, rectangular quadrature domains
are used. For problems with derivative boundaries of complex shapes,
quadrature domains consists of triangular cells should be used. The sizes of r
the rectangular quadrature domain have been defined in Sub-section 5.2.2.
The direct interpolation method is used to enforce the essential boundary
conditions.

For error analysis, the energy norm defined in Equation (4.78) is used as
an error indicator. Note that the integration in Equation (4.78) is over the
global domain. Hence, in order to assess the global error in the energy norm,
global background cells that are the same as these used in the RPIM (or EFG)
have to be used.

7.4.2 Program description

The flowchart of MFree_MWS.f90 is shown in Figure 7.2. The
procedure of the MWS method is similar to that in the MFree local weak-
form method. The main difference comes in the construction of the nodal
stiffness matrix. In the flowchart of the MWS method, the geometry of thef
problem domain is modelled and a set of nodes is generated to represent the
problem domain. The system matrices are assembled through loops for all
the field nodes. The local quadrature domain is constructed for each node,

† See, for example, the discussions given in Section 5.2.2 in the book by GR Liu
(2002) for the detailed argument on consistence.

7. Meshfree methods based on local weak form/collocation 393

and then a checking is performed to determine whether the local quadrature
domain intersects with the derivative boundaries.

If the local quadrature domain does not intersect with the derivative
boundaries, it is then noted as a collocatable node, and the nodal
stiffness is obtained directly through collocation using the strong-
form.
If the local quadrature domain intersects with the derivative
boundaries, it goes into the inner loop. In the inner loop, the nodal
stiffness matrix is obtained through another loop for all Gauss
quadrature points in the quadrature domain of this DBR-node.

After the construction of the global discretized system equations, the
essential boundary conditions are enforced by direct interpolation. The
algebraic system equations are solved using a standard linear equation solver
(for banded unsymmetric matrix) to obtain the nodal displacements or the
parameters of the nodal displacements. Finally, the nodal stress and the
global error in the energy norm are computed.

The source code of the main program of MFree_MWS.f90 is listed in
Program 7.1. The main program of the MWS method calls several
subroutines. The macro chart for the program is the same as Figure 5.4. The
functions of these subroutines are listed in Appendix 7.1. Because all the
subroutines used in MFree_MWS.f90 are the same as those used in the
program MFree_Local.f90, the source codes of these subroutines are not
repeated in this chapter. The same global variables as given in Appendix 5.2
are used in MFree_MWS.f90. In this chapter, the quartic spline function is
used as the test function in the local weak-form. The source code of this test
function is provided in Program 6.2. The including file, variableslocal.h, is
given in Program 5.1.

7.5 EXAMPLES FOR TESTING THE CODE

The code is tested on a cantilever beam subjected to a parabolic traction
at the free end as shown in Figure 4.5. The beam has a unit thickness and is
in plane stress. The exact solution of this problem is given in Equations
(4.79)~(4.84). As in discussions in Chapter 5, the following three steps
should be followed:

Step 1: Preparation of input file of this program

The data file is similar to that used in Appendix 5.9. A sample input data
file used in MWS.f90 is given in Appendix 7.2. This input data file has the

394 Chapter 7

same structure as that used in MFree_local.f90 (Sub-section 5.5.1), in which
the beam problem is represented by regularly and evenly distributed 189
(21 9) field nodes, as shown in Figure 4.12(a).

Input data

Search all influence domains to determine
nodes involved in the interpolation

Loop over
quadrature points

q intersects with
natural boundaries?

Compute the shape functions for the
quadrature point

Define local quadrature domain, q, for this field node

Loop over all the
field nodes

Search all influence domains to
determine nodes involved in

interpolation for the field node

Compute nodal stiffness matrix
for this field node

Compute the shape functions for the
quadrature point

Assemble the nodal stiffness matrix
into the global stiffness matrix

Compute nodal stiffness matrices
related to the quadrature point

A B

C

YesNo

7. Meshfree methods based on local weak form/collocation 395

End of the loop for the quadrature point

End

Assemble the nodal stiffness matrices
into the global stiffness matrix

End of the loop for the field nodes

Enforce essential boundary conditions

Solve the system equation for displacements and then stresses

A B C

Figure 7.2. Flowchart for the program of the MFree Weak-Strong (MWS) form method,
MFree_MWS.f90.

Step 2: Execution of the program

The MWS-RPIM results are first obtained and are listed in the output files
given in Appendix 7.3. In the end of the output, the error in the energy norm
is also presented.

The MWS-MLS results are listed in Appendix 7.4. At the end of the
output, the error in the energy norm is also presented.
Step 3: Analysis of the output results

Results obtained using MWS-RPIM are presented in Figure 7.3 and Figure
7.4. In this study, the MQ-RBF is used together with the linear polynomial
terms and the parameters used are: 4.0,c q=1.03, dcdd =2.4, and 3.0i .
For local quadrature domains, 1.5q and ng=2 are used. The quartic spline g

function (W2) is employed as the test function for the local weak-form. The
results of deflections are plotted in Figure 7.3. For comparison, the analytical
results from Equations (4.79) and (4.81) are plotted in the same figure; there is

396 Chapter 7

good agreement. The results of shear stress, xy , are plotted in Figure 7.4.
The MWS-RPIM method gives accurate results, even for stresses.

The cantilever beam is also modelled using 189 irregularly distributed
nodes, as shown in Figure 7.5. Results are obtained using the MWS-RPIM
method and plotted in Figure 7.6 and Figure 7.7. Again there is good
agreement with the analytical results.

Results of the MWS-MLS are presented in Figure 7.8 and Figure 7.9. In
this study, the parameters used are i=3.0, q=1.5, and ng=2. The parabolic
polynomial basis (mbasis=6) is used in computing the MLS shape functions,
and the quartic spline weight function (W2) is used as the weight function in
both MLS shape functions and the local weak-form. The deflections are
plotted in Figure 7.8, and the shear stress, xy, are plotted in Figure 7.9.
Again there is good agreement with the analytical results.

The 189 irregular nodes in Figure 7.5 are also used. Results are obtained
using the MWS-MLS method and plotted in Figure 7.10 and Figure 7.11.
Again there is good agreement with the analytical results.

0 10 20 30 40 50
-0.01

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

MWS-RPIM result
Analytical result

x

v

Figure 7.3. Deflections v on the central axis at y=0 of the beam obtained using the
MWS-RPIM method and 189 regularly distributed field nodes.

7. Meshfree methods based on local weak form/collocation 397

Figure 7.4. Shear stresses on the cross-section at x=L= /2 of the beam obtained using the
MWS-RPIM method and 189 regularly distributed field nodes.

Figure 7.5. A total of 189 irregularly distributed nodes.

 Analytical solution MWS-RPIM

Figure 7.6. Deflection of the beam obtained using the MWS-RPIM method and 189
irregularly distributed field nodes. Note that the displacements plotted are magnified by 500t

times.

398 Chapter 7

Figure 7.7. Shear stresses on the cross-section at x=L= /2 of the beam obtained using the
MWS-RPIM method and 189 field nodes.

Figure 7.8. Deflections v on the central axis at y=0 of the beam obtained using the MWS-
MLS method and 189 regularly distributed field nodes.

7. Meshfree methods based on local weak form/collocation 399

Figure 7.9. Shear stresses on the cross-section at x=L= /2 of the beam obtained using the
MWS-MLS method and 189 regularly distributed field nodes.

Analytical solution MWS-MLS

Figure 7.10. Deflections of the beam obtained using the MWS-MLS method and
189 irregularly distributed field nodes. Note that the displacements plotted are

magnified by 500 times.

400 Chapter 7

Figure 7.11. Shear stresses on the cross-section at x=L= /2 of the beam obtained using the
MWS-MLS method and 189 field nodes is used.

7.6 NUMERICAL EXAMPLES FOR 2D ELASTOSTATICS

7.6.1 1D truss member with derivative boundary conditions

The problem of the truss member discussed in Example 6.1 of Chapter 6
is analyzed using the MWS method. All conditions and parameters are
exactly as in Example 6.1. As discussed in Chapter 6, special treatments are
required to impose the derivative boundary conditions. Table 7.1 lists results
of different methods to solve this truss problem using the polynomial PIM
shape functions and 11 field nodes (both regular and irregular nodes, shown
in Figure 6.7). The table shows that the MWS method produces the best
result for both regular and irregular nodal distributions.

7. Meshfree methods based on local weak form/collocation 401

Table 7.1 Relative errors e (%) in results obtained different methods*

Case Schemes Regular nodes Irregular nodes

0 Dirichlet
BC 0.51 1.36

1 DC 11.3 6.12

2 FP 1.63 7.56

3 HC 2.68 3.05

4 RG 11.3 6.12

5 MWS 1.24 2.98

* 3 nearest nodes are used in the local support domain;
 In MWS, 1.5q c1.5dc is used for the local quadrature domain and 8 Gauss

points are used in the quadrature domain. To ensure local compatibility, the
same support domain is used for all Gauss points in a quadrature domain in the
construction of PIM shape functions.

7.6.2 Standard patch test

This numerical example is to perform the standard patch test that is often
used in the FEM. Three patches shown in Figure 7.12 are tested. Figure
7.12 (a) shows a patch with 15 irregular distributed nodes. Figure 7.12 (b)
shows one with 25 nodes including 9 irregularly-placed interior nodes.
Figure 7.12 (c) shows one with 55 nodes including 39 irregularly distributed
internal nodes.

The dimensions of these patch tests are presented in Figure 7.12. The
material parameters are E=1.0 and EE =0.3. In these patch tests, the
displacements are prescribed along all boundaries by a linear function of x
and y:

i i iu x yi iixxii (7.25)

i i iv x yi iixxi (7.26)

Satisfaction of the patch test requires that the displacement of any interior
node be given by the same linear functions, Equation (7.25) and (7.26), and
the strains and stresses should be constant in the patch. Because there is no
traction (derivative) boundary condition in these patch tests, all nodes are
collocatable nodes, and the strong-forms are used to construct the discretized
system equation. For the influence domain, 1.6ix iy iiyiy i is used.
Both RPIM-MQ (with linear polynomial terms) and MLS shape functions
are used. In the MLS approximation, the parabolic basis and the weight
function W2 are used.

402 Chapter 7

x

y

LxL =4

L yL
=4

(a) (b)

(c)

Figure 7.12. Standard patch tests. (a) patch with 15 irregular nodes; (b) patch with 25
irregular nodes; (c) patch with 55 irregular nodes.

The MWS method can pass all the patch tests. If RPIM shape functions
(with m=3) are used, the relative displacement error is less than 1510 . It is
also confirmed that if the polynomial terms are not included in the RPIM-MQ
shape functions, these patch tests cannot be passed exactly, as discussed by
GR Liu (2002). If MLS shape functions are used, the relative displacement
error is 1110 .

The requirements for the MWS method to pass the patch test are listed as
follows:

1) The shape functions have at least linear consistence. This means that
the MFree shape functions used should at least be able to reproduce a
linear function.

Length:L=48

2

7. Meshfree methods based on local weak form/collocation 403

2) The essential boundary conditions must be accurately imposed.

The RPIM-MQ with linear polynomial terms and MLS shape functions
can satisfy the first requirement easily because linear polynomials are
included in the basis. Without additional linear terms, RPIM-MQ shape
functions do not satisfy the first requirement; there will be errors in the
results for these patch tests.

RPIM-MQ shape functions can also satisfy the second requirement, as
they have the Kronecker delta function property. However, the MLS shape
function has no delta function property. The second requirement cannot be
exactly satisfied when the MLS shape function is used without additional
treatments. Although the MWS-MLS with the direct interpolation method
can pass the standard patch test, the enforcement of essential boundary
conditions will introduce some numerical error. Hence, for the standard
patch test problem, the error of MWS-MLS with the direct interpolation
method is larger than that of the MWS-RPIM. For MWS-MLS to accurately
pass the patch test, the Lagrange multiplier method should be used.

7.6.3 Higher-order patch test

In these examples of the standard patch tests, there is no the derivative
boundary. Hence, no local weak-form is used. In order to fully examine the
efficiency of the MWS formulation, the following high-order patch tests are
studied. As shown in Figure 7.13, a patch is subjected to two types of
loading at the right end.

y

x

Case 1 Case 2

A

6

3

txt =tytt =0

txt =tytt =0

Figure 7.13. A higher-order patch and regular nodal distribution.

404 Chapter 7

Figure 7.14. The irregular nodal distribution for the high order patch test.

1) Case 1: a uniform axial stress with unit intensity is applied on the righth
end. The exact solution of displacements for this problem with E=1EE
and v=0.25 is:

i iu xi
(7.27)

4
i

i
yv (7.28)

2) Case 2, a linearly varying normal stress is applied on the right end.
The exact solution of displacements for this problem with E=1 and EE
v=0.25 is:

2
3
i i

i
x yu (7.29)

2 2 / 4
3

i i
i

x yiv (7.30)

For the construction of the RPIM and MLS shape functions, the influence
domains with 2.5i are used in this study.

Case 1 is passed exactly (to very high accuracy) by the presented MWS
method using both RPIM with the linear polynomial terms and MLS shape
functions. In the MLS approximation, the parabolic basis and the weight
function W2 is used. This case demonstrates that the MWS method exactly
implements the traction (derivative) boundary condition and leads to an
exact solution for this problem in which the analytical displacement solution
is linear.

The computational results of displacements at point A (at the lower-right
corner, see Figure 7.13) for case 2 are shown in Table 7.2. There is an error
in solving case 2 of the high order patch test using the MWS methods.

7. Meshfree methods based on local weak form/collocation 405

Table 7.2 Relative errors (%) of ux at point A for case 2 of the higher-order patchx
test (using regular nodes)

q=1.0 q=1.5

u(error) v(error) u(error) v(error)

-6.682 -13.793 -6.099 -12.572
MWS-RPIM (11.362%) (13.175%) (1.644%) (3.157%)

-6.403 -13.100 -6.073 -12.544 LRPIM
(full local

weak-form) (6.712%) (7.489%) (1.214%) (2.923%)

-5.955 -12.113 -5.973 -12.141
MSW-MLS (-0.758%) (-0.609%) (-0.449%) (-0.386%)

-5.956 -12.118 -5.985 -12.163MLPG
(full local

weak-form) (-0.728%) (-0.572%) (-0.245%) (-0.199%)

Exact -6.00 -12.1875 -6.00 -12.1875

The reason for the error mainly comes from the errors of the numerical
integration for the complex DBCs. In order to study the effect of the
numerical integration, results of two different sizes of quadrature domains
are obtained and listed in Table 7.2. The error decreases when a lager
quadrature domain is used. When 1.0qx qy qqyqy , the local quadrature
domain is too small to effectively smear the error along the derivative
boundary. It is be found that the accuracy of the solution improves with the
improvement of the numerical integration by use of more Gauss quadrature
points and more sub-partitions for the numerical integrations.

The irregularly distributed nodes for this high patch test, as shown in
Figure 7.14, are also used in this study, and results are listed in Table 7.3.
The MWS method can also give acceptable results for this irregular nodal
distribution.

For comparison, results of MFree local radial point interpolation method
(LRPIM) and MLPG methods, which use local weak-forms entirely for all
the field nodes, are listed in Table 7.2 and Table 7.3. LRPIM leads to more
accurate results than MWS-RPIM, and MLPG has nearly the same accuracy
as MWS-MLS.

The MFree strong-form method (the collocation method) that uses
strong-forms entirely for all field nodes is also used in the high order patch
test. It has been found that the MFree collocation method can also produce
satisfactory results for case 1, whose force boundary condition is simple.
However, it leads to large errors (>15%) for case 2 with regular nodal

406 Chapter 7

distribution. Displacement results of irregular nodes using MFree
collocation method based on RPIM are listed in Table 7.3. The error is even
more than 40%. The solution of the MFree collocation method is also
unstable. It is sensitive to the nodal distribution and parameters used in the
model. The error and instability mainly come from the error in the
implementation of the complex force (derivative) boundary conditions in
case 2. Compared with the pure collocation method, the present MWS
method has better accuracy and stability for this high order patch test due to
the use of the local weak-form for the DBR-nodes.

Results of several MFree methods used for patch tests are summarized in
Table 7.4.

Table 7.3. Relative errors (%) of ux at point A for case 2 of the higher-order patch
test (using irregular nodes, q=1.5)

Exact Collocation
(RPIM)

MWS-
RPIM

LRPIM MWS-MLS MLPG

u -6.00 -8.786 -6.389 -5.951 -5.976 -5.982

Error / 46.6% 6.491% -0.808% -0.396% -0.291%

v -12.1875 -16.202 -13.234 -12.020 -12.168 -12.172

Error / 49.3% 8.586% -1.408% -0.160% -0.159%

Table 7.4. Summarization of patch tests

Standard
patch test

Higher-order
patch test (case 1)

Higher-order patch
test (case 2)

MWS-RPIM Pass Pass Pass with small error

MWS-MLS Pass Pass Pass with small error

LRPIM Pass Pass Pass with small error

MLPG Pass Pass Pass with small error

Collocation method Pass Pass Cannot pass

7. Meshfree methods based on local weak form/collocation 407

7.6.4 Cantilever beam

The cantilever beam shown in Figure 4.5 is reconsidered for further study
numerically on convergence and stability of the MWS method. The results
of displacements and stresses were discussed and presented in Section 7.5.

The collocation method that uses pure strong-forms is also used to solve
the same problem under the same conditions. The error obtained using the
collocation method is large even for regular nodes. It fails for the irregularly
distributed nodes. The solution of the MFree collocation method is also
unstable. Compared with the pure collocation method, the MWS method has
better accuracy and stability for this problem. In the following studies, the
MWS results are compared with those for stable methods such as the LRPIM,
MLPG, and FEM.

a) Convergence study

The convergences of the MWS methods are first numerically studied for
this cantilever beam problem. Regularly distributed 18 (3 6), 55(5 11),
112(7 16), 189(9 21) and 403(13 31) nodes are used. The convergence
curves of error in energy norm obtained numerically are shown in Figure
7.15. For comparison, the convergence curves for LRPIM, MLPG, and
FEM using bi-linear elements are plotted in the same figure. The h is the
nodal spacing dcdd in the MFree methods, and is equivalent to the maximum
element size (in x direction) in the FEM analysis in this case. The
convergence rates, R, computed via linear regression are also given in Figure
7.15. From Figure 7.15, we can find the following:

1) MFree methods have better accuracy and convergence than the
conventional FEM using bi-linear elements.

2) Using local weak-forms for all field nodes, the LRPIM and MLPG
have slightly better accuracy than the MWS method. This is because
the use of strong-forms for the collocatable nodes in MWS reduces
slightly the accuracy.

3) The MWS-MLS method has good convergence rate and high accuracy.
Compared with MLPG, the MWS-MLS has nearly same convergence
and accuracy.

4) The convergence process of the MWS-RPIM using MQ-RBF is not
good when finer nodes are used although the accuracy is acceptable.
Further tuning of the shape parameter may be necessary.

The poor convergence of the MWS-RPIM (MQ) may be attributed to the
property of the MQ-RBF that is often found poor performance in h-
convergence. The properties of RPIM-MQ have been studied by Gu and GR

408 Chapter 7

Liu (2003b) in detail for mechanics problems. It was found that pure MQ-
RBF cannot always ensure to exactly reproduce a linear field function. This
could be one of the major reasons for the poor h-convergence in using MQ-
RBF. Another cause for the poor convergence is the shape parameters
chosen in the RBFs. When a proper shape parameter of MQ-RBF is used, its
convergence improves. Unfortunately, there is no theoretical optimal value
for these shape parameters. Other RBFs (e.g. Gaussian RBF, the compactly
supported RBFs, etc.) could be used to improve the convergence of the
MWS-RPIM. To find an efficient method to improve the h-convergence of
the MWS-RPIM is still an open issue.

Figure 7.15. Comparisons of convergences of MWS, LRPIM, MLPG, and FEM in error er e
of energy norm. R is the convergence rate. The same parameters are used in MWS-RPIM

and LRPIM; The same parameters are used in MWS-MLS and MLPG.

b) Efficiency of the MWS method

In the efficiency study, regularly distributed 55, 189 and 403 nodes are
used. The influence domain with i=3.0 is used to construct shape functions.
The CPU times of MWS, LRPIM and MLPG are listed in Table 7.5. From
this table, it can be found that MWS-RPIM and MWS-MLS use much less
CPU time than their counterparts of pure local weak-form methods, LRPIM
and MLPG.

7. Meshfree methods based on local weak form/collocation 409

Table 7.5. CPU time (s) required by different methods for the cantilever beam
problem

 MWS-RPIM LRPIM MWS-MLS MLPG

189 nodes

403 nodes

43.710

66.730

123.160

50.060

310.630

822.710

2.060

7.270

13.840

5.360

14.541

32.245
* Computer system used: DataMini PC, Intel Pentium 4 CPU 1.80 GHz.

Note that the computational cost must be considered together with the
accuracy for a fair comparison. A successful numerical method should
obtain high accuracy at a low computational cost. The curves of error in
energy norm against the computation time for the MWS methods are
computed and plotted in Figure 7.16. For comparison, the same curves for
LRPIM and MLPG are computed and plotted in the same figure. From
Figure 7.16, the following points can be observed:

Figure 7.16. Comparison of efficiencies of MWS, LRPIM, and MLPG. The data of LRPIM
and MLPG are obtained from Chapter 5.

The MWS methods are more efficient than their corresponding MFree
local weak-form methods.

410 Chapter 7

For the same nodal distribution, the MWS methods need much less
CPU time. This is because in MWS numerical integrations for all the
collocatable nodes are avoided by the use of the strong-form and the
simple collocation procedure.

The MWS-MLS and MLPG have better efficiency than the MWS-
RPIM and LRPIM, respectively. This is because the MLS
approximation has better efficiency than the RPIM-MQ.

7.6.5 Hole in an infinite plate
Consider the plate with a central circular hole discussed in Example 6.12.

The same conditions are used as those employed in Example 6.12. The
analytical solutions for an infinite plate (Roark and Young, 1975) are given
in Equations (6.142)-(6.147). Due to symmetry, only the upper right
quadrant of the plate is modelled. Symmetry conditions are imposed on the
left and bottom edges. On the inner boundary of the hole, the boundary
conditions are traction free. Traction boundary conditions given by the exact
solution Equations (6.145)-(6.147) are imposed on the right (x((=5) and top
(y((=5) edges. Clearly, this problem has more complex traction (derivative)
boundary conditions than the beam problem.

A total of 165 nodes is used to represent the plate, and the nodal
arrangement is shown in Figure 7.17. The results for the displacements
obtained using the MWS and the analytical methods are identical. As the
stresses are more critical for accuracy assessment, detailed results of stresses
distribution for stress xx along x=0 computed using the MWS are shown in
Figure 7.18. Figure 7.18 shows that the MWS method yields satisfactory
results even for stresses for this problem; they are less accurate near the
boundaries.

7.7 DYNAMIC ANALYSIS FOR 2-D SOLIDS

The MWS method is also used to analyze the linear elastodynamics of
two-dimensional solids. The standard strong-form of the initial/boundary
value problem for 2D linear elastodynamics is given in Equation (1.32). The
boundary conditions and the initial conditions are given in Equations
(1.33)~(1.36).

7. Meshfree methods based on local weak form/collocation 411

Figure 7.17. Nodes and boundary conditions in the quarter model of the plate with a
central hole subjected to a unit unidirectional tensile load in the x direction.

Figure 7.18. Stress (xx) distributions along the section of x=0 in the plate obtained
using the MWS method and 165 regularly distributed nodes.

txt =tytt =0

u x
=

0;
 t ytt

=
0

uyu =0; tx=t 0
b=4a=1

c=
5

y

x

xx

xy

yy

412 Chapter 7

As shown in Figure 7.1, the problem domain and boundaries are
represented by properly scattered nodes. MWS is used to establish the
discretized system equations, the strong-forms are used for collocatable
nodes, and the local weak-form is used for DBR-nodes.

7.7.1 Strong-form of dynamic analysis

Equation (1.32) for isotropic materials can be written in terms of
displacements in the following standard strong-form.

2 2 2 2

2 2

2 2 2 2

2 2

() 02 2 22221

() 02 2 22221

x

y

uE (2x y tx y t

E v v u v v() 2x y ty x t

2 2 2 22 222

))u u v uu u v u2 2 2 221 22

))1 12 1))2 2x yx y2 22 2x yx 2
2 2 2 22 222

))v v u vv v u v2 2 2 221 22

))1 12 1)))2 2x yx y2 22 2y xy 2

(7.31)

where E andE are Young’s modulus and Poisson’s ratio, is the mass
density, u and v are displacements inv x and y directions, respectively, and bx
and byb are the body forces applied in x and y directions. The collocation
method is used directly to discretize Equation (7.31) for all the collocatable
nodes.

7.7.2 Local weak-form for the dynamic analysis

For a DBR-node, a local weak-form is used. A local Petrov-Galerkin
weak-form for the Ith node of the partial differeII ntial Equation (7.31) over a
local quadrature domain q bounded by q, can be obtained using the
weighted residual method or the local Petrov-Galerkin method (Gu and GR
Liu, 2001c):

)d 0
q

I ij j i i i,(W b u cu(I (ij j i,(,)d (7.32)

where W is the weight function.
The first term on the left hand side of Equation (7.32) can be integrated f

by parts to arrive at

)]d 0
q q

I j ij I i i i, ([I j ij I i, (((,[((((
q

)]d[((([((((((((I ij jW n dII ij jn dij j (7.33)

The local quadrature domain q of a node xIx can be a domain of an arbitrary I

shape in which IWI 0. The boundary q for the local quadrature domain
usually comprises three parts: the internal boundary qi, the boundaries qu

and qt, over which the essential and derivative boundary conditions are

7. Meshfree methods based on local weak form/collocation 413

specified. Imposing the derivative boundary conditions and considering
ij j in tjj , we find that Equation (7.33) becomes

d
q qi qu

I iII

q

diW tII()d dI i I i I j ij I iI i,) I iII i)dd di I i I j,, x W tW tW t)d dI iII i)dd d

d
qt q

I iWI i

qt

ddI iW t dI iW t dI i

(7.34)

Equation (7.34) shows that the traction (derivative) boundary conditions
have been incorporated naturally into the local weak-form of the system
equation. There is no need for another set of equations to enforce the
derivative boundary conditions.

7.7.3 Discretized formulations for dynamic analysis

The global problem domain is represented by a set of distributed nodes.
In the dynamic analysis, u is a function of both space co-ordinate and time.
Only the equations for the space coordinates are discretized. Using the
RPIM and MLS shape functions, we have

1

(2 2) (2 1)

(,)

() ()(2 2)

n

j

) (2) (2(222)) (2) (2)

() 0j () 0jj ()(((,)u(,(,)(,)u(,
()

()
()

j

(
()

0 ()
j ()j ()

(,)v(,()(0 ()j ()0 () ()j ((()((
u(

))(2 2)2))

(7.35)

where u(t) is the vector of nodal displacements at time t, is the matrix of
shape functions. Substituting Equation (7.35) into the strong-form Equation
(7.31) and local weak-form Equation (7.34) , using the same procedure as in
Section 7.3, we can obtain the following discretized system equations for the
Ith field node.II

() () () ()I I I I() () ()() () (M u() () ()() ()I () () ()()()) () ()) () (() ()) () ()()) () (() ()() ()) (() ()()() ()()) (() ()()()() (7.36)

where u is the vector of nodal displacements (or nodal displacement
parameters) for nodes in the support domain of the Ith field node. Detailed II
formulations of KIK and I FI have been presented in Section 7.3. The nodal I
mass matrix MIM is defined asI

() T

()

(

, ()
q

I I q, I t)
I

I q, I t

T d , ()I d ,, t)

()I t

IM()
I

T

M
M

(7.37)

and the nodal damping matrix CI is defined asI

414 Chapter 7

() T

() , ()
q

I I q I t, ()(
I

I q, I tc

T d ()I q I td , ()(,

()I t

C()
I Ic T

C
C

(7.38)

Equation (7.36) presents 2 linear equations for the Ith field node. UsingII
Equations (7.36) for all N field nodes in the entire problem domain, and N
assembling all these 2N equations, we can obtain the final global systemN
equations in the following matrix form.

MU CU KU F (7.39)
Equation (7.39) is the system equation of the MWS method for dynamic

analyses of two-dimensional solids. Solving this equation, we can obtain
displacements for all field nodes and then retrieve all the stresses at any
point in the problem domain using again the RPIM or MLS shape functions.

7.7.3.1 Free vibration analysis

For free vibration analysis, the aims are to obtain the natural frequencies
and the corresponding vibration modes. Therefore, no damping and body
force need be considered. The displacement u(x, t) can be written as a
harmonic function of time as follows

1

(,)

sin()

ˆ() sin()ˆ

n

j

)

()

ˆ()sin()u()sin()() ()
ˆ() i ()

()()s (u()sin((
()sin()v()sin(()ˆ() i ()() i (

() 0j () 0j ˆ̂ ju
sin(ˆ

jj

ˆ
jjj ()

()0
j ()

()
j

ˆ0 ()j ()()0 jjvv

() sin(

u(

)))

(7.40)

where is the natural frequency and is the phase of the harmonic motion,
û and v̂ are the amplitudes for displacement components in x and y
directions, respectively.

Substituting Equation (7.40) into the strong-form and the local weak-
form, we can obtain the final system equation in terms of the amplitudes of
the modal displacements for free vibration analysis.

2 ˆ()2 U 0)22 (7.41)

where Û is the vector of amplitudes of all nodal displacements or
displacement parameters when the MLS shape functions are used. Equation
(7.41) can also be written in the following typical eigenvalue equation

() 0q)))) (7.42)

7. Meshfree methods based on local weak form/collocation 415

where 22 is so-called eigenvalue, and q is the eigenvector. This
equation can be solved using a standard eigenvalue solver to obtain
eigenvalues i (i=1, 2,…, N) and the corresponding NN qi. The natural
frequencies of the structures are then given by i iii . The vibration
modes (or shapes of the vibration modes) correspond to the eigenvectors.

Note that in MWS-MLS, because the nodal displacement parameters are
first obtained, the eigenvector qr obtained is also for the nodal parameters.
The MLS shape functions should be used again to obtain the true
eigenvector, e.g. using the subroutine, GetDisplacement, given in Chapter 4.

7.7.3.2 Direct analysis of forced vibration

The system equation of forced vibration analysis is given in Equation
(7.39). The methods of solving Equation (7.39) are similar to those in FEM,
and fall into two categories: modal analysis and direct analysis (see, e.g., GR
Liu and Quek, 2002). The direct analysis methods are utilized in this chapter.
Several direct analysis methods have been used to solve the dynamic Equation
(7.39), such as the well-known central difference method (CDM) and thett
Newmark method (see, e.g., Petyt, 1990; GR Liu and Quek, 2002). The
standard Newmark method is used in the following numerical examples.

The Newmark method is a generalization of the linear acceleration
method. This method assumes that the acceleration varies linearly within the
time interval (t, t+tt t), which gives

1 ()t t t t t t(
t

)(ut t t ((t (1 (for 0 t (7.43)

where 0 t tt , and

[(1)]t t t t t t t)[(1)]u u [(1)t t t [(1))t ())[(1)) (7.44)

21[()]1
2t t t t t t t t]))) t[()]1]t [())))u u u [(t t t tt t [())t tt t [())[(1) (7.45)

The response at time t+tt t is obtained by evaluating the equation of t
motion at time t+tt t. The Newmark method is, therefore, an implicit method.
For coding purpose, the flowchart of the Newmark method is given in Figure
7.19.

The Newmark method is unconditionally stable provided that

2

0.5
1 0.5)
4
1 (
4

(
(7.46)

416 Chapter 7

One can find that 0.5 and 0.25 lead to acceptable results for most
problems considered. Therefore, 0.5 and 0.25 are used in this
chapter.

Figure 7.19. Flowchart of the Newmark algorithm for solving a set of forced vibration
equations.

7.7.4 Numerical examples

Several numerical examples of two-dimensional elastodynamics are
studied to examine the efficiency and performance of the MWS method for
dynamic analyses. The standard international (SI) units are used in

For given matrices K, M and C

Determine 0u , 0u and 0u ; Choose time step t , , ; Compute
constants: 2

0 1/()2c0 1/(1/(1/(, 1)c1 /(/(/(/(/(, 2 1/()c2 1/(1/(1/(,

3 1/(2) 1c))1/(2 , 4 1c /// , 5 0.5 (/ 2)c t5 0.5 (/)//(//// 2)2)0 5 (0.5 (//// ,

6 (1)c t6 ())))(1(1) , 7c t7

Compute equivalent stiffness matrix 0 1K K M C0 1c c0c0

Loop over time steps

Compute equivalent force vector:
0 2 3 1 4 5()0 ()t t t t t2 3 1 4 52 3 1 42 32 3 1 4 54t tt tF F M u u u C()0 (5t t t t 2 32 33 1 4 5440 2 32 32 3 1 441 44t tt t () (t)0 2 3222 3 (1 41 442 32 322 3 1 441 44t C) (

Solve equation t t t tt tt tKu Ft t t

Compute t tu and t tu

t t ttt

End of the loop of time steps

7. Meshfree methods based on local weak form/collocation 417

following examples unless specially mentioned. For simplicity, the MWS
method based on the MLS approximation (MWS-MLS) is used in the
following numerical examples. Results of dynamic analysis by the MWS
method based on RPIM (MWS-RPIM) can be obtained by replacing the
MLS shape functions with the RPIM shape functions.

7.7.4.1 Free vibration analysis

The present MWS method is used for the free vibration analysis of the
cantilever beam shown in Figure 4.5. The parameters are the same as those
in the example in Sub-section 7.6.4. The mass density of the beam is =1.0.
Three kinds of nodal arrangements (55 regular nodes, 189 regular nodes and
189 irregular nodes) are used. In the free vibration analyses, i =3.5 is used
for the influence domain to construct MLS shape functions.

Frequencies of three nodal distributions obtained by the MWS method
are listed in Table 7.6. The results obtained by the FEM commercial
software package, ANSYS, using bi-linear rectangular elements with the
same number of nodes are listed in the same table. This table shows that the
results of the present MWS method are in good agreement with those
obtained using FEM. The convergence of the MWS method is also
demonstrated in Table 7.6. As the number of nodes increases, results
obtained by the present MWS method approach to the exact reference results
obtained using the FEM with an extremely fine mesh.

The first six eigenmodes obtained by the MWS-MLS method are plotted
in Figure 7.20. Comparing with FEM (ANSYS) results, they are almost
identical.

Frequencies results of the beam modeled with 189 irregular nodes are
listed in Table 7.6. This table shows that good results are obtained using the
irregular distribution nodal arrangement. The stability and high accuracy in
the results for irregular nodal distributions are significant features of the
present MWS method.

7.7.4.2 Forced vibration analysis

The forced vibration of the same cantilever beam shown in Figure 4.5 is
analyzed. The parameters are the same as in the example in Sub-section
7.6.4. For simplicity, the mass density of the beam is =1.0.

In this numerical example for the forced vibration analysis, the beam in
subjected to a parabolic traction at the free end, P=1000g(t), where g(t) is the
time function. Two functions of g(t) shown in Figure 7.21 are considered.
A total 189 uniformed nodes, as shown in Figure 4.12(a), are used to
discretize the problem domain. Displacements and stresses for all nodes are
obtained using the MWS-MLS method. Detailed results of vertical

418 Chapter 7

displacement, vAv , at the middle point A at the free end of the beam are
presented.

Table 7.6. Natural frequencies of the cantilever beam obtained using MWS-MLS
and FEM with different nodal distributions

55 nodes 189 nodes

Mode MWS FEM MWS
 (regular nodes)

MWS
 (irregular nodes) FEM

Reference
(FEM
4850

DOFs*)

1 26.7693 28.60 27.8370 27.7909 27.76 27.72

2 141.3830 144.12 141.1300 141.3111 141.79 140.86

3 179.7013 179.77 179.9077 179.9932 179.82 179.71

4 327.0243 328.47 323.8497 323.0334 328.01 323.89

5 527.3999 523.36 522.3307 522.7783 534.23 523.43

6 539.0598 532.41 537.1464 537.4757 538.08 536.57

7 730.1131 716.35 727.2628 727.5968 751.15 730.04

8 886.5635 859.23 881.5703 881.7091 887.69 881.28

9 896.9009 875.84 896.1059 897.2380 920.36 899.69

10 1004.7952 956.34 997.7824 998.1700 1022.78 1000.22

* DOF—degree of freedom

Dynamic relaxation

If ()g is a step-function , as shown in Figure 7.21, the long time
response should approach the static results for the beam subjected to a static
force. This approach of the dynamic analysis is the so-called dynamic
relaxation, which can be used as one of the means of examining the stability
and accuracy of a numerical procedure.

In our problem, a constant loading is suddenly loaded to this structure,
and then kept unchanged. If the damping is neglected, a steady harmonic
vibration should be observed with the static deformation (given by the static
analysis) as the equilibrium position. If damping is considered, the response
should converge to the static deformation.

7. Meshfree methods based on local weak form/collocation 419

Mode 1

Mode 2

Mode 3
Mode 6

Mode 5

Mode 4

Figure 7.20. Vibration modes for the cantilever beam using the MWS-MLS method and
189 irregular nodes.

The present MWS-MLS method is used to perform the dynamic
relaxation analysis; the time step is 34 10t 4t is used. The response of
the vertical displacement, vAv , at the middle point at the free end of the beam
is first computed with no damping; the response is a steady harmonic
vibration with respect to the static deformation, whose analytical value (see,
Section 4.5) is 0.0089A .

The same results for c=0.4 are then computed. Table 7.7 lists results of
several time steps near 50s . MWS gives stable and convergent results,
as shown in Figure 7.22. The response converges to 0.00885.A
Compared with the exact static solution of 0.0089,A the error is about
0.5%.

420 Chapter 7

Transient response

The transient response of the beam subjected to a triangular loading
P=1000g(t) is now considered. The function g(t) is shown in Figure 7.21(b).
The present MWS-MLS method is used to obtain the transient response with
and without damping (c=0). The Newmark method is used in this analysis.
The result for c=0 is plotted in Figure 7.23 and Figure 7.24. Many time
steps are calculated to examine the stability and accuracy of the MWS-MLS
method and code. Figure 7.24 shows that the response becomes a stabilized
harmonic vibration at about 1.0s. A stable result is obtained using the
MWS-MLS method.

The result for c=0.4 is plotted in Figure 7.25. The amplitude of the
vibration decreases with time because of the effects of damping; a stable and
accurate result is obtained.

Figure 7.21. Time function g(t):
(a) time-step function; (b) triangular-pulse function.

Table 7.7. Results of displacements vAv excited by the time-step load (damping coefficient
c=0.4, several time steps near t=50s)tt

No. of time step Time (s) Displacement vAv

11875
12000
12125
12250
12375
12500

0.475000E+02
0.480000E+02
0.485000E+02
0.490000E+02
0.495000E+02
0.500000E+02

-0.00883255
-0.00883264
-0.00882592
-0.00883220
-0.00884123
-0.00884174

1.0

t

g(t)

1.0

1.0s

t

g(t)

(a) (b)

7. Meshfree methods based on local weak form/collocation 421

0 5 10 15 20 25 30 35
-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

Time (s)

D
is

pl
ac

em
en

t

uy=-0.00885

Figure 7.22. Displacements vAv at the middle point at the free end of the beam excited by the
time-step load (damping coefficient c=0.4).

Figure 7.23. Early transient response of the displacement vAv at the middle point at
the free end of the beam excited by the triangular-pulse load (damping coefficientd c=0).

422 Chapter 7

Figure 7.24. Long time response of the displacement vAv at the middle point at the
free end of the beam excited by the triangular-pulse load (damping coefficientd c=0).

Figure 7.25. Transient displacement vAv at the middle point at the free end of the beam
excited by the triangular-pulse load (damping coefficient c=0.4).

7. Meshfree methods based on local weak form/collocation 423

7.8 ANALYSIS FOR INCOMPRESSIBLE FLOW
PROBLEMS

The MFree Weak-Strong (MWS) form method has been applied to fluid
dynamics problems by GR Liu and Wu et al.(2004). Based on their work,
this section introduces the detailed formulations of MWS for incompressible
fluids and some examples. No source code will be provided for the fluid
problems, as we are still in the process of improving the code. The purpose
of this section is to demonstrate that the MWS method can be easily
formulated and works well for simulating fluid flows.

7.8.1 Simulation of natural convection in an enclosed domain

7.8.1.1 Governing equations and boundary conditions

The problem domain is given in Figure 7.26. The standard set of
governing equations of natural convection in an enclosed domain in terms of
vorticity and stream function can be written in the Cartesian coordinate
system as follow (Hughes and Brighton, 1991).

Figure 7.26. Schematic drawing of the problem domain for the natural convection problem.

1

1

0
0

0

T

xxx

1
0

0

T

xxx

0, 0, 0T
y y

0000,,
y yy y

0, 0, 0T
y y

0000,,
y yy y

424 Chapter 7

The stream function equation is:
2 2

2 2x y

22

22x yx y
(7.47)

The vorticity equation is:
2 2

2Pr() Pr Ra2 2
Tu v
x2y y

2 2

) P R
2 2

P (Pr() Pr Ra) Pr2 2v
xx yy xx222 (7.48)

The heat transfer equation is
2 2

2 2
T2

u v
x y y

2T T TT T2

2v
x yx y 2xx yy

(7.49)

where , , ,T Pr, and Ra are, respectively, the vorticity, stream function,
temperature, Prandtl number and Rayleigh number, and u, v are thev
components of velocity in the x and y directions, which can be calculated
using the stream function.

u
y

v
x

yy

xx

(7.50)

The boundary conditions are listed as follows:

1) 0, 0 1: 1, 0, 0,x y T0, 0 1:1:
x

,1, 0,1 00, 0 1:1:
xx

(7.51)

2) 1, 0 1: 0, 0, 0,x y T1, 0 1:1:
x

,0, 0,0 01, 0 1:1:
xx

(7.52)

3) 0, 0 1: 0, 0, 0,y x0, 0
y y

,0 00 0T0, 0 1: 0, 0,1: 0, 0,0 00, 0 0 00 0, ,, ,
y yy y

, (7.53)

4) 1, 0 1: 0, 0, 0 .y x, 0
y y

,0 00 0T1, 0 1: 0, 0,1: 0, 0,0 01, 0 0 00 0, ,, ,
y yy y

, (7.54)

There are two types of boundary conditions: Dirichlet and Neumann.

7.8.1.2 Discretized system equations

For RPIM or the MLS shape functions, the discretized equation of the
MWS method for natural convection can be written as:

7. Meshfree methods based on local weak form/collocation 425

1) For the collocatable nodes, the following strong-form of discretized
equations (for the Ith node) is used. II

For the stream function equation,

1

n n

k yy k I,
k k1

() yy k Ik I,()
1

() yy k()()k xx k,)),((7.55)

For the vorticity equations,

,
1

)

 +Pr

n n n

I x k,)
k k k1 11

uI T) x k)(((
1 11

n n

k() yy kk()()
1

k yy k,
k k11

yy k, yy,()

(k x k I k y kk x k I, ,,((() () Pr) (() Prk , ,,() ()) ()) (), ,,) ()) () ()) ()) () Pr())()()())

()))(()k xx k,(k ,)),(
(7.56)

For the heat transfer equations,

1

)
nn n n

I k x k I k y k k xx k k yy k,)
k k k k1 1 11 1

T) yy k)uI ((((
1 1 11 11

(k x k I k y k k xx kk x k I k y k k xx k, , ,, ,, ,((() () ()) () (() ()k , , ,, ,,, ,() () ()) () ()) () (() (), , ,,, ,,, ,) () ()() ()) () (() ()) () ()) () ()() ()) () (() ()() ()() ()) (() ()()() ()() ()() ()) (() ()() (7.57)

The velocities are computed using stream function values:

1

n n

I k x k I k y k,
k k1

uI () y,()
1

()()k x k Ik x k I,()),())(,,,))(((7.58)

where n is the number of nodes used for constructing the MFree shape
functions, uI, and vIv are the components of velocity for theI Ith collocatableII
node in the x and y directions, respectively.

2) For DBR-nodes, the following local weak-form (for the Ith node) is used:II

For the stream function equation,

Ik k Ik k Ik kC E AIk k Ikkk k k Ikk IkAk k II (7.59)

For the vorticity equations,

PIk k Ik k Ik k Ik kBI C E D TPr Pr RaPIk k Ik kPr Ik kkk k Ikk IkPrPrPrPr Pr Pr RaPr PrPrPrPrPrPrPrPrPr (7.60)

For the heat transfer equations,

0Ik k Ik k Ik kB T C T E TIk k Ik k Ik kk Ik k Ik kE TIk kIk (7.61)

In Equations (7.59)-(7.61),

q

Ik k IA W dIk k IIk kW dk Ikk (7.62)

426 Chapter 7

[]
q

k
Ik IBI u v W d]k

Ix y
kkkkkk[W d] Ix yx y

[[(7.63)

()
q

I
Ik

WIC d()I
Ik

I

x x y y
kkk kkkkkkkW d()

x x y yx x y y (7.64)

q

k
Ik IDI W dIx

kk

xx (7.65)

qu

k
Ik IEI W dI

kk

n (7.66)

where ()I is the test function centered by the Ith node,II and q is the local
quadrature domain of the Ith node. The single integrationII Eik alongk qu is
implemented appropriately according to different essential boundary
conditions for , and T. The double integration for TT AIk, BIk, CIkC , and DIkD
can be evaluated by Gauss quadrature using the transformation strategy (GR
Liu, 2002). Note that all these integrations can be carried out over the local
domain with a regular shape centered at the Ith node.II

Equations (7.55)-(7.61) are used for all the field nodes, which gives a set
of discretized system equations for the entire domain.

3) For a field node on the essential boundary, the essential boundary
conditions for and T can be simply given as follows:T

0, when node is on the whole wall boundary
1, when node is on the hot wall
0, when node is on the cool wall

I

I

I

T 1, when nodeI

T 0, when nodeI

(7.67)

The essential boundary condition can be directly imposed using the direct
interpolation method discussed in Sub-section 5.3.2.

4) The boundary condition for vorticity :

There is no explicit boundary condition for the vorticity. However, it is
found that the implementation of the vorticity condition is equivalent to the
approximation of the second order derivatives of the stream function at the
boundary. Therefore, the Dirichlet boundary condition for vorticity can
be interpreted as a Neumann boundary condition for the stream function .
Thus, the boundary condition for vorticity can be derived by taking the local
weak-form of Equations (7.47) on the wall boundary, as shown in Equation
(7.59), i.e.

7. Meshfree methods based on local weak form/collocation 427

()Ik k Ik k Ik k(A (Ik kI (k k Ikk Ik(k (AIk kk (7.68)

7.8.1.3 Numerical results for the problem of natural convection

The resultant algebraic Equations (7.55)~(7.61) are a set of non-linear
equations. Therefore, an iterative loop is needed. The iteration is stopped,
when the L norm of the residuals for , and T in Equations
(7.55)~(7.57) and Equations (7.59)~(7.61) are less than 10-3.

Four different nodal distributions shown in Figure 7.27 are used for the
square cavity problem to examine the efficiency of the present MWS method.
To compare quantitatively the computational accuracy of the present MWS
method with that of other methods, such as MLPG, LRPIM, and FDM, the
following quantities are calculated.

Figure 7.27. Different nodal distributions used for the square
cavity problem of natural convection.

1) max : maximum absolute value of the stream function

2) maxu : maximum horizontal velocity on the vertical mid-plane of the
cavity

428 Chapter 7

3) maxvm : maximum vertical velocity on the horizontal mid-plane of the
cavity

4) maxNuNN : maximum value of the local Nusselt number on the boundary
at x=0

5) minNuNN : minimum value of the local Nusselt number on the boundary
at x=0

where NuNN is the local Nusselt number t

0
0

x
x

TNu
xxx

(7.69)

The energy norm , ErE , is defined as an error indicator:
2

51
5r

j

Er

num exact
j

num e
jj jj jj

exacteexact
j
exact
j

(7.70)

where num
j
n and exact

j
e (j((=1~5) represent, respectively, the five quantities

computed using the numerical methods and using the exact solutions. Since
there is no analytical solution for the problem, the benchmark numerical
solution of Davis (1983) is adopted as the exact solution.

The main feature of the MFree methods is that the numerical solution can
be obtained using irregularly distributed nodes. To determine the maximum
and minimum variable values in the whole problem domain as well as post-
processing the results (after the converged solution on field nodes have been
obtained), the function values on a fine uniform mesh of 101 101 are
calculated. This can be done using the corresponding interpolation
procedure which was used in the discretization process for the methods. It is
noted that the uniform mesh of 101 101 is independent of the
implementation for different methods, as it is only used for the post-
visualization. In the following, all the results shown in the tables and figures
are based on the function values on this post-visualization mesh of 101 101
resolution.

First, we compare the rates of convergence and corresponding CPU time
required for the present MWS, MLPG, LRPIM and FDM for Ra=103, using
the same uniform nodal distribution. For comparison, all the parameters in
the MFree interpolation schemes are kept the same for the MWS methods
and other MFree methods. For example, the dimensionless size of influence
domain i for the MLS scheme is taken as 3.0 for both MWS-MLS and
MLPG. The dimensionless shape parameter c , shape parameter q, and the
number of nodes in the support domain n in RPIM-MQ scheme are taken as

8.0c , q=1.03, n=30 respectively for both MWS-RPIM and the LRPIM.

7. Meshfree methods based on local weak form/collocation 429

Figure 7.28 shows the convergence results obtained numerically, where h
is the nodal spacing. We find the following conclusions.

1) The MFree methods are more accurate than FDM, and their
convergence rates are also better than that of FDM.

2) The MWS methods are less accurate than the corresponding MFree
local weak-form methods (i.e. LRPIM and MLPG) when the same
number of nodes is used. In other words, the MWS-MLS is less
accurate than MLPG, and MWS-RPIM is less accurate than the
LRPIM method. This finding is the same as that obtained for solid
mechanics presented in the previous sections.

3) The MLS-based MFree method is less accurate than the RPIM-based
MFree method for this problem. This finding is opposite to that for
solid mechanics problems.

4) The MWS methods (i.e. MWS-RPIM and MWS-MLS) have slightly
slower convergence rates than the corresponding MFree local weak-
form methods (i.e. LRPIM and MLPG).

5) MWS-RPIM has better convergence rate than the MWS-MLS. This
finding is also opposite to that for solid mechanics problems.

Figure 7.28. Comparison of the convergence rates, R, for different methods for the natural
convection problem.

430 Chapter 7

It should be noted that the accuracy of MWS-RPIM and LRPIM depend
on the proper choice of the shape parameters of RBF. For present MWS-
RPIM (MQ) to analyze the problem of natural convection with Ra=103 and
104, c can be chosen 6~9 for n=20~30 (n is the number of field nodes
selected in the support domain). For Ra=105, c should be around 1.0, and
n should not be larger than 12 to achieve good accuracy. Therefore, the
choice of these parameters depends also on the Rayleigh number of the fluid
problems. Because the same model of nodes is used for problems with
different Rayleigh number, an adaptive scheme is required.. The MWS-
RPIM achieves this adaptivity by changing the shape parameters and the
number of local nodes.

Figure 7.29 and Figure 7.30 show the running time against the number of
field nodes, N,NN in the problem domain used in MWS, MLPG and LRPIM.
The running time is obtained by running the codes on a Compaq Alpha-
server supercomputer. The number of field nodes N corresponds to theN
different nodal spacing dcdd (or h).

In the simulation, it is found that neither the MWS-MLS nor MLPG
achieve convergent results using the iterative scheme to solve the algebraic
equations. Therefore, the algebraic equations have to be solved using a
modified Gaussian elimination procedure at each iteration step. Figure 7.30
shows that the running time of the MWS-MLS is much less than that for
MLPG. This is because, in MLPG, CPU time is consumed in constructing
the shape function for the Gauss points inside the quadrature domain for
each field node. In MWS-MLS, however, the strong-form equation is used
for all the collocatable nodes that are the majority of all the nodes.
Therefore, only the shape functions need to be computed for these field
nodes. These shape functions can be determined first and stored for use in
the entire iteration process, which reduces computational cost greatly. If the
number of nodes is large, the direct solver adopted by both MWS-MLS and
MLPG becomes computationally expensive.

Similarly, the MWS-RPIM spends much less running time on calculating
the shape function for Gauss points and numerical integration than LRPIM.
More importantly, it is found that a stationary iterative scheme, such as SOR
scheme, can be used in MWS-RPIM to solve the algebraic equations systems.
Therefore, the computational complexity for MWS-RPIM is only about

()O(. On the other hand, although LRPIM can achieve high accuracy
using less nodes, the weak-form equation over every field node does not
make the traditional stationary iterative scheme (such as Gauss-Seidel, SOR
scheme) converge. In conclusion, a more expensive direct solver has to be
used to solve the algebraic equations; the computational complexity is

3()3O(because the matrices are unsymmetric, as shown in Figure 7.30.
Therefore, MWS-RPIM (MQ) is more efficient than LRPIM, especially for

7. Meshfree methods based on local weak form/collocation 431

solving large scale problem. This is a unique feature of the MWS-RPIM
method for fluid problem, which we did not find for solid problems.

Figure 7.29. Comparison of running time required by the MWS-MLS and MLPG for the
natural convection problem.

Figure 7.30. Comparison of running time required by the MWS-RPIM and LRPIM.

Number of field nodes N

Number of field nodes N

432 Chapter 7

Table 7.8~Table 7.10 list the numerical results for different sets of nodes
for Rayleigh numbers 103,104,105 respectively. For all the sets of nodes, the
results of MWS agree well with the benchmark solution given by Davis
(1983). The streamlines and isotherms for Ra=103, 105 are shown in Figure
7.31~Figure 7.32.

Table 7.8. Comparison of numerical results for the problem of natural convection in
the square cavity (Ra=103)

Results (difference % with Davis’s solution)
Method Nodal distribution

max maxu maxvm maxNuNN minNuNN

1.117 3.546 3.609 1.477 0.706 256 regular nodes
(-4.86) (-2.82) (-2.38) (-1.86) (2.02)
1.140 3.696 3.594 1.498 0.718

MWS-
MLS

268 irregular nodes
(-2.90) (1.29) (-2.79) (-0.47) (3.76)
1.196 3.681 3.734 1. 528 0.684256 regular nodes
(1.87) (0.88) (1.00) (1.53) (-1.16)
1.192 3.688 3.731 1.525 0.686

MWS-
RPIM

268 irregular nodes
(1.53) (1.07) (0.92) (1.33) (-0.87)

Davis (1983) 1.174 3.649 3.697 1.505 0.692

Table 7.9 Comparison of numerical results for the problem of natural convection in
the square cavity (Ra=104)

Results (difference % with Davis’s solution)
Method Nodal distribution

max maxu maxvm maxNuNN minNuNN

4.809 15.752 18.698 3.609 0.581256 regular nodes (-5.17) (-2.63) (-4.68) (2.30) (-0.85)
4.963 16.689 19.427 3.746 0.543

MWS-
MLS 268 irregular nodes

(-2.13) (3.16) (-0.97) (6.18) (-7.34)
5.169 16.373 20.017 3.756 0.577256 regular nodes (1.93) (1.21) (2.04) (6.46) (-1.54)
5.174 16.447 20.071 3.740 0.580

MWS-
RPIM 268 irregular nodes (2.03) (1.66) (2.31) (6.01) (-1.02)

Davis (1983) 5.071 16.178 19.617 3.528 0.586

7. Meshfree methods based on local weak form/collocation 433

Table 7.10. Comparison of numerical results for the problem of natural convection
in the square cavity (Ra=105)

Results (difference % with Davis’s solution)
Method Nodal distribution

max maxu maxvm maxNuNN minNuNN

9.463 36.787 61.431 8.772 0.713441 regular nodes (-1.55) (5.92) (-10.4) (13.67) (-2.19)
10.098 36.689 70.093 10.597 0.743

MWS-
MLS 441 irregular nodes

(5.06) (5.64) (2.19) (37.32) (1.92)
9.772 35.209 66.044 10.070 0.699441 regular nodes (1.66) (1.38) (-3.71) (30.49) (-4.12)
9.918 37.863 64.964 8.507 0.579

MWS-
RPIM 441 irregular nodes (3.18) (9.02) (-5.29) (10.24) (-20.5)

Davis (1983) 9.612 34.730 68.590 7.717 0.729

Figure 7.31. Streamlines and isotherms for the cavity flow (Ra=103) obtained using the
MWS-MLS and 268 irregularly distributed nodes.

Figure 7.32. Streamlines and isotherms for cavity flow (Ra=105) obtained using the
MWS-RPIM and 441 irregularly distributed nodes.

434 Chapter 7

7.8.2 Simulation of the flow around a cylinder

The incompressible, viscous fluid flow around a circular cylinder is a
classical problem in fluid mechanics. Despite the simplicity of the cylinder
geometry, the flow field is in fact very complex in nature. Because of its
relevance to engineering problems and importance in the fundamental
understanding of fluid flows, numerous theoretical, numerical and
experimental investigations on a fluid flow passing a circular cylinder have
been reported in the past century. It serves as a good sample problem for
validating a new numerical method for unsteady two-dimensional Navier-
Stokes equations. In the sub-section, the MWS method is used to solve this
sample problem.

7.8.2.1 Governing equation and boundary condition

Consider an incompressible, viscous fluid flow at a constant velocity UU
in the x direction passing a stationary cylinder of radius a, as shown Figure
7.33.

Figure 7.33. Configuration of a fluid flow around a circular cylinder.

The standard dimensionless two-dimensional Navier-Stokes equations for
dynamic fluid flows in the vorticity-stream function form are as follows

The equation for the stream function is
2 2

2 2x y

22

22x yx y
(7.71)

The equation for the vorticity is

r=a r

x

y

UUU

n

7. Meshfree methods based on local weak form/collocation 435

2 2

2()2 2Re
u v

t x y y

2

(
21 21 ((2u v

t x yx y 22xx yy
(7.72)

where Re is Reynolds number defined as

Re U DU
(7.73)

where D is the cylinder diameter, and is the kinematic viscosity.

The boundary conditions of the problem are:

i) Free stream velocity U at the in-flow boundary: U

0
U yUUU

(7.74)

ii) Non-slip condition slip on the surface of the cylinder;
2

2

0
n (7.75)

where n is the unit outward normal on the surface of the cylinder (See,
Figure 7.33)
iii) Uniform flow at x and y .

uniform flow

0
(7.76)

iv) Zero-gradient condition at x

0

0

x

x

xx

xx

(7.77)

The initial condition for the flow field is assumed and computed using the
following formulae, i.e.

2 2
0t x y2x (7.78)

which serves as an artificial initiator for the numerical iteration to solve the
non-linear problem.

436 Chapter 7

With the same notation as in Sub-section 7.8.1, the discretized strong-
forms for the equations of the stream function and vorticity, respectively, at
a collocatable node can be written as follwos:

1

n n

k yy k I,
k k1

() yy k Ik I,()
1

() yy k()()k xx k,)),((7.79)

1

1
Re

n n
I

I k x k I k y k,
k k1

d uIdt
II () y kk,()

1

uI

n n

())()))()
1

k yy k,
k k11

yy k, yy,()),

(k x k Ik x k I,(()k ,())),()))((()))))))

(()))()()))))k xx k,(k ,(k ,)),

(7.80)

where n is the number of nodes used for constructing the MFree shape
functions.

The discretized equations in local weak-form for a DBR-node can be
written as follows.

For the equation of the stream function,

Ik k Ik k Ik kC E AIk k Ikkk k k Ikk IkAk k II (7.81)

For the equation of the vorticity,

1 1 0
Re Re

I
Ik k Ik k Ik k

d B C E1 1
Ik kdt

II
IkCk Ik k I kB C EIk Ik kkC ECCCkk Ik kk I

(7.82)

where , , ,Ik Ik Ik Ik, , ,, , E, , ,, , I, , ,, ,, , are defined in Equations (7.62)~(7.66). As discussed
in Sub-section 7.8.1, the boundary condition for vorticity can be discretized
as in Equation (7.68).

For this unsteady fluid flow problem, there is a time derivative in
Equations (7.79)~(7.82). In the present model, the time derivative is
approximated using an explicit three-step formulation based on a Taylor
series expansion in time; this is a kind of difference method. From Taylor’s
series, a function f in time can be written asf

2 2 3 3
4

2 3
)(()4

2 2
f3 ((3

f t t f t t) ()) (O(
t t

f t tf 2 2 32 3() ()) ()()2 2 32 3

2 3
)f f ff() () (() (()t) ()) () O(ff () ()) ()()

2t 62 (7.83)

where t is the time interval. Approximating Equation (7.83) up to third-
order accuracy, we can write the three-step formulation as:

))
3 3

) t f t()f t() () (
3

) () ((
t

t t ft f)t) ())) (()) (((7.84)

7. Meshfree methods based on local weak form/collocation 437

/ 3))
2 2

) t f t t()f t() () (
2

) () ((
t

t t f tt f ()t) ())) (()) (((7.85)

(/ 2)ff t t f t t() ()) (
t

(ff) ()) () (7.86)

7.8.2.2 Computation procedure

To solve the resultant set of non-linear algebraic equations for the
unsteady fluid flow problem, a time-matching iterative procedure is used.
The procedure adopted here includes the following steps:

1) assume that at time t= 0 the unsymmetrical initial flow field is given as tt

2 2
0

0 0
t

t

x y2x
(7.87)

2) calculate the unknown field values of velocities u and v using v
Equation (7.58);

3) solve the vorticity equations that are built using Equation (7.80) or
(7.82) using three-step time marching scheme given in Equations
(7.84)-(7.86);

4) solve the stream-function equations that are built using Equation (7.79)
or (7.81) by SOR iteration scheme until the L norm of residuals for

 is less than 210 , because the accuracy of the stream-function is
very important for a stable simulation.

5) the procedure is repeated until the prescribed time-step or the final
time is reached.

7.8.2.3 Results and discussion

Simulations of small and moderate Reynolds number flow (Re=20 and
Re=100, respectively) are carried out using the present MWS method. The
computational domain is shown in Figure 7.34, where a is the radius of the
cylinder.

Two different types of nodal distributions are adopted, as shown in
Figure 7.35. In these two nodal distributions, the nodes within the area

2 2 3.5r x y2 2x yx are generated by MFree2D©. The region is distributed by
regular nodes in model (Figure 7.35(a)) and by irregularly scattered nodes
in model II (Figure 7.35(b)). Both model I and model II contain many field

438 Chapter 7

nodes. For simplicity, only MWS-RPIM (MQ) is used to simulate this
problem. The dimensionless shape parameter c, shape parameter q, and the
number of nodes in the support domain n in present RPIM-MQ scheme are

4.0c , q=1.03, n=20 respectively.
For Re=20, the unsymmetrical initial flow field becomes symmetrical

and the flow appears to be laminar steady flow as shown in Figure 7.36; for
Re=100, the flow field eventually settles into a periodic oscillatory pattern.
The fine sequences for the vorticity are shown in Figure 7.37 and the
streamlines of the fluid flow are plotted in Figure 7.38. The pattern of the
fluid flow has been confirmed by other experimental and numerical results.
It is generally agreed that in two dimensions the vortex shedding begins at a
critical Reynolds number around 49. For Reynolds numbers less than the
critical value (Recritical=49), the introduced perturbation is gradually
dissipated by viscosity. Above this critical Reynolds number, the introduced
perturbation will trigger the vortex shedding process to form a Von Karman
vortex street, as given in Figure 7.37.

16

248

UUU

a=0.5

0 , U yUU

0 , U yUU

0
xxx

,

0
yyy

0 ,
U yUU

Figure 7.34. Problem domain for the simulation of the fluid flow around a circular.

Figure 7.36 shows the streamlines for Re=20 when the flow reaches its
final steady state. In Figure 7.36, a pair of stationary recirculating eddies
develops behind the cylinder. The length of the recirculating region, L, from
the rearmost point of the cylinder to the end of the wake, the separation
angle agree s , and the drag coefficient CDC are compared with previous
computational and experimental data as listed in Table 7.11. The
geometrical and dynamical parameters agree well with those in the literature.

Figure 7.38 shows time-dependent behavior of streamline contours for
Re=100. Figure 7.37 and Figure 7.38 show that the most attractive feature
of the vortex shedding behind a circular cylinder, the periodic variation of
the flow field, has been successfully reproduced. The two characteristic
parameters, the drag and lift coefficients, are

7. Meshfree methods based on local weak form/collocation 439

2

2

D

L

xCD U a2

yCL U a2

U

U

F

F
(7.88)

where F is the total force acting on the circular cylinder, which arises from
the surface pressure and shear stress. Figure 7.39 shows these two
parameters at a late stage. The flow is periodically oscillatory; the lift
coefficient oscillates more strongly than the drag coefficient. The drag
coefficient varies nearly twice as fast as the lift coefficient. This is because
of the drag coefficient is affected by vortex shedding processes from both
sides of the cylinder.

(a) model I

(b) model II

Figure 7.35. Two types of nodal distributions used in the numerical simulation using the
MWS-RPIM.

..
....

....

........

.. ..

...

...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
.. .

..

Regular nodes

Irregular nodes

..

....

...

...

..............

.

440 Chapter 7

Figure 7.36. Streamlines of the fluid flow near the cylinder at the final steady state for
Re=20.

Table 7.11. Comparison of geometrical and dynamical parameters with those in the
literature

Results
Sources

L/a s CDC

MWS-RPIM (Model) 1.86 43.21 2.076

MWS-RPIM (Model) 1.84 44.74 2.103

Dennis and Chang (1980) 1.88 43.7 2.045

Nieuwstadt and Keller (1973) 1.786 43.37 2.053

Table 7.12. Comparison of the average DCD , and StSS

Results

DCD StSS

MWS-RPIM (Model) 1.257 0.167

MWS-RPIM (Model) 1.273 0.167

Jordan and Fromm(1972) 1.28 -

Braza et al. (1986) 1.28 0.16

He and Doolen (1997) 1.287 0.161

The average drag coefficient and Strouhal number (tS fD U/ , where f
is the shedding frequency) are listed in Table 7.12. The vortex shedding
frequency is obtained by measuring the final period of the lift coefficient.
All the results agree well.

7. Meshfree methods based on local weak form/collocation 441

(d) t0

(d) t0+2s

(d) t0+4s

(d) t0+6s

Figure 7.37. Vorticity distribution for the fluid flow around a cylinder (Re=100) after the
steady state at t0.

442 Chapter 7

t=0stt

t=tt 2s

t=4stt

t=6stt

Figure 7.38. Time-evolution of streamlines of the fluid flow around a cylinder for Re=100
(Model I).

7. Meshfree methods based on local weak form/collocation 443

7.9 REMARKS

In this Chapter, the MFree weak-strong (MWS) form method was
presented for problems of solid and fluid mechanics. In MWS, both the
strong-form and the Petrov-Galerkin local weak-form are used. The strong-
form with collocation method is used for the collocatable nodes, whose local
quadrature domains do not intersect with derivative boundaries. No
numerical integration is needed for these nodes. The local weak-form is
used only for the DBR-nodes that are on or near the derivative boundaries,
and the derivative boundary conditions can then be easily imposed together
with the system equations to produce stable and accurate solutions. The
MWS method was illustrated for problems of statics, free and forced
vibration of structures, and incompressible flow. It performed well. The
following remarks may be made.

Figure 7.39. Time-evolution of Lift and Drag coefficients for Re=100 (Model I).

444 Chapter 7

1) MWS-MLS is more efficient than MLPG for both the solid and fluid
mechanics problems tested.

2) MWS-RPIM is far more efficient than LRPIM, especially for the fluid
mechanics problems tested.

3) MLS shape functions perform better than RPIM shape functions in
solid mechanics. However, RPIM shape functions are better in fluid
mechanics.

MWS provides an alternative avenue to develop new MFree methods and
adaptive analysis for the numerical analysis of problems in solid and fluid
mechanics.

7. Meshfree methods based on local weak form/collocation 445

APPENDIX

Appendix 7.1. Major subroutines used in MFree_MWSl.f90 (for solid mechanics
problem only) and their functions

Subroutines Functions Location

Input Input data from the external data file Program 5.3

Qdomain Construct the quadrature domain for a
field node

Program 5.4

GaussCoefficient Obtain coefficients of Gauss points Program 4.5

DomainGaussPoints Compute the array of the information of
Gauss points for a quadrature domain

Program 5.5

SupportDomain Determine the support domain for a
quadrature point

Program 4.7

RPIM_ShapeFunc_2D
(MLS_ShapeFunc_2D)

Construct shape functions and their
derivatives.

Program 3.1
(Program
3.9)

TestFunc Compute the quartic spline weight
function

Program 7.2

Integration_BCQuQi Perform boundary the integration on qu
and qi

Program 5.7

Integration_BCQt Perform boundary the integration on qt Program 5.8

EssentialBC Enforce essential boundary conditions Program 5.9

SolverBand Solve system equations Program 4.12

GetDisplacement Compute the finial displacements Program 5.10

GetNodeStress Compute the stress components for field
nodes

Program 5.11

Output Output results Program 5.12

TotalGaussPoints Compute the matrix of information of
Gauss points for the global cells

Program 5.13

GetEnergyError Compute global error in the energy norm Program 5.14

GetInvasy Compute the inversion for a matrix Program 4.15

Dobmax Compute multiplication of two matrices Program 5.15

446 Chapter 7

Appendix 7.2. The data file, Input189.dat, used in MFree_MWS.f90

*L,H,E,v,P,
48. 12. 3.e7 .3 1000.
*numnode
189
* Global BC: Xmin,Xmax,Ymax, Ymin
0. 48. 6. -6.
* Nodal spacing: Dcx,Dcy
2.4 1.5
* Local quadrature domain: Aqx,Aqy
1.5 1.5
* Num. of sub-partitions: Nsx,Nsy
2 2
*Influence domain
3.
*Num. of Gauss Points
4
*RBF shape parameters: nRBF ALFc, dc and q
1 4.0 2.4 1.03
*Num. of Basis
3
*Field nodes: x[xi,yi]

 1 .00000 6.00000
2 .00000 4.50000
3 .00000 3.00000

 4 .00000 1.50000
5 .00000 .00000
6 .00000 -1.50000

 7 .00000 -3.00000
8 .00000 -4.50000
9 .00000 -6.00000

 10 2.40000 6.00000
.
.
.
 180 45.60000 -6.00000
 181 48.00000 6.00000
 182 48.00000 4.50000
 183 48.00000 3.00000
 184 48.00000 1.50000
 185 48.00000 .00000
 186 48.00000 -1.50000
 187 48.00000 -3.00000
 188 48.00000 -4.50000
 189 48.00000 -6.00000

*Num. of Essential BC: numFBC
9
*Node,iUx,iUy,Ux,Uy
 1 1 1 0.000000E+00 -0.599999E-04
2 1 1 -0.628906E-05 -0.337499E-04
3 1 1 -0.718749E-05 -0.149999E-04

 4 1 1 -0.449218E-05 -0.374999E-05
 5 1 1 0.000000E+00 0.000000E+00
6 1 1 0.449218E-05 -0.374999E-05

 7 1 1 0.718749E-05 -0.149999E-04
8 1 1 0.628906E-05 -0.337499E-04
9 1 1 0.000000E+00 -0.599999E-04

*Num. Concentrated loading: numFBC

7. Meshfree methods based on local weak form/collocation 447

9
*Node,iTx,iTy,Tx,Ty
 189 1 1 0.00000 0.0
 188 1 1 0.00000 0.0
 187 1 1 0.00000 0.0
 186 1 1 0.00000 0.0
 185 1 1 0.00000 0.0
 184 1 1 0.00000 0.0
 183 1 1 0.00000 0.0
 182 1 1 0.00000 0.0
 181 1 1 0.00000 0.0

* Num. of nodes and cells(for en. error)
189 160
*Nodes for cells: xc[]

 1 .00000 6.00000
 2 .00000 4.50000

3 .00000 3.00000
 4 .00000 1.50000
 5 .00000 .00000

6 .00000 -1.50000
 7 .00000 -3.00000

8 .00000 -4.50000
9 .00000 -6.00000

 10 2.40000 6.00000
.
.
.

 180 45.60000 -6.00000
 181 48.00000 6.00000
 182 48.00000 4.50000
 183 48.00000 3.00000
 184 48.00000 1.50000
 185 48.00000 .00000
 186 48.00000 -1.50000
 187 48.00000 -3.00000
 188 48.00000 -4.50000
 189 48.00000 -6.00000

*No. of nodes in cells[1,2,3,4]

 1 1 2 11 10
2 2 3 12 11
3 3 4 13 12

 4 4 5 14 13
5 5 6 15 14

.

.

.
156 175 176 185 184
157 176 177 186 185
158 177 178 187 186
159 178 179 188 187
160 179 180 189 188

*END of data file

448 Chapter 7

Appendix 7.3. A output sample for stress obtained using MWS-RPIM

No. of
field nodes

xx yy xy

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

0.11007E+04

0.82845E+03

0.55283E+03

0.27649E+03

0.21699E-09

-0.27649E+03

-0.55283E+03

-0.82845E+03

-0.11007E+04

0.99841E+03

0.75146E+03

0.50145E+03

0.25079E+03

-0.17631E-07

-0.25079E+03

-0.50145E+03

-0.75146E+03

-0.99841E+03

0.89681E+03

 0.67499E+03

0.45042E+03

0.22528E+03

-0.48267E-08

-0.22528E+03

-0.45042E+03

-0.67499E+03

-0.89681E+03

0.79582E+03

0.59899E+03

 0.39970E+03

0.19991E+03

0.47603E-08

-0.19991E+03

-0.39970E+03

-0.59899E+03

-0.79582E+03

 -0.21716E+01

 -0.10702E+00

 -0.66389E+00

 -0.36205E+00

 -0.14311E-06

0.36205E+00

0.66389E+00

0.10702E+00

0.21717E+01

 -0.19636E+01

 -0.95292E-01

 -0.60194E+00

 -0.32842E+00

 -0.44176E-07

0.32842E+00

0.60194E+00

0.95292E-01

0.19636E+01

 -0.17655E+01

 -0.86294E-01

 -0.54133E+00

 -0.29571E+00

 -0.88478E-08

0.29571E+00

 0.54133E+00

0.86294E-01

0.17655E+01

 -0.15750E+01

 -0.77155E-01

 -0.47954E+00

 -0.25727E+00

 -0.37796E-08

0.25727E+00

0.47954E+00

 0.77155E-01

0.15750E+01

-0.93984E+01

-0.57459E+02

-0.99072E+02

-0.12285E+03

-0.13079E+03

-0.12285E+03

-0.99072E+02

-0.57459E+02

-0.93984E+01

-0.93281E+01

-0.57053E+02

-0.98374E+02

-0.12198E+03

-0.12987E+03

-0.12198E+03

-0.98374E+02

-0.57053E+02

-0.93281E+01

-0.92725E+01

-0.56689E+02

-0.97744E+02

-0.12120E+03

-0.12904E+03

-0.12120E+03

-0.97744E+02

-0.56689E+02

-0.92725E+01

-0.92171E+01

-0.56361E+02

-0.97182E+02

-0.12051E+03

-0.12830E+03

-0.12051E+03

-0.97182E+02

-0.56361E+02

-0.92171E+01

Error in the energy norm:= 0.538919E-01

*The parameters used are:
4.0,c 1.03q and 2.4cdc for MQ-RBF;
2.4,cxdc 1.5,cydc and 3.0s for the local influence domains;

1.5q and 2 2g gng 2gn for local quadrature domains;.
The linear polynomial terms are added in the MQ-RPIM;
The quartic spline function is used as the test function for the local weak form.

7. Meshfree methods based on local weak form/collocation 449

Appendix 7.4. A output sample for stress obtained using MLS MWS

No. of
field nodes

xx yy xy

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

0.11080E+04

0.83117E+03

0.55385E+03

0.27732E+03

0.19094E-04

-0.27732E+03

-0.55385E+03

-0.83117E+03

-0.11080E+04

0.10072E+04

0.75554E+03

0.50342E+03

0.25217E+03

-0.70059E-05

-0.25217E+03

-0.50342E+03

-0.75554E+03

-0.10072E+04

0.90723E+03

0.68009E+03

0.45397E+03

0.22604E+03

-0.11025E-04

-0.22604E+03

-0.45397E+03

-0.68009E+03

-0.90723E+03

0.80534E+03

0.60423E+03

0.40246E+03

0.20185E+03

0.22259E-04

-0.20185E+03

-0.40246E+03

-0.60423E+03

-0.80534E+03

0.34628E+00

-0.37000E+00

0.46561E+00

-0.42962E+00

-0.23530E-04

0.42965E+00

-0.46559E+00

0.36996E+00

-0.34621E+00

0.23823E+00

-0.31540E+00

0.45185E+00

-0.46547E+00

0.85493E-05

0.46545E+00

-0.45186E+00

0.31542E+00

-0.23827E+00

-0.62574E+00

0.74438E+00

-0.10080E+01

0.98990E+00

0.12912E-04

-0.98992E+00

0.10080E+01

-0.74437E+00

0.62572E+00

0.57034E+00

-0.59938E+00

0.75836E+00

-0.69266E+00

-0.26170E-04

0.69269E+00

-0.75833E+00

0.59935E+00

-0.57027E+00

0.64555E+00

-0.53871E+02

-0.94146E+02

-0.11676E+03

-0.12552E+03

-0.11676E+03

-0.94146E+02

-0.53871E+02

0.64554E+00

-0.15794E+01

-0.53106E+02

-0.94331E+02

-0.11705E+03

-0.12478E+03

-0.11705E+03

-0.94331E+02

-0.53106E+02

-0.15794E+01

-0.10710E+00

-0.53588E+02

-0.94175E+02

-0.11682E+03

-0.12528E+03

-0.11682E+03

-0.94175E+02

-0.53588E+02

-0.10710E+00

0.73683E-01

-0.53722E+02

-0.94254E+02

-0.11691E+03

-0.12530E+03

-0.11691E+03

-0.94254E+02

-0.53722E+02

0.73682E-01

Error in the energy norm:= 0.1737E-01
*The parameters used are

2.4,cxdc 1.5,cydc and 3.0s for the local influence domains;

1.5q and 2 2g gng 2gn for local quadrature domains;.

The second order polynomial basis (mbasis=6) and the quartic spline weight function
are used for MLS approximation;
The quartic spline function is used as the test function for the local weak form.

450 Chapter 7

COMPUTER PROGRAMS

Program 7.1. The source code of main program of MFree_MWS.f90

!--
! The main program--2D FORTRAN 90 CODE-MWS method
! Using rectangular quadrature and influence domains
! input file -- input189.dat
! output file -- result.dat
! include file -- variableslocal.h
!--

implicit real*8 (a-h,o-z)
include 'variableslocal.h'
ir=4 ! for input data

 open(ir,file='Input189.dat',status='old')
 open(2,file='result.dat',status='unknown')
 maxmatrix=2*ndim
! ************** Input data
 call Input(ir,x,ndim,nx,numnode,xm, nquado,Dmat,&
 ALFs,numcell,numq,xBK,conn,&
 nbnum,npEBC,pEBC,nbcnum,nbc,ibcn,bcn)
! ************* Determine influence domains --uniform nodal spacing
 xspace=dcx*dex ! Size of quadrature domain

yspace=dcy*dey
 xstep=xspace/dex

ystep=yspace/dey
 do j=1,numnode
 ds(1,j)=alfs*xstep ! Size of influence domain
 ds(2,j)=alfs*ystep

enddo
! ************* Coef. of Gauss points and Weights
 call GaussCoefficient(nquado,gauss)
 eps=1.e-16
 do iak=1,2*numnode
 fk(iak)=0.0
 do jak=1,2*numnode
 ak(iak,jak)=0.
 enddo
 enddo

! ************* Loop for field nodes
 do 100 nod=1,numnode
 write(*,*)'Field Node=',nod
 xn=x(1,nod)
 yn=x(2,nod)
 xss=xspace
 yss=yspace
 numgauss=nquado*nquado
 call QDomain(xss,yss,xn,yn,xm,xc) ! Local quadrature domain

if((xc(2,1).lt.xm(3)).and.(xc(2,2).gt.xm(4))&
 .and.(xc(1,3).lt.xm(2))) then
! ************* using strong form

gpos(1)=xn
gpos(2)=yn

 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv) ! support domain
 do kph=1,ndex
 do ii=1,10

phi(ii,kph)=0.
 enddo

7. Meshfree methods based on local weak form/collocation 451

 enddo
 call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,ndex,&
 alfc,dc,q,nRBF, mbasis)

ie1=2*nod-1
ie2=ie1+1

 do ill=1,ndex
 mm=nv(ill)
 m1=2*mm-1
 m2=2*mm
 ak(ie1,m1)=young*(phi(4,ill)+&
 0.5*(1.-anu)*phi(6,ill))/(1-anu**2)
 ak(ie1,m2)=young*(phi(5,ill)*0.5*(1.+anu))/(1-anu**2)
 ak(ie2,m1)=young*(phi(5,ill)*0.5*(1.+anu))/(1-anu**2)
 ak(ie2,m2)=young*(phi(6,ill)+&
 0.5*(1.-anu)*phi(4,ill))/(1-anu**2)

enddo
else

! ************* using local weak form
 nxc=ng ! for the rectangular domain
 xgs=(xc(1,4)-xc(1,1))/ngx

ygs=(xc(2,1)-xc(2,2))/ngy
 x0=xc(1,1)
! ************* Local quadrature domain is divided to sub-partitions
 do 60 iix=1,ngx
 xx=x0+(iix-1)*xgs
 y0=xc(2,1)
 do 60 jjy=1,ngy
 yy=y0-(jjy-1)*ygs
 xcc(1,1)=xx
 xcc(2,1)=yy
 xcc(1,2)=xx
 xcc(2,2)=yy-ygs
 xcc(1,3)=xx+xgs
 xcc(2,3)=yy-ygs
 xcc(1,4)=xx+xgs
 xcc(2,4)=yy
! ************* Gauss points for a sub-partition
 call DomainGaussPoints(xcc,gauss,gss,nx,ng,nxc,&
 nquado,numgauss)
! ************* Loop quadrature points
 numgauss=nquado*nquado
 do 30 ie=1,numgauss

gpos(1)=gss(1,ie)
gpos(2)=gss(2,ie)

 weight=gss(3,ie)
 ajac=gss(4,ie)
 ndex=0
 call SupportDomain(numnode,nx,gpos,x,ds,ndex,nv)
 do kph=1,ndex
 do ii=1,10

phi(ii,kph)=0.
enddo

enddo
 dsi(1)=xspace
 dsi(2)=yspace
 xcent(1)=xn
 xcent(2)=yn
 call TestFunc(dsi,xcent,gpos,w,wx,wy) ! test function
 Call RPIM_ShapeFunc_2D(gpos,x,nv,phi,nx,numnode,&
 ndex,alfc,dc,q,nRBF, mbasis)

ik1=nod*2-1
ik2=nod*2

! ************* Get nodal stiffness matrix and assembling
 do ine=1,ndex
 n1=2*nv(ine)-1
 n2=2*nv(ine)
 do ii=1,3
 do jj=1,2
 bbt(jj,ii)=0.
 bb(ii,jj)=0.

452 Chapter 7

 ww(ii,jj)=0.
enddo

enddo
 bb(1,1)=phi(2,ine)
 bb(2,2)=phi(3,ine)
 bb(3,1)=phi(3,ine)
 bb(3,2)=phi(2,ine)
 ww(1,1)=wx
 ww(2,2)=wy
 ww(3,1)=wy
 ww(3,2)=wx
 do ii=1,3
 do jj=1,2
 bbt(jj,ii)=ww(ii,jj)
 enddo
 enddo
 call dobmax(bbt,2,3,2,dmat,3,3,bd,2)
 call dobmax(bd,2,3,2,bb,2,3,ek,2)
 ak(ik1,n1)=ak(ik1,n1)+weight*ajac*ek(1,1)
 ak(ik1,n2)=ak(ik1,n2)+weight*ajac*ek(1,2)
 ak(ik2,n1)=ak(ik2,n1)+weight*ajac*ek(2,1)
 ak(ik2,n2)=ak(ik2,n2)+weight*ajac*ek(2,2)

enddo
 30 continue !End of integ. for local quadrature domain

! ************* B.C. Integrations
 call Integration_BCQt(nx,ng,xcc,f2,x,numnode,nquado,&
 xm,xss,yss,xcent)
 fk(2*nod-1)=fk(2*nod-1)+f2(1)
 fk(2*nod)=fk(2*nod)+f2(2)
 call Integration_BCQuQi(nx,ng,nod,xcc,x,numnode,&
 nquado,dmat,xm,xss,YSS,ak,maxmatrix,alfs,ds)
 60 continue
 endif
 100 continue ! End of loop for field nodes

! ************* Boundary conditions: essential
 call EssentialBC(x,numnode,ak,fk,maxmatrix,ds,alfs,&
 nbnum,npEBC,pEBC)

! ************* Solve equation to get the solutions
 neq=2*numnode ! number of equations
 write(*,*)'Solve equation...'
 call SolverBand(ak,fk,neq,maxmatrix)
 do kk=1,numnode
 u2(1,kk)=fk(2*kk-1)
 u2(2,kk)=fk(2*kk)

enddo
! ************* Get the final displacement
 call GetDisplacement(x,ds,u2,displ,alfs,nx,numnode)
 do kk=1,numnode
 u22(1,kk)=displ(2*kk-1)
 u22(2,kk)=displ(2*kk)
 enddo

! ************* Get stress for field nodes
 call GetNodeStress(x,ds,Dmat,u2,Stress,alfs,nx,numnode)
 call Output(x,numnode,u2,u22,Stress) ! ouput results

! ************* Get error in the energy norm using global BK cells
 write(*,*)'Computing global error in the energy norm...'
 ngst=numcell*nquado**2
 call TotalGaussPoints(xBK,conn,gauss,gst,nx,ng,&
 numq,numcell,nquado,ngst)
 call GetEnergyError(nx,ng,xBK,numq,u2,dmat,ds,&
 ngst,gst,alfs)
 write(*,*)'THE END'
STOP
END

7. Meshfree methods based on local weak form/collocation 453

Program 7.2. The source code of subroutine TestFunc

 SUBROUTINE TestFunc(dsi,xcent,xg,w,wxx,wyy)
!--
! The quartic spline test (weight) function
! input—dsi: size of weight domain;
! xcent: center of the weight domain;
! xg: coordinate of point considered;
! output—w, wxx,wyy
!--
 IMPLICIT REAL*8(A-H,O-Z)
 dimension dsi(2),xcent(2)
 dimension xg(2)
 ep=1.e-15
 difx=xg(1)-xcent(1)
 dify=xg(2)-xcent(2)
 if(dabs(difx).le.ep) then
 drdx=0.

else
 drdx=(difx/dabs(difx))/dsi(1)

end if
if (dabs(dify).le.ep) then

 drdy=0.
else

 drdy=(dify/dabs(dify))/dsi(2)
end if

 rx=abs(xg(1)-xcent(1))
 ry=abs(xg(2)-xcent(2))
 rx=rx/dsi(1)
 ry=ry/dsi(2)
 wx=1.-6*rx*rx+8.*rx**3-3.*rx**4
 dwx=(-12.*rx+24.*rx**2-12.*rx**3)*drdx
 wy=1.-6*ry*ry+8.*ry**3-3.*ry**4
 dwy=(-12.*ry+24.*ry**2-12.*ry**3)*drdy

if(rx.gt.1.) wx=0.
if(ry.gt.1.) wy=0.

 w=wx*wy
 wxx=wy*dwx
 wyy=wx*dwy
RETURN

 END

REFERENCES

Abbassian F, Dawswell DJ and Knowles NC (1987), Free vibration benchmarks.
Glasgow: National Engineering Laboratory.

Adey RA and Brebbia CA (1974), FEM solution of effluent dispersion, in Num.
Meth. In Fl. Mech. (eds Brebbia and Connor), 325-354, Pentech Press, UK,

Armando DC and Oden JT (1995), Hp clouds-a meshless method to solve boundary
value problems. TICAM Report 95-05, University of Texas at Austin.

Atluri SN and Shen SP (2002), The Meshless Local Petrov-Galerkin (MLPG)
method. Tech Sciemce Press. Encino USA.

Atluri SN and Zhu T (1998a), A new meshless local Petrov-Galerkin (MLPG)
approach in computational mechanics. Computational Mechanics, 22, 117-
127.

Atluri SN and Zhu T (1998b), A new meshless local Petrov-Galerkin (MLPG)
approach to nonlinear problems in computer modeling and simulation.
Computer Modeling and Simulation in Engineering, 3(3), 187-196.

Atluri SN and Zhu T (2000a), New concepts in meshless methods. Computational
Mechanics, 22, 117-127.

Atluri SN and Zhu T (2000b), The meshless local Petrov-Galerkin (MLPG)
approach for solving problems in elsto-statics. Computational Mechanics,
25,169-179.

Atluri SN, Cho JY and Kim HG(1999a), Analysis of thin beams, using the meshless
local Petrov-Galerkin (MLPG) method, with generalized moving least squares
interpolation. Computational Mechanics, 24, 334-347.

Atluri SN, Kim HG and Cho JY(1999b), A critical assessment of the truly meshless
local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE)
methods. Computational Mechanics, 24,348-372.

454

References

Atluri SN, Sladek J, Sladek V and Zhu T(2000), Local boundary integral equation
(LBIE) and it's meshless implementation for linear elasticity. Computational
Mechanics, 25(2), 180-198.

Babuska I and Melenk JM(1997), The partition of unity method. Int J. Numer. Meth
Eng., 40(4) 727-758.

Balakrishnan K and Ramachandran PA(2001), Osculatory Interpolation in the
Method of Fundamental Solution for Nonlinear Poisson Problems. J. of
Comput. Phys., 172, 1-18.

Barrett KE (1974), The numerical solution of singular perturbation boundary value
problem. Q. J. Mech. Appl. Math., 27, 57-68.

Batra J (1964), Uber die Naherungsweise Losung einiger Zweidiensionaler
Elastizitats aufgben. Z. Angew. Math. Mech. 17, 184-185.

Beissel S and Belytschko T (1996), Nodal integration of the element-free Galerkin
method. Computer Methods in Applied Mechanics and Engineering, 139, 49-
74.

Belytschko T and Organ D (1995) Coupled finite element-element–free Galerkin
method. Computational Mechanics, 17, 186-195.

Belytschko T, Guo Y, Liu WK and Xiao SP(2000), A unified stability of meshless
particle methods. Int. J. Numer. Methods Engng. 48,1359-1400.

Belytschko T, Krongauz Y, Organ D and Liu WK (1996b), Smoothing and
accelerated computations in the element free Galerkin method. J. of Comp.
And Appl. Math., 74, 111-126.

Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P(1996a), Meshless
Method: an overview and recent development. Comput. Meth. Appl. Mech.
Eng., 139,3-47., 74, 111-126.

Belytschko T, Krysl P, and Krongauz Y(1997), A three-dimensional explicit
element-free Galerkin method. INT J NUMER METH FL, 24(12), 1253-1270.

Belytschko T, Lu YY and Gu L (1994a) Element-free Galerkin methods. Int. J.
Numer. Methods Engrg., 37, 229-256.

Belytschko T, Lu YY and Gu L (1994b), Fracture and crack growth by element-free
Galerkin methods. Model. Simul. Sci. Compt. Engrg., 2, 519-534.

Belytschko T, Lu YY and Gu L (1995a), Crack propagation by element free
Galerkin methods. Engineering Fracture Mechanics, 51, 295-315.

Belytschko T, Lu YY and Gu L (1995b), Element Free Galerkin methods for static
and dynamic fracture. Int. J. of Solids and Structures, 32, 2547-2570.

Belytschko T, Lu YY and Gu L (1995c), Element Free Galerkin methods for static
and dynamic fracture. Int. J. of Solids and Structures, 32, 2547-2570.

455

456

Braza M, Chassaing P and H.Ha Minh (1986), Numerical study and physicaltt
Analysis of the pressure and velocity fields in the near wake of a circular
cylinder. J. Fluid Mech., 165, 79.

Benz W(1988), Applications of smoothed particle hydrodynamics (SPH) to
astrophysical problems. Comput. Phys. Comm., 48, 97-105.

Bernard PS(1995), A deterministic vortex sheet method for boundary layer flow. J.
of Computational Physics, 117,132-145.

Biezeno CB, and Koch, JJ (1923), Over een Nieuwe Methode ter Berekening van
Vlokke Platen met Toepassing op Enkele voor de Techniek Belangrijke
Belastingsgevallen, Ing. Grav. 38, 25-36.

Biezeno CB (1923-1924), Over een Vereenvoudiging en over een Uitbreiding van
de Methode van Ritz. Christiaan Huygens 3.69.

Biezeno CB and Grammel R (1955), Engineering Dynamics. Vol. I Theory of
Elasticity. Blackie, Glasgow and London.

Biezeno CB and Grammel R (1955), Over een Nieuwe Methode ter Berekening van
Vlokke Platen met Toepassing on Enkele voor de Techniek Belangrijke
Belastingsgevallen, Ing. Graw. 38, 25036.

Bogomolny A (1985), Fundamental Solution Method for Elliptic Boundary Value
Problems. SIAM J. Numer. Anal., 22, 644-669.

Brebbia CA (1978), The Boundary Element Method for Engineers. Pentech Press,
London, Halstead Press, New York.

Brebbia CA and Georgiou P(1979), Combination of boundary and finite elements in
elastostatics. Appl. Math. Modeling, 3, 212-219.

Brebbia CA, Telles JC and Wrobel LC (1984), Boundary Element Techniques.
Springer Verlag, Berlin.

Breitkopf P, Rassineux A and Villon P(2000), A spatial tessellation algorithm for
solving of mechanical problems with meshfree methods. Advances in
Computational engineering & Sciences(eds Atluri SN and Brust FW,
Proceeding of International Conference on Computational Engineering &
Science. 1386-1391.Los Angeles 2000.

Chati MK and Mukherjee S (2000), The boundary node method for three-
dimensional problems in potential theory. Int. J. Numer. Methods Engrg., 47,
1523-1547.

Chati MK, Mukherjee S and Mukherjee YX (1999), The boundary node method for three-
dimensional linear elasticity. Int. J. Numer. Methods Engrg.,46, 1163-1184.

Chati MK, Mukherjee S and Paulino GH(2001), The meshless hypersingular
boundary node method for three-dimensional potential theory and linear
elasticity problems. Engineering Analysis with Boundary Elements, 25(8),
639-653.

References

References 457

Chen JS, Pan C and Wu CT(1997), Large deformation analysis of rubber based on a
reproducing kernel particle method. Comp. Mech., 19, 153-168.

Chen JS, Pan C, Wu C T and Liu WK (1996), Reproducing kernal perticle methods
for large deformation analysis of nonlinear structures. Comput. Meth. Appl.
Mech. Eng., 139, 195-227.

Chen JS, Roque C, Pan C and Button ST(1998), Analysis of metal forming process
based on meshless method. J. of Material Processing Tech., 80-81, 642-646.

Chen JS, Han WM, You Y, et al. (2003), A reproducing kernel method with nodal
interpolation property. Int J. Numer. Meth. Eng. 56 (7): 935-960.

Chen WH and Guo XM(2001), Element Free Galerkin Method for three-
dimensional structural analysis. Computer Modeling in Engineering &
Science, 4(2), 497-508.

Chen XL (2003), Meshfree techniques for plate structures. PhD thesis. National
University of Singapore.

Chen XL, Liu GR, and Lim SP(2001), Deflection analyses of laminates using EFG
method, International conference on scientific and engineering computing,
March 19-23, Beijing, P. R. China, 67.

Chen XL, Liu GR and Lim SP (2003), An element free Galerkin method for the free
vibration analysis of composite laminates of complicated shape, Composite
Structure, 59 (2): 279-289.

Cheng AHD, Golberg MA, Kansa EJ and Zammito G (2003), Exponential
convergence and H-c Multiquadric collocation method for PDE. Num.
Methods for PDE, 19(5): 571-594.

Cheng AHD, Lafe O and Grilli S (1994), Dual-reciprocity BEM based on global
interpolation functions. Engineering Analysis with Boundary Elements, 13,
303-311.

Cheng M and Liu GR (1999), finite point method for analysis of fluid flow .
Proceedings 4th Asia-Pacific Conference on Computational Mechanics (ed.
By Wang, Lee and Ang), Dec. 15-17 1999, Singapore, 1015-1020.

Cheng M and Liu GR (2002), A novel finite point method for flow simulation. Int. J
Numer. Meth. Fl.. 39 (12): 1161-1178.

Ching HK and Batra RC(2001), Determination of Crack Tip Fields in Linear
Elastostatics by the Meshless Local Petrov-Galerkin (MLPG) Method. CMES,
2(2), 273-290.

Christie I, Griffiths DF, Mitchell AR and Zienkiewicz OC (1976), Finite element
methods for second order differential equations with significant first
derivatives. Int. J. Num. Meth. Eng., 10, 1389-1396.

458

Cho JY, Kim HG and Atluri SN(2001), Analysis of shear flexible beams, using the
meshless local Petrov-Galerkin method based on locking-free formulation.
Engineering Computations, 18(1/2), 215-240.

Chorin AJ(1973), Numerical study of slightly viscous flow. J. of Fluid Mechanics,
57,785-796.

Cingoski V, Miyamoto N and Yamashita H(1998), Element-free Galerkin method
for electromagnetic field computations. IEEE Transactions on Magnetics,
34(5), Part 1, 3236-3239.

Cleary, PW(1998), Modeling Confined Multi-material Heat and Mass Flows Using
SPH. Applied Mathematical Modeling, 22, 981-993.

Cleveland WS (1993), Visualizing Data, AT&T Bell Laboratories, Murray Hill, NJ.
Courant R, Isaacson E and Rees M (1952), On the solution of non-linear hyperbolic

differential equations by finite differences. Comm. Pure Appl. MathV, 243-
255.

Dai KY, Liu GR, Lim KM and Chen XL(2004), An element-free Galerkin method
for static and free vibration analysis of shear-deformable laminated compositef
plates, Journal of Sound and Vibration, 269 (3-5): 633-652.

Dai KY, Liu GR and Lim KM (2003), A meshfree method for analysis of
geometrically nonlinear problems. submitted to Comput. Mech.

Dai KY, Liu GR and Han X(2004), Inelastic analysis for 2D solids based on
deformation theory using a meshfree method. submitted.

Davis GV (1983), Natural convection of air in a square cavity: a benchmark
numerical solution, Int.J.Numer.Meth.Fluids, 3, 249-264.

De S and Bathe KJ (2000), The method of finite spheres. Computational Mechanics,
25, 329-345.

DeFigueiredo TGB (1991), A New Boundary Element Formulation in Engineering.
Springer-Verlag, Berlin.

Dennis SCR and Chang GZ(1980), Numerical solutions for steady flow past a
circular cylinder at Reynolds number up to 100, J. Fluid Mech. 42, 471.

Dolbow J and Belytschko T (1998), An introduction to programming the meshless
Element Free Galerkin method. ARCH COMPUT METHOD E 5 (3), 207-
241.

Dolbow J. and Belytschko T(1999), Numerical Integration of the Galerkin Weak
Form in Meshfree Methods. Computational Mechanics, 23, 219-230.

Donea J. et al. (2000), High-order accurate time-stepping schemes for convection-
diffusion problems, Comput. Methods Appl. Mech. Engrg. 182, 249-275.

Donea J, Belytschko T and Smolinski P (1985), A generalized Galerkin method for
steady state convection-diffusion problems with application ti quadratic shape
function. Comp. Mech. Appl. Mech. Eng., 48, 25-43.

References

References 459

Duarte CA and Oden JT(1996), An hp adaptive method using clouds. Comput.
Methods Appl. Mech. Engrg., 139, 237-262.

Dumont NA (1988), The hybrid Boundary Element Method. In Brebbia CA (Ed)
Boundary Elements IX vol. 1. Springer-Verlag, Berlin, 117-130.]

Fasshauer GE(1997), Solving partial differential equations by collocation with radial
abasis functions. In Alain LeMehaute, Christophe RAbut, and LL Schumaker.
Eds., Surface fitting and Multiresolution Methods, 131-138. Vanderbilt
University Press, Nashville, Tennessee.

Fornberg B(1980), A numerical study of steady viscous flow past a circular cylinder,
J. Fluid Mech. , 98,819.

Franke C and Schaback R(1997), Solving Partial Differential Equations by
Collocation Using Radial Basis Functions. Applied Mathematics and
Computation, 93, 73-82.

Frazer RA, Jones WP and Skan SW (1937), Approximations to functions and to the
solutions of Differential Equations. Great Britain Aero Counc. London. Rep.
and Memo. No. 1799.

Fujita H(1951), Mem. Coll. Agr. Kyoto Imp. Univ. 59, 31.
Galerkin BG (1915), Rods and plates. Series in Some Problems of Elastic Equilibrium

of Rods and plates. Vestn. Inzh. Tch. (USSR) 19, 897-908. Translation 63-
18924, Clearinghouse, Fed. Sci. Tech. Info., Springfield., Virginia.

Gingold RA and Moraghan JJ (1977), Smooth particle hydrodynamics: theory and
applications to non spherical stars. Man. Not. Roy. Astron. Soc. 181, 375-389.

Girault V (1974), Theory of a GDM on irregular networks. SIAM J. Num. Anal. 11,
260-282.

Golberg and Chen CS(1999), The method of fundamental solutions for potential,
Hermholtz and diffusion problems. Chapter 4, Boundary Integral Methods:
Numerical and Mathematical Aspects, ed. MA Golberg, WIT Press &
Computational Mechanics Publications, Boston, Southampton, 105-176.

Golberg MA, Muleshkov AS, Chen CS and Cheng AHD (2003), Polynomial
particular solutions for certain partial differential operators. Num. Methods
for PDE (proof).

Gordon WJ and Wixom JA(1978), Shepard's Method of 'Metric Interpolation' to
Bivariate and Multivariate data. Math. Comput., 32:253-264.

Gu YT (2003), Meshfree methods and their newest development. Advances in
Mechanics(revised).

Gu YT (2002), Development of Meshfree techniques for computational mechanics.
PhD thesis, National University of Singapore.

460

Gu YT and Liu GR (2001a), Using radial function basis in a boundary-type
meshless method, boundary point interpolation method (BPIM). Inter. Conf.
On Sci. & Engr. Comput., March 19-23,2001, Beijing. 68.

Gu YT and Liu GR(2001b), A coupled element free Galerkin/Boundary element
method for stress analysis of two-dimensional solids, Computer Methods in
Applied Mechanics and Engineering, 190/34, 4405-4419.

Gu YT and Liu GR(2001c), A meshless local Petrov-Galerkin (MLPG) method for
free and forced vibration analyses for solids, Computational Mechanics 27 (3),
188-198.

Gu YT and Liu GR(2001d), A local point interpolation method for static and
dynamic analysis of thin beams, Comput. Methods Appl. Mech. Engrg., 190,
5515-5528.

Gu YT and Liu GR(2001e), A boundary point interpolation method (BPIM) using
radial function basis, First MIT Conference on Computational Fluid and Solid
Mechanics, June 2001, MIT, 1590-1592.

Gu YT and Liu GR(2001f), A meshless Local Petrov-Galerkin (MLPG) formulation
for static and free vibration analyses of thin plates, Computer Modeling in
Engineering & Sciences, 2(4), 463-476.

Gu YT and Liu GR (2002a), A boundary point interpolation method for stress
analysis of solids. Computational Mechanics, 28, 47-54.

Gu YT and Liu GR (2002b), A Hybrid Boundary Point Interpolation Method
(HBPIM) and its Coupling with EFG Method. Advances in Meshfree and X-
FEM Methods, Proceeding of the 1st Asian Workshop in Meshfree Methods
(Ed. Liu GR), Singapore. 167-175.

Gu YT and Liu GR(2003a), Hybrid boundary point interpolation methods and their
coupling with the element free Galerkin method. Engineering Analysis with
Boundary Elements, 27(9), 905-917.

Gu YT and Liu GR(2003b), A boundary radial point interpolation method (BRPIM)
for 2-D structural analyses. Structural Engineering and Mechanics, An
International Journal. 15(5), 535-550.

Guymon GL, Scott VH and Herrmann LR (1970), A general numerical solution of
the two dimensional diffusion-convection equation by the FEM. Water
Resources Res., 6, 1611-1617.

Hall T (1970), CarL Friedrich Gauss. MIT Press, Cambridge, Massachusetts.
He XY and Doolen GD(1997), Lattice Boltzmann method on a curvilinear

coordinate system: Flow around a Circular cylinder, Journal Compu.Physics,
134, 306-315.

References

Gu YT and Liu GR (2005), A Meshfree Weak-Strong (MWS) form method for
time dependent problems. Computational Mechanics, 35, 134-145.

References 461

Hegen D (1996), Element-free Galerkin methods in combination with finite element
approaches. Comput. Methods Appl. Mech. Engrg., 135,143-166.

Hueck U, Wriggers P(1995), A formulation for the 4-node quadrilateral element. Int.
J. Numer. Methods Engrg., 38, 3007-3037.

Hughes WF and Brighton JA (1991), Schaum’s outline of Theory and Problems of
Fluid Dynamics(second edition), McGRAW-Hill, Inc., New York.

Hughes TJR and Brooks AN (1982), A theoretical framework for Petrov-Galerkin
methods with discontinuous weighting function. Finite Elements in Fluids
(eds Gallagher RH et al.), Vol. 4, 47-65. Wiley, Chichester.

Hughes TJR and Brooks A (1979), A multi-dimensional upwind scheme with no
cross wind diffusion, in Finite elements for convection Dominated Flows (ed.
Hughes TJR), AMD 34, ASME.

Hughes TJR, Franca LP, Hulbert GM, Johan Z and Sakhib F (1988), The Galerkin
least square method for advective diffusion equations, in Recent
Developments in Comp. Fl. Mech. (eds Tezduyar and Hughes), AMD 95,
ASME.

Jordan SK.and Fromm (1972), Oscillatory drag, lift, and torque on a circular
cylinder in a uniform flow. Physics of Fluids, 15,371-376.

Jun, SA(1996), Meshless method for nonlinear solid mechanics. RIKEN Review, 14,
33-34.

Kansa EJ(1990), Multiquadrics-A Scattered Data Approximation Scheme with
Applications to Computational Fluid dynamics. Computers Math. Applic.,
19(8/9),127-145.

Kelly DW, Nakazawa S and Zienkiewicz OC (1980), A note on anisotropic
balancing dispation in the finite element method approximation to convective
diffusion problems Int. J. Num. Meth. Eng., 15, 1705-1711.

Kim HG and Atluri SN (2000), Arbitrary placement of secondary nodes, and error
control, in the meshless local Petrov-Galerkin (MLPG) method. Computer
Modeling in Engineering & Sciences, 1(3), 11-32.

Kleiber M. (Ed.) (1998), Handbook of Computational Solid Mechanics. Springer,
Berlin.

Kothnur VS, Mukherjee S and Mukherjee YX(1999), Two-dimensional linear
elasticity by the boundary node method. Int. J. of Solids and Structures,
36,1129-1147.

Krok J and Orkisz J (1989), A unified approach to the FE generalized variational FD
method for nonlinear mechanics. Concept and numerical approach. 353-362.
Springer-Verlag.

462

Krongauz Y and Belytschko T (1996), Enforcement of essential boundary
conditions in meshless approximations using finite element. Comput.
Methods in Appl. Mech. and Engrg., 131, 133-145.

Krysl P and Belytschko T (1995), Analysis of thin plates by the element-free
Galerkin method. Computational Mechanics, 17(1-2), 26-35.

Krysl P and Belytschko T(1996), Analysis of thin shells by the element-free
Galerkin method. International Journal of Solids and Structures, 33(20-22),
3057-3080.

Krysl P and Belytschko T(1999), Element free Galerkin method for dynamic
propagation of arbitrary 3-D cracks. International Journal for Numerical
Methods in Engineering, 44(6), 767-800.

Lam KY, Liu GR, Liu MB and Zong Z (2000), Numerical simulation of underwater
shock using SPH methodology. Computational Mechanics and Simulation of
Underwater Explosion Effects- US/Singapore workshop, pp. 1-6, November
2000, Washington D.C.

Lanczos C (1938), Trigonometric Interpolation of Empirical and Anlytical Functions,
J. Math. Phys. 17, 123-199.

Lancaster P and Salkauskas K (1981), Surfaces generated by moving least squaresff
methods. Math. Comput., 37, 141-158.

Lancaster P and Salkauskas K (1986), Curve and surface fitting, an introduction.
Academic Press.

Li SF and Liu WK (2002), Meshfree and particle methods and their applications.
Applied Mechanics Review, 55, 1-34.

Li Hua, Wang QX and Lam KY (2004), A variation of local point interpolation
method (vLPIM) for analysis of microelectromechanical systems (MEMS)
device. Engineering Analysis with Boundary Elements. 28 (10): 1261-1270.

Libersky LD and Petscheck AG(1991), Smoothed Particle Hydrodynamics with
Strength of Materials. in H. Trease, J. Fritts and W. Crowley eds.,
Proceedings of The Next Free Lagrange Conference, Springer-Verlag, NY,
395,248-257.

Libersky LD, Randles PW and Carney TC(1995), SPH calculations of fragmentation.
Proceedings of 3rd US congress on computational Mechanics, Dallas, TX.

Lin H and Atluri SN (2001), Analysis of incompressible Navier-Stokes flows by the
meshless MLPG method. Computer Modeling in Engineering & Sciences,
2(2), 117-142.

Lin H. and Atluri SN (2000), Meshless Local Petrov-Galerkin (MLPG) method for
conection-difusion problems. Computer Modeling in Engineering & Sciences,
1(2), 45-60.

References

References 463

Liszka T and Orkisz J (1977), Finite difference methods of arbitrary irregular
meshes in non-linear problems of applied mechanics. In Proc. 4th Int. Conf.
on Structural Mech. In Reactor Tech, San Francisco, USA.

Liszka T and Orkisz J (1980), The finite difference methods at arbitrary irregular
grids and its applications in applied mechanics. Comp. Struct., 11, 83-95.

Liszka TJ, Duarte CA and Tworzydlo WW(1996), Hp-Meshless cloud method.
Comput. Methods Appl. Mech. Engrg., 139, 263-288.

Liu GR(1999), A Point Assembly Method for Stress Analysis for Solid, in Impact
Response of Materials & Structures, V. P. W. Shim et al. eds, Oxford, 475-
480.

Liu GR (2002), Mesh Free Methods: Moving Beyond the Finite Element Method.
CRC press, Boca Raton, USA.

Liu GR and Chen XL(2000), Static buckling of composite laminates using EFG
method, Proc. of the 1st Int. Conf. On Structural Stability and Dynamics,
December 7-9, Taipei, Taiwan. 321-326.

Liu GR and Chen XL(2001), A mesh-free method for static and free vibration
analyses of thin plates of complicated shape, Journal of Sound and Vibration.
241 (5), 839-855.

Liu GR, Dai KY, Lim KM and Gu YT(2002), A point interpolation mesh free
method for static and frequency analysis of two-dimensional piezoelectric
structures. Computational Mechanics, 29 (6), 510-519.

Liu GR, Dai KY, Lim KM and Gu YT (2003), A radial point interpolation method
for simulation of two-dimensional piezoelectric structures, Smart Materials
and Structures. 12: 171-180.

Liu GR, Dai KY and Lim KM (2003), A meshfree method for analysis of
geometrically nonlinear problems (submitted).

Liu GR and Gu YT(1999), A point interpolation method. Proceedings of 4th Asia-
Pacific Conference on Computational Mechanics, Dec. 1999, Singapore,
1009-1014.

Liu GR and Gu YT(2000a), Meshless local Petrov-Galerkin (MLPG) method in
combination with finite element and boundary element approaches, Comput.
Mech., 26, 536-546.

Liu GR and Gu YT(2000b), Vibration analyses of 2-D solids by the local point
interpolation method (LPIM), Proceedings of 1st international conference on
structural stability and dynamics, Taiwan, Dec. 7-9, 411-416.

Liu GR and Gu YT(2000c), Coupling of element free Galerkin and hybrid boundary
element methods using modified variational formulation, Computational
Mechanics, 26, 2, 166-173.

464

Liu GR and Gu YT(2001a), A point interpolation method for two-dimensional solids.
Int. J. Muner. Meth. Engng, 50, 937-951.

Liu GR and Gu YT(2001b), A local point interpolation method for stress analysis of
two-dimensional solids, Structural Engineering and Mechanics, 11(2), 221-236.

Liu GR and Gu YT(2001c), A local radial point interpolation method (LR-PIM) for
free vibration analyses of 2-D solids. J. of Sound and Vibration, 246(1), 29-46.

Liu GR and Gu YT(2001d), A matrix triangularization algorithm for point
interpolation method, Proceedings of the Asia-Pacific Vibration Conference,
Nov. 2001, ed. Bangchun Wen, Hangzhou, China, 1151-1154.

Liu GR and Gu YT(2001e), Truly meshless methods based on the local concept and
its applications, International Congress on Computational Engineering
Science (ICES'01), 19-25, August 2001, Puerto Vallarta Mexico (Keynote
Lecture).

Liu GR and Gu YT(2002a), Comparisons of two meshfree local point interpolation
methods for structural analyses. Computational Mechanics 2002, 29, 107-121.

Liu GR and Gu YT(2002b), Boundary meshfree methods based on the boundary
point interpolation methods, Boundary Elements XXIV (eds. CA Brebbia et
al.), 57-66.

Liu GR and Gu YT(2002d), A truly meshless method based on the strong-weak
form. Advances in Meshfree and X-FEM Methods, Proceeding of the 1st
Asian Workshop in Meshfree Methods (Ed. Liu GR), Singapore, 259-261.

Liu GR and Gu YT(2003a), A matrix triangularization algorithm for point
interpolation method. Computer Methods in Applied Mechanics and
Engineering, 192/19 pp. 2269-2295.

Liu GR and Gu YT(2003b), A meshfree method: Meshfree Weak-Strong (MWS)
form method, for 2-D solids. Computational Mechanics 33(1), 2-14.

Liu GR, Gu YT and Wu YL (2003), A Meshfree Weak-Strong form (MWS) method
for fluid mechanics. Proceeding of International Workshop on MeshFree
Methods, July 21-23, 2003, Lisbon, Portugl, pp. 73-78.

Liu GR and Gu YT(2004a), Boundary meshfree methods based on the boundary
point interpolation methods, Engineering Analysis with Boundary Elements,
28/5, 475-487.

Liu GR, Gu YT and Hoo YK(2004b), Parameter studies for radial basis functions.
ICCM 2004,15-17, Dec.2004, Singapore.

Liu GR and Gu YT(2004c), Assessment and applications of point interpolation
methods for computational mechanics, International Journal for Numerical
Methods in Engineering, 59:1373–1397.

Liu GR and Han X(2003), Computational Inverse Techniques in Nodestructive
Evaluation. CRC press, Boca Raton, USA.

Refe eff rences

References 465

Liu GR, Liu MB, and Lam KY(2002), A General Approach for Constructing
Smoothing Functions for Meshfree Methods, The Ninth International
Conference on Computing in Civil and Building Engineering, April 3-5, 2002,
Taipei, Taiwan.

Liu GR, Liu MB and Lam KY(2001a)., Smoothed particle hydrodynamics for
numerical simulation of high explosive explosions, The first international
symposium on advanced fluid information (AFI-2001), Institute of fluid
Science, Tohoku University, Sendai, Japan.

Liu GR, Liu MB, Zong, Z., and Lam KY(2001b), Simulation of the high explosive
detonation process using SPH methodology, First MIT conference on
Computational Solid and Fluid Mechanics, June 2001, MIT, USA.

Liu GR, Lam KY and Lu C (1998), Computational simulation of sympathetic
explosion in a high performance magazine. Proc. of 3rd Weapon Effects
Seminar, Singapore.

Liu GR and Liu MB (2003), Smoothed particle hydrodynamics – a meshfree particle
method. World Scientific, Singapore.

Liu GR and Quek SS (2002), Finite Element Method :A Practical Course. World
Seientific, Singapore.

Liu GR and Yan L(1999), A study on numerical integrations in element free
methods. Proceeding of APCOM '99, Singapore, 979-984, 1999.

Liu GR and Yan L (2000), A Modified Meshless Local Petrov-Galerkin Method for
Solid Mechanics, Advances in Computational Engineering and Sciences, eds:
Atluri and Brust, 2000, Tech Science Press, Palmdale, 1374-1379,2000.

Liu GR, Yan L, Wang JG and Gu YT (2002), Point interpolation method based on
local residual formulation using radial basis functions. Structural Engineering
and Mechanics, Vol. 14, No. 6, 713-732.

Liu GR and Yang KY(1999), A New Meshless Method for Stress Analysis for
Solids and Structure, Proceedings of Fourth Asia-Pacific Conference on
Computational Mechanics, 15-17 December, Singapore.

Liu GR and Yang KY(1998), A Penalty Method for Enforce Essential Boundary
Conditions in Element Free Galerkin Method, In Proc. of the 3rd HPC
Asia'98, 1998, Singapore: 715-721.

Liu GR, Yang KY and Cheng M (1999), Some Recent Development in Element
Free Methods in Computational Mechanics, Proceedings of Fourth Asia-
Pacific Conference on Computational Mechanics, 15-17 December,
Singapore.

Liu GR and Xi ZC(2001), Elastic Waves in Anisotropic Laminates, CRC Press,
USA.

466

Liu GR and Tu, ZH(2002), An Adaptive Procedure Based on Background Cells for
Meshless Methods, Comput. Methods in Appl. Mech. and Engrg., 191, 1923-
1943.

Liu GR, Tu ZH and Wu YG (2000), MFree2D?: an adaptive stress analysis package
based on mesh free technology, The 3rd South Africa Conference on Applied
Mechanics. 11-13 Jan, 2000,Durban, South Africa.

Liu GR and Tu, ZH (2001), MFree2D: an adaptive stress analysis package based on
mesh-free technology, First MIT Conference on Computational Fluid and
Solid Mechanics, June 2001, MIT, 327-329, 2001.

Liu GR, Gu YT, Tu ZH, Huang XM, Wang JG and Wu YG (2002). MFree2D.
http://www.nus.edu.sg/ACES.

Liu GR, Wu YL, and Gu YT(2001), Application of Meshless local Petrov-Galerkin
(MLPG) approach to Fluid Flow Problem, Proceedings of the First Asian-
Pacific Congress on Computational Mechanics, 20-23 November,2001,
Sydney, Australia.

Liu GR, Wu YL and Gu YT (2002), A Meshless Petrov-Galerkin Method for fluid
mechanics. (submitted).

Liu GR, Zhang GY and Gu YT (2003), The radial interpolation method for 3D solid
problems (submitted).

Liu L, Liu GR and VBC Tan (2001), Element free analyses for static and free
vibration of thin shells, Proceedings of the Asia-Pacific Vibration Conference,f
Nov. 2001, ed. Bangchun Wen, Hangzhou, China.

Liu L and Tan VBC(2002a), A meshfree method for dynamics analysis of thin shells,
In Liu G. R. (Ed.): Advances in Meshfree and X-FEM methods, pp. 90-95.

Liu L, Liu GR, Tan VBC (2002b),Element free method for static and free vibration
analysis of spatial thin shell structures. Comput. Method Appl. M. 191 (51-tt
52): 5923-5942.

Liu MB, Liu GR, Zong Z and Lam KY(2001), Numerical simulation of
incompressible flows by SPH, International Conference on Scientific &
Engineering Computing, 72, March 2001, Beijing, China.

Liu MB, Liu GR and Lam KY(2002a), Investigations into water mitigations using a
meshless particle method, Shock Waves 12(3):181-195.

Liu MB, Liu GR and Lam KY(2003a), Comparative study of the real and artificial
detonation models in underwater explosions, Engineering Simulation, 25(1).

Refe eff rences

Liu GR and Wu YL(2002), Application of Meshless Point Interpolation Method
with Matrix Triangularization Algorithm to Natural Convection in Advances
in Meshless and X-FEM Methods, Proceedings of the 1st Asian Workshop on t

Meshfree Methods (Edited by Liu GR), World Scientific, Singapore, 135-139.

Liu GR, Wu YL, Ding H (2004), Meshfree weak-strong (MWS) form method and
its application to incompressible flow problems. International Journal for
Numerical methods fluids, 46 (10): 1025-1047.

References 467

Liu MB, Liu GR and Lam KY(2003b), Constructing smoothing functions in
smoothed particle hydrodynamics with applications, Journal of Computational
and Applied Mathematics. 155 (2): 263-284.

Liu MB, Liu GR and Lam KY(2003c), Meshfree particle simulation of the explosion
process for high explosive in shaped charge, Shock Waves. 12 (6): 509-520.

Liu MB, Liu GR, Zong Z and Lam KY (2003d), Computer simulation of the high
explosive explosion using smoothed particle hydrodynamics methodology,
Computers & Fluids, 32(3): 305-322.

Liu MB, Liu GR and Lam KY(2003e), A one dimensional meshfree particle
formulation for simulating shock waves, Shock Waves. 13 (3): 201-211.

Liu MB, Liu GR, Zong Z and Lam KY(2003f), Smoothed particle hydrodynamics
for numerical simulation of underwater explosions, Computational Mechanics,
30(2):106-118.

Liu WK and Jun S (1998), Multiple scale reproducing kernel particle method for
large deformation problems. Int. J. for Num. Methods in Engre, 141, 1339-
1679.

Liu WK, Jun S and Zhang YF (1995), Reproducing kernel particle methods. Int. J.
Numer. Methods Engrg., 20, 1081-1106.

Liu WK, Jun S, Sihling DT, Chen Y and Hao W(1997b), Multiresolution
reproducing kernel particle method for computational fluid dynamics.
International Journal for Numerical Methods in Fluids, 24(12), 1391-1415.

Liu Xin, Liu GR, Tai Kang and Lam KY(2002), Radial Basis Point Interpolation
Collocation Method For 2-d Solid Problem, Advances in Meshfree and X-
FEM Methods, proceedings of the 1st Asian Workshop on Meshfree methods
(Eds. G. R. Liu), World Scientific, 35-40.

Liu Xin, Liu GR, Tai Kang and Lam KY(2003a), Collocation-based Meshless
Method for the Solution of Transient Convection-Diffusion Equation.
Presented in “First EMS -SMAI -SMF Joint Conference Applied Mathematics
and Applications of Mathematics (AMAM 2003), Nice, France, 10-13
February 2003, List of Posters, Posters Session 2 (48).

Liu Xin, Liu GR, Tai Kang, Gu YT and Lam KY(2003b), Polynomial Point
Interpolation Collocation Method for the Solution of Partial Differential
Equations. Advances in Computational Mathematics (AiCM)(Accepted) .

Liu Xin, Liu GR, Tai Kang, Gu YT and Lam KY(2003b), Polynomial Point
Interpolation Collocation Method for the Solution of Partial Differential
Equations. Advances in Computational Mathematics (AiCM)(Accepted) .

Liu Xin, Liu GR, Tai Kang and Lam KY(2003d), Radial Point Interpolation
Collocation Method for the Solution of Transient Convection-Diffusion
Problems. (submitted).

468

Long SY and Atluri SN (2002), A meshless local Petrov-Galerkin (MLPG) method
for solving the bending problems of a thin plate. CMES. Vol. 3, No. 1,53-64.

Lu YY, Belytschko T and Gu L(1994), A New Implementation of the Element Free
Galerkin Method. Comput. Meth. Appl. Mech. Eng., 113,397-414.

Lu YY, Belytschko T and Tabbara M(1995), Element-free Galerkin method for
wave propagation and dynamic fracture, Computer Methods in Applied
Mechanics and Engineering, 126, 131-153.

Lucy L(1977), A Numerical Approach to Testing the Fission Hypothesis, Astron. J.,
82, 1013-1024.

McLain DH(1974), Drawing Contours from Arbitrary Data Points. Comput. J.,
17:318-324.

Meirovitch L(1980), Computational Methods in Structural Dynamics. Sijthoff &
Noordhoff: Grningen.

Melenk, JM and Babuska I(1996), The Partition of Unity Finite Element Method:
Basic Theory and Applications. Computer Methods in Applied Mechanics
and Engineering, 139, 289-314.

Monaghan JJ and Lattanzio JC (1985), A refined particle method for astrophysical
problems. Astronomy and Srtophsics, 149, 135-143.

Monaghan JJ(1982), Why Particle Methods Work. SIAM J. SCI. SAT. COMPUT.,
3(4), 423-433.

Monaghan JJ(1992), Smoothed particle hydrodynamics, Annu. Rev. Astron.
Astrophys, 30, 543-574.

Moraghan JJ(1995), Simulating gravity currents with SPH lock gates, Applied
Mathematics Reports and Preprints, Monash University.

Morton KW (1985), Generlaed Galerkin methods for hyperbolic problems. Comp.
Meth. Appl. Mech. Eng., 52, 847-871.

Morris JP(1996), Stablity properties of SPH. Publ. Astron. Soc. Aust., 13, 97.
Mukherjee YX and Mukherjee S (1997), Boundary node method for potential

problems. Int. J. Num. Methods in Engrg. 40, 797-815.
Nagashima T (1999), Node-by node meshless approach and its application to

structural analyses. Int. J. Numer. Methods Engng.,46,341-385.
Nay RA and Utku S (1972). An alternative for the finite elemet method. Variat.

Mech.
Nayroles B, Touzot G and Villon P (1992), Generalizing the finite element method:

diffuse approximation and diffuse elements. Computational Mechanics, 10,
307-318.

Nieuwstadt F and Keller HB(1973), Viscous flow past circular cylinders, Comput.&
Fluids,1,59.

Refe eff rences

References 469

Oñate E (1998), Derivation of stabilized equations for numerical solution of
sdvictive-diffusive transport and fluid flow problems. Comp. Meth. Appl.
Mech. Eng., 151, 233-265.

Oñate E Perazzo F, and Miquel J, (2001), A finite point method for elasticity
problems, Computers and Structures, 79, 2151-2163.

Oñate E, Idelsohn S, Zienkiewicz OZ and Taylor RL(1996), A finite point method
in computational mechanics. Applications to convective transport and fluid
flow. Int. J. Numer. Methods Engrg., 39, 3839-3867.

Ouatouati AE and Johnson DA(1999), A New Approach for Numerical Modal
Analysis Using the Element Free Method. Int. J. Num. Meth. Eng., 46,1-27.

Partridge PW (1004), Dual reciprocity BEM-local versus global approximation
functions for diffusion, convection and other problems. Engineering Analysis
with Boundary Elements, 14, 349-356.

Pavlin V and Perrone N (1975), Finite difference energy rechniques for arbitrary
meshes. Comp. Struct. 5, 45-58.

Petyt M (1990), Introduction to finite element vibration analysis. Cambridge
University Press, Cambridge.

Picone M (1928), Sul Metodo delle Minme Potenze Ponderate e sul Metodo di Ritz
per il Calcolo Approssimato nei Problemi della Fisca-Matematica, Rend. Circ.
Mat. Palermo 52, 225-253.

Poulos HG, Davis EH (1974), Elastic solution for soil and rock mechanics. Wiley,
London.

Powell MJD (1992), The Theory of Radial Basis Function Approximation in 1990.
Advanced in Numerical Analysis, Eds. FW. Light: 303-322.

Randles PW and Libersky LD(1996), Smoothed Particle Hydrodynamics Some
Recent Improvements and Applications, Comput. Methods Appl. Mech.
Engrg., 138, 375-408.

Reddy JN (1993), An introduction to the Finite Element Method. New York:
McGraw Hill, 2nd edition.

Roark RJ andYoung WC (1975), Formulas for stress and strain. McGrawhill.
Robert DB (1979), Formulas for natural frequency and mode shape. New York: Van

Nostrand Reinhold Company.
Rossow MP, and Katz IN (1978), Hierarchal Finite Elements and Precomputed

Arrays, Int. J. Numer. Methods Engrg., 10, 976-999.
Schaback R (1994), Approximation of Polynomials by Radial basis Functions.

Wavelets, Images and Surface Fitting, (Eds. Laurent P.J., Mehaute Le and
Schumaker L.L, Wellesley Mass.), 459-466.

Runchall AK and Wolfstein M (1969), Numerical integration procedure for the
steady state N-S equations. J Mech. Eng. Sci., 11, 445-453.

470

Schaback R and Wendland H (2000), Characterzation and construction of radial
basis functions. In: Multivariate Approximation and Applications, (eds.) N.
Dyn, D. Leviatan, D. Levin & A. Pinkus, Cambridge University Press.

Sharan M, Kansa EJ and Gupta S(1997), Application of the Multiquadric Method
for Numerical Solution of Elliptic Partial Differential Equations. Applied
Mathematics and Computation, 84,275-302.

Shepard D (1968), A two-dimensional function for irregularly spaced points. Proc.
Of ACM National Conference, 517-524.

Sladek J, Sladek V and Atluri SN (2002),Application of the local boundary integral
equation method to boundary-value problems. Int. Appl. Mech., 38 (9): 1025-
1047.

Slater JC(1934), Electronic Energy Bands in Metals. Phys. Rev. 45, 794-801.
Snell C, Vesey DG and Mullord P (1981), The application of a general fFDM to

some boundary value problems. Comp. Struct., 13, 547-552.
Spalding DB (1972), A novel finite difference formulation for differential equations

involving both first and second derivatives. Int. J. Num. Meth. Eng., 4, 551-
559.

Strang G (1976), Linear Algebra and its application. Academic Press: New York.
Stroud AH and Secrest D (1966), Gaussian Quadrature Formulas. Prentice-Hall,

New York.
Sun X (1994), Scattered Hermite interpolation using radial basis function. Linear

Algebra Appl. 207, 135-146.
Swegle J. W. at al. (1992), Report at Sandia National laboratories, August, 1992.
Swegle JW, Hicks DL and Attaway SW(1995), Smoothed particle hydrodynamics

stability analysis. Journal of Computational Physics, 116, 123-134.
Thomson WT(1993), Theory of vibration with applications (4th ed). Englewood

Cliffs, N.J. Prentice Hall.
Timoshenko S, Woinowsky-krieger S (1995), Theory of plates and shells. New York:

McGraw Hill, 2nd edition.
Timoshenko SP and Goodier JN (1970), Theory of Elasticity, 3rd Edition. McGraw-

hill, New York.
Tritton DJ (1959), Experiments on the flow past a circular cylinder at low Reynolds

numbers. Journal of Fluid Mechanics, 6, 547-567.
Tu, Z.H. and Liu GR, An error estimate based on background cells for meshless

methods. Advances in Computational Engineering and Sciences, eds: Atluri
and Brust, Tech Science Press, Palmdale, 1487-1492, 2000.

Uras RA, Chang CT, Chen Y and Liu WK(1997), Multiresolution reproducing
kernel particle method in acoustics. J. of Computational Acoustics, 5, 71-94.

Refe eff rences

References 471

Wang JG and Liu GR(2000), Radial point interpolation method for elastoplastic
problems. Proc. of the 1st Int. Conf. On Structural Stability and Dynamics,
Dec. 7-9, 2000, Taipei, Taiwan, 703-708,2000.

Wang JG and Liu GR(2001a), Radial point interpolation method for no-yielding
surface models. Proc. Of the first M.I.T. Conference on Computational Fluid
and Solid Mechanics, 12-14 June 2001, 538-540.

Wang JG, Liu GR and Wu YG(2001b), A point interpolation method for simulating
dissipation process of consolidation. Computer Method Appl. M. 190 (45):
5907-5922.

Wang JG and Liu GR (2002a) A point interpolation meshless method based on
radial basis functions. Int. J. Numer. Meth. Eng. 54 (11): 1623-1648.

Wang JG, Liu GR and Lin P (2002b), Numerical analysis of Biot's consolidation
process by radial point interpolation method. Int. J. Solids Struct. 39 (6):
1557-1573.

Wang JG and Liu GR(2002c), On the optimal shape parameters of radial basis
functions used for 2-D meshless methods . Computer Method Appl. M. 191
(23-24): 2611-2630.

Wang MC and Shao M(1996), FEM fundamentals and numerical methods (in
Chinese). Tsing Hua University Publisher, Beijing, China.

Wendland H(1995), Piecewise polynomial, positive definite and compactly
supported radial basis functions of minimal degree. Adv. Comput. Math. 4,
389-396.

Wendland H(1998), Error estimates for interpolation by compactly supported radial
basis functions of minimal degree. J. Approximation Theory, 93, 258-396.

Wu Z (1992), Hermite-Birkhoff interpolation of scattered data by radial basis
functions. Approx. Theory Appl. 8, 1-10.

Wu Z (1995), Compactly supported positive definite radial functions. Adv. Comput.
Math. 4, 283-292.

Wu Z(1998), Solving PDE with radial basis functions and the error estimation. Adv.
in Comput. Math., Lectures in Pure and Applied Mathematics, 202, eds. Z.
Chen, Y.Li,. CA Micchelli, Y Xu, and M Dekkon.

Wu YL and Liu GR (2003), A meshfree formulation of local radial point
interpolation method (LRPIM) for incompressible flow simulation.
Computational Mechanics,30 (5-6) 355-365

Xiao JR and McCarthy MA(2003a), A local Heaviside weighted meshless method
for two-dimensional solids using radial basis functions. COMPUT MECH 31
(3-4): 301-315.

472

Xiao JR and McCarthy MA (2003b), Meshless analysis of the obstacle problem for
beams by the MLPG method and subdomain variational formulations. EUR J
MECH A-SOLID. 22 (3), 385-399.

Xiao JR and McCarthy MA (2003c), On the use of radial basis functions in a local
weighted meshless method. Second M.I.T. Conference on Computational
Fluid and Solid Mechanics. June 17-20.

Xu SL (1995), FORTRAN algorithms and programs (2nd edition) (in Chinese).
Tsinghua University Publisher, Beijing China.

Xu XG and Liu GR(1999), A local-function approximation method for simulating
two-dimensional incompressible flow. Proceedings 4th Asia-Pacific
Conference on Computational Mechanics(ed. By Wang CM, Lee KH and Ang
KK), Dec. 15-17 1999, Singapore, 1021-1026.

Yagawa G and Yamada T(1996), Free mesh method, a kind of meshless finite
element method. Comput. Mech., 18, 383-386.

Yamada H(1947), Rep. Res. Inst. Fluid Eng. Kyushu Univ., 3, 29.
Yan L (2000), Development of meshless method in computational mechanics.

National University of Singapore, thesis of M. Eng.
Yang KY(1999), Development of meshfree techniques for stress analysis. National

University of Singapore, thesis of M. Eng.
Zhang X, Song KZ, Lu MW and Liu X (2000), Meshless methods based on

collocation with radial basis functions. Comput. Mechanics, 26(4), 333-343.
Zhu T and Atluri SN(1998), A modified collocation & a penalty formulation for

enforcing the essential boundary conditions in the element free Galerkin
method. Comput. Mech., 21, 211-222.

Zhu T, Zhang JD and Atluri SN (1998), Meshless local boundary integral equation
(LBIE) method for solving nonlinear problems. Computational Mechanics,
22(2), 174-186.

Zhu T, Zhang JD and Atluri SN (1999), A meshless numerical method based on the
local boundary integral equation (LBIE) to solve linear and non-linear
boundary value problems. Engineering Analysis with Boundary Elements, 23,
(5-6), 375-389.

Zhu T, Zhang JD and Atluri SN(1998), Local boundary integral equation (LBIE)
method in computational mechanics, and a meshless discretization approach.
Computational Mechanics, 21(3), 223-235.

Zienkiewicz OC and Taylor RL (2000), The Finite Element Method. 5th edition,
Butterworth Heinemann, Oxford, UK.

Zienkiewicz OC, et al.(1975), Newtonian and non-Newtonian viscous
incompressible flow. Temperature induced flows and finite element solutions,
in math. Of FE and appl. (ed. Whiteman), Vol. II, Academic Press, London.

Refe eff rences

Index

A

Adaptive analysis, 38,41,444

Amplitude, 414, 420

Analytical solution, 26, 181,
186,265,342,346,349,375,410,
420

Approximation function, 45

Approximate solution, 1,2 314-
19, 20-27, 30, 33, 34, 36, 54

Admissible, 27, 34

B

Background mesh, 163, 171, 238,
261, 279, 336, 381, 383

Background cell, 45, 47, 146,
147, 149, 155, 169, 170, 171,
174, 179, 186, 197, 199

Bandwidth, 147, 194

Basis function, 15, 17, 22, 36,
57, 61, 62, 65, 66, 67, 80, 86, 98,
101, 107, 111, 163, 171, 112, 114

BIE18, 50

BNM, 45,52,253

Body force,
7,12,33,148,153,154,156,244,
250, 328

Boundary conditions,
3,5,8,9,12,15,21,22,23,34,35,39,4
9,50,54,56,69,74, 148, 158,
171,179,255,311,312,313,354,
371,372,378,381,410,435

Boundary integral equation,
50,51,383

Boundary element method, 3,49

Boundary type method, 50,52

Boundary point interpolation
method, 45,50,51

Boundary node method, 45,253

BPIM,45,46

Boundary radial point
interpolation method, 50,51

BRPIM,50,51,52

C

Cartesian coordinates, 61

CFD, 335,371

Collocation method, 14,18,23,
44,46,47,52,56,69,79,85,270,311-
313,319,323-329, 331,333,343,
346,351,352, 364,368,369,378,
381,388, 405,406,407,412,443

Compatibility, 55,56,66,81,102,
103,123,147,160,161,204,238,

473

Index

Compact support, 56,66,79,80,
105, 253

Computational fluid dynamics,
see CFD

Condition number, 118,187

Conforming, 160

Conforming radial point
interpolation method, see CRPIM

Consistency, 13,14,46,49,55,57,
64, 65,76,106,107,240,397

Constitutive equation, 6,9,11,13,
32,151

Continuity, 14,15,17,22,35,49,81,
100, 102,103, 106, 114,248,382

Convergence, 26,27,31,36,38,56,
81,120,123,145,157,177,190,191,
192,193,204,262, 272, 276, 278,
279,280

Convergence rate, 190,192,193,
272, 276,324,407, 429

CRPIM, 160,161

Crank-Nicholson method, 360

Cubic spline function, 102, 108,
111,248, 264

Curve integration, 156,162,186,
259

D

Damping, 7,12,413,414,418,419,
420

DBC, 311,313,317,323,331,334,

DBR,385,386,388,391,393,406,

Derivative boundary condition,
see DBC

Derivative boundary related, see
DBR

Deflection, 180,181,182,183, 200,
201,264, 395, 396

Defuse element method, see DEM

Defuse element method (DEM),
45, 48, 145

Degree of freedom (DOF), 319,
378, 418

Delta function property, 49, 50,
55, 56, 65,69, 74, 79, 90, 91,107,
146,147, 158, 161, 162, 169, 176,
238, 246, 248, 250, 390, 403

Deformation, 6,38,46, 199, 201,
418, 419

Differential function
representation, 57

Dirichlet boundary condition,
314,317,324,328,329,336,344,345
,349,352,354,355,357,359,361,37
8,381,426

Dirac delta function, 17

Discrete equation, 35, 44, 220

Discretized equation, 167, 310,
345, 371, 373, 374, 383, 424, 436

Displacement boundary
condition, 8,12,21,34,155,158,
366,375

Displacement vector, 6,8,10, 33,
148, 152, 176, 207

Domain of influence, See
influence domain,

344,345,349,352,371,378,352,371,
378,381,384,405

239,253,279,401 412,425,436,443

474

Index 475

Domain of integration, See
quadrature domain

Domain of weight function, See
weight function domain

Domain of support, See support
domain

Domain type method, 50, 52

Dynamics, 7,8, 79, 238, 423

Dynamic equilibrium equations, 8

E

Efficiency, 47, 55, 123, 167, 177,
194,195,204, 253, 278, 279, 280,
357,378, 391, 408, 410, 416, 427

EFG, 45,46,48,145,146,148,
161,164,167,171,186,191,194,201,
204,237,254,276,279,319,376,380,
382,392

Eigenvalues, 414,415

Eigenvectors,415

Element free Galerkin method,
See EFG
Elasticity, 8,148,204

Elastic constants, 148,243,387

Energy norm, 173,176,186,
187,191,195,255,261,270,392,395,
428

Error in the energy norm, 173,
183, 195,392,393,395

Equilibrium equation, 7,8,12,
21,22,33,35,148,242

Error indicator, 27,117,176, 186,
255, 32, 331,346, 392, 428

Essential boundary condition,
9,15,34,41,56,69,74,146,147,148,

158,163,169,178,195,204,238,250,
252,255,259,366,392,403,426

Exact solution, 1,13,15,17,22,

EXP, 74,75,86,87,90,169,353

Exponential function, 102,104

F

FDM, 3,44,56,246,312, 337,
371,390,429

FE, FEM,
3,16,33,37,41,55,61,155,158,181,
196,254,327,417

Field variable, 2,4,8,39,43,97, 49,
274,336,360,391

Field approximation, 239

Field variable approximation,
49,163, 310,391

Finite element method, see FEM

Finite difference method, see
FDM

Finite differential
representation,13

Finite point method (FPM), 47,
310
Finite series representation, 13

Fluid dynamics, 46,48,79,423

Forced vibration analysis, 415,
417
Free vibration, 414,417

Frequency, 414

Functional, 19,98,164

Function approximation,

349,355,393,404,428
26,27,36,177,190,262,324,329,331,

476 Index

45,48,51,60,69,191,238,314

G

Galerkin method, 20,25

Gauss point, 155,179,245,
264,387

Gauss quadrature, 155,166, 274,
391

Gaussian RBF, see EXP

Generalized Hooke’s law, 6

Governing equations, 8,34,46,
29, 315,328, 336,368,423,434

Green’s function, 50

Global stiffness matrix, 152,
162, 166, 252, 319, 390
Global weak-form, 27, 46, 145,
254,383

H

Hamilton’s principle, 14

High-order patch test, 403

Hooke’s law, 6,11

hp-clouds method, 58

I

Incompatibility, 160

Incompressible flow, 48,423,
443

Influence domain, 54,167, 170,
174, 255,392

Initial conditions, 8,12,13, 359,
361,410

Initial value problem, 9,13

Integral function representation,
57

Integration by parts, 21,33,
239,382

Instability, 49,55,56,335,364,384

Iteration, 198,199,345,427

Interpolation domain, see
quadrature domain

J

Jacobian matrix, 155,156, 245,
258

K

Kronecker delta function, 65, 79,
90,107,146,250

L

Lagrange multiplier, 163, 164,
165, 167,279,384,403

Local PIM, LPIM, See Local
point interpolation method,

Local point interpolation
method, 238, 383

Local quadrature domain, 34,55,
239, 240,246,248,254,256,385

Local radial PIM, LRPIM, See
Local radial point interpolation
method,

Local radial point interpolation
method, 46,52,238,239, 253,
254, 382,407

Local support, 43,54,55,66,76,

Index 477

Local weak form, 34,46,238,239,
250,312,381,386,314,425

M

Mass density, 7,12,412,417

Matrix triangulization algorithm,
66,147,238,311

Mesh, 37,42,197

Mesh generation, 38,40

Meshless local Petrov-Galerkin,
45,46,48, 237,250,382,383

MFree method, 39

MFree2D, 201

MFree weak-strong method, see
MWS

MLPG, See Meshless local
Petrov-Galerkin method

MLS, See Moving least square,

Moment matrix, 63m 67, 71, 98,
147

Moving domain interpolation, 54

Moving least square, MLS,
48,57,97,108,161,250,415

MWS, 47, 381

MTA, See Matrix triangulization
algorithm

N

Natural boundary conditions, 9,

Natural convection, 423

Natural coordinates, 43

Navier-Stokes Equation, 434

Newmark method, 415

Nodal displacement, 31,78,150,
260,367,393,413

Nodal displacement parameter,
163,413,415

Nodal distribution, 42,55,181,
264, 346,349,400,427

Nodal force vector, 162,175,
244, 261, 389

Nodal matrix, 44, 156, 164, 166,
246, 315

Nodal spacing, 58,60,86, 87,
168, 247

Nodal stiffness matrix, 151,152,
156, 244, 251, 388,389

Nonlinear analysis, 201

Normal stress, 4,178,404

Nonconforming RPIM
(NRPIM), 160
Numerical integration, 45, 155,
169, 248, 311, 391

O

ODE, 3,14,313,324,336

ordinary differential equation,
see ODE
Order of polynomial, 78,106,107

Order of continuity, 17,36,
103,106

149,246 33,148,158,174,242,366,385

478 Index

Order of consistency, 55

P

Partial differential equation, see
PDE

Partitions of unity, 65,80,107,
112

PUFEM, 46,52

Pascal triangle, 62,98

PDE, 3,8,14,311,346,349,354

Penalty factors, 161,163,250

Penalty stiffness matrix, 162

Penalty method, 159,160,169,
174, 250, 252,384

Polynomial point collocation
method, see PPCM

Point interpolation method, 45,
49, 60

PIM, See Point interpolation
method,

PIM shape function, 60

Plane strain, 9,11,148,366,375

Plane stress, 9,11,148,366,393

PPCM, 313, 324, 344

Principles, 20,27,160,369

Poisson’s ratio, 7

Polynomial basis, 7,49,61,62,74,
106, 325,346

Post-processor, 180,263

Potential energy, 14,27,31,32,33

Pre-processor, 179

Q

Quadrature domain, 35,55,239,
240, 246, 248,249,254,256, 264,
270,274,385,412

Quartic spline functions, 102,
108, 109,111

R

Radial basis function, see (RBF,

RPCM, 352-377

Radial Point Collocation
Method, see RPCM

Radial point interpolation
method, see RPIM

Rayleigh numbers, 424,430,432

RBF, 74,75,86,169,352

Relative error, 323,331,346

Reproducing Kernel Particle
Method, RKPM, 45,46,48,57

Reproducibility, 27,36,65,66,81

RPIM, 50,52,57,74,79,80,86,148

S

Shape function, 48,54,61, 73, 74,
97

Shape parameters, 74,75,86,92,
118,169

Shear modulus, 7

Shear stress, 4,10,178

Smoothed particle
hydrodynamics, see, SPH

Index 479

Smoothing kernel,

Smoothing length,

SPH, 44,47,48,57

Stability, 55,335,336

Standard patch test, 76,240, 401,
406

Stiffness matrix, 157,159,247,
390

Strain-displacement relations,
6,10,33

Strain, 5,6,10,150,242, 387

Strain energy, 31,32

Strong forms, 13,46,47,161,311,
380, 381,387,412

Support domain, 43,54,55,59,
86, 108, 167,170

Surface fitting, 114,115,117,118

System equation, 9,13,44,155,
161, 167,251,424

T

Taylor series, 13,57,80,436

Time step, 361,419,437

Traction boundary condition,
8,12,158,386

Transient response, 420

V

Variational principle, 51,164

Vibration, see free vibration,
forced vibration

W

Weak forms, 13,27,33,34,45, 47,
146,237,382,383

Weight function domain, 240,
259

Weight (test) functions,16,17,
57,98,102,108,240,241,248,258, ,

386

weight coefficient, 68,72,73,350,
351,

Weighted residual method, 14,
34,239,250,412

Y

Young’s modulus, 7,21,178,
365,412

384,

	front-matter.pdf
	Fundamentals.pdf
	Overview of Meshfree Methods.pdf
	Meshfree Shape Function Construction.pdf
	Meshfree Methods Based on Global Weak-Forms.pdf
	Meshfree Methods Based on Local Weak-Forms.pdf
	Meshfree Collocation Methods.pdf
	Meshfree Methods Based on Combination of Local Weak-Form and Collocation.pdf
	Back Matter.pdf

