CME342/AA220
Parallel Methods in Numerical Analysis

Matrix Computation: Iterative Methods I

Outline:

e Jacobi, Gauss-Seidel, SOR.

e Domain partition (vs matrix partition) com-
putations, & Multicoloring technique.

e CG, GMRES, BIiCG.
e Parallel Sparse Matrix Algebra.
e Preconditioning.

Source of materials: Numerical Linear Alg, In-
troduction to Parallel Computing by Kumar et
al., Demmel’'s CS267 course.

Announcements

Homework 2: Due Monday 5/12 @ 5 pm.
Submit electronically through Stanford Box.

Final project: it is time to think about it!

If you plan to work on a project, submit a
brief (< 1 page) proposal with homework 2.
If not, we will assign one to you.

We strongly encourage you to propose a project
of your own. Please feel free to discuss the
project with us.

Please take a few minutes to complete the
mid-quarter evaluation by Friday 5/9.

Sparse Matrices + Direct Methods

The discretization matrix of the heat equation
solved by an implicit method on a 2D mesh:

m X Xééx X
X XX X
@ @ @ > X XX X
><>< ><>>2>>2>< ><><
@ X XX X

5-pt stencel %

Direct Methods:

e Complexity = O(n3) = serious computing
power challenges when n — oo.

e Storage = O(n?) = Not feasible for large
problems.

Sparse Matrices 4+ Direct Methods (cont.)

e Even start with a sparse matrix, the L, U
factors can be dense — Fill-in occurs during
LU factorization:

............

Observation: Most of the elements are zero —
no need to store them nor perform any calcu-
lation.

Iterative Methods

Only operate on nonzero elements.

Typically, max number of nonzeros per row
is bounded. Thus,

> Work o« # of unknowns per iteration step.

> Storage = O(n).

No fill-in occurs in iterative methods.

However, convergence may not be guaran-
teed.

Classical relaxation methods: Jacobi, Gauss-
Seidel, SOR. (Today)

Krylov subspace methods: Conjugate gradi-
ent, BiCG, GMRES, ...

Krylov subspace methods + Preconditioning
= Fast solution methods.

Jacobi Method

Want to solve Ax = b iteratively (k is the
iteration index).

Start with an approximate solution k. Then,
in general, the residual vector r* # 0:

rF =b— AzF #£ 0.

Considering the ith component, improve z¥ —
a:f"'l by forcing r¥ =0, i.e.

1
bz' — (CLZ'Z'ZIZZ?_I_ + Z azjxi) = 0.

]
After rearranging terms,
.k
x]?_l_l _ bi — Zz;&] CLZ]Q?]-
; :
279
Repeat for all : =1,...,n.

Note: Jacobi method requires nonzero diag-
onal entries.

Jacobi Method (cont.)

Algorithm:
for i = 1:n,

oyt = (b — Yz, ai7h) fau;
end;

Matrix form: Write A =D — L — U, where
D = diagonal of A

L = strict lower triangular part of (—A)

U = strict upper triangular part of (—A)

Jacobi iteration:

Pl =2F 4+ D1(b — AZD).

Thus, Jacobi iteration essentially consists of
(sparse) matrix-vector multiplications.

Convergence: Jacobi converges for diagonal
dominant matrices:

mn
laiil > D aijl.
e

Parallel Jacobi Method

e Parallelization of Jacobi method is straight-
forward:

for ¢+ = localstart : localend,
xfﬂ = (bi — z@';&j aija??)/az'z‘;
end;

e Key observations:
> 21 is updated using previous {«} only.

1

> Update is independent of ordering.

= Can be done in parallel!

e Consider the matrix form:
T =2k 4+ Db — Axh).

Need to perform parallel (sparse) matrix-vector
product. (Will discuss later.)

Parallel Jacobi Method (cont.)

Suppose A is a general sparse matrix...

Distribute A and b by row partitions, and an
entire x¥ among processors (since each row 1
can have nonzero a;; in any columns):

A xK b

e Each processor updates its local a:f"‘l without
any communication.

e At the end, each processor broadcasts its xf+1’s
to one another (MPI Allgather operation).

9

Parallel Jacobi Method (cont.)

Suppose A is a planar graph...
e.g., discretization of a PDE on a 2D mesh.

XX X
P4‘ 13 14 15 16 Y% T
Pl XXX X
X X X
X XX X
o o' o 1% X XXX X
P2 X XXX X
X XX X
X XX X
X XXX X
5 6 7 8 X XXX X
P2 e ° ° ® . X «
X X
X X
1 2 3 4 " * *
Pl‘c ® ° o‘ I <

Graph of A (in this case, also = mesh) Matrix A

e Partition the planar graph associated with A
by blocks = Distribute A, b and z* by block
of rows.

e Each processor updates its local {a:f+1} with
comm. to its neighboring procs only.

e [hus, the amount of comm. depends only
on the number of boundary nodes. No global
communication (Allgather) is needed.

10

Gauss-Seidel Method

Start with zF. Update xf"’l using the most
recent values of Ti, J =+ 1.

N gkl ok

oFtl — bi = 2j<i 9ij2; 25> Yig

Z o o)
7%

Note: Gauss-Seidel method also requires nonzero
diagonal entries.

Matrix form:

"l =2k + (D - L)1 (b - Az").

Convergence:

> Gauss-Seidel converges for diagonal domi-
nant matrices and symmetric positive defi-
nite matrices.

> If both Jacobi and GS convergence, GS typ-
ically converges twice as fast as Jacobi.

11

SOR Methods

e Weighted average of z¥ and zf:

ol = (1 —w) 2" 4w afg

o okl 2k
bi qu' Aijd ; Zj>iawxj

Q4

a:f-"l (1-w)zf+w

e Pre-selected relaxation parameter w chosen
to accelerate convergence:

< 1 under-relaxation
wi! =1 GS
> 1 over-relaxation

e With optimal value of w (usually > 1), the
convergence rate of SOR can be an order of
magnitude faster than GS and Jacobi.

12

Parallel GS (or SOR)

e Parallelization turns out to be nontrivial.

e Consider the component equation:

_ okl Ak

A bi —) _jci @ij, 2 j>i i)

; .
Qij

> Require the updated values x];_H, 7 < 1,
which are not available if the processor does

not own them.

> Every processor will have to wait for the
updated values from other processors
— sequential bottleneck.

e Key observation:
If a;; = 0 for j <4, then no communication
nor waiting is needed — same scenario as Ja-
cobi method.

e Use multi-coloring technique to order the un-
knowns such that a;; =0, 7 <u1.

13

2D Mesh: Natural Ordering

@

13 14

15

11

S

3

16

12

4

O

e 5-pt stencil discretization of the Laplacian
operator results in a matrix of the form:

XX X
XXX X
XXX X
XX X
X XX X
(N) XX X
X XXX X
X XX X
@ @ @ > X X X X
X XXX X
g X XXX X
X XX X
X XX
5-pt stencel XX Xééx
X XX

e For each node C, there are, in general, 4
neighbors (E,S, W, N). Using natural order-
ing, the update at C requires the updated
values at S and W — sequential bottleneck.

14

2D Mesh: Red-Black Ordering

® L J @ L J X X X
15 7 16 8 % XX X
X X XXX
X X X X
X X X X
‘5 ‘13 ‘6 ‘14 X XXX X
X X XX
X X X
% XXX X
X X X
J 4 J2 ¢ AN y
XXX X X
X XXX X
X X X X
X X X
‘1 ‘9 ‘2 '10 XXX X

e In RB ordering, the update of red nodes (e.g.
3) depends only on black nodes; thus can be
done independently in parallel. Afterwards,
broadcast the values to their neighbors, and
then update black nodes in parallel.

e Parallelization can be realized from the 2 X
2 block structure in the RB ordered matrix
where the diagonal blocks are diagonal ma-
trices.

15

Parallel Implementation
e Distribute the red nodes equally among p procs;
same for the black nodes.

e Algorithm:

for each color={red, black}

All procs update its local xf+¢ simultaneously:
k+1 k
pbl _ 0T 2j<i @ig® T = i GigTy
Yoo T 3y '
Qg

end;

16

General Mesh: Multicoloring

NSO
St

AT
S\ ﬂhﬁ?ﬁﬁ%ﬂﬂ<§m‘
AN VAV A S eI e A
SRS RSN
ANKIASIANA S
TANERVANN V= e

e For general matrix graph, use multicoloring.

e Nodes for each color can be updated simul-
taneously, i.e. in parallel.

e [he fewer the # of colors, the more parallel
the algorithm is.

> RB Gauss-Seidel has 2 colors — parallel.
> Gauss-Seidel has n colors — sequential.

e Convergence: The fewer the # of colors, the
slower the convergence is.

e Hence tradeoff between parallelism & effi-
ciency.

17

Multicoloring

e Coloring of the 9-pt stencil graph:

® J PY

|
|

e To color a general graph with min. # of color
(for max. parallel efficiency) is NP-hard.

[e

e [here are heuristics to color most graphs aris-
ing from applications using a small # of colors.

e A sequential algorithm:
(color={0, 1, 2, ...})

V = set of vertices;
fori =1 to n do
Choose vertices v; € V according to an ordering
algorithm;
Choose the smallest possible color for v;;
V = V\{wo};
end

18

Multicoloring (cont.)

e Examples of ordering algorithm:
LFO: order vertices in V such that

deg(v1) > deg(vp) > -+ > deg(vn).

IDO: v; is choosen with max incidence degree,
i.e. max # of adjacent colored vertices.

e A parallel coloring algorithm:
Given a good partitioning & good assign-
ment of partitions to processors (each pro-
cess has about the same # of vertices; min-
imal boundary edges)

1. Color the global boundary vertices.

2. Color the local vertices independently on
each processor by a sequential algorithm.

19

Jacobi vs RB Gauss-Seidel

e RB GS converges twice as fast as Jacobi, but
requires twice as many parallel steps; about
the same run time in practice.

e Parallel efficiency alone is not sufficient to
determine overall performance.

e \We also need fast converging algorithms.

20

Run Time Complexity: Jacobi

Assume on a 2D mesh.

Notations:

N = # of unknowns

p = # Of processors

f = time per flop

o = startup for a message

B = time per word in a message
Time = #£ of steps x cost per step

Sequential run time:
Time(Jacobi) = O(N) x O(N) = O(N?).

Parallel run time:
Time(Jacobi) = O(N) x [(N/p)f + a + (V' N/p)8]
= O(N2?/p) f + O(N) a + O(N3/2/p)

Note: O(N/p) flops to update local values, «
for the start up of message passing, O(v/ N /p)
boundary nodes communicated to neighbors.

21

Parallel Run Time: Comparison

Notations:

N = # of unknowns

p = # Of processors

f = time per flop

o = startup for a message

B = time per word in a message
Time = #£ of steps x cost per step

Methods | Parallel run time

Jacobi | O(N) x [O(%)f + o+ O(\/]TNW]

RB GS | O(N) x [0(X)f +a+ 0(N)g

RB SOR | O(VN) x [O(1)f + a+ O(@)B]

22

Block Methods

e Block Jacobi:
2Tl = 2k 4+ D=1 (b — AxP),
D=block diagonal of A.

e E.g. Given p x p mesh, partition 5-pt stencil
matrix A into p block rows where each proc
has one line of variables. Then Djztridiagonal
matrix.

e Suppose subvector m;ﬁ is the jth portion of

vector zF possessed by proc pj-
Parallel Algorithm:
for each proc pjy,

ajlf»—i_l — :E]—{, -+ Dj_»l(b — Axk);,

J J
end;

23

Block Methods (cont.)

e A variant of block Jacobi method is to sub-
stitute the inversion of Dj by one iteration of
GS:

for each proc pjy,

for i=localstart to localend,

k—+1

k41
x; ' = (bi — Xj<i & j=local %ijT;

k .
— Xj>i or j=nonlocal %ij¥;)/ii;

end;

end;

Similar to GS except that only use the up-
dated xf"'l which are local.

24

