
CME342/AA220

Parallel Methods in Numerical Analysis

Matrix Computation: Iterative Methods I

Outline:

• Jacobi, Gauss-Seidel, SOR.

• Domain partition (vs matrix partition) com-

putations, & Multicoloring technique.

• CG, GMRES, BiCG.

• Parallel Sparse Matrix Algebra.

• Preconditioning.

Source of materials: Numerical Linear Alg, In-

troduction to Parallel Computing by Kumar et

al., Demmel’s CS267 course.

1

Announcements

• Homework 2: Due Monday 5/12 @ 5 pm.

Submit electronically through Stanford Box.

• Final project: it is time to think about it!

• If you plan to work on a project, submit a

brief (< 1 page) proposal with homework 2.

If not, we will assign one to you.

• We strongly encourage you to propose a project

of your own. Please feel free to discuss the

project with us.

• Please take a few minutes to complete the

mid-quarter evaluation by Friday 5/9.

2

Sparse Matrices + Direct Methods

The discretization matrix of the heat equation

solved by an implicit method on a 2D mesh:

W

N

E

S

c

5-pt stencel

Direct Methods:

• Complexity = O(n3) ⇒ serious computing

power challenges when n→∞.

• Storage = O(n2) ⇒ Not feasible for large

problems.

3

Sparse Matrices + Direct Methods (cont.)

• Even start with a sparse matrix, the L, U

factors can be dense → Fill-in occurs during

LU factorization:

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 94

=

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 210
0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 210

Observation: Most of the elements are zero →
no need to store them nor perform any calcu-

lation.

4

Iterative Methods

• Only operate on nonzero elements.

• Typically, max number of nonzeros per row

is bounded. Thus,

. Work ∝ # of unknowns per iteration step.

. Storage = O(n).

• No fill-in occurs in iterative methods.

• However, convergence may not be guaran-

teed.

• Classical relaxation methods: Jacobi, Gauss-

Seidel, SOR. (Today)

• Krylov subspace methods: Conjugate gradi-

ent, BiCG, GMRES, ...

• Krylov subspace methods + Preconditioning

⇒ Fast solution methods.

5

Jacobi Method

• Want to solve Ax = b iteratively (k is the

iteration index).

• Start with an approximate solution xk. Then,

in general, the residual vector rk 6= 0:

rk ≡ b−Axk 6= 0.

• Considering the ith component, improve xki →
xk+1
i by forcing rki = 0, i.e.

bi − (aiix
k+1
i +

∑
i 6=j

aijx
k
j) = 0.

After rearranging terms,

xk+1
i =

bi −
∑
i6=j aijx

k
j

aii
.

Repeat for all i = 1, . . . , n.

• Note: Jacobi method requires nonzero diag-

onal entries.

6

Jacobi Method (cont.)

• Algorithm:
for i = 1:n,

xk+1
i = (bi −

∑
i 6=j aijx

k
j)/aii;

end;

• Matrix form: Write A = D − L− U , where
D = diagonal of A

L = strict lower triangular part of (−A)

U = strict upper triangular part of (−A)

Jacobi iteration:

xk+1 = xk +D−1(b−Axk).

• Thus, Jacobi iteration essentially consists of
(sparse) matrix-vector multiplications.

• Convergence: Jacobi converges for diagonal
dominant matrices:

|aii| >
n∑
j 6=i

|aij|.

7

Parallel Jacobi Method

• Parallelization of Jacobi method is straight-
forward:

for i = localstart : localend,
xk+1
i = (bi −

∑
i 6=j aijx

k
j)/aii;

end;

• Key observations:

. xk+1
i is updated using previous {xkj} only.

. Update is independent of ordering.

⇒ Can be done in parallel!

• Consider the matrix form:

xk+1 = xk +D−1(b−Axk).

Need to perform parallel (sparse) matrix-vector
product. (Will discuss later.)

8

Parallel Jacobi Method (cont.)

Suppose A is a general sparse matrix...

• Distribute A and b by row partitions, and an
entire xk among processors (since each row i
can have nonzero aij in any columns):

A

=
= - =j / i

Yb i x kj
aii
aij

i
k+1x

xk b

• Each processor updates its local xk+1
i without

any communication.

• At the end, each processor broadcasts its xk+1
i ’s

to one another (MPI Allgather operation).

9

Parallel Jacobi Method (cont.)

Suppose A is a planar graph...
e.g., discretization of a PDE on a 2D mesh.

P2

P1

P4

P3

1 2 3

5 6 7

9 10 11

1413 15 16

12

8

4

P1

P4

P2

P3

Graph of A (in this case, also = mesh) Matrix A

• Partition the planar graph associated with A

by blocks ⇒ Distribute A, b and xk by block
of rows.

• Each processor updates its local {xk+1
i } with

comm. to its neighboring procs only.

• Thus, the amount of comm. depends only
on the number of boundary nodes. No global
communication (Allgather) is needed.

10

Gauss-Seidel Method

• Start with xk. Update xk+1
i using the most

recent values of xj, j 6= i:

xk+1
i =

bi −
∑
j<i aijx

k+1
j −

∑
j>i aijx

k
j

aii
.

• Note: Gauss-Seidel method also requires nonzero
diagonal entries.

• Matrix form:

xk+1 = xk + (D − L)−1(b−Axk).

• Convergence:

. Gauss-Seidel converges for diagonal domi-
nant matrices and symmetric positive defi-
nite matrices.

. If both Jacobi and GS convergence, GS typ-
ically converges twice as fast as Jacobi.

11

SOR Methods

• Weighted average of xk and xkGS:

xk+1 = (1− ω) xk + ω xkGS

xk+1
i = (1− ω) xki + ω

bi −
∑

j<i aijx
k+1
j −

∑
j>i aijx

k
j

aii

• Pre-selected relaxation parameter ω chosen

to accelerate convergence:

ω

< 1 under-relaxation
= 1 GS
> 1 over-relaxation

• With optimal value of ω (usually > 1), the

convergence rate of SOR can be an order of

magnitude faster than GS and Jacobi.

12

Parallel GS (or SOR)

• Parallelization turns out to be nontrivial.

• Consider the component equation:

xk+1
i =

bi −
∑

j<i aijx
k+1
j −

∑
j>i aijx

k
j

aii
.

. Require the updated values xk+1
j , j < i,

which are not available if the processor does
not own them.

. Every processor will have to wait for the
updated values from other processors
→ sequential bottleneck.

• Key observation:
If aij = 0 for j < i, then no communication
nor waiting is needed → same scenario as Ja-
cobi method.

• Use multi-coloring technique to order the un-
knowns such that aij = 0, j < i.

13

2D Mesh: Natural Ordering

1 2 3

5 6 7

9 10 11

13 14 15

4

8

12

16

• 5-pt stencil discretization of the Laplacian
operator results in a matrix of the form:

W

N

E

S

c

5-pt stencel

• For each node C, there are, in general, 4
neighbors (E,S,W,N). Using natural order-
ing, the update at C requires the updated
values at S and W → sequential bottleneck.

14

2D Mesh: Red-Black Ordering

1 29 10

3 4

5

7 8

11 12

13 14

15 16

6

• In RB ordering, the update of red nodes (e.g.

3) depends only on black nodes; thus can be

done independently in parallel. Afterwards,

broadcast the values to their neighbors, and

then update black nodes in parallel.

• Parallelization can be realized from the 2 ×
2 block structure in the RB ordered matrix

where the diagonal blocks are diagonal ma-

trices.

15

Parallel Implementation

• Distribute the red nodes equally among p procs;

same for the black nodes.

• Algorithm:

for each color={red, black}

All procs update its local xk+1
i simultaneously:

xk+1
i =

bi −
∑
j<i aijx

k+1
j −

∑
j>i aijx

k
j

aii
;

end;

16

General Mesh: Multicoloring

• For general matrix graph, use multicoloring.

• Nodes for each color can be updated simul-
taneously, i.e. in parallel.

• The fewer the # of colors, the more parallel
the algorithm is.

. RB Gauss-Seidel has 2 colors → parallel.

. Gauss-Seidel has n colors → sequential.

• Convergence: The fewer the # of colors, the
slower the convergence is.

• Hence tradeoff between parallelism & effi-
ciency.

17

Multicoloring

• Coloring of the 9-pt stencil graph:

• To color a general graph with min. # of color
(for max. parallel efficiency) is NP-hard.

• There are heuristics to color most graphs aris-
ing from applications using a small # of colors.

• A sequential algorithm:
(color={0, 1, 2, . . .})

V = set of vertices;
for i = 1 to n do

Choose vertices vi ∈ V according to an ordering
algorithm;
Choose the smallest possible color for vi;
V = V \{vo};

end

18

Multicoloring (cont.)

• Examples of ordering algorithm:

LFO: order vertices in V such that

deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn).

IDO: vi is choosen with max incidence degree,

i.e. max # of adjacent colored vertices.

• A parallel coloring algorithm:

Given a good partitioning & good assign-

ment of partitions to processors (each pro-

cess has about the same # of vertices; min-

imal boundary edges)

1. Color the global boundary vertices.

2. Color the local vertices independently on

each processor by a sequential algorithm.

19

Jacobi vs RB Gauss-Seidel

• RB GS converges twice as fast as Jacobi, but

requires twice as many parallel steps; about

the same run time in practice.

• Parallel efficiency alone is not sufficient to

determine overall performance.

• We also need fast converging algorithms.

20

Run Time Complexity: Jacobi

• Assume on a 2D mesh.

• Notations:
N = # of unknowns

p = # of processors

f = time per flop

α = startup for a message

β = time per word in a message

Time = # of steps × cost per step

• Sequential run time:

Time(Jacobi) = O(N)×O(N) = O(N2).

• Parallel run time:

Time(Jacobi) = O(N)× [(N/p)f + α+ (
√
N/p)β]

= O(N2/p) f +O(N) α+O(N3/2/p) β

Note: O(N/p) flops to update local values, α
for the start up of message passing, O(

√
N/p)

boundary nodes communicated to neighbors.

21

Parallel Run Time: Comparison

Notations:

N = # of unknowns

p = # of processors

f = time per flop

α = startup for a message

β = time per word in a message

Time = # of steps × cost per step

Methods Parallel run time

Jacobi O(N)× [O(Np)f + α+O(
√
N
p)β]

RB GS O(N)× [O(Np)f + α+O(
√
N
p)β]

RB SOR O(
√
N)× [O(Np)f + α+O(

√
N
p)β]

22

Block Methods

• Block Jacobi:

xk+1 = xk + D̃−1(b−Axk),

D̃=block diagonal of A.

• E.g. Given p × p mesh, partition 5-pt stencil

matrix A into p block rows where each proc

has one line of variables. Then D̃j=tridiagonal

matrix.

• Suppose subvector xk~j
is the jth portion of

vector xk possessed by proc pj.

Parallel Algorithm:

for each proc pj,

xk+1
~j

= xk~j
+ D̃−1

~j
(b−Axk)~j;

end;

23

Block Methods (cont.)

• A variant of block Jacobi method is to sub-

stitute the inversion of D̃j by one iteration of

GS:

for each proc pj,

for i=localstart to localend,

xk+1
i = (bi −

∑
j<i & j=local aijx

k+1
j

−
∑
j>i or j=nonlocal aijx

k
j)/aii;

end;

end;

• Similar to GS except that only use the up-

dated xk+1
i which are local.

24

