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Abstract

Evolutionary computation is an area of computer science utilizing the mechanisms
of biological evolution in computer problem solving. It is concerned with theoret-
ical studies, design and application of stochastic optimization procedures, known
as Evolutionary Algorithms (EAs). EAs have proven effective and robust in solv-
ing demanding optimization problems that are often difficult if not intractable to
traditional numerical methods. They are nowadays widely applied in science, en-
gineering, management and other domains. However, a drawback of EAs is their
computational complexity which originates from iterativepopulation-based search
of the solution space. On the other hand, processing a population of candidate solu-
tions makes EAs amenable to parallel implementation that may result in significant
calculation speedup.

This chapter presents a parallel evolutionary computationframework developed for
solving numerical optimization problems with one ore more objectives, and evalu-
ates its performance on a high-dimensional optimization task from industrial prac-
tice. The chapter starts with an introduction to optimization problems. It distin-
guishes between single- and multiobjective optimization and reviews the concepts
needed to deal with multiobjective optimization problems,such as the dominance
relation and Pareto optimality. Next, EAs as a general-purpose optimization method
are described, with a focus on Differential Evolution (DE) which is a particular kind
of EA used in our framework. Then, parallelization of EAs is discussed in view of
known parallelization types and speedup calculation. The chapter continues with an
introduction to the optimization problem in industrial continuous casting, used as a
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Matjaž Depolli
Department of Communication Systems, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana,
Slovenia, e-mail: matjaz.depolli@ijs.si

1
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test problem in this work. Afterwards, the proposed parallel evolutionary computa-
tion framework is presented. The framework is based on DE andimplemented on a
cluster of personal computers. It is evaluated on single- and multiobjective variants
of the casting optimization problem and the results analyzed from the perspective
of the problem domain and, in particular, the achieved speedup.

1.1 Introduction

In the last decades, a number of computational techniques have been proposed that
take inspiration from natural phenomena. Among them is evolutionary computation
[1, 2] with the underlying idea of employing the mechanisms of biological evolution
in computer problem solving. Search and optimization algorithms designed accord-
ing to these principles, known as Evolutionary Algorithms (EAs), simulate the evo-
lution of candidate solutions to a given problem, usually starting from a randomly
created initial set, and iteratively improving its membersuntil their convergence.
Despite its simplicity, this approach has proved efficient and widely applicable. EAs
can nowadays be found in a variety of application domains, ranging from science
[3] to engineering [4] to management [5].

EAs are in many respects superior to traditional algorithms. Candidate solutions
in an EA can be represented and varied in a number of ways whichmakes these
algorithms suitable for solving radically different typesof optimization problems.
Their operation relies on the quality of solutions being processed and requires no ad-
ditional information about the search space. As a result, noncontinuous, multimodal
and time-dependent problems, hard to solve with traditional algorithms, can be suc-
cessfully approached with EAs. On the other hand, the population-based search per-
formed with EAs, as opposed to the single-point search in most other algorithms,
has both advantages and disadvantages. On the positive side, it results in more than
one solution produced in a single algorithm run, which provides a user with alter-
natives that are sometimes highly desirable. As a disadvantage comes the computa-
tional burden of processing a population of candidate solutions. What helps here is
the inherent parallelism of EAs: the solutions can be evaluated independently and
thus run in parallel for the entire population. This property makes EAs amenable to
parallel implementation that may significant speedup the calculation. This is partic-
ularly useful when solution evaluation is computationallyexpensive, which is often
the case with real-world problems.

This chapter describes a parallel evolutionary computation framework devel-
oped for solving numerical optimization problems. It starts with a formal intro-
duction to optimization problems and distinguishes between single- and multiob-
jective optimization. It presents the basic concepts needed to deal with multiobjec-
tive optimization problems, such as the dominance relationand Pareto optimality.
It continues with a presentation of EAs in general and then focuses on Differen-
tial Evolution (DE), an EA specialized in numerical optimization. Both the original
single-objective DE and its multiobjective extension are outlined. Next, paralleliza-
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tion of EAs is discussed regarding the types of parallelization and the calculation
of speedups. The chapter then introduces the task of processparameter tuning in
industrial continuous casting of steel where the goal is to satisfy the empirical met-
allurgical criteria formulated to increase the quality of cast steel [6]. This problem
will later be used to evaluate the proposed evolutionary computation framework.
The framework itself is explained in detail. It makes use of any number of pro-
cessors available and increases the performance of the optimization procedure by
distributing the evaluation of candidate solutions among the processors. Installed on
a cluster [7] of Opteron computers running under Linux, it isempirically evaluated
on the casting optimization problem. Both single- and multiobjective variants of
the problem are exercised and the results analyzed in view ofthe problem domain
and, in greater detail, the achieved calculation speedup. The optimization results
are comparable to the results obtained previously on the same problem instances,
while, in accordance with predictions, high speedups are achieved. These findings
also suggest further work to enhance the performance of the parallel framework on
hardware architectures different from the one used in this work.

1.2 Optimization Problems

Numerous tasks in science, engineering and business require finding the best solu-
tion from a set of candidate solutions that can be evaluated according to a quality
measure and have to satisfy various constraints. These tasks are called optimization
problems, and the procedure of solving an optimization problem is optimization.

We focus on numerical optimization problems where candidate solutions are vec-
tors of real decision variables (sometimes called problem parameters)

x = [x1,x2, ...,xn]
T,

and the quality measure is a real functionf (x) defined overRn. Formally, a numer-
ical optimization problem is to find a vector

x∗ = [x∗1,x
∗
2, ...,x

∗
n]

T

that fulfills boundary constraints

xlow
i ≤ xi ≤ xup

i , i = 1,2, ...,n,

inequality constraints
g j(x) ≥ 0, j = 1,2, ...,J,

and equality constraints

hk(x) = 0, k = 1,2, ...,K,

and optimizesf (x).
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The boundary constraints restrict each decision variablexi to take values within
its lower boundxlow

i and upper boundxup
i , and determine adecision variable space

(or decision space, for short) of a numerical optimization problem. Solutions sat-
isfying all boundary constraints, inequality constraints, and equality constraints are
called feasible solutions. On the other hand, solutions not satisfying all the con-
straints areinfeasible. Furthermore,f (x) is known as theobjective functionor cost
function. Optimizingf (x) means either minimizing or maximizing it.

Note that the objective function is not always given explicitly. Particularly in
practical optimization problems it may be very demanding, if not impossible, to
formulate it. Alternatively, candidate solutions can be evaluated empirically through
experiments, measurements, computer simulation, etc.

The traditional definition of a numerical optimization problem given above as-
sumes there is only one objective, and solving such a problemis therefore referred to
as single-objective optimization. However, most real-world optimization problems
involve multiple objectives, and these are often in conflictwith each other in the
sense that improvement of a solution with respect to a selected objective deteriorates
it with respect to other objectives. In such cases we deal with multiobjective opti-
mization problems. These can be formally stated analogously to the single-objective
ones with the exception that the task is now to optimize a vector function

f(x) = [ f1(x), f2(x), ..., fM(x)]T.

As a result, there are two spaces associated with a multiobjective optimization
problem: in addition to anN-dimensional decision variable space, there is anM-
dimensionalobjective spacewhere the objective vectors can be partially ordered
using thedominance relation. Objective vectorx is said to dominate objective vector
y, formally x ≺ y, iff x is not worse thany in all objectives and is better thany in at
least one objective.

Let us illustrate the dominance relation with an example. Consider a multiob-
jective optimization problem with two objectives,f1 and f2, that both need to be
minimized. Fig. 1.1 shows five solutions to this problem in the objective space.
Comparing solutiona with other solutions, we can observe thata dominatesb since
it is better thanb in both objectives, i.e.,f1(a) < f1(b) and f2(a) < f2(b). It also
dominatesc as it is better thanc in objective f2 and not worse in objectivef1. On
the other hand,d outperformsa in both objectives, therefored dominatesa or, in
other words,a is dominated byd. However, regardinga ande, no such conclusion
can be made becausef1(a) < f1(e) and f2(a) > f2(e). We say thata and e are
incomparable.

In general, in a set of solutions to a multiobjective optimization problem, there
is a subset of solutions that are not dominated by any other solution (d ande in the
example from Fig. 1.1). Referring to the decision variable space, we call this sub-
set anondominated set of solutions, and in the objective space the corresponding
vectors are called anondominated front of solutions. The concept is illustrated in
Fig. 1.2 where both objectives need to be minimized again. The nondominated set
of the entire feasible search space is known as thePareto optimal set, and the non-
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Fig. 1.1 Comparison of solutions to a multiobjective optimization problem in the objective space.

dominated front of the entire feasible search space thePareto optimal front(named
after Vilfredo Pareto (1848–1923), an Italian economist, sociologist, and a pioneer
in the field of multiobjective optimization).

Fig. 1.2 Nondominated front of solutions in the objective space (both objectives need to be mini-
mized).

Objective vectors from the Pareto optimal front represent different trade-offs be-
tween the objectives, and without additional information no vector can be preferred
to another. With a multiobjective optimizer we search for anapproximation setthat
approximates the Pareto optimal front as closely as possible. In practical multiob-
jective optimization it is often important to provide a diverse choice of trade-offs.
Therefore, besides including vectors close to the Pareto optimal front, the approxi-
mation set should also contain near-optimal vectors that are as diverse as possible.
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1.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) is a common name for a family of search and op-
timization procedures created and studied in the field of evolutionary computation
[1, 2]. The underlying idea is to solve a given problem through computer simulated
evolution of candidate solutions. The set of candidate solutions processed by an
EA is called a population, and the population members are referred to as individu-
als. They are represented in the form suitable for solving a particular problem. Of-
ten used representations include bit strings, real-valuedvectors, permutations, tree
structures and even more complex data structures. In addition, a fitness function
needs to be defined that assigns a numerical measure of quality to the individuals; it
roughly corresponds to the cost function in optimization problems.

An EA, shown in pseudocode as Algorithm 1, starts with a population of ran-
domly created population members, and iteratively improves them by employing
evolutionary mechanisms, such as survival of the fittest individuals and exchange of
genetic information between the individuals. The iterative steps are called genera-
tions, and in each generation the population members undergo selection and varia-
tion.

Algorithm 1 Evolutionary Algorithm (EA)

1: create the initial populationP of random solutions;
2: evaluate the solutions inP;
3: while stopping criterion not metdo
4: create an empty populationPnew;
5: repeat
6: select two parents fromP;
7: create two offspring by crossing the parents;
8: mutate the offspring;
9: evaluate the offspring;

10: add the offspring intoPnew;
11: until Pnew is full;
12: copyPnew into P;
13: end while

The selection phase of the algorithm is an artificial realization of the Darwinian
principle of survival of the fittest among individuals. The higher the fitness of an
individual (i.e., the quality of a solution), the higher theprobability of participating
in the next generation. In the variation phase, the individuals are modified in order
to generate new candidate solutions to the considered problem. For this purpose,
the EA applies operators, such as crossover and mutation, tothe individuals. The
crossover operator exchanges randomly selected components between pairs of indi-
viduals (parents), while mutation alters values at randomly selected positions in the
individuals.

The algorithm runs until a stopping criterion is fulfilled. The stopping criterion
can be defined in terms of the number of generations, requiredsolution quality or as
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a combination of both. The best solution found during the algorithm run is returned
as a result.

EAs exhibit a number of advantages over traditional specialized methods and
other stochastic algorithms. Besides the evaluation of candidate solutions, they re-
quire no additional information about the search space properties. They are a widely
applicable optimization method, straightforward for implementation and suitable for
hybridization with other search algorithms. Moreover, it is not difficult to incorpo-
rate problem-specific knowledge into an EA in the form of specialized operators
when such knowledge is available. Finally, by processing populations of candidate
solutions, they are capable of providing alternative solutions to a problem in a single
algorithm run. This is extremely valuable when solving multimodal, time-dependent
and multiobjective optimization problems.

A somewhat more specialized EA is Differential Evolution (DE) [8, 9]. It was
designed for solving numerical optimization and has provedvery efficient in this
problem domain. In DE, candidate solutions are encoded asn-dimensional real-
valued vectors. As outlined in Algorithm 2, new candidates are constructed through
operations such as vector addition and scalar multiplication (in line 8,F denotes a
predefined scalar value). After creation, each candidate isevaluated and compared
with its parent and the best of them is added to the new population.

Algorithm 2 Differential Evolution (DE)

1: create the initial populationP of random solutions;
2: evaluate the solutions inP;
3: while stopping criterion not metdo
4: create an empty populationPnew;
5: repeat
6: for each solutionPi , i = 1..pop sizefrom P do
7: randomly select three different solutionsI1, I2, I3 from P;
8: create a candidate solutionC := I1 +F · (I2− I3);
9: alterC by crossover withPi ;

10: evaluateC;
11: if C is better thanPi then
12: addC into Pnew
13: else
14: addPi into Pnew;
15: end if
16: end for
17: until Pnew is full;
18: copyPnew into P;
19: end while
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1.3.1 Multiobjective Evolutionary Algorithms

In multiobjective optimization, finding an approximation of the Pareto optimal front
in a single run requires a population-based method. Therefore, EAs are a reasonable
choice for this task. However, since the objective space in multiobjective optimiza-
tion problems is multidimensional, any EA originally designed for single-objective
optimization needs to be extended to deal with multiple objectives. This has been
done with several EAs that are now used as multiobjective optimizers and referred
to as Multiobjective Evolutionary Algorithm (MOEAs) [10, 11, 12].

Based on the single-objective DE is Differential Evolutionfor Multiobjective
Optimization (DEMO) [13]. It extends DE with a particular mechanism for deciding
which solutions to keep in the population (see Algorithm 3).For each parent in
the population, DEMO constructs a candidate solution in thesame way as DE. If
the candidate dominates the parent, the candidate is added to the new population.
If the parent dominates the candidate, the parent is added tothe new population.
Otherwise, if the candidate and its parent are incomparable, they are both added
to the new population. During the construction of candidates for all parents in the
population, the new population possibly increases. In thiscase, it is truncated to
the original population size using nondominated sorting and the crowding distance
metric in the same manner as in the NSGA-II multiobjective algorithm [14]. These
steps are repeated until a stopping criterion is met.

The serial versions of DE and DEMO described here will be usedas a foundation
for our parallel evolutionary computation framework to efficiently deal with single-
and multiobjective optimization problems, respectively.

1.4 Parallel Single- and Multiobjective Evolutionary Algorithms

EAs are an example of inherently parallel algorithms. Fitness evaluation can be
independently calculated for each individual and therefore run in parallel for the
entire population at a time. This mainly results in a faster algorithm execution, i.e.,
speedup [15], although it could in some cases also loosen hardware bottlenecks,
such as memory shortage. This chapter focuses on the speedup, but also provides
notes on efficiency (speedup normalized with the number of processors) and hard-
ware bottlenecks where applicable.

1.4.1 Parallelization Types

There are four types of parallel EAs [16, 17], three basic:master-server(also called
global parallelization), island, diffusion(also known ascellular), andhybrid that
encompasses combinations of the basic types.
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Algorithm 3 Differential Evolution for Multiobjective Optimization (DEMO)

1: create the initial populationP of random solutions;
2: evaluate the solutions inP;
3: while stopping criterion not metdo
4: create an empty populationPnew;
5: repeat
6: for each solutionPi , i = 1..pop sizefrom P do
7: randomly select three different solutionsI1, I2, I3 from P;
8: create a candidate solutionC := I1+F·(I2− I3);
9: alterC by crossover withPi ;

10: evaluateC;
11: if C dominatesPi then
12: addC into Pnew
13: else
14: if Pi dominatesC then
15: addPi into Pnew;
16: else
17: add bothPi andC into Pnew;
18: end if
19: end if
20: end for
21: if Pnew contains more thanpop sizesolutionsthen
22: truncatePnew;
23: end if
24: until Pnew is full;
25: copyPnew into P;
26: end while

Master-slave EAs are the most straightforward type of parallel EAs and the only
one that makes use of the EAs inherent parallelism. As a consequence, they traverse
the search space identically to their serial counterparts.A master-slave EA can be
visualized as a master node running a serial EA with a modification in fitness evalu-
ation. Instead of evaluating fitness serially, one individual at a time, until the entire
population is evaluated, individuals are evaluated on the master and slave nodes
in parallel. The highest efficiency of this parallelizationtype can be achieved on
computers with homogeneous processors and in problem domains where the fitness
evaluation time is constant and independent of the individual. When these criteria
are fulfilled and the fitness evaluation time is long comparedto the time required for
other parts of the algorithm, near-linear speedup is possible.

Island EAs, in contrast, are multiple-population algorithms, consisting of several
largely independent subpopulations that occasionally exchange a few individuals. In
an island EAs, each processing node represents an island, running a serial EA on a
subpopulation. A new operator is introduced – migration, that handles the exchange
of individuals between the islands. Migration occurs either in a predefined intervals,
e.g., every several generations, or after special events, e.g., when subpopulations
start to converge. Communication overhead is therefore smaller compared to the
master-slave parallelization type. In general, speedup increases with the number of
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islands, but the overall efficiency depends on how well the problem is suited for
solving with multiple-population EAs compared to single-population EAs.

Diffusion EAs split population into multiple small subpopulations and divide
them among the processing nodes. Every subpopulation is allowed to communi-
cate (individuals may interact) with a predefined neighborhood of other subpopula-
tions. These algorithms can also be considered single-population with structurally
constrained interactions between individuals. Parallelization of this type has large
communication overhead and may be worth considering only onlarge computer
clusters with dedicated interconnections between the neighboring processing nodes.
Speedup and efficiency depend greatly on the properties of interconnections and the
suitability of the problem to the structural constraints imposed by the algorithm.

Hybrid parallel EAs are an attempt to minimize the weaknesses of the basic type
algorithms through their hierarchic composition. For example, the island type may
be implemented on top of the master-server type, providing possibility to use all
available processing nodes, while keeping the number of islands variable. Hybrid
EAs are very adaptable to the underlying hardware architecture, but their design
and implementation are more complex.

1.4.2 Calculation of Speedups

Traditionally, speedup is defined as the ratio between the execution times of the best
serial algorithm and the best parallel algorithm:

S=
Ts

Tp
. (1.1)

As this definition depends on the execution times, we call it the measured speedup,
to contrast it with the estimated speedup. In case of the master-slave EAs, selec-
tion of the best algorithms is trivial, since the parallel algorithm traverses the search
space identically to its serial counterpart. Therefore, for a valid speedup measure-
ment, both algorithms should be run with the same algorithm parameter setting, for
the same number of generations.

More care should be taken when dealing with other types of parallel EAs. Mod-
ifications needed for the island and diffusion EAs may have a positive influence on
some EAs and in some problem domains. These modifications canalways be trans-
lated back into a serial algorithm, since every parallel algorithm can be trivially
serialized. This way, a new best known serial algorithm for calculation of speedup
can be obtained. Therefore, the best serial counterpart to aparticular multipopu-
lation parallel EA may either be its serial implementation,or the original, single-
population EA.

The only limiting factor for serialization could be hardware (for example, multiple-
population EAs require more memory than single-populationEAs). In such a case,
parallelization serves as a means of alleviating hardware constraints as well. The
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obtained speedup in such cases would be due to parallel execution and due to algo-
rithm improvements, with either contribution unobtainable from the measurements
alone.

Additionally, the island and diffusion EAs make use of additional parameters –
the number of subpopulations, and the size and shape of the neighborhood. These
parameters are in parallel implementations to a large extent fixed to the number of
processors and the computer architecture, but are free in serial implementations.
Therefore, the best algorithm parameter setting may differbetween serial and par-
allel implementations.

While measuring the parallelization speedup of the master-slave EAs is straight-
forward, it requires a lot of additional work for the multipopulation parallel EAs.
Since the knowledge of speedup is usually not a priority to the algorithm developers,
the parallel multipopulation EAs are often compared only tothe original serial EAs.
This technique frequently yields super-linear speedups, which are a good indication
of the use of suboptimal serial algorithms.

We explore the master-slave EAs in more detail, to estimate their limitations in
speedup. We start with the theoretical limit on speedup according to the Amdahl’s
law:

Smax=
1

(1−P)+ P
N

, (1.2)

whereP is the parallel portion of the algorithm andN is the number of processors.
The actual speedup of an algorithm will depend on how well theparallel portion
can be spread up amongN processors. Considering the simplest master-slave paral-
lelization type, where only fitness evaluations are parallelized,P is the portion of the
serial algorithm execution time spent on fitness evaluation. It should be noted that
through the process of parallelization, the interprocessor communication is added
to the algorithm, which effectively decreases its parallelportion. As demonstrated
later on, when the interprocessor communication is taken into consideration,P can
still reach very high values if fitness evaluation is complexand time consuming. On
the other hand,N is limited by the population sizeNp. Only the population of a sin-
gle generation can be evaluated at a time, even when more processors are available.
Speedup upper bound therefore equals the population size:

lim
P→1

Smax= lim
P→1

1

(1−P)+ P
Np

= Np . (1.3)

Another important observation is that not only shouldNp ≤ N, but alsoNp | N (Np

dividesN), for the algorithm to fully utilize all processors. The algorithm needs⌈Np
N ⌉

iterations to fully evaluate the population and therefore has⌈Np
N ⌉×N processor time

slots to fill with Np tasks (fitness evaluations). It is free to choose the best wayto
allocate the tasks to processor time slots over the iterations but there will always
remainNp modN unallocated slots per generation, for which the processorswill
be left idle. From this we can derive the effective number of processors used by
the algorithmNeff = Np/⌈

Np
N ⌉. Finally, substitutingN with Neff in Eq. (1.2) we can
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rewrite the speedup equation as

Smax=
1

(1−P)+
P×⌈

Np
N ⌉

Np

. (1.4)

An example ofSmax(N) for population sizeNp = 32 and parallel fractionP = 1 is
shown in Fig. 1.3.
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Fig. 1.3 Maximum speedup and processor idle time vs. the number of available processors for a
master-slave parallel EA withP→ 1 andN = 32.

The dependence of speedup on the number of processors is alleviated by the
insensitivity of EAs to the population size. Because of the stochastic nature of EAs,
an approximate interval can be determined rather than an exact number for the best
population size on a given problem. If the interval is largerthan the number of
processors, then fixing the population size to a multiple of the number of processors
while keeping it inside the interval is possible. In cases when optimal selection of
the population size within the interval is not possible, speedup calculation should be
amended. Suppose an EA with the optimal population size in comparison to an EA
with the selected population size has speedupSopt. The actual maximum speedup of
a parallel master-server EA will then be

S∗max =
Smax

Sopt
. (1.5)
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1.5 Casting Process Optimization Task

Continuous casting of steel is widely used at modern steel plants to produce vari-
ous steel semi-manufactures. The proces is schematically shown in Fig. 1.4. In this
process, liquid steel is poured into a bottomless mold whichis cooled with internal
water flow. The cooling in the mold extracts heat from the molten steel and initiates
the formation of a solid shell. The shell formation is crucial for the support of the
slab behind the mold exit. The slab then enters the secondarycooling area where
additional cooling is performed by water sprays. Led by the support rolls, the slab
gradually solidifies and finally exits the casting device. Atthis stage it is cut into
pieces of predefined length.

Fig. 1.4 A schematic view of continuos casting of steel.

The secondary cooling area of the casting device is divided into cooling zones
and the cooling water flows in the zones can be set individually. In each zone, cool-
ing water is dispersed to the slab at the center and corner positions. Target tempera-
tures are specified for the slab center and corner in every zone and the optimization
task is to tune the cooling water flows in such a way that the resulting slab surface
temperatures match the target temperatures as closely as possible. From metallurgi-
cal practice this is known to reduce cracks and inhomogeneities in the structure of
the cast steel. Formally, an objectivef1 is introduced to measure deviations of actual
temperatures from the target ones:
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f1 =
NZ

∑
i=1

|Tcenter
i −Tcenter∗

i |+
NZ

∑
i=1

|Tcorner
i −Tcorner∗

i |, (1.6)

whereNZ denotes the number of zones,Tcenter
i andTcorner

i the slab center and corner
temperatures in zonei, andTcenter∗

i andTcorner∗
i the respective target temperatures in

zonei. This objective encompasses the key requirement for the process to results in
high-quality cast steel. Technically, this is a single-objective version of the casting
optimization task.

In addition, there is a requirement for core length,lcore, which is the distance
between the mold exit and the point of complete solidification of the slab. The target
value for the core length,lcore∗, is prespecified, and the actual core length should be
as close to it as possible. Shorter core length may result in unwanted deformations of
the slab as it solidifies too early, while longer core length may threaten the process
safety. This requirement can be treated as an additional objective, f2:

f2 = |lcore− lcore∗|, (1.7)

and the more demanding version of the optimization task is then to minimize both
f1 and f2 over possible cooling patterns (water flow settings). The two objectives
are conflicting, hence it is reasonable to handle this optimization problem in the
multiobjective manner.

In the optimization procedure, water flows cannot be set arbitrarily, but accord-
ing to the technological constraints. For each zone, lower and upper bounds are
prescribed for the center and corner water flows. Moreover, to avoid unacceptable
deviations of the core length from the target value, a hard constraint is imposed:
f2 ≤ ∆ lcore

max. Solutions violating the water flow constraints or the core length con-
straint are considered infeasible.

A prerequisite for optimization of this process is an accurate mathematical model
of the casting process, capable of calculating the temperature field in the slab as a
function of coolant flows and evaluating it with respect to the objectives given by
Eqs. (1.6) and (1.7). For this purpose we use a numerical simulator of the process
with the Finite Element Method (FEM) discretization of the temperature field and
the related nonlinear heat transfer equations solved with relaxation iterative methods
[6].

1.6 Parallel Evolutionary Computation Framework

We present a parallel framework for numerical single- and multiobjective optimiza-
tion on homogeneous parallel computer architectures. It isbased on single-objective
Differential Evolution (DE) and is extended to Differential Evolution for Multiob-
jective Optimization (DEMO) when multiobjective optimization is required.

The framework is able to utilize any number of processors by implementing the
master-slave parallelization scheme for both optimization algorithms. Although de-
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signed for use on homogeneous parallel computer architectures, it can use heteroge-
neous architectures as well, but with lower utilization of faster processors. When a
single processor is used, master-slave algorithms degenerate into their non-parallel
versions, thus avoiding potential overhead of the parallelization scheme.

In the framework, the optimization procedure is performed in three stages: ini-
tialization, generational computation, and finalization.The initialization consists of
reading the input files and settings, and the setup of initialpopulation. Generational
computation iterates over generations, where in each iteration fitness values are cal-
culated for individuals of the current population and the evolutionary algorithm op-
erators are applied to them, spawning the next generation. In finalization, the results
are formatted and returned to the user.

While the initialization and finalization are run by the master process, the gen-
erational computation can be run in parallel by all processes. Each iteration starts
with the master process holding a vector of individuals of unknown fitness. These
are then evaluated by the master and slave processes in parallel, which requires in-
terprocess communication. For this purpose, the Message Passing Interface (MPI)
[18] is used. It implements the interprocess communicationin a two-part, coupled
fashion. The first part distributes the data on the individuals among the slave pro-
cesses, and the second part returns the fitness values to the master process. For the
sake of simplicity, only the data on one individual is transferred to each slave pro-
cess per communication couple. This forces the communication couple to happen
more than once per generation if the population size is larger than the number of
processors. The part in which the master process receives the results from the server
processes is also blocking, i. e., it waits for all the results before it continues exe-
cution, effectively synchronizing the processors. This, in combination with multiple
communication couples per generation, causes some unnecessary synchronizations.
After the fitness values for all individuals are known, the master process applies the
evolutionary algorithm operators and spawns the next generation. Slave processes
are idle at this time, waiting to receive the data on individuals of the next generation.

The parallelization approach employed by the proposed framework is, in the
context of multiobjective optimization, known as the Parallel Function Evaluation
(PFE) variant of the single-walk parallelization [19]. It is aimed at speeding up the
computations, while the basic behavior of the underlying algorithms remains un-
changed.

1.6.1 Speedup Estimation

What is the expected speedup of the framework running on several processors in
comparison to the framework running on a single processor, solving an optimization
problem? One should be able to answer this question before starting the optimiza-
tion, to use the most appropriate number of processors. To answer this question,
we start with the speedup as defined in Eq. (1.1). We simplify it by only using
the time for generational computation instead of the total execution time for both,
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the serial and parallel implementations. This is reasonable because the initialization
and finalization are faster than even a single application ofthe evolutionary algo-
rithm operators, and are negligible in cases when parallelization is considered, that
is, when the total execution time is expected to be long. Furthermore, because the
generational computation is a series of identical single generation computations, we
simplify the definition of speedup to only consider a single generation. Thus we get
the initial form of the speedup equation:

S=
Ts+Te∗Np

Ts+Te×⌈
Np
N ⌉

, (1.8)

whereTe is the time required for a single fitness evaluation,Ts is the time required
for the execution of a single generation, excluding the timerequired for fitness eval-
uations,Np is the population size, andN is the number of processors. This is a good
estimation if two criteria are met. The first criterion is constant time of fitness eval-
uation. This means that all fitness evaluations take exactlythe same amount of time
to complete, not depending on the input, the processor, nor any random factor. The
second criterion is that parallelization produces negligible calculation overhead. In
the master-slave parallelization scheme, the overhead consists of the time required
for interprocess communication, including the time the master process is waiting for
the results from the slave processes.

The time required for communication,Tc, can be simply added to the denomi-
nator in Eq. (1.8). It is irrelevant when it is orders of magnitude shorter than the
fitness evaluation time, but when it is not, it has to be estimated, because it depends
on the problem domain as well as the communication protocolsand hardware. For
instance, first the number of bytes used to represent the fitness function input pa-
rameters sets the base size of messages sent from the master to the slaves, and the
number of bytes used to represent the evaluation results sets the base size of mes-
sages sent from the slaves to the master. Then the protocols over which the messages
are sent, e.g., TCP/IP, and the library which implements message passing, e.g., MPI,
increase the message sizes with their overhead. Last, the hardware determines how
fast the messages of certain sizes can be sent between the processors. The speedup
then equals to:

S=
Ts+Te∗Np

Tc +Ts+Te×⌈
Np
N ⌉

(1.9)

Eliminating the constant fitness evaluation time criterionfrom the equation is
more complex. The master process cannot apply the evolutionary algorithm oper-
ators, until all the individuals of the population have their fitness values evaluated.
The process executing the longest fitness evaluation thus forces all other processes
to wait until it finishes. We define the time required for execution of n fitness eval-
uations in parallel (Tep(n)) in Eq. (1.10) as the expected value of maximum ofn
independent fitness evaluation times. One way of calculating the expected value is
numerically, from the cumulative distribution function (CDF) of maximum time of
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n fitness evaluations, which equals the CDF of fitness evaluation time, raised to the
power ofn.

Tep(n) = E(
n

max
i=1

{te,i}) (1.10)

The framework executes a series of parallel evaluations during a single genera-
tion if the population size is larger than the number of processors. Individuals are
split into ⌈

Np
N ⌉ groups, with first⌊Np

N ⌋ groups of the size equal to the number of

processors, and the last group (if⌈
Np
N ⌉ 6= ⌊

Np
N ⌋) of sizeNp modN. Each group is

separately evaluated in parallel, adding to the total evaluation time of a population,
which can now be calculated asTep(N)×⌊

Np
N ⌋+Tep(Np modN). The final form of

the estimated speedup equation can now be written as:

S=
Ts+Te∗Np

Tc +Ts+Tep(N)×⌊
Np
N ⌋+Tep(Np modN)

(1.11)

1.7 Empirical Evaluation

An empirical evaluation of the proposed framework was performed on the computer
cluster comprised of 17 dual processor computers. Optimization of continuous cast-
ing served as a test domain for both the single- and multiobjective optimization.

1.7.1 Experimental Setup

For the evaluation of the framework, a cluster of 17 dual-processor nodes (each node
being a personal computer) was used. The nodes are all interconnected through an
Ethernet switch, and, in addition, there are several directinterconnections between
the nodes (see Fig. 1.5). Nodes 1 through 16 are connected by atoroidal 4-mesh,
and nodes 1 through 4 are directly connected to the additional node. This node
serves as a host node, through which users access the cluster. Static routing is used
to direct the communication between the pairs of nodes, which are not physically
interconnected, through the switch. This makes the use of any desired topology
possible. In our tests, star topologies of various sizes were used.

The cluster is composed of identical personal computers, each containing two
AMD Opteron 244 processors, 1024 MB of RAM, a hard disk drive,and six 1000
MB/s Full Duplex Eethernet ports. On each computer, there isas an independent in-
stallation of the Fedora Core 2 operating system and the MPICH v1.2.6 library that
supports communication between the computers and is an implementation of the
Message Passing Interface (MPI). During the experiments, all nodes are required to
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Fig. 1.5 Architecture of the
cluster used in tests.

be running only the background system processes which leaves nearly all capabili-
ties to be used by the framework.

The parallel optimization algorithm was written in C++ and compiled withgcc
v3.3.3for target 64-bitLinux, while the continuous casting simulator was compiled
for 32-bitMicrosoft Windowsand was executed through an early version ofWine(an
application providing the compatibility layer for theMicrosoft Windowsprograms).
There was also a layer of scripts, translating the communication between the opti-
mization algorithm and the simulator, i.e., filtering and converting input/output files
of the simulator.

1.7.2 Experiments and Results

Numerical experiments in optimizing the continuous casting process were per-
formed to analyze both the effectiveness and efficiency of the developed parallel
framework. The former relates to the quality of results, while the latter refers to the
speedup achieved with the parallel optimization approach.

Optimization calculations were performed for a selected steel grade and slab
cross-section of 1.70 m× 0.21 m and for various casting speeds: the usually prac-
tised speed of 1.8 m/min, and two lower speeds of 1.6 m/min and1.4 m/min that
are exercised when the process needs to be slowed down to ensure the continuity
of casting, for example, when a new batch of molten steel is delayed. Candidate
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solutions in parallel DE and DEMO were encoded as 18-dimensional real-valued
vectors, representing coolant flow values at the center and the corner positions in
the nine zones of the secondary cooling area. Search intervals for coolant flows at
the center and the corner positions in zones 1–3 were between0 and 50 m3/h, and
in the zones 4–9 between 0 and 10 m3/h. The target core length,lcore∗, was 27 m
and the maximum allowed deviation from the target,∆ lcore

max, was 7 m. Reasonable
population size found in initial experiments was 30.

It turned out that for the single-objective and the two-objective versions of the
task the parallel optimization procedure was able to discover the solutions known
from previous applications of serial optimization algorithms [6, 20]. To illustrate the
results for the more challenging two-objective version, Fig. 1.6 shows the resulting
nondominated fronts of solutions (approximating Pareto optimal fronts) found by
the parallel DEMO algorithm for various casting speeds. It can be seen that the two
objectives can simultaneously be fulfilled to the highest degree at the regular casting
speed of 1.8 m/min. On the other hand, the lower the speed, themore evident the
conflicting nature of the two objectives: improving the coolant flow settings with
respect to one objective makes them worse with respect to theother. In addition, a
systematic analysis of the solutions confirms that the actual slab surface tempera-
tures are in most cases higher than the target temperatures,while the core length is
shorter than or equal to the target core length.
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Fig. 1.6 Nondominated fronts of solutions to the two-objective steel casting optimization problem
for various casting speeds.

In further experimentation, a detailed analysis of the framework speedup on var-
ious numbers of processors was carried out. To make the experimental results di-
rectly comparable, the framework parameters other than thenumber of processors
did not vary between the tests. Because the framework is based on the master-slave
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parallelization type, the population size was first selected as the one that suits the
problem while also being a multiple of the number of processors. As shown in pre-
vious work [6, 20], optimization of continuous casting withDE and DEMO seems
to work best with population sizes between 20 and 40, which coincides well with
the 34 available processors. Number 34 unfortunately has only four divisors (1, 2,
17, and 34). Having numerous divisors is important as it allows for numerous tests
where population size is a multiple of the number of processors. Therefore, the pop-
ulation size of 32 was chosen, which has six divisors (1, 2, 4,8, 16, and 32). With
this population size, six tests with various number of processors and maximum ef-
ficiency (minimum processor idle time) were possible. In every test, the framework
was run five times for each, the single- and multiobjective optimization.

Mean wall clock times of the tests were recorded and are summarized in Table
1.1. Two important observations can be made from the measured wall clock times
alone. The first one is great variance of the results. The mostlikely cause of this is
the variable fitness evaluation time, but we will explore this later. To simplify the
matters, we will only use mean values of the tests in further discussion. The second
observation is that the multiobjective optimization appears slightly slower than the
single-objective optimization. The single-sided paired t-test however returns thep
value of 0.12, which means the difference in times is not statistically significant.
Therefore, both algorithms can be considered equally fast and the following analysis
can be generalized in terms of the algorithm choice. Multiobjective optimization
will serve as the basis for all further speedup analyses withits differences towards
single-objective optimization mentioned only when necessary.

Table 1.1 Mean wall clock times and their standard deviations for the tests with variable number
of processors. All times are specified in seconds.

Number of DE DEMO
processors mean st. dev. mean st. dev.

1 295735 1180 298502 1576
2 143661 945 145584 5646
4 79565 1018 79751 446
8 41412 370 41105 389
16 21123 93 21454 183
32 10925 122 11019 276

We can calculate the speedup directly from the mean wall clock times of the
DEMO tests, but let us first try to estimate it with Eq. (1.11).First we make a series
of 100 test runs of fitness evaluations from which we estimatethe fitness evaluation
time to be distributed normally withµ = 32.2 s andσ = 1.5 s. We estimate all other
times in the equation to be in the order of milliseconds and therefore negligible com-
pared to the fitness evaluation time. Now we can estimate the speedup for arbitrary
number of processors,Np, and compare it to the measured speedups. Fig. 1.7 shows
the estimated and measured speedups, and the theoretical limit for the speedup on
Np ∈ [1..34].
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Fig. 1.7 Measured and analytically derived speedup for DEMO on the continuous casting problem,
with population size 32, for various number of processors. Linear speedup as the theoretical limit
of speedup for master-slave EAs is also shown for reference.

In addition to the total execution time, times of four mutually exclusive steps of
the optimization procedure are measured. The first step, which should also be the
most time-consuming, is fitness evaluation. The second stepis the interprocess com-
munication. This consists of sending the data on individuals from the master process
to the slave processes, and sending the fitness evaluation results in the opposite di-
rection. Waiting of the master process for the slave processes to start sending their
results is also included in the communication, because in the source code the two
are not separated. Next are the output operations, which consist of log keeping and
storing the data on the individuals from each generation in afile. The last step is the
application of the algorithm operators. The distribution of times among the steps
described above for multiobjective optimization on 32 processors is shown in Table
1.2

Table 1.2 The distribution of total wall clock time among steps of the optimization procedure. All
times are specified in seconds.

Algorithm stage mean st. dev.

total 11019 308
evaluation 9911 376

communication 1108 129
input/output 0.307 0.001

EA operators 0.135 0.003

A quick scan over the times used by the algorithm steps reveals that the algorithm
behaves as predicted. Fitness evaluation represents by farthe largest part of execu-
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tion time, while the times of input/output operations and the evolutionary algorithm
operators are negligible in comparison. On the other hand, the interprocess commu-
nication time, which should be negligible, represents a substantial proportion of the
total algorithm wall clock time. But this view is misleadingbecause the communi-
cation times are bundled together with the times of waiting for communication. The
latter are a consequence of, and in Eq. (1.11) also a part of, varying fitness evalu-
ation times. We can understand communication times better by analyzing them per
generation.

Out of the four steps for which the times are recorded per generation, two – in-
terprocess communication and fitness evaluation – are worthspecial attention. In
addition to the interprocess communication time and the fitness evaluation time as
measured on the master process, Fig. 1.8 also shows the maximum time of all fitness
evaluations in a generation. It can be seen that the measuredcommunication time
roughly equals the difference between the longest fitness evaluation time and the fit-
ness evaluation time on the master process. Measured communication time is there-
fore mostly spent waiting for the longest fitness evaluations. Pure communication
time can be estimated as the sum of communication and the fitness evaluation times
on the master process, from which the longest fitness evaluation time is subtracted.
It sums up to 1.2 seconds for the shown optimization run, which can be translated to
4 milliseconds per generation on average. Although this is only a rough estimate, it
shows that communication times are an order of magnitude longer than the times of
the input/output operations and the evolutionary algorithm operators, but still neg-
ligible in comparison to the fitness evaluation time. In conclusion, the measured
interprocess communication times are in good accordance with the estimates made
before the experiments.
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optimization on 32 processors, for the initial 100 generations. Fitness evaluation time of the master
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1.8 Conclusion

In this chapter a parallel evolutionary computation framework for solving numer-
ical optimization problems with one or more objectives was presented. Master-
slave parallel versions of the Differential Evolution (DE)and Differential Evolution
for Multiobjective Optimization (DEMO) algorithms were implemented for solv-
ing single- and multiobjective problems, respectively. The implementation was a
straight-forward one, parallelization was done only on theinherently parallel por-
tion of the algorithms – the fitness evaluation, thus keepingthe algorithm behavior
independent of the number of processors. The interprocess communication was im-
plemented in a simple manner, focusing on its robustness rather than speed.

The performance of the developed framework was empiricallyevaluated on an
industrial optimization problem of tuning coolant flows in the continuous steel cast-
ing process. A single- and a two-objective fitness evaluation functions were derived
from a computer simulator, implementing a test case of the continuous casting pro-
cedure. The quality of the results and the achieved parallelspeedups were evaluated
separately. The results proved satisfactory and comparable to the results obtained
previously on the same problem instances. The measured speedups were high (for
example, the speedup on 32 processors was 27) and matched thepredictions.

The presented framework demonstrated that due to a relatively simple master-
slave parallelization model, EAs can be extensively used onhomogeneous parallel
hardware. At the same time, it highlighted a weakness of the master-slave model
– the sensitivity of the speedup to constant fitness evaluation time. In our case, we
experienced variability in the execution time of fitness evaluation at the order of
several percent. Similar effect would be expected from a constant-time fitness eval-
uation function executing on heterogeneous processors or even on homogeneous
processors under some load, i.e., executing other jobs. Therefore, our future work
will focus on overcoming the demand for constant fitness evaluation time. This will
be achieved by eliminating the synchronous nature of the master-slave paralleliza-
tion type and thus maximizing the algorithm efficiency (minimizing processor idle
time). In this way we expect to increase the speedup and make the algorithms more
usable on heterogeneous hardware architectures that are less suitable to ordinary
master-slave EAs.
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