Side-Channel Based Reverse Engineering of Secret Algorithms

Roman Novak
Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
roman.novak@ijs. s

Abstract

L Two techniques are introduced that enable side-
channel based reverse engineering of secret algo-
rithms. The first is sign-extended differential power
analysis (SDPA) while the second technique targets
table lookups. The SDPA reveals values that collide
with the DPA target value within the circuitry. The
interpretation of those values can provide significant
amounts of the information about the algorithm. The
attack on substitution blocks may reveal contents of
lookup tables. It is based on identifying equal inter-
mediate results from power measurements. The tech-
niques have been successfully tested in a demonstra-
tion attack on a secret authentication and session key
generation algorithm implemented on SIM cards in

GSM networks.

1 Introduction

Any real cryptographic device provides more infor-
mation to a determined adversary than just the input
plaintext and output ciphertext. This side-channel
information is available as the timing of operations
[1], power consumption of the devices [2], electromag-
netic emanations [3], etc. Very little side-channel in-
formation is required to break many common ciphers.
Non-invasive attacks and their accompanying coun-
termeasures have been studied extensively over the
past few years. Systems that rely on smartcards are
of particular concern.

Most of the side-channel based methods deal with
the extraction of cryptographic material, such as
keys, from the implementations of well-known algo-
rithms. However, many cryptographic algorithms are
still kept secret. For instance, GSM network oper-
ators use an updated version of COMP128-1, des-
ignated as COMP128-2; as an authentication algo-
rithm, but the algorithm remains unpublished. Some
network operators even develop a proprietary algo-
rithm in secrecy. The purpose of this paper is to show
that secret algorithms offer very little protection.

TERK 2003, pp. 445-448, 2003.

Section 2 gives a short introduction to power anal-
ysis techniques. In Sect. 3 a sign extension of Dif-
ferential Power Analysis (SDPA) is described. The
leaked information that can be captured by the SDPA
is detailed and an example on an unknown GSM au-
thentication algorithm is given. The algorithm is
implemented on SIM smart cards. Usually, supple-
mentary methods have to be employed to completely
restore the algorithm. A technique that may reveal
substitution blocks is introduced in Sect. 4.

2 Power Analysis

Smart cards consist of logic gates, which are basi-
cally interconnected transistors. During operation,
charges are applied to or removed from transistor
gates. The sum of all charges can be measured
through power consumption, on which power anal-
ysis techniques are based.

Several variations of power analysis have been de-
veloped [2, 5]. The power consumption measurements
of smart card operations are interpreted directly in
Simple Power Analysis (SPA). SPA can reveal hid-
den data in algorithms in which the execution path
depends on the data being processed. More advanced
techniques, like Differential Power Analysis (DPA)
and Inferential Power Analysis (IPA), allow observa-
tion of the effects correlated to the data values being
manipulated.

Power analysis attacks have been known for a
while and effective countermeasures exist that pose
difficulties, even to a well-funded and knowledgeable
adversary [6, 7, 4]. However, many solution providers
are still convinced that implementation of a secret al-
gorithm provides sufficient level of protection against
low-cost side-channel attacks. The results presented
here speak against attempts to establish secrecy by
keeping cryptographic algorithms undisclosed.

3 Sign-Extended DPA

A DPA attack begins by running the encryption
algorithm for N random values of plaintext input. For

each of the inputs, a discrete time power signal is
collected. The power signal is a sampled version of
the power being consumed during the portion of the
algorithm that is under attack. The power signals are
split into two sets using a partitioning function, which
is selected in a way to differentiate signals based on
predicted target value of a chosen variable. Usually
one bit of the target value is considered. The next
step is to compute the average power signal for each
set. By subtracting the two averages, a discrete time
DPA bias signal is obtained. Selecting an appropriate
partitioning function results in a DPA bias signal that
can be used to verify guessed portions of the secret
key. If enough samples are used and a correct guess
as to the value of the intermediate variable has been
made, the DPA bias signal will show power biases at
some points in time and will converge to 0 all other
times.

Basically DPA is used as a tool for testing various
hypotheses about secret values in cryptographic algo-
rithms [2]. On the other hand, Sign-Extended DPA
(SDPA) is performed on known variables within an
algorithm in order to deduce further knowledge about
the algorithm. The Sign-Extended DPA method take
into account signs of power biases [8]. It was shown
that the sign of power bias carries information about
the initial or final state of the circuitry that stores the
DPA target value. In case of SDPA the target value
is usually one bit of known variable within the algo-
rithm. By performing sign analysis of power biases
for all bits of known variable, values can be revealed
that collide with the observed value in the same cir-
cuitry. An SDPA vector is defined that combine signs
for all bits of a target value. Note that some vector
components may not be defined as power biases for
some bits may be missing.

3.1 Leaked Information

It is difficult to deduce the meaning of SDPA vec-
tors, as there can be many explanations. For in-
stance, a constant may be a real constant used by
the algorithm, but it can also be the memory address
of a variable, value of a variable, opcode, or just the
effect of a precharged bus. Other more complex ex-
planations are possible.

Moreover, the collision of the observed value with
its transformed counterpart produce very distinct
SDPA vectors, which can be considered as a signa-
ture of the transformation. First results based on
simulation suggest that various arithmetic and logic
operations may be identified.

For example, suppose that input value i collides
with its shifted counterpart, ¢ > 3. Then the follow-
ing SDPA vector s;/

Sj/ = [070707N,N7N7N7N] (1)

is expected, where the number of consecutive zeros
equals the number of places shifted to the right and
~ designates undefined sign.

Note that the same signature would be obtained
if zero collided with masked input. Signatures for
other typical logical and arithmetic operations may
be derived. They are very dependent on the value
with which the transformed value collides. Similar
signatures may result from different transformations,
while some transformations cannot be identified in
this way. For instance, when the rotated value col-
lides with its original, the DPA power bias limits to
zero. Furthermore, many signatures, like those for
addition and multiplication, have an effect on the
size of a bias and not only on its sign. When the
transition of some bits leak more information than
others, i.e. power bias is dependent on bit position,
the interpretation of magnitudes in addition to signs
may appear impossible. However, the experimental
results in [4] show that, on busses, the magnitude of
the voltage pulse is directly proportional to the num-
ber of bits that changed. Further research is required
in order to include the information about magnitudes
into signatures.

Many ciphers implement complex compositions of
simple operations through different levels of iterated
code. In order to correctly interpret SDPA vectors,
the investigation of similar vectors from multiple iter-
ations can be very helpful. A SDPA matrix captures
sign information for cross-iteration comparisons. The
matrix is a collection of similar SDPA vectors that
are observed within each iteration, i.e. vectors evenly
spaced in time.

3.2 Example

We have applied SDPA to an unknown GSM au-
thentication algorithm that can be found on SIM
cards. The algorithm is a keyed hash function. It
takes a 16-byte key (128 bits) and 16-byte of data
(128 bits) to output a 12-byte (96 bits) hash. The
key ko — k15, as used in the GSM protocol, is unique
to each subscriber and is stored in the SIM card. The
input data g — 715 is a random challenge supplied by
the base station. The first 32 bits of the hash are
used as a response to the challenge and sent back to
the base station. The remaining 64 bits are used as
a session key for voice encryption using the A5 algo-
rithm.

The following SDPA matrices are identified at the
beginning of the algorithm:

Co = [0,0,...,0,0]
CNTy_ 15 =[0,1,...,14,15]
KEY = [76,157,...,31,224] (2)
CNT,_,; ® KEY = [76, 156, . ..,17,239]
CNTg_ss @ KEY = [9,219,...,76,180] ,

c, CNT,,, DKEY

CNZT\(;”[/KR CNT,,; | CNT,,,, ®KEY
0 i 2 3 !
time (ps)

Figure 1: Temporal ordering of the SDPA matrices
within the first iterations

where the matrix columns are written as bit values of
SDPA vectors. 8-bit blocks of plaintext input ig —i15
were selected as known intermediate variables, one
per iteration. In Fig. 1 a temporal ordering of the ma-
trices within the algorithm’s first iterations is shown.

When only one iteration is observed, the SDPA
values are just different constants that collided with
the input. The matrix representation gives more
information. For instance, CNT(y_15 can be inter-
preted as a loop counter in collision with the plain-
text input. This explanation is very likely as both
input and counter are handled within a typical loop.
In the middle of the iteration a SDPA matrix that
appears to contain random SDPA values is identified
three times. Our prediction that a key ky — k15 col-
lided with the input has proven correct, hence the
label KEY. At the end of the iteration two differ-
ent matrices were identified. The first can be cal-
culated as a bitwise exclusive or between CNT(_15
and KEY, CNTy_15 ® KEY, and the second as
CNTgo_g4 @ KEY. It is highly unlikely that these
values actually collided with the input; however, the
same matrices are obtained if KEY @iy —i15 collides
with CNT(_15 and CNTgg_g4, respectively. The
CNTg9_g4 may show the memory range where the
results of the computation are stored. Other explana-
tions are also possible. From the above conclusions,
one can write the Alg. 1 that would cause a similar
response to SDPA.

Algorithm 1. Initial computation in unknown algo-
rithm
FOR j from 0 to 15
xlj] = ilj] @ kj]
END FOR

In the above example, SDPA reveals information
about keys, counters, memory ranges, operations and
their temporal ordering.

4 Breaking a Substitution Block

As shown by a simple example, SDPA can be used
in the reverse engineering attempts of an adversary
to reveal secret code. After new intermediate values
have been discovered, SDPA is performed on those
values instead of on blocks of plaintext input.

Supplementary methods have to be employed to
completely restore the algorithm under attack. For
instance, simple power analysis (SPA) and the use
of correlation techniques may help in identifying the
algorithm’s loops.

The next major difficulty in restoration attempts
are substitution blocks, which are usually imple-
mented as lookup tables. Modern cryptography uses
substitution as a building block in complex composi-
tions of strong ciphers. A substitution block is a very
effective countermeasure against SDPA as it prevents
intermediates from being tracked through the algo-
rithm. However, many implementations of lookup op-
eration are insecure. An attack on substitution blocks
is proposed in [9]. The attack is based on identifying
equal intermediate results from power measurements
while the actual values of these intermediates remain
unknown.

The side-channel attack on substitution blocks de-
scribed below has been validated on the same SIM
card as the above SDPA method. The contents of
the lookup tables of the implemented authentication
and session-key generation algorithm have been com-
pletely restored. Additional examples are given in
[9].

Let f(p) be a function that incorporates a lookup
table T and some further transformations of the value
read from the table. The parameter p represents
plaintext input and may be extended to a sequence of
parameters without significant change of the method.

r=f(p) (3)

The problem that has to be solved by an adver-
sary is to find the content of the unknown or modi-
fied lookup table T" just by observing the side-channel
information that is present in power variations. The
value of parameter p is known to the attacker, while
the result r is unknown, since it is further modified
during algorithm execution.

The basic idea behind the attack on a substitu-
tion block is based on the fact that the same value
of the parameter p gives the same intermediate result
r, while different values of parameter p do not nec-
essarily give different intermediate results r as soon
as f is an injective function. By identifying equal in-
termediate results one can partially or fully restore
the content of the lookup table and thus break an
unknown substitution block.

First, identification of the relevant measurements
is needed to enable comparison of the results within
algorithm execution by side-channel information
alone. Various methods are discussed in [9]. An equa-
tion can be written for each pair of parameters p; and
po for which the equality of the results have been de-
tected:

f(p1) = f(p2)> p1# D2 - (4)

i0® ko —H
[
[

=
o

ﬁ
E

Y .

Figure 2: Computation in the GSM authentication
algorithm

It is not necessary to find all similarities and, hence,
all equations. The set of equations is then solved for
the table values with some degree-of-freedom, DF'. It
is important for DF' to be very small, in practice not
larger than 2. A large DF makes exhaustive search
of the solution space infeasible. The right table can
be identified using DPA on the computation results
after the lookup operation.

The requirement for small DF’ may prevent break-
ing a substitution block when only a single lookup
operation is observed. However, the same table is
frequently used several times within an algorithm
because the same substitution block is used several
times to form the product cipher.

We managed to completely restore the unknown
GSM authentication algorithm using the above meth-
ods. In Fig. 2 a detail of the algorithm is shown that
includes four lookup operations. Only a small frac-
tion of the sixteen similar iterations is shown. The
code is executed at the beginning of the algorithm
and can be restored only by combining SDPA, SPA
and substitution block attack.

5 Conclusion

An example of side-channel reverse engineering of
secret algorithm has been described. In addition to
SPA, a sign extension to DPA and side-channel attack
on substitution block have been used. Many authors
provide guidance for designing smart card solutions

against power analysis attacks; however, they are not
always present in real implementations. The design-
ers must not rely on secrecy of the algorithm, as the
algorithm may be reverse-engineered in the presence
of side-channel information leakage.

References

[1] P. Kocher, Timing Attacks on Implementation of
Diffie-Hellman, RSA, DSS and Other Systems.
In: Koblitz, N. (ed.): Advances in Cryptology -
Crypto’96. Lecture Notes in Computer Science, Vol.
1109. Springer-Verlag, Berlin Heidelberg New York,
pp. 104-113, 1996.

[2] P. Kocher, J. Jaffe and B. Jun, Differential Power
Analysis. In: Wiener, M. (ed.): Advances in Cryp-
tology - Crypto’99. Lecture Notes in Computer Sci-
ence, Vol. 1666. Springer-Verlag, Berlin Heidelberg
New York, pp. 388-397, 1999.

[3] D. Agrawal, B. Archambeault, J.R. Rao and P. Ro-
hatgi, The EM Side-Channel(s): Attacks and Assess-
ment Methodologies. In: Cryptographic Hardware and
Embedded Systems - CHES’ 2002.

[4] T.S. Messerges, E.A. Dabbish and R.H. Sloan, Exam-
ining Smart-Card Security under the Threat of Power
Analysis Attacks. IEEE Transactions on Computers,
51(5), pp. 541-552, 2002.

[5] P.N. Fahn and P.K. Pearson, IPA: A New Class
of Power Attacks. In: Koc, C.K., Paar, C. (eds.)
Cryptographic Hardware and Embedded Systems -
CHES’99. Lecture Notes in Computer Science, Vol.
1717. Springer-Verlag, Berlin Heidelberg New York,
pp. 173-186, 1999.

[6] O.Kommerling and M.G. Kuhn, Design Principles for
Tamper-Resistant Smartcard Processors. Proceedings
of the USENIX Workshop on Smartcard Technology -
Smartcard’99, Chicago, Illinois, May 10-11, USENIX
Association, pp. 9-20, 1999.

[7] S. Chari, C.S. Jutla, J.R. Rao and P. Rohatgi, To-
wards Sound Countermeasures to Counteract Power-
Analysis Attacks. In: Wiener, M. (ed.): Advances in
Cryptology - Crypto’99. Lecture Notes in Computer
Science, Vol. 1666. Springer-Verlag, Berlin Heidelberg
New York, pp. 398-412, 1999.

[8] R. Novak, Sign-Based Differential Power Analysis.
submitted for publication, 2003.

[9] R. Novak, Side-Channel Attack on Substitution
Blocks. In: 1st MiAn International Conference
on Applied Cryptography and Network Security,
ACNS2003, Kunming, China, Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin Heidelberg
New York, in print, 2003.

