Chapter 1

Parallel Evolutionary Computation Framework
for Single- and M ultiobjective Optimization

Bogdan Filipic and Matjaz Depolli

Abstract

Evolutionary computation is an area of computer sciendiziatj the mechanisms
of biological evolution in computer problem solving. It isrecerned with theoret-
ical studies, design and application of stochastic opttion procedures, known
as Evolutionary Algorithms (EAs). EAs have proven effegtand robust in solv-
ing demanding optimization problems that are often diffiéuhot intractable to
traditional numerical methods. They are nowadays widepliag in science, en-
gineering, management and other domains. However, a dchwdfeEAS is their
computational complexity which originates from iteratpepulation-based search
of the solution space. On the other hand, processing a piogrute candidate solu-
tions makes EAs amenable to parallel implementation thgtnesult in significant
calculation speedup.

This chapter presents a parallel evolutionary computdtemnework developed for
solving numerical optimization problems with one ore mobgeotives, and evalu-
ates its performance on a high-dimensional optimizatiek feom industrial prac-
tice. The chapter starts with an introduction to optimizatproblems. It distin-
guishes between single- and multiobjective optimizatiod eeviews the concepts
needed to deal with multiobjective optimization problesisch as the dominance
relation and Pareto optimality. Next, EAs as a general-psemptimization method
are described, with a focus on Differential Evolution (DH)ieh is a particular kind
of EA used in our framework. Then, parallelization of EAs isadissed in view of
known parallelization types and speedup calculation. Tiapter continues with an
introduction to the optimization problem in industrial ¢immious casting, used as a
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test problem in this work. Afterwards, the proposed pakralelutionary computa-
tion framework is presented. The framework is based on DEraptemented on a
cluster of personal computers. It is evaluated on singld-ranltiobjective variants
of the casting optimization problem and the results analyfrem the perspective
of the problem domain and, in particular, the achieved speed

1.1 Introduction

In the last decades, a number of computational techniquestie®en proposed that
take inspiration from natural phenomena. Among them iswgiaary computation
[1, 2] with the underlying idea of employing the mechanisrisiological evolution
in computer problem solving. Search and optimization athors designed accord-
ing to these principles, known as Evolutionary Algorithr&B#\6), simulate the evo-
lution of candidate solutions to a given problem, usualgrtitg from a randomly
created initial set, and iteratively improving its membartil their convergence.
Despite its simplicity, this approach has proved efficiemt widely applicable. EAs
can nowadays be found in a variety of application domainggirey from science
[3] to engineering [4] to management [5].

EAs are in many respects superior to traditional algorith@@ndidate solutions
in an EA can be represented and varied in a number of ways whakes these
algorithms suitable for solving radically different typesoptimization problems.
Their operation relies on the quality of solutions beinggessed and requires no ad-
ditional information about the search space. As a resuttcantinuous, multimodal
and time-dependent problems, hard to solve with traditialgerithms, can be suc-
cessfully approached with EAs. On the other hand, the ptipakdased search per-
formed with EAs, as opposed to the single-point search int wiber algorithms,
has both advantages and disadvantages. On the positivét sekilts in more than
one solution produced in a single algorithm run, which pdegia user with alter-
natives that are sometimes highly desirable. As a disadgartomes the computa-
tional burden of processing a population of candidate &wist What helps here is
the inherent parallelism of EAs: the solutions can be evatlandependently and
thus run in parallel for the entire population. This propeniakes EAs amenable to
parallel implementation that may significant speedup theutation. This is partic-
ularly useful when solution evaluation is computationatypensive, which is often
the case with real-world problems.

This chapter describes a parallel evolutionary computatiamework devel-
oped for solving numerical optimization problems. It gantith a formal intro-
duction to optimization problems and distinguishes betwsiagle- and multiob-
jective optimization. It presents the basic concepts né¢aleeal with multiobjec-
tive optimization problems, such as the dominance reladiuth Pareto optimality.
It continues with a presentation of EAs in general and theudes on Differen-
tial Evolution (DE), an EA specialized in numerical optimion. Both the original
single-objective DE and its multiobjective extension andined. Next, paralleliza-
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tion of EAs is discussed regarding the types of parallabmaand the calculation
of speedups. The chapter then introduces the task of prpegameter tuning in
industrial continuous casting of steel where the goal isatsfy the empirical met-
allurgical criteria formulated to increase the quality ektsteel [6]. This problem
will later be used to evaluate the proposed evolutionarymaation framework.
The framework itself is explained in detail. It makes use wy aumber of pro-
cessors available and increases the performance of thmination procedure by
distributing the evaluation of candidate solutions amdvegarocessors. Installed on
a cluster [7] of Opteron computers running under Linux, gmspirically evaluated
on the casting optimization problem. Both single- and mbjgctive variants of
the problem are exercised and the results analyzed in vighegfroblem domain
and, in greater detail, the achieved calculation speedbp.dptimization results
are comparable to the results obtained previously on the gaoblem instances,
while, in accordance with predictions, high speedups angeged. These findings
also suggest further work to enhance the performance ofatadlel framework on
hardware architectures different from the one used in tlikw

1.2 Optimization Problems

Numerous tasks in science, engineering and business edimding the best solu-
tion from a set of candidate solutions that can be evaluatedreing to a quality
measure and have to satisfy various constraints. These daslkcalled optimization
problems, and the procedure of solving an optimization lgrolis optimization.

We focus on numerical optimization problems where candidalutions are vec-
tors of real decision variables (sometimes called problarameters)

X= [X17X27 ---aXn]T7

and the quality measure is a real functibix) defined oveiR". Formally, a numer-
ical optimization problem is to find a vector

X=X, X5, %] T

that fulfills boundary constraints

inequality constraints

and equality constraints

and optimized (x).
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The boundary constraints restrict each decision varighie take values within
its lower boundd®” and upper boung™, and determine decision variable space
(or decision space, for short) of a numerical optimizatioobtem. Solutions sat-
isfying all boundary constraints, inequality constrajiaisd equality constraints are
called feasible solutionsOn the other hand, solutions not satisfying all the con-
straints arenfeasible Furthermoref (x) is known as thebjective functioror cost
function. Optimizingf (X) means either minimizing or maximizing it.

Note that the objective function is not always given expljciParticularly in
practical optimization problems it may be very demandifighat impossible, to
formulate it. Alternatively, candidate solutions can baleated empirically through
experiments, measurements, computer simulation, etc.

The traditional definition of a numerical optimization pleim given above as-
sumes there is only one objective, and solving such a proisiémarefore referred to
as single-objective optimization. However, most realddi@ptimization problems
involve multiple objectives, and these are often in conflidth each other in the
sense thatimprovement of a solution with respect to a slattjective deteriorates
it with respect to other objectives. In such cases we dedl mitltiobjective opti-
mization problems. These can be formally stated analogdoighe single-objective
ones with the exception that the task is now to optimize aordanction

f(x) = [f1(X), f2(X), ..., fmu ()] .

As a result, there are two spaces associated with a multitigeoptimization
problem: in addition to amN-dimensional decision variable space, there idvan
dimensionalobjective spacaevhere the objective vectors can be partially ordered
using thedominance relationObjective vectok is said to dominate objective vector
y, formally x <y, iff x is not worse thaly in all objectives and is better thanin at
least one objective.

Let us illustrate the dominance relation with an examplenstder a multiob-
jective optimization problem with two objective§, and f,, that both need to be
minimized. Fig. 1.1 shows five solutions to this problem ie thbjective space.
Comparing solutiorm with other solutions, we can observe thatominated since
it is better tharb in both objectives, i.e.f1(a) < fi1(b) and fa(a) < f(b). It also
dominateg as it is better thaw in objective f, and not worse in objectivé;. On
the other handd outperformsa in both objectives, thereforg dominatesa or, in
other wordsa is dominated byd. However, regarding ande, no such conclusion
can be made becaudg(a) < fi(e) and fa(a) > fa(e). We say thaia ande are
incomparable.

In general, in a set of solutions to a multiobjective optiatian problem, there
is a subset of solutions that are not dominated by any othetieo (d andein the
example from Fig. 1.1). Referring to the decision varialgace, we call this sub-
set anondominated set of solutionand in the objective space the corresponding
vectors are called aondominated front of solution¥he concept is illustrated in
Fig. 1.2 where both objectives need to be minimized agaie. Adndominated set
of the entire feasible search space is known ag>treto optimal setand the non-
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Fig. 1.1 Comparison of solutions to a multiobjective optimizatianlgem in the objective space.

dominated front of the entire feasible search spacé#neto optimal fron{named
after Vilfredo Pareto (1848-1923), an Italian economistjalogist, and a pioneer
in the field of multiobjective optimization).
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Fig. 1.2 Nondominated front of solutions in the objective spacel{lmiijectives need to be mini-
mized).

Objective vectors from the Pareto optimal front represéferent trade-offs be-
tween the objectives, and without additional informati@wvector can be preferred
to another. With a multiobjective optimizer we search formpproximation sethat
approximates the Pareto optimal front as closely as pasdiblpractical multiob-
jective optimization it is often important to provide a dige choice of trade-offs.
Therefore, besides including vectors close to the Pargimapfront, the approxi-
mation set should also contain near-optimal vectors tleaaadiverse as possible.
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1.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) is a common name for a famifysearch and op-
timization procedures created and studied in the field ofutdmary computation
[1, 2]. The underlying idea is to solve a given problem thilmagmputer simulated
evolution of candidate solutions. The set of candidatet&oia processed by an
EA is called a population, and the population members aesned to as individu-
als. They are represented in the form suitable for solvingréiqular problem. Of-
ten used representations include bit strings, real-vakeetbrs, permutations, tree
structures and even more complex data structures. In adddi fitness function
needs to be defined that assigns a numerical measure ofygodtie individuals; it
roughly corresponds to the cost function in optimizatioolpems.

An EA, shown in pseudocode as Algorithm 1, starts with a pafpah of ran-
domly created population members, and iteratively impsavem by employing
evolutionary mechanisms, such as survival of the fittesviddals and exchange of
genetic information between the individuals. The itemtteps are called genera-
tions, and in each generation the population members uadeigction and varia-
tion.

Algorithm 1 Evolutionary Algorithm (EA)

1: create the initial populatiof of random solutions;
2: evaluate the solutions I
3: whilestopping criterion not meto
create an empty populatidtyew;
repeat
select two parents froif;
create two offspring by crossing the parents;
mutate the offspring;
: evaluate the offspring;
10: add the offspring int@new;
11:  until Phewis full;
12: copyPpew into P;
13: end while

©oNoaR

The selection phase of the algorithm is an artificial resilireof the Darwinian
principle of survival of the fittest among individuals. Thiglher the fithess of an
individual (i.e., the quality of a solution), the higher thmbability of participating
in the next generation. In the variation phase, the indizisliare modified in order
to generate new candidate solutions to the consideredeolitor this purpose,
the EA applies operators, such as crossover and mutatidhetmdividuals. The
crossover operator exchanges randomly selected comdmetmteen pairs of indi-
viduals (parents), while mutation alters values at rangaalected positions in the
individuals.

The algorithm runs until a stopping criterion is fulfilledh@ stopping criterion
can be defined in terms of the number of generations, regsaiedion quality or as
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a combination of both. The best solution found during theaigm run is returned
as a result.

EAs exhibit a number of advantages over traditional spieidlmethods and
other stochastic algorithms. Besides the evaluation oflicate solutions, they re-
quire no additional information about the search spacegstims. They are a widely
applicable optimization method, straightforward for implentation and suitable for
hybridization with other search algorithms. Moreoversinot difficult to incorpo-
rate problem-specific knowledge into an EA in the form of spleed operators
when such knowledge is available. Finally, by processinguetions of candidate
solutions, they are capable of providing alternative sohgto a problem in a single
algorithm run. This is extremely valuable when solving rimitidal, time-dependent
and multiobjective optimization problems.

A somewhat more specialized EA is Differential Evolution5)J8, 9]. It was
designed for solving humerical optimization and has proveqy efficient in this
problem domain. In DE, candidate solutions are encoded-dimensional real-
valued vectors. As outlined in Algorithm 2, new candidatessa@nstructed through
operations such as vector addition and scalar multipboafin line 8,F denotes a
predefined scalar value). After creation, each candidatedkiated and compared
with its parent and the best of them is added to the new pdpalat

Algorithm 2 Differential Evolution (DE)

1: create the initial populatiof of random solutions;
2: evaluate the solutions I
3: while stopping criterion not meto

4 create an empty populatidtyew;
5 repeat
6: for each solutiorR, i = 1..popsizefrom P do
7: randomly select three different solutioisly, I3 from IP;
8: create a candidate solutigh= 11 +F - (I2 — I3);
9: alterC by crossover withR;

10: evaluate;

11: if C is better thar} then

12: addC into Ppey

13: else

14: addR, into Phew;

15: end if

16: end for

17:  until Phewis full;
18: copyPpew into P;
19: end while
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1.3.1 Multiobjective Evolutionary Algorithms

In multiobjective optimization, finding an approximatioftbe Pareto optimal front
in a single run requires a population-based method. ThexgfAs are a reasonable
choice for this task. However, since the objective spacelittiabjective optimiza-
tion problems is multidimensional, any EA originally desggl for single-objective
optimization needs to be extended to deal with multiple ctbjes. This has been
done with several EAs that are now used as multiobjectivemipgrs and referred
to as Multiobjective Evolutionary Algorithm (MOEAS) [10,1112].

Based on the single-objective DE is Differential Evolutifmm Multiobjective
Optimization (DEMO) [13]. It extends DE with a particular of@nism for deciding
which solutions to keep in the population (see Algorithm B)r each parent in
the population, DEMO constructs a candidate solution insgn@e way as DE. If
the candidate dominates the parent, the candidate is added hew population.
If the parent dominates the candidate, the parent is adddtetaew population.
Otherwise, if the candidate and its parent are incomparéidy are both added
to the new population. During the construction of candiddite all parents in the
population, the new population possibly increases. In ¢hise, it is truncated to
the original population size using nondominated sortind e crowding distance
metric in the same manner as in the NSGA-II multiobjectigoathm [14]. These
steps are repeated until a stopping criterion is met.

The serial versions of DE and DEMO described here will be asealfoundation
for our parallel evolutionary computation framework to @#itly deal with single-
and multiobjective optimization problems, respectively.

1.4 Paralld Single- and Multiobjective Evolutionary Algorithms

EAs are an example of inherently parallel algorithms. Ffevaluation can be
independently calculated for each individual and theeefon in parallel for the

entire population at a time. This mainly results in a fastgoathm execution, i.e.,

speedup [15], although it could in some cases also loosetwaae bottlenecks,
such as memory shortage. This chapter focuses on the spdrdigiso provides

notes on efficiency (speedup normalized with the number @égssors) and hard-
ware bottlenecks where applicable.

1.4.1 Parallelization Types

There are four types of parallel EAs [16, 17], three basiaster-serve(also called
global parallelizatior), island, diffusion(also known asellular), andhybrid that
encompasses combinations of the basic types.



1 Parallel Evolutionary Computation Framework 9

Algorithm 3 Differential Evolution for Multiobjective OptimizationEMO)

1: create the initial populatiof of random solutions;
2: evaluate the solutions I
3: while stopping criterion not meto

4:  create an empty populati@tyew;
5. repeat
6: for each solutiorR, i = 1..pop.sizefrom IP do
7: randomly select three different solutioisly, I3 from [P;
8: create a candidate solutiGn=1;+F-(l, — 13);
9: alterC by crossover withR;
10: evaluateT;
11: if C dominated? then
12: addC into Pnew
13: else
14: if B dominate<C then
15: addR, into Pnew;
16: ese
17: add bottR andC into Prey;
18: end if
19: end if
20: end for
21: if Prew cONtains more thapop_sizesolutionsthen
22: truncat€Pnew;
23: end if

24:  until Ppewis full;
25:  copyPpewinto P;
26: end while

Master-slave EAs are the most straightforward type of pelf8As and the only
one that makes use of the EAs inherent parallelism. As a qoiesee, they traverse
the search space identically to their serial counterpArteaster-slave EA can be
visualized as a master node running a serial EA with a modtiiicén fitness evalu-
ation. Instead of evaluating fitness serially, one indieidat a time, until the entire
population is evaluated, individuals are evaluated on tlaster and slave nodes
in parallel. The highest efficiency of this parallelizatitype can be achieved on
computers with homogeneous processors and in problem demwaiere the fithess
evaluation time is constant and independent of the indalidévhen these criteria
are fulfilled and the fitness evaluation time is long compaodte time required for
other parts of the algorithm, near-linear speedup is ptessib

Island EAs, in contrast, are multiple-population algari) consisting of several
largely independent subpopulations that occasionallij@xge a few individuals. In
an island EAs, each processing node represents an islamdngua serial EA on a
subpopulation. A new operator is introduced — migratioat trandles the exchange
of individuals between the islands. Migration occurs eithe predefined intervals,
e.g., every several generations, or after special events,vehen subpopulations
start to converge. Communication overhead is therefordlem@ompared to the
master-slave parallelization type. In general, speedagases with the number of
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islands, but the overall efficiency depends on how well theblam is suited for
solving with multiple-population EAs compared to singlepplation EAs.

Diffusion EAs split population into multiple small subpdgtions and divide
them among the processing nodes. Every subpopulationasedl to communi-
cate (individuals may interact) with a predefined neighborhof other subpopula-
tions. These algorithms can also be considered singlelatgu with structurally
constrained interactions between individuals. Parabdilbn of this type has large
communication overhead and may be worth considering onljaoge computer
clusters with dedicated interconnections between thehheigng processing nodes.
Speedup and efficiency depend greatly on the propertiesetionnections and the
suitability of the problem to the structural constraintgwsed by the algorithm.

Hybrid parallel EAs are an attempt to minimize the weaknes$¢he basic type
algorithms through their hierarchic composition. For epénthe island type may
be implemented on top of the master-server type, providogsibility to use all
available processing nodes, while keeping the number afds variable. Hybrid
EAs are very adaptable to the underlying hardware architecbut their design
and implementation are more complex.

1.4.2 Calculation of Speedups

Traditionally, speedup is defined as the ratio between thewdion times of the best
serial algorithm and the best parallel algorithm:
Ts

S= T, (1.1)
As this definition depends on the execution times, we cadflétrheasured speedup,
to contrast it with the estimated speedup. In case of theanakive EAs, selec-
tion of the best algorithms is trivial, since the parallgl@ithm traverses the search
space identically to its serial counterpart. Therefore gfwalid speedup measure-
ment, both algorithms should be run with the same algoritarameter setting, for
the same number of generations.

More care should be taken when dealing with other types dlighEAs. Mod-
ifications needed for the island and diffusion EAs may havesitpe influence on
some EAs and in some problem domains. These modificationaleays be trans-
lated back into a serial algorithm, since every parallebetgm can be trivially
serialized. This way, a new best known serial algorithm fdcwlation of speedup
can be obtained. Therefore, the best serial counterparip@rtecular multipopu-
lation parallel EA may either be its serial implementationthe original, single-
population EA.

The only limiting factor for serialization could be hardwgfor example, multiple-
population EAs require more memory than single-populafés). In such a case,
parallelization serves as a means of alleviating hardwanstcaints as well. The
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obtained speedup in such cases would be due to paralleltexeand due to algo-
rithm improvements, with either contribution unobtair@fsbm the measurements
alone.

Additionally, the island and diffusion EAs make use of aufial parameters —
the number of subpopulations, and the size and shape of thehoehood. These
parameters are in parallel implementations to a large efitead to the number of
processors and the computer architecture, but are freerig saplementations.
Therefore, the best algorithm parameter setting may difééween serial and par-
allel implementations.

While measuring the parallelization speedup of the masdtare EAs is straight-
forward, it requires a lot of additional work for the multipalation parallel EAs.
Since the knowledge of speedup is usually not a priorityéctigorithm developers,
the parallel multipopulation EAs are often compared onlghtoriginal serial EAs.
This technique frequently yields super-linear speedupgmare a good indication
of the use of suboptimal serial algorithms.

We explore the master-slave EAs in more detail, to estintedi limitations in
speedup. We start with the theoretical limit on speedup radeg to the Amdahl’s

law:
1

S
(1-P)+§

whereP is the parallel portion of the algorithm amdis the number of processors.
The actual speedup of an algorithm will depend on how wellghrallel portion
can be spread up amoihgprocessors. Considering the simplest master-slave paral-
lelization type, where only fitness evaluations are pdiadid, P is the portion of the
serial algorithm execution time spent on fithess evaluaticshould be noted that
through the process of parallelization, the interprocessmmunication is added
to the algorithm, which effectively decreases its pargitaition. As demonstrated
later on, when the interprocessor communication is takendansideration? can
still reach very high values if fitness evaluation is com@ar time consuming. On
the other hand\ is limited by the population sizi,. Only the population of a sin-
gle generation can be evaluated at a time, even when moregzas are available.
Speedup upper bound therefore equals the population size:

Snax= (1.2)

1
lim Spax= lIm —————= = Nj. 1.3
S Il ] (1-P)+ _,\F"p P (1.3)

Another important observation is that not only shohlilgd< N, but alsoN, | N (N
dividesN), for the algorithm to fully utilize all processors. The aighm needi%}

iterations to fully evaluate the population and therefcasﬂ%‘\l—”} x N processor time
slots to fill with Nj, tasks (fitness evaluations). It is free to choose the besttwvay
allocate the tasks to processor time slots over the iteratut there will always
remainNp modN unallocated slots per generation, for which the processdkls
be left idle. From this we can derive the effective number @fcessors used by
the algorithmNeg = Np/(%’]. Finally, substitutingN with Neg in Eq. (1.2) we can
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rewrite the speedup equation as
1

Snax= ——mmmx— - (1.4)
[=] p
(1-P)+ —X,L;ﬂ

An example ofSnax(N) for population sizeN, = 32 and parallel fractiof® = 1 is
shown in Fig. 1.3.

50 | ] | | — 50
| speedup N
45 cpu idle time ------ I 45
40 |- R -1 40
35 } 13 <
s 30 N 2 430 o
= ' £
gg_ 25 Ry 2 125 o
o o20 o 42 2
e 1 o o
15 415 O
10 — 10
5 ‘ —
0 ' 0

0 5 10 15 20 25 30 35 40
Number of processors

Fig. 1.3 Maximum speedup and processor idle time vs. the number dfbie processors for a
master-slave parallel EA witR — 1 andN = 32.

The dependence of speedup on the number of processorsvimtaiteby the
insensitivity of EAs to the population size. Because of tioelsastic nature of EAs,
an approximate interval can be determined rather than ast axanber for the best
population size on a given problem. If the interval is lartfgan the number of
processors, then fixing the population size to a multipléefriumber of processors
while keeping it inside the interval is possible. In casegwbptimal selection of
the population size within the interval is not possible eshep calculation should be
amended. Suppose an EA with the optimal population sizerimpesison to an EA
with the selected population size has spee8ip The actual maximum speedup of
a parallel master-server EA will then be

_ Snax

$nax— ?pt :

(1.5)
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1.5 Casting Process Optimization Task

Continuous casting of steel is widely used at modern stegltplto produce vari-
ous steel semi-manufactures. The proces is schematitalyrsin Fig. 1.4. In this
process, liquid steel is poured into a bottomless mold whicwooled with internal
water flow. The cooling in the mold extracts heat from the erkteel and initiates
the formation of a solid shell. The shell formation is crlié@ the support of the
slab behind the mold exit. The slab then enters the secordeling area where
additional cooling is performed by water sprays. Led by tingport rolls, the slab
gradually solidifies and finally exits the casting device.tiis stage it is cut into
pieces of predefined length.

ladle

tundish

m primary cooling

secondary cooling
(sprays)

liquid pool

solid shell

support rolls

Fig. 1.4 A schematic view of continuos casting of steel.

The secondary cooling area of the casting device is dividemdooling zones
and the cooling water flows in the zones can be set indivigualleach zone, cool-
ing water is dispersed to the slab at the center and cornéigues Target tempera-
tures are specified for the slab center and corner in every aod the optimization
task is to tune the cooling water flows in such a way that theltiag slab surface
temperatures match the target temperatures as closelgsibigo From metallurgi-
cal practice this is known to reduce cracks and inhomogieseéit the structure of
the cast steel. Formally, an objectifseis introduced to measure deviations of actual
temperatures from the target ones:
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Nz Nz
f = zl“—icenter_ -I—icentek| + Zl|-|—icomer_ -I—icomesk|, (1.6)
i= i=

whereNz denotes the number of zongge e andT,*°™*"the slab center and corner
temperatures in zorieandT,*®"e* andT,°°™e* the respective target temperatures in
zonei. This objective encompasses the key requirement for theegeato results in
high-quality cast steel. Technically, this is a singleemijye version of the casting
optimization task.

In addition, there is a requirement for core lendfi§!¢, which is the distance
between the mold exit and the point of complete solidificatibthe slab. The target
value for the core lengtht°™®, is prespecified, and the actual core length should be
as close to it as possible. Shorter core length may resuthiraanted deformations of
the slab as it solidifies too early, while longer core lengtyrthreaten the process
safety. This requirement can be treated as an additionattg, fo:

fz: ||COI’E_|COI’G~<|’ (17)

and the more demanding version of the optimization taskaa tbh minimize both
f; and fo over possible cooling patterns (water flow settings). The tljectives
are conflicting, hence it is reasonable to handle this ogation problem in the
multiobjective manner.

In the optimization procedure, water flows cannot be setraridy, but accord-
ing to the technological constraints. For each zone, lower @per bounds are
prescribed for the center and corner water flows. Moreoweaybid unacceptable
deviations of the core length from the target value, a hartstaint is imposed:
f, < Alfx. Solutions violating the water flow constraints or the canedth con-
straint are considered infeasible.

A prerequisite for optimization of this process is an actairaathematical model
of the casting process, capable of calculating the temperéield in the slab as a
function of coolant flows and evaluating it with respect te tibjectives given by
Egs. (1.6) and (1.7). For this purpose we use a numericallaiorwf the process
with the Finite Element Method (FEM) discretization of tkeeriperature field and
the related nonlinear heat transfer equations solved wi#tixation iterative methods

[6].

1.6 Parallel Evolutionary Computation Framework

We present a parallel framework for numerical single- anttiohjective optimiza-
tion on homogeneous parallel computer architecturesbsed on single-objective
Differential Evolution (DE) and is extended to Differenti&volution for Multiob-
jective Optimization (DEMO) when multiobjective optimitian is required.

The framework is able to utilize any number of processorafygiémenting the
master-slave parallelization scheme for both optimizesilgorithms. Although de-
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signed for use on homogeneous parallel computer architestiican use heteroge-
neous architectures as well, but with lower utilization agter processors. When a
single processor is used, master-slave algorithms degteriato their non-parallel
versions, thus avoiding potential overhead of the paia#iébn scheme.

In the framework, the optimization procedure is performethiree stages: ini-
tialization, generational computation, and finalizatihe initialization consists of
reading the input files and settings, and the setup of iptiglulation. Generational
computation iterates over generations, where in eachiterfitness values are cal-
culated for individuals of the current population and theletionary algorithm op-
erators are applied to them, spawning the next generatidimdlization, the results
are formatted and returned to the user.

While the initialization and finalization are run by the negprocess, the gen-
erational computation can be run in parallel by all procesEach iteration starts
with the master process holding a vector of individuals dfnown fithess. These
are then evaluated by the master and slave processes ifepavaich requires in-
terprocess communication. For this purpose, the Messaggirigalnterface (MPI)
[18] is used. It implements the interprocess communicatice two-part, coupled
fashion. The first part distributes the data on the indivisl@anong the slave pro-
cesses, and the second part returns the fitness values t@#termrocess. For the
sake of simplicity, only the data on one individual is trarséd to each slave pro-
cess per communication couple. This forces the communitabuple to happen
more than once per generation if the population size is tafggn the number of
processors. The partin which the master process receiwesshlts from the server
processes is also blocking, i. e., it waits for all the resbkfore it continues exe-
cution, effectively synchronizing the processors. Thig;ambination with multiple
communication couples per generation, causes some ursaggsgnchronizations.
After the fitness values for all individuals are known, thesteaprocess applies the
evolutionary algorithm operators and spawns the next gdioer. Slave processes
are idle at this time, waiting to receive the data on indiaidwof the next generation.

The parallelization approach employed by the proposeddvark is, in the
context of multiobjective optimization, known as the PhalaFunction Evaluation
(PFE) variant of the single-walk parallelization [19]. $taimed at speeding up the
computations, while the basic behavior of the underlyirgpeathms remains un-
changed.

1.6.1 Speedup Estimation

What is the expected speedup of the framework running orralepeocessors in
comparison to the framework running on a single procesestwifg an optimization
problem? One should be able to answer this question befartnst the optimiza-
tion, to use the most appropriate number of processors. $wvemthis question,
we start with the speedup as defined in Eq. (1.1). We simplifyyionly using
the time for generational computation instead of the totakation time for both,
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the serial and parallel implementations. This is reasalabtause the initialization
and finalization are faster than even a single applicatioth@fevolutionary algo-
rithm operators, and are negligible in cases when paradliédin is considered, that
is, when the total execution time is expected to be long.Heunbore, because the
generational computation is a series of identical singleegation computations, we
simplify the definition of speedup to only consider a singd@gration. Thus we get
the initial form of the speedup equation:

S— Le*'?\llp , (1.8)

Ts+Tex [R7]
whereTg is the time required for a single fitness evaluatidnis the time required
for the execution of a single generation, excluding the tiezgiired for fithess eval-
uations Np, is the population size, arid is the number of processors. This is a good
estimation if two criteria are met. The first criterion is stemt time of fitness eval-
uation. This means that all fitness evaluations take extftgame amount of time
to complete, not depending on the input, the processor,morandom factor. The
second criterion is that parallelization produces nelglegcalculation overhead. In
the master-slave parallelization scheme, the overheasisterof the time required
for interprocess communication, including the time the tergsrocess is waiting for
the results from the slave processes.

The time required for communicatioms, can be simply added to the denomi-
nator in Eq. (1.8). It is irrelevant when it is orders of magde shorter than the
fitness evaluation time, but when it is not, it has to be esthebecause it depends
on the problem domain as well as the communication protaadshardware. For
instance, first the number of bytes used to represent thesditiumction input pa-
rameters sets the base size of messages sent from the rasieistaves, and the
number of bytes used to represent the evaluation resufistszbase size of mes-
sages sent from the slaves to the master. Then the proto@sla/bich the messages
are sent, e.g., TCP/IP, and the library which implementsagspassing, e.g., MPI,
increase the message sizes with their overhead. Last, the/éuge determines how
fast the messages of certain sizes can be sent between tesgocs. The speedup
then equals to:

- T5+Te* Np
To+ Tot Tex [32]

Eliminating the constant fitness evaluation time critericom the equation is
more complex. The master process cannot apply the evoartiadgorithm oper-
ators, until all the individuals of the population have thghess values evaluated.
The process executing the longest fitness evaluation thiosd@ll other processes
to wait until it finishes. We define the time required for extmu of n fithess eval-
uations in parallel Tep(n)) in Eq. (1.10) as the expected value of maximummof
independent fithess evaluation times. One way of calcgdlie expected value is
numerically, from the cumulative distribution function€) of maximum time of

(1.9)
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n fithess evaluations, which equals the CDF of fithess evalnaitine, raised to the
power ofn.

Tep(n) = E("ifi]alx{te,i 3 (1.10)

The framework executes a series of parallel evaluationsguar single genera-
tion if the population size is larger than the number of psseces. Individuals are
split into [%1 groups, with firstL%J groups of the size equal to the number of
processors, and the last group Kl#} # L%J) of sizeNp modN. Each group is
separately evaluated in parallel, adding to the total etadn time of a population,
which can now be calculated ag,(N) x L%J + Tep(Np modN). The final form of
the estimated speedup equation can now be written as:

o T5+Te* Np
To+ To+ Tep(N) x [ 2] 4 Tep(Np modN)

s (1.11)

1.7 Empirical Evaluation

An empirical evaluation of the proposed framework was pented on the computer
cluster comprised of 17 dual processor computers. Optiinizaf continuous cast-
ing served as a test domain for both the single- and multilboptimization.

1.7.1 Experimental Setup

For the evaluation of the framework, a cluster of 17 duakpssor nodes (each node
being a personal computer) was used. The nodes are allontegcted through an
Ethernet switch, and, in addition, there are several dirgetconnections between
the nodes (see Fig. 1.5). Nodes 1 through 16 are connecteddrgidal 4-mesh,
and nodes 1 through 4 are directly connected to the additivode. This node
serves as a host node, through which users access the .cBiatar routing is used
to direct the communication between the pairs of nodes, lwaie not physically
interconnected, through the switch. This makes the use wfdasired topology
possible. In our tests, star topologies of various sizegwsed.

The cluster is composed of identical personal computers) eantaining two
AMD Opteron 244 processors, 1024 MB of RAM, a hard disk drased six 1000
MB/s Full Duplex Eethernet ports. On each computer, theas sn independent in-
stallation of the Fedora Core 2 operating system and the MRIT2.6 library that
supports communication between the computers and is aremgpitation of the
Message Passing Interface (MPI). During the experimehisodes are required to
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Fig. 1.5 Architecture of the &g;

cluster used in tests.

be running only the background system processes whichdemearly all capabili-
ties to be used by the framework.

The parallel optimization algorithm was written in C++ ar@hwiled withgcc
v3.3.3for target 64-bitLinux, while the continuous casting simulator was compiled
for 32-bitMicrosoft Windowsind was executed through an early versiowafe(an
application providing the compatibility layer for tidicrosoft Windowgrograms).
There was also a layer of scripts, translating the commtinit&etween the opti-
mization algorithm and the simulator, i.e., filtering anaheerting input/output files
of the simulator.

1.7.2 Experiments and Results

Numerical experiments in optimizing the continuous cagfpmocess were per-
formed to analyze both the effectiveness and efficiency efdéveloped parallel
framework. The former relates to the quality of results, le/thie latter refers to the
speedup achieved with the parallel optimization approach.

Optimization calculations were performed for a selecteglsgrade and slab
cross-section of 1.70 m 0.21 m and for various casting speeds: the usually prac-
tised speed of 1.8 m/min, and two lower speeds of 1.6 m/minlaéan/min that
are exercised when the process needs to be slowed down teehsicontinuity
of casting, for example, when a new batch of molten steel iayee. Candidate
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solutions in parallel DE and DEMO were encoded as 18-dinoerasireal-valued
vectors, representing coolant flow values at the center laaadrner positions in
the nine zones of the secondary cooling area. Search itgdorecoolant flows at
the center and the corner positions in zones 1-3 were betaed 50 m/h, and
in the zones 4-9 between 0 and 18/m The target core lengthc®'®, was 27 m
and the maximum allowed deviation from the targ®;%¢, was 7 m. Reasonable
population size found in initial experiments was 30.

It turned out that for the single-objective and the two-ahje versions of the
task the parallel optimization procedure was able to disctlve solutions known
from previous applications of serial optimization algbnits [6, 20]. To illustrate the
results for the more challenging two-objective versiow,. Bi.6 shows the resulting
nondominated fronts of solutions (approximating Parettinogd fronts) found by
the parallel DEMO algorithm for various casting speedsatt be seen that the two
objectives can simultaneously be fulfilled to the highegtrde at the regular casting
speed of 1.8 m/min. On the other hand, the lower the speedntite evident the
conflicting nature of the two objectives: improving the codl flow settings with
respect to one objective makes them worse with respect totttez. In addition, a
systematic analysis of the solutions confirms that the &stah surface tempera-
tures are in most cases higher than the target temperatris, the core length is
shorter than or equal to the target core length.
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Fig. 1.6 Nondominated fronts of solutions to the two-objective stasting optimization problem
for various casting speeds.

In further experimentation, a detailed analysis of the fawork speedup on var-
ious numbers of processors was carried out. To make the iexgretal results di-
rectly comparable, the framework parameters other thandheber of processors
did not vary between the tests. Because the framework isllasthe master-slave
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parallelization type, the population size was first selgete the one that suits the
problem while also being a multiple of the number of processas shown in pre-
vious work [6, 20], optimization of continuous casting witic and DEMO seems
to work best with population sizes between 20 and 40, whi¢hoddes well with
the 34 available processors. Number 34 unfortunately hisfour divisors (1, 2,
17, and 34). Having numerous divisors is important as ivaléor numerous tests
where population size is a multiple of the number of procesdderefore, the pop-
ulation size of 32 was chosen, which has six divisors (1, 8,46, and 32). With
this population size, six tests with various number of pssces and maximum ef-
ficiency (minimum processor idle time) were possible. Inrgvest, the framework
was run five times for each, the single- and multiobjectiveémization.

Mean wall clock times of the tests were recorded and are suinedain Table
1.1. Two important observations can be made from the medsuaé clock times
alone. The first one is great variance of the results. The likedy cause of this is
the variable fithess evaluation time, but we will explorestlater. To simplify the
matters, we will only use mean values of the tests in furtligussion. The second
observation is that the multiobjective optimization apgesightly slower than the
single-objective optimization. The single-sided pairgdst however returns the
value of 0.12, which means the difference in times is noisteally significant.
Therefore, both algorithms can be considered equally fakttze following analysis
can be generalized in terms of the algorithm choice. Mujéotive optimization
will serve as the basis for all further speedup analyses wgttifferences towards
single-objective optimization mentioned only when neaegs

Table 1.1 Mean wall clock times and their standard deviations for st with variable number
of processors. All times are specified in seconds.

Number of DE DEMO
processors mean  st. dew. mean  st. dev.
1 295735 1180 298502 1576
2 143661 945 145584 5646
4 79565 1018 79751 446
8 41412 370 41105 389
16 21123 93 21454 183
32 10925 122 11019 276

We can calculate the speedup directly from the mean wallkcliooes of the

DEMO tests, but let us first try to estimate it with Eq. (1.1Hiyst we make a series

of 100 test runs of fitness evaluations from which we estirttegditness evaluation
time to be distributed normally with = 32.2 s ando = 1.5 s. We estimate all other
times in the equation to be in the order of milliseconds aeddfore negligible com-
pared to the fitness evaluation time. Now we can estimatepigedup for arbitrary
number of processorbl,, and compare it to the measured speedups. Fig. 1.7 shows
the estimated and measured speedups, and the theoretiitdbli the speedup on

Np € [1..34].
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Fig. 1.7 Measured and analytically derived speedup for DEMO on tiiicoous casting problem,
with population size 32, for various number of processomseér speedup as the theoretical limit
of speedup for master-slave EAs is also shown for reference.

In addition to the total execution time, times of four mutya&xclusive steps of
the optimization procedure are measured. The first stegshngtiould also be the
most time-consuming, is fitness evaluation. The secondstlp interprocess com-
munication. This consists of sending the data on indivislfraim the master process
to the slave processes, and sending the fithess evaluasioltsran the opposite di-
rection. Waiting of the master process for the slave prasessstart sending their
results is also included in the communication, becausedrstiurce code the two
are not separated. Next are the output operations, whictistaf log keeping and
storing the data on the individuals from each generatiorfile aThe last step is the
application of the algorithm operators. The distributidrtimes among the steps
described above for multiobjective optimization on 32 ssors is shown in Table
1.2

Table 1.2 The distribution of total wall clock time among steps of thimization procedure. All
times are specified in seconds.

Algorithm stage mean st. dev.
total 11019 308
evaluation 9911 376
communication 1108 129
input/output 0.307 0.001
EA operators 0.135 0.003

A quick scan over the times used by the algorithm steps retieat the algorithm
behaves as predicted. Fitness evaluation represents theftargest part of execu-
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tion time, while the times of input/output operations anel ¢irolutionary algorithm

operators are negligible in comparison. On the other h&ednterprocess commu-
nication time, which should be negligible, represents atautiial proportion of the

total algorithm wall clock time. But this view is misleadibgcause the communi-
cation times are bundled together with the times of waitorgcbmmunication. The

latter are a consequence of, and in Eq. (1.11) also a parapofing fitness evalu-

ation times. We can understand communication times begtanblyzing them per

generation.

Out of the four steps for which the times are recorded per igeio@, two — in-
terprocess communication and fithess evaluation — are vepethial attention. In
addition to the interprocess communication time and theg#revaluation time as
measured on the master process, Fig. 1.8 also shows the mraxime of all fitness
evaluations in a generation. It can be seen that the measameohunication time
roughly equals the difference between the longest fitnessiation time and the fit-
ness evaluation time on the master process. Measured coicatian time is there-
fore mostly spent waiting for the longest fitness evaluaidture communication
time can be estimated as the sum of communication and thedigwaluation times
on the master process, from which the longest fitness evaiuiiine is subtracted.
It sums up to 12 seconds for the shown optimization run, which can be ted@dlto
4 milliseconds per generation on average. Although thisiig a rough estimate, it
shows that communication times are an order of magnitudgeiotihan the times of
the input/output operations and the evolutionary algarittperators, but still neg-
ligible in comparison to the fitness evaluation time. In dasion, the measured
interprocess communication times are in good accordarttetiné estimates made
before the experiments.
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Fig. 1.8 Fitness evaluation and interprocess communication tireeggneration of multiobjective
optimization on 32 processors, for the initial 100 genersi Fitness evaluation time of the master
process is contrasted with the longest fitness evaluatioa of all the processes.
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1.8 Conclusion

In this chapter a parallel evolutionary computation fraragwfor solving numer-
ical optimization problems with one or more objectives wasspnted. Master-
slave parallel versions of the Differential Evolution (Déf)d Differential Evolution
for Multiobjective Optimization (DEMO) algorithms were ptemented for solv-
ing single- and multiobjective problems, respectivelyeTimplementation was a
straight-forward one, parallelization was done only onittreerently parallel por-
tion of the algorithms — the fithess evaluation, thus keeffiegalgorithm behavior
independent of the number of processors. The interprocesmanication was im-
plemented in a simple manner, focusing on its robustnelsr#tan speed.

The performance of the developed framework was empiriibluated on an
industrial optimization problem of tuning coolant flows fretcontinuous steel cast-
ing process. A single- and a two-objective fitness evaludtioctions were derived
from a computer simulator, implementing a test case of tiilcoous casting pro-
cedure. The quality of the results and the achieved pasgktdups were evaluated
separately. The results proved satisfactory and compatakthe results obtained
previously on the same problem instances. The measuredwgpe®ere high (for
example, the speedup on 32 processors was 27) and matchae dietions.

The presented framework demonstrated that due to a rdjasiraple master-
slave parallelization model, EAs can be extensively usetl@nogeneous parallel
hardware. At the same time, it highlighted a weakness of thsten-slave model
— the sensitivity of the speedup to constant fithess evaluaitne. In our case, we
experienced variability in the execution time of fithessleston at the order of
several percent. Similar effect would be expected from a&tzom-time fitness eval-
uation function executing on heterogeneous processorsesr @ homogeneous
processors under some load, i.e., executing other jobsefdre, our future work
will focus on overcoming the demand for constant fithessuatan time. This will
be achieved by eliminating the synchronous nature of theéenakve paralleliza-
tion type and thus maximizing the algorithm efficiency (mifding processor idle
time). In this way we expect to increase the speedup and rhakagorithms more
usable on heterogeneous hardware architectures thatsarsuéable to ordinary
master-slave EAs.
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