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Jožef Stefan International Postgraduate School

Ljubljana, Slovenia, August 2010

Evaluation Board:
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Abstract

Solving real-life optimization problems numerically is often very time demanding, because
of high complexity of the simulations that are usually involved. Solving such problems
becomes highly impractical for this reason and can even lead to use of less complex and
also less accurate models. Fortunately, evolutionary algorithms, often used in numerical
optimization, can be parallelized with relative ease, which significantly reduces the time
required for optimization on parallel computer architectures.

Parallelizing DEMO – an evolutionary algorithm for multiobjective optimization,
AMS-DEMO is created. The algorithm was designed for solving time demanding prob-
lems efficiently on both homogeneous and heterogeneous parallel computer architectures.
To maximize flexibility and robustness, it uses a master-slave parallelization method that
is modified to allow for asynchronous communication between computers.

AMS-DEMO performance is analyzed on two complex real-life multiobjective opti-
mization problems and compared against a simpler but related algorithm, parallelized
using the conventional master-slave method. Experimental tests are performed on two
different parallel setups, one homogeneous and one heterogeneous, while the theoretical
analysis extends the test results to cover a few hypothetical setups as well. AMS-DEMO is
found to be very flexible and can be efficiently used on heterogeneous computer architec-
tures. On homogeneous architectures and problems with constant-time fitness evaluation
functions, however, the same performance as with AMS-DEMO can be achieved with
much simpler parallel algorithms.

Selection lag is identified as the key property of evolutionary algorithms parallelized
using asynchronous master-slave method. It explains how the behavior of the algorithm
changes depending on parallel computer architecture, mainly on the number of processors
that a given architecture offers. The dependence of algorithm efficiency on selection lag
is shown, completing the link between efficiency and the number of processors in the
parallel computer running the algorithm.

1





Povzetek

Med pogosteǰse oblike problemov, ki jih rešujemo z računalniki, sodijo optimizacijski pro-
blemi. To so problemi, ki zahtevajo iskanje najbolǰse rešitve izmed množice možnih rešitev
po podanem kriteriju. Če je množica rešitev neskončna ali pa tako velika, da je ni mogoče
preiskati v razumnem času, potem reševanje problema zahteva uporabo stohastičnih me-
tod, ki ne najdejo vedno absolutno najbolǰsih rešitev, najdejo pa dobre rešitve, katerih
kakovost je tem bolǰsa, čim več časa namenimo iskanju. Zato je pohitritev optimizacije z
uporabo vzporednih računalnǐskih arhitektur zelo dobrodošla. V disertaciji obravnavamo
nov algoritem za optimizacijo, ki omogoča učinkovito uporabo vzporednih računalnǐskih
arhitektur, tudi takih z različnimi računalniki, in dosega zelo visoke pohitritve.

Uvod

V praksi pogosto naletimo na optimizacijske probleme, ki zahtevajo optimizacijo po več
kriterijih hkrati. Kriteriji si največkrat tudi nasprotujejo, kar pomeni, da izbolǰsanje
rešitve po enem kriteriju povzroči njeno poslabšanje po vsaj enem od ostalih kriterijev.
Taki problemi zato nimajo le ene optimalne rešitve, temveč množico rešitev, ki ji rečemo
Pareto optimalna množica, njeni predstavitvi v prostoru kriterijev pa Pareto optimalna
fronta. Za vsako rešitev iz Pareto optimalne množice velja, da ne obstaja nobena druga
rešitev, ki bi bila po vseh kriterijih vsaj enako dobra ali bolǰsa.

Tovrstne probleme učinkovito rešujemo z evolucijskimi algoritmi (EA) za večkriterijsko
optimizacijo, angl. multi-objective evolutionary algorithms (MOEA). To so populacijski
algoritmi (delujejo nad množicami možnih rešitev), ki optimirajo z mehanizmi privzetimi
iz biološke evolucije (selekcija, mutacija, reprodukcija z rekombinacijo) [74, 14, 71, 72, 1,
19, 20, 2, 55, 21].

Mnogi praktični problemi postanejo zaradi velike računske zahtevnosti skoraj nerešljivi
na osebnih računalnikih. Obstajajo zmogljiveǰsi vzporedni računalniki, katerih skupna
lastnost je uporaba več procesorjev, a za ustrezen izkoristek njihovih zmogljivosti potre-
bujemo posebej prirejene vzporedne algoritme. Vzporedni računalnǐski sistemi se glede
načina komunikacije delijo na sisteme s skupnim pomnilnikom in na take, ki si pomnilnika
ne delijo in zato procesorji komunicirajo s sporočili preko računalnǐskega omrežja. Najbolj
razširjeni so slednji, kjer sta dve najpogosteǰsi podvrsti omrežje (angl. grid) in gruča (angl.
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cluster). Za omrežje je značilna heterogenost strojne in programske opreme na vozlǐsčih
(osnovnih gradnikih sistema, največkrat so to samostojni računalniki) ter komunikacije
med vozlǐsči prek povezav, ki si jih delijo z drugimi uporabniki, na primer interneta in
lokalne mreže. Skupki so navadno homogeni, povezani s hitrimi namenskimi povezavami,
kot so vodila ali mreže, ki omogočajo vozlǐsčem hkratno povezavo z več sosedi.

Neodvisno od tipa arhitekture vzporednih sistemov, vzporedni algoritmi lahko tečejo
na več procesorjih hkrati, zato morajo biti sestavljeni iz med seboj razmeroma neodvisnih
delov (sklopov). To so sklopi, ki za svojo izvedbo potrebujejo čim manj podatkov iz drugih
sklopov in zato malo komunikacije. Obstajajo standardni postopki paralelizacije, katerih
izbira je odvisna od algoritma, ki ga paraleliziramo, in ciljne računalnǐske arhitekture
[65, 62, 33, 8, 36, 40, 44].

Paralelizacija evolucijskih algoritmov za večkriterijsko optimizacijo

Nekateri avtorji na področju evolucijskih algoritmov za večkriterijsko optimizacijo opozar-
jajo na pomanjkanje razvoja vzporednih algoritmov [16, 67, 15], kljub temu, da evolucijski
algoritmi spadajo med algoritme, ki jih lahko zelo dobro paraleliziramo in s tem pohitrimo
iskanje rešitev [12, 6, 5, 41, 13]. MOEA od EA sicer podedujejo splošne načine parale-
lizacije, a se razlikujejo v podrobnostih [50, 69, 22, 67, 18, 60]. Trije splošni (osnovni)
načini paralelizacije evolucijskih algoritmov so:

• Način nadrejeni-podrejeni (angl. master-slave). Procesorje, na katerih teče algori-
tem, razdelimo na podrejene in enega nadrejenega. Nadrejeni izvaja celoten algo-
ritem, medtem ko podrejeni sočasno vrednotijo rešitve. V osnovi lahko algoritem
paraleliziran po načinu nadrejeni-podrejeni preiskuje prostor rešitev enako kot za-
poredni algoritem, a pogosto za ceno slabe izrabe procesorjev.

• Otoški model (ang. island model). Na vsakem sodelujočem procesorju (otoku) teče
algoritem podoben zaporednemu, ponavadi na manǰsi populaciji. Zato je ta način
paralelizacije večpopulacijski. Otoki komunicirajo med seboj v časovnih intervalih
in si s tem izmenjujejo do tedaj najdene najbolǰse rešitve. Izraba procesorjev je
dobra, komunikacije je malo, vendar tudi pohitritev ni nujno velika. Odvisna je od
problema, ki ga rešujemo, ter v preceǰsnji meri od števila procesorjev.

• difuzijski model (angl. diffusion model). Sodelujoči procesorji si razdelijo populacijo
na več majhnih podpopulacij, med katerimi poteka kombiniranje rešitev le znotraj
sosednjih podpopulacij. Tako kot otoški je tudi difuzijski model večpopulacijski.
Procesorji izvajajo algoritem podoben zaporednemu, a na svoji populaciji, ki jo
kombinirajo z rešitvami iz populacij sosednjih procesorjev. Izraba procesorjev je
dobra, komunikacije je veliko, a je lokalna (med vnaprej določenimi procesorskimi
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pari), zato je učinkovita uporaba modela omejena na nekaj topologij povezave pro-
cesorjev, značilnih le za velike in dobro povezane računalnǐske gruče, ki lahko komu-
nikacijo razporedijo med svoje številne povezave med procesorji in tako zmanǰsajo
delež časa potrebnega za komunikacijo.

Osnovni paralelizacijski načini ponujajo različne kompromise med stopnjo preiskanosti
prostora rešitev, izrabo procesorskih zmogljivosti in pohitritvijo. Možna je tudi uporaba
hibridnega načina, kjer z kombinacijo dveh ali več osnovnih načinov bolje izkoristimo
njihove prednosti in zmanǰsamo vpliv njihovih slabih strani.

Pristop nadrejeni-podrejeni ponuja identično preiskovanje prostora rešitev kot zapo-
redni algoritem, a pri generacijskih algoritmih ne more popolnoma izkoristiti vseh proce-
sorjev, ki so na voljo, ker procesorji izgubljajo čas s čakanjem drug na drugega, s čimer
se zagotavlja časovno usklajeno delovanje. Z zamenjavo generacijskega algoritma z al-
goritmom s stabilnim stanjem (angl. steady-state) in z dopolnitvami algoritma, katere
opisujemo v disertaciji, je mogoče izkorǐsčenost procesorjev zelo izbolǰsati. Predmet diser-
tacije sta razvoj takega algoritma in njegovo vrednotenje na zahtevnih realnih problemih.

Algoritem AMS-DEMO

Na podlagi Diferencialne evolucije za večkriterijsko optimizacijo, angl. Differential Evo-
lution for Multiobjective Optimization (DEMO), smo razvili vzporedni algorithm AMS-
DEMO (Asynchronous Master-Slave DEMO). AMS-DEMO po pristopu nadrejeni-pod-
rejeni razdeli delo med enega nadrejenega in več podrejenih procesov. Nadrejeni proces
opravlja vse delo, kot izvirni DEMO, razen vrednotenja rešitev. Vsako na novo ustvar-
jeno rešitev, bodisi ustvarjeno naključno, v začetni generaciji, bodisi ustvarjeno s pomočjo
variacijskih operatorjev, v naslednjih generacijah, nadrejeni proces pošlje enemu izmed
podrejenih v vrednotenje. Podrejeni procesi le sprejemajo rešitve od nadrejenega, jih vre-
dnotijo in rezultate vračajo nadrejenemu. Pri tvorjenju novih rešitev in pri sprejemanju
rezultatov vrednotenja se nadrejeni obnaša kot izvirni DEMO, ki je algoritem s stabilnim
stanjem. To pomeni, da nove rešitve tvori iz aktivne populacije in ovrednotene rešitve
vključuje v aktivno populacijo – ne dela torej menjav celotnih geeracij, kot to počno gene-
racijski algoritmi. AMS-DEMO se od izvirnega algoritma razlikuje v tem, da se lahko med
vrednotenjem ene rešitve aktivna populacija spremeni; v populacijo se namreč v tem času
lahko vključi rešitev, ki je bila ovrednotena na drugem procesorju. Ta sprememba vpliva
na konvergenco algoritma AMS-DEMO v primerjavi z izvirnim algoritmom DEMO.

Nadrejeni proces hrani podatke o številu poslanih rešitev in prejetih rezultatov vre-
dnotenj za vsakega od podrejenih procesov, s katerimi si pomaga pri odločanju kdaj naj
tvori nove rešitve in komu naj jih pošlje. Njegov cilj je, da so vsi podrejeni obremenjeni
ves čas delovanja, kar pomeni, da vsak podrejeni po končanem vrednotenju in odposlani
rešitvi čaka čim manj časa na novo rešitev za vrednotenje. K uresničitvi tega cilja pri-
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pomorejo čakalne vrste v podrejenih procesih, ki hranijo rešitve prejete od nadrejenega,
in s tem omogočijo, da podrejeni takoj po končanem vrednotenju lahko začne z nasle-
dnjim. Komunikacija med nadrejenim in podrejenim procesom zato postane popolnoma
asinhrona, kar pomeni, da tako prvi kot drugi lahko pošljeta sporočilo in takoj nadalju-
jeta z delom, brez čakanja na odgovor. Ker je nadrejeni proces obremenjen razmeroma
malo v primerjavi s podrejenimi procesi, ne potrebuje procesorja le zase, ampak se izvaja
na istem procesorju kot eden izmed podrejenih procesov. Ostali podrejeni procesi tečejo
vsak na svojem procesorju.

Lastnost algoritma AMS-DEMO, ki določa stopnjo odstopanja od izvirnega algoritma,
poimenujemo zakasnitev v selekciji. Za algoritem je definirana kot porazdelitev zakasnitve
v selekciji posamezne rešitve, ki jo algoritem ovrednoti. Le-ta je enaka številu potencial-
nih sprememb populacije med vrednotenjem opazovane rešitve, torej številu opravljenih
selekcij v času njenega vrednotenja. Večja kot je zakasnitev v selekciji, z večjo zakasni-
tvijo se dobre rešitve vključujejo v proces tvorjenja novih rešitev in tem slabše algoritem
konvergira. Najpomembneǰsa lastnost porazdelitve zakasnitve v selekciji je njena sre-
dnja vrednost (povprečje čez vse rešitve ovrednotene med izvajanjem algoritma), Le-ta
se veča linearno glede na število podrejenih procesov in velikost čakalne vrste na podre-
jenih procesih. Algoritem AMS-DEMO zato najbolj učinkovit deluje na majhnem številu
procesorjev in s kratkimi čakalnimi vrstami.

Poskusi in rezultati

Hitrost konvergence algoritma preverimo eksperimentalno, na dveh praktičnih primerih
večkriterijskih optimizacijskih problemov. Prvi je uglaševanje parametrov industrijskega
procesa kontinuiranega ulivanja jekla, kjer jeklarna stremi po optimizaciji več kriterijev.
Gre za nastavljanje intenzivnosti hlajenja jekla na različnih točkah v procesu, ki vpliva
na kakovost jekla, porabo hladilne tekočine in varnost proizvodnega postopka [30, 25].

Drugi je testiranje zmogljivosti simulatorja EKGjev. Za kardiologijo in z njo povezane
veje medicine je pomembno, da lahko čim bolje simuliramo delovanje srčne mǐsice [68, 27,
52, 53]. Zgradili smo simulator EKGjev, ki deluje na podlagi modela akcijskega potenciala,
z nekaj neznanimi parametri, katerih optimizacija se izkaže kot zelo primerna za reševanje
z MOEA [24]. Določanje parametrov namreč lahko poteka preko optimizacije na osnovi
simulatorja, kjer poskušamo rezultate simulatorja čim bolj približati izmerjenim EKGjem
[24, 37]. Z večkriterijsko optimizacijo lahko raziskujemo tudi zmogljivost simulatorja
EKG, tako da opazujemo, katerim značilnostim realnih EKGjev simulator ni zmožen
zadostiti.

Za primerjavo z algoritmom AMS-DEMO smo razvili paralelni algoritem imenovan ge-
neracijski DEMO, ki izvirni DEMO najprej spremeni v generacijski algoritem, nato pa ga
paralelizira po sinhronem (običajnem) principu nadrejeni-podrejeni. Ta algoritem pred-
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stavlja enostavno paralelizacijo izvirnega algoritma, kakršne so zelo pogoste [46, 51, 38], in
je zelo zmogljiv na računalnǐskih arhitekturah, ki mu ustrezajo. Algoritem AMS-DEMO
po pričakovanjih konvergira počasneje od algoritmov DEMO in generacijski DEMO. Raz-
lika narašča s številom procesorjev, od statistično nesignifikantne pri majhnem številu
procesorjev glede na velikost populacije, do zelo opazne, ko število procesorjev doseže
isti velikostni razred kot velikost populacije. Velika prednost algoritma AMS-DEMO in
na splošno asinhronega izvedbe paralelizacije po načinu nadrejeni-podrejeni je, da lahko
število procesorjev preseže velikost populacije. V poskusih smo simulirali števila proce-
sorjev 10 do 20-krat večja od velikosti populacije in ugotovili, da AMS-DEMO v takih
pogojih konvergira slabše, a kljub najde dobre rešitve hitreje, kot če bi se izvajal na
manǰsem številu procesorjev. Pohitritev namreč ob vsakem dodatnem procesorju naraste
in AMS-DEMO lahko v nasprotju z algoritmom generacijski DEMO doseže pohitritve, ki
so veliko vǐsje od velikosti populacije.

Podamo tudi enačbi za analitično določanje časa izvajanja, preko katerih lahko pri-
merjamo algoritma AMS-DEMO in generacijski DEMO. Enačbi sta poenostavljeni in
upoštevata le najpomembneǰse faktorje, ki vplivajo na čas izvajanja. Odločitve za poe-
nostavitve so podprte z merjenji časa posameznih delov algoritmov na testnih problemih,
iz katerih se jasno vidi, kateri deli pomembno prispevajo k času izvajanja, in kateri deli
se izvedejo v zanemarljivem času.

Kot zadnje opravimo poskuse na heterogeni računalnǐski arhitekturi, ki kažejo pri-
lagodljivost algoritma AMS-DEMO, saj lahko na takih arhitekturah dobro izkoristi vse
procesorje, v nasprotju z generacijskimi algoritmi, kakršen je generacijski DEMO. Pri
slednjem bi bili procesorji v heterogeni arhitekturi slabo izkorǐsčeni – velik delež časa bi
porabili za čakanje. Prednosti AMS-DEMO bi se pokazale tudi v primerih delno obreme-
njenih računalnǐskih sistemov in na problemih, pri katerih vrednotenje rešitev lahko traja
različno dolgo. Zato je prilagodljivost algoritma AMS-DEMO, ki jo kaže demonstracijski
test na heterogeni arhitekturi, še toliko bolj pomembna.

Prispevki k znanosti

Znanstveni relevantnost disertacije opredeljujejo naslednji prispevki:

• Razvoj novega vzporednega evolucijskega algoritma za večkriterijsko optimizacijo
AMS-DEMO. Na podlagi izvirnega zaporednega evolucijskega algoritma s stabilnim
stanjem je razvit vzporedni algoritem, ki se od svojega predhodnika poleg zmožnosti
izvajanja na raznolikih večprocesorskih arhitekturah razlikuje tudi v podrobnostih
izvedbe. Uporabljena je paralelizacija po metodi asinhroni nadrejeni-podrejeni, ki še
ni bila sistematično raziskana za uporabo v evolucijskih algoritmih za večkriterijsko
optimizacijo.
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• Podrobna analiza lastnosti razvitega algoritma AMS-DEMO. Analiza obsega dolo-
čanje relativne pohitritve algoritma, hitrosti konvergence, predvidevanje časa izva-
janja, izkorǐsčenost procesorjev in sprememb, nastalih zaradi paralelizacije. Razviti
vzporedni algoritem primerjamo z enostavnim vzporednim algoritmom generacijski
DEMO in izvirnim zaporednim algoritmom DEMO.

• Identifikacija lastnosti vzporednih algoritmov paraleliziranih po načinu nadrejeni-
podrejeni z asinhrono komunikacijo. Lastnost poimenujemo zakasnitev v selekciji
(angl. selection lag), in jo analiziramo teoretično ter na poskusih opravljenih z
algoritmom AMS-DEMO.

• Povečanje zmožnosti računalnǐsko podprtega optimiranja procesnih parametrov v
kontinuiranem ulivanju jekla z vidika uporabe računsko zahtevneǰsih in s tem na-
tančneǰsih simulatorjev. S tem se poveča uporabnost metodologije v praksi in z njo
doseženi prihranki.

• Doseganje vǐsje stopnje ujemanja med računalnǐsko simuliranimi in izmerjenimi
EKGji, kot ga omogočajo sedanje metode optimizacije. To bo prispevalo k bolǰsemu
razumevanju delovanja srca in omogočilo preverjanje novih znanstvenih hipotez v
kardiologiji.

Zaključki in nadaljnje delo

Algoritem AMS-DEMO, ki je razvit, testiran in analiziran v disertaciji, izpolnjuje sko-
raj vsa pričakovanja. Čeprav na računalnǐskih arhitekturah in problemih, prilagojenih
generacijskim algoritmom, ne izbolǰsa rezultatov veliko enostavneǰsega algoritma gene-
racijski DEMO, se veliko bolje izkaže v drugih okoljih. Izkaže se z robustnostjo, veliko
prilagodljivostjo, zaradi katere zmore učinkovito delovati na heterogenih računalnǐskih
arhitekturah, delno obremenjenih procesorjih in na problemih, kjer trajanje vrednotenja
rešitev ni konstantno. Dobrodošla je tudi nenačrtovana lastnost, da se lahko izvaja na
številu procesorjev, ki je večje od velikosti populacije.

V nadaljnjih raziskavah bomo algoritem AMS-DEMO preiskusili na dodatnih proble-
mih. Ker je učinkovitost algoritma na vzporednih računalnǐskih arhitekturah povezana
predvsem z načinom paralelizacije in manj z izvirnim algoritmom DEMO, bi bil naslednji
korak lahko tudi posplošenje paralelizacijske metode in njena izvedba na podobnih evolu-
cijskih algoritmih, tako eno- kot večkriterijskih. Nazadnje bi bila dobrodošla tudi globlja
analiza zakasnitve v selekciji, kot osnovne lastnosti paralelizacije po asinhroni metodi
nadrejeni-podrejeni.
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Chapter 1

Introduction

In this chapter, motivation for the dissertation is first presented, followed by its goals.
Then the scientific contributions are listed, and finally, the overview of the dissertation
is given.

1.1 Motivation

Real-life optimization problems are frequently very complex, making analytical optimiza-
tion infeasible. If the problem can be modeled, numerical optimization can be used
instead. Models of complex problems usually include a computer simulation of the prob-
lem, which, given a potential solution to the problem, can be used to evaluate how well
the solution solves the problem.

To solve multimodal optimization problems, heuristic methods can be used; for exam-
ple, evolutionary algorithms. Although very powerful, heuristic methods have a weakness
– a demand for evaluation of a large number of potential solutions. As real-life prob-
lems are often represented by complex simulators, this makes optimization with heuristic
methods time consuming. On a positive note, the evaluations of solutions are largely in-
dependent of each other – making heuristic methods somewhat implicitly parallel. With
some effort, this can be exploited by parallelizing the methods and running them on par-
allel computers, this is computers with multiple central processing units or processors, as
we shall refer to them from now on.

In case of evolutionary algorithms, there are several well known parallelization prin-
ciples, that either exploit the implicit parallelism directly, or rearrange the algorithms
in a way that provides additional parallelization options. The traditional parallelization
principles, however, have their limits. One is the population size in population based
algorithms, which almost without exception defines the upper limit on the number of
processors that can be utilized with the parallel algorithm. With an ever increasing num-
bers of processors in computers ranging from the personal computers to state of the art
supercomputers, this limit is becoming increasingly important. Another is the require-

11
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ment for frequent synchronization between the collaborating processors, which stems a
requirement for load balancing the processors and is a great obstacle to efficient use of
parallel computers comprising heterogeneous processors.

Furthermore, extending the single-objective optimization into a growingly popular
multiobjective optimization, which is a newer concept albeit a more general one, com-
plicates the parallelization of evolutionary algorithms somewhat, mostly because of the
greater demand for synchronization. Therefore, algorithms that can run asynchronously
should have an advantage over those that can not.

1.2 Goals

We seek ways to make a parallel evolutionary algorithm for multiobjective optimization
that is to a large extent independent of the hardware used to run it and of the problem
that it is intended to solve. This means it should be able to run efficiently on sets of
processing units, on any number of them, and have no requirements on the network
topology.

There are two goals of this dissertation. First is to present AMS-DEMO, a paral-
lel algorithm for multiobjective optimization of numerical problems. AMS-DEMO has
been developed by parallelizing DEMO, a purely serial algorithm. It uses a version of
asynchronous master-slave parallelization method, which is not entirely novel but can be
rarely found in the literature. AMS-DEMO therefore also serves as a demonstration of
this parallelization method. We will present the types of problems best suited for solving
with AMS-DEMO and contrast them to the types of problems that are ill suited. We will
also compare AMS-DEMO to a simpler parallel algorithm, called generational DEMO,
which works equally well as AMS-DEMO in some specific cases, and could therefore be
preferred in those cases on the account of its simplicity.

The second goal is to present a detailed analysis of AMS-DEMO. We accomplish it by
experimentally testing the algorithm on two real-life problems. The results of the tests are
then compared to the results obtained by the original DEMO and generational DEMO.
Besides giving a clear picture of the efficiency of AMS-DEMO on the tested problems,
experimental tests and their results can also be used to predict the behavior of AMS-
DEMO on similar problems and the behavior of the asynchronous master-slave method
if it were used to parallelize a similar algorithm. Additionally, we present a theoretical
analysis of the changes made to DEMO algorithm for the development of AMS-DEMO,
identify a key property that has emerged from the parallelization – selection lag, and
discuss the ways in which it influences the algorithm execution time. A way to calculate
mean selection lag from hardware and algorithm parameters is also given.
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1.3 Scientific Contributions

This dissertation makes the following scientific contributions:

• Development of AMS-DEMO – a new evolutionary algorithm for multiobjective
optimization that is able to run efficiently on a heterogeneous set of processors. A
rare parallelization type – an asynchronous master-slave parallelization – is used to
transform the original DEMO to parallel AMS-DEMO.

• Analysis of AMS-DEMO based on tests made on two real-life problems and on
varying number of processors, including very high numbers of processors, which
were emulated. Analysis includes run times, convergence rates, relative speedups,
utilization of multiple processors, and changes to the algorithm because of the par-
allelization. AMS-DEMO is compared against the original DEMO and generational
DEMO.

• Identification of a key property defining the behavior of AMS-DEMO as well as any
other algorithm parallelized with the asynchronous master-slave type. We name
this property selection lag, assign it the symbol l, and analyze it analytically as well
as experimentally on the test problems.

• Allowing additional options in computer-assisted optimization of process parameters
of continuous steel casting, mostly by allowing more complex simulators with greater
fidelity of simulations. The usability of this optimization is thus increased, along
with the prospective savings arising from it.

• Achieving greater fidelity in simulation of ECGs than allowed by current simulator-
based optimization methods. Consequently, working towards better understanding
of the electrical activity of the human heart and opening new directions in cardiology
research.

1.4 Overview of the Dissertation

Dissertation is further organized as follows. Chapter 2 presents backgrounds of multi-
objective optimization, evolutionary algorithms, algorithm parallelization, and the ways
of combining these concepts into parallel evolutionary algorithms for multiobjective op-
timization. Chapter 3 presents two multiobjective optimization problems that are later
used in the experimental evaluation of the presented algorithm. In chapter 4, two parallel
implementations of DEMO are presented. The first one is straight-forward to implement
and is contrasted against the second one – AMS-DEMO, which is the main contribution
of the dissertation. All the important implementation details of AMS-DEMO are also
explained and the selection lag is identified in the same chapter, as an algorithm property
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which defines its behavior in dependence of the computer architecture and some problem
properties. Chapter 5 describes the experiments made on the presented multiobjective
optimization problems for the evaluation of AMS-DEMO and their results. The results
are grouped into three categories. The results of optimization, the convergence, and the
speedup of both parallel algorithms. The chapter ends with theoretical analysis of AMS-
DEMO – supported by the measured results – for the prediction of AMS-DEMO behavior
on various computer architectures and problems. Chapter 6 concludes the dissertation
and gives suggestions for further work.



Chapter 2

Background

This chapter presents the background knowledge necessary for understanding the pro-
posed algorithm and its analysis. It starts with optimization, extends it into multiobjec-
tive optimization, followed by a popular stochastic optimization method – evolutionary
algorithms. Then parallel computer architectures are presented. The chapter ends with
the description of the parallelization of evolutionary algorithms where the concept of
speedup is also introduced.

2.1 Optimization

Optimization is a tool for finding either minimum or maximum of a selected property
of a given system. It starts with the identification of an objective, that is, a measure of
the property in question, which can be quantified by a single number. The value of the
objective depends on the parameters (also called decision variables) of the given system.
The task of the optimization is to find values of the parameters that optimize - either
minimize or maximize - the objective. The parameters are usually constrained, most
often by having at least a lower and upper limit, but more generally, having any number
of equality and inequality constraints imposed on either single parameters or sets of them.

Formally, an optimization problem can be defined as a task that requires optimizing
the objective function (also called cost function) f :

y = f(x)

where x is a vector of n decision variables defined over R

x = [x1, x2, . . . , xn]T.

Decision variable vectors x that satisfy inequality constrains

gi(x) ≥ 0, i = 1, 2, . . . , I

15
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and equality constrains

hi(x) = 0, j = 1, 2, . . . , J

are called feasible solutions.

2.2 Multiobjective Ooptimization

The traditional definition of a numerical optimization problem given above assumes there
is only one objective, and solving such a problem is therefore referred to as single-objective
optimization. However, most real-world optimization problems involve multiple objec-
tives, which are often in conflict with each other in the sense that improvement of a
solution with respect to a selected objective deteriorates it with respect to other objec-
tives. In such cases we deal with multiobjective optimization problems. These can be
formally stated analogously to the single-objective ones with the exception that the task
is now to optimize a vector function

f(x) = [f1(x), f2(x), ..., fm(x)]T. (2.1)

There are two Euclidean spaces associated with multiobjective optimization – the n-
dimensional decision variable space of solutions to the problem, and the m-dimensional
objective space of their images under f . The latter is partially ordered by the Pareto
dominance (named after Vilfredo Pareto (1848–1923), an Italian economist, sociologist,
and a pioneer in the field of multiobjective optimization). Given two objective vectors,
a and b, a is said to dominate b (a ≺ b) if and only if a is better than b in at least
one objective and is not worse than b in all other objectives. Formally, assuming all
objectives are to be minimized:

a ≺ b iff (2.2)

∀k ∈ {1, 2, . . . ,m} : ak ≤ bk and

∃l ∈ {1, 2, . . . ,m} : al < bl

Let us illustrate the dominance relation with an example. Consider a multiobjective
optimization problem with two objectives, f1 and f2, that both need to be minimized.
Figure 2.1 shows five solutions to this problem in the objective space. Comparing solution
a with other solutions, we can observe that a dominates b since it is better than b in
both objectives, i.e. f1(a) < f1(b) and f2(a) < f2(b). It also dominates c as it is better
than c in objective f2 and not worse in objective f1. On the other hand, d outperforms
a in both objectives, therefore d dominates a or, in other words, a is dominated by d.
However, regarding a and e, no such conclusion can be made because f1(a) < f1(e) and
f2(a) > f2(e). We say that a and e are incomparable.
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Figure 2.1: Comparison of solutions to a multiobjective optimization problem in the objective
space.

In general, in a set of solutions to a multiobjective optimization problem, there is a
subset of solutions that are not dominated by any other solution (d and e in Figure 2.1).
Referring to the decision variable space, we call this subset a nondominated set of so-
lutions, and in the objective space the corresponding vectors are called a nondominated
front of solutions. The concept is illustrated in Figure 2.2 where both objectives need to
be minimized again. The nondominated set of the entire feasible search space is known
as the Pareto optimal set , and the nondominated front of the entire feasible search space
the Pareto optimal front .

Figure 2.2: Nondominated front of solutions in the objective space (both objectives need to be
minimized).

Objective vectors from the Pareto optimal front represent different trade-offs between
the objectives, and without additional information no vector can be preferred to another.
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With a multiobjective optimizer we search for an approximation set that approximates
the Pareto optimal front as closely as possible. In practical multiobjective optimization it
is often important to provide a diverse choice of trade-offs. Therefore, besides including
vectors close to the Pareto optimal front, the approximation set should also be as diverse
as possible.

Traditionally, multiobjective optimization was performed by methods that transform
problems into single objective form and then solve them using techniques of single ob-
jective optimization. We refer to these methods as classical methods [19]. Their main
difficulties are the inability to produce more than one Pareto-optimal solution per run, the
inability to find all Pareto-optimal solutions in non-convex problems, and the requirement
for some problem knowledge. Their practical use is mostly limited by the requirement to
run them several times to produce multiple Pareto-optimal solutions, which, in contrast,
is not required by population-based methods. From these, the most commonly used are
evolutionary algorithms, which we will discuss next.

2.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) is a common name for a family of search and optimiza-
tion procedures created and studied in the field of evolutionary computation [28, 17].
The underlying idea is to solve a given problem through computer simulated evolution of
candidate solutions. The set of candidate solutions processed by an EA is called a popula-
tion, and the population members are referred to as individuals. They are represented in
the form suitable for solving a particular problem. Often used representations include bit
strings, real-valued vectors, permutations, tree structures and even more complex data
structures. In addition, a fitness function needs to be defined that assigns a numeri-
cal measure of quality to the individuals; it roughly corresponds to the cost function in
optimization problems.

An EA, shown in pseudocode as Algorithm 2.1, starts with a population of randomly
created individuals, and iteratively improves them by employing evolutionary mecha-
nisms, such as survival of the fittest and exchange of genetic information between the
individuals. The iterative steps are called generations, and in each generation the popu-
lation members undergo fitness evaluation, selection, and variation. Note that we shall
refer to the fitness evaluation as evaluation from now on.

The selection phase of the algorithm is an artificial realization of the Darwinian prin-
ciple of survival of the fittest. The higher the fitness of an individual (i.e. the quality
of a solution), the higher the probability of participating in the next generation. In the
variation phase, the individuals are modified to create new candidate solutions to the con-
sidered problem. For this purpose, the EA applies variation operators, such as crossover
and mutation, to the individuals. The crossover operator exchanges randomly selected
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Algorithm 2.1: Evolutionary Algorithm (EA)

1 create the initial population P of random solutions
2 evaluate the solutions in P
3 while stopping criterion not met do
4 create an empty population Pnew

5 repeat
6 select two parents from P
7 create two offspring by crossing the parents
8 mutate the offspring
9 evaluate the offspring

10 add the offspring into Pnew

11 until Pnew is full
12 copy Pnew into P

components between pairs of individuals (parents), while the mutation operator alters
values at randomly selected positions in the individuals.

The algorithm runs until a stopping criterion is fulfilled. The stopping criterion
can be defined in terms of the number of generations, required solution quality, or as a
combination of both. The best solution found during the algorithm run is returned as a
result.

EAs exhibit a number of advantages over traditional specialized methods and other
stochastic algorithms. Besides the mechanism for evaluation of candidate solutions, they
require no additional information about the search space properties. They are a widely
applicable optimization method, straightforward for implementation and suitable for hy-
bridization with other search algorithms. Moreover, it is not difficult to incorporate
problem-specific knowledge into an EA in the form of specialized operators when such
knowledge is available. Finally, by processing populations of candidate solutions, they
are capable of providing alternative solutions to a problem in a single algorithm run.
This is extremely valuable when solving multimodal, time-dependent and multiobjective
optimization problems.

EAs can be divided into generational model and steady-state model algorithms. In the
generational model, each generation begins with a population of µ solutions, from which
λ offspring are created by the application of variation operators, where usually λ ≥ µ.
Then, the fitness of the offspring is evaluated and in the selection phase, µ solutions are
selected to form the population of the next generation, either from both the population
and the offspring, called (µ + λ) selection, or from only the offspring in (µ, λ) selection.
In the end, the whole population is replaced by the selected solutions.

The steady-state model in contrast, does not replace the whole population in a single
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step. A single step rather consists of a single application of variation operators, usually
creating one or two offspring that is/are compared to the same number of solutions from
the population in the selection phase and may replace them immediately. Steady-state
model corresponds to (µ + λ) generational selection model, where λ is the number of
offspring created by a single application of variation operators.

2.3.1 Differential Evolution

A somewhat specialized EA is Differential Evolution (DE) [49, 48]. It was designed
for numerical optimization and has proved very efficient in this problem domain. In
DE, candidate solutions are encoded as n-dimensional real-valued vectors. As outlined in
Algorithm 2.2, new candidates are constructed through operations such as vector addition
and scalar multiplication (in line 7, F denotes a predefined scalar value). After creation,
each candidate is evaluated and compared with its parent and the best of them is added
to the new population.

Algorithm 2.2: Differential Evolution (DE)

1 create the initial population P of random solutions
2 evaluate the solutions in P
3 while stopping criterion not met do
4 create an empty population Pnew

5 foreach pi ∈ P do
6 randomly select three different solutions s1, s2, s3 from P
7 create a candidate solution c← s1 + F · (s2 − s3)
8 alter c by crossover with pi

9 evaluate c
10 if c is better than pi then
11 add c into Pnew

12 else
13 add pi into Pnew

14 P← Pnew

2.3.2 Multiobjective Evolutionary Algorithms

In multiobjective optimization, finding an approximation of the Pareto optimal front in
a single run requires a population-based method. Therefore, EAs are a reasonable choice
for this task. However, since the objective space in multiobjective optimization problems
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is multidimensional, any EA originally designed for single-objective optimization needs to
be extended to deal with multiple objectives. This has been done with several EAs that
are now used as multiobjective optimizers and referred to as Multiobjective Evolutionary
Algorithms (MOEAs) [19, 16, 3].

The two most well known MOEAs are NSGA-II and SPEA2, which are also often
used for evaluation of other MOEAs. We give short overview of both methods.

Nondominated sorting evolutionary genetic algorithm II (NSGA-II) [20] is an improve-
ment of an earlier algorithm NSGA. It is based on forming a new population from the
best individuals of the current population and its offspring, which are selected using a
fast sorting of nondominated solutions coupled with crowding distance sorting. Crowding
distance sorting is a parameter-less niching approach to diversity preservation. NSGA-II
is a generational algorithm that implements elitism and can be used for problems with
continuous (real-valued) parameters, as well as discrete parameters. Its main strength
is good performance on large populations, because its time complexity is only O(Mn2),
where M is the number of objectives and n is the population size.

Strength Pareto evolutionary algorithm 2 (SPEA2) [72] is an improvement of on the
already successful algorithm SPEA. It is named after its way of assigning fitness to solu-
tions – as a sum of strength values of all the solutions that dominate the observed solution
(note that fitness value is to be minimized in SPEA2). Strength of a solution equals the
number of solutions the observed solution dominates. In addition, density information
based on the k-th nearest neighbors method [57] is used to sort individuals that would
otherwise have identical fitness values. SPEA2 is a generational algorithm and combines
the current population with its offspring to form a new generation. It also implements
elitism through an archive of best nondominated solutions of the population. Mating is
implemented as tournament selection with replacement.

Next section presents DEMO, the multiobjective optimization algorithm used as a
base for our parallel multiobjective optimization algorithm.

2.3.3 Differential Evolution for Multiobjective Optimization (DEMO)

Based on the single-objective DE is Differential Evolution for Multiobjective Optimization
(DEMO) [55, 66]. It extends DE into multiobjective optimization algorithm by changing
the mechanism for deciding which solutions to keep in the population (see Algorithm 2.3).
DE implements a straight-forward selection between the parent and its offspring, which
keeps the better of the two and discards the worse, based on the comparison of fitnesses.
In DEMO, comparison of fitnesses has to be extended because of the multiple objectives.
Pareto dominance relation is used, which allows vector comparisons but does not always
mark one of the compared solutions as better than the other. If one dominates the other,
than it is kept while the other is discarded, but if the two are incomparable – neither
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one dominates the other – than both are kept. In the latter case, the population size
increases by one, which is unwanted and should be compensated for. Therefore, the
population is truncated back to the original population size n once every n solutions have
been evaluated. The truncation mechanism uses nondominated sorting and the crowding
distance metric in the same manner as in the NSGA-II multiobjective algorithm [20].
In addition, DEMO is converted from generational to steady-state by applying selection
to current population instead of putting its output (the surviving solutions) into a new
population which would later entirely replace the current population, as done in DE.
Pseudo code of DEMO is shown in Algorithm 2.3.

Algorithm 2.3: Differential Evolution for Multiobjective Optimization (DEMO)

1 create the initial population P of random solutions
2 evaluate the solutions in P
3 while stopping criterion not met do
4 foreach pi ∈ P do
5 randomly select three different solutions s1, s2, s3 from P
6 create a candidate solution c← s1+F·(s2 − s3)
7 alter c by crossover with pi

8 evaluate c
9 if c ≺ pi then

10 replace pi with c in P
11 else if not pi ≺ c then
12 add c into P

13 if P contains more than popSize solutions then
14 truncate P

DEMO as presented so far is only one of the possible DEMO variants, and is called
DEMO/parent on the account of the selection acting on the candidate solution and its par-
ent. There are two additional DEMO variants – DEMO/closest/obj and DEMO/closest/dec,
where the selection acts on the candidate solution and the most similar solution from the
population, respectively. Similarity is defined as the Euclidean distance between pairs of
solutions either in objective or decision space. Since the latter two variants are more com-
putationally expensive than DEMO/parent but do not bring any important advantage
over it [55], we use DEMO/parent as the base for parallelization.
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2.4 Parallel Computer Architectures

Traditional serial computers are referred to as single instruction, single data (SISD) com-
puters [40] according to Flynn’s taxonomy [32]. Such computers are only able to execute
a single instruction on data from a single location in memory. According to Flynn’s
taxonmy, there are two ways of extending serial computers into parallel computers –
computers that are able to do several tasks concurrently. The first one is by adding
the ability to process multiple data using the same instruction stream, creating single
instruction, multiple data (SIMD) computers. A good example are GPUs (graphic pro-
cessing units) which render graphics by executing the same commands on multiple pixels
in parallel. The second, orthogonal way of adding parallelism is by adding the ability to
execute multiple instructions in parallel. Computers that do so on the same data stream
are called multiple instruction, single data (MISD) computers, but are very rare because
the requirement to process the same data using multiple different instruction streams is
also very rare. On the other hand, multiple instruction, multiple data (MIMD) computers
that allow concurrent processing of multiple data streams, each one using its own instruc-
tion stream, are very common. Such computers comprise several processing units, which
can be either placed on the same integrated circuit, or on different integrated circuits
with shared memory, or even on completely remote locations, each with its own memory.
Although MIMD computers have the highest requirement for hardware resources, they
are very simple to implement, since they can be assembled by stacking together off-the-
shelf SISD computers and connecting them via network. They are also the most versatile
and can handle all the tasks that the other groups of computers from Flynn’s taxonomy
can.

Multiple processors do not make a MIMD computer without some form of interaction
between the processors. There are two means of processors interaction. Shared address
space is the first one, and implements interaction by allowing different processors read
and write access to the same memory address space. Although it is mostly used on
computers which share memory among the processors (shared memory architecture),
it can also be implemented on computers which provide separate physical memory to
different processors by appropriate hardware mapping of memory addresses. Message
passing is the second means of processor interaction, and allows processors to interact
only by passing messages to each other. Each processor of the system has its own local
memory that is not accessible to other processors and can not be used to share data.
Message passing architectures have an advantage of being less complex and less expensive
than shared address space architectures, which on the other hand offer easier interface to
interaction, greater flexibility in programming, and faster access to shared data.
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2.5 Parallelization of EAs

Fitness evaluation is often computationally expensive, especially when performed via
simulation, making the optimization impractical because of the long execution time it
requires for the calculation of a large number of evaluations. It is therefore beneficial to
parallelize the algorithm to be used on multiple processors and thus shorten the execution
time. The parallelization seeks to modify the algorithm in a way that maximizes speedup
[4] – the factor of how much shorter the execution time is on multiple processors than
on a single processor. EAs are an example of inherently parallel algorithms because they
work on a population of solutions, which allows for an efficient use of multiple processors
in parallel. This means that EAs may be easily parallelized and large speedups may be
achieved.

MOEAs are a subclass of EAs and can be parallelized in one of the four EA paral-
lelization types [12, 7, 67, 42]; three basic: master-slave (also called global parallelization),
island model, diffusion model (also known as cellular model); and hybrid model that en-
compasses combinations of the basic types, usually in a hierarchical structure.

Master-slave EAs are the most straightforward type of parallel EAs because they build
on their inherent parallelism. Consequently, they traverse the search space identically
to their serial counterparts. They can be visualized as a master processor running a
serial EA with a modification in creation and evaluation of solutions. Instead of creating
and evaluating solutions serially, one at a time, until the entire population is evaluated,
solutions are created and evaluated on the master and slave processors in parallel. This,
however, does not apply to steady-state algorithms, in which the creation and evaluation
of a single solution depends on the evaluation result of the previously generated solution.
Steady-state algorithms can therefore not be parallelized using the master-slave type
without prior modification.

The highest efficiency of the master-slave parallelization type can be achieved on com-
puters with homogeneous processors and in problem domains where the fitness evaluation
time is long, constant, and independent of the solution. When these criteria are fulfilled,
near-linear speedup [4] (speedup that is close to the upper theoretical limit) is possible.
Master-slave parallelization is popular with MOEAs, ranging from very simple implemen-
tations [46] where the master runs on a separate processor, and [51] where the master
processor also runs one slave (usually as two separate processes). There are also im-
plementations for heterogeneous computer architectures, where load-balancing has to be
implemented. Examples are [38] with pool-of-tasks load balancing algorithm, and [59, 34]
with an asynchronous master-slave parallelization of a steady-state algorithm where the
load balancing is implicit.

Island model EAs, in contrast, are multiple-population algorithms, consisting of sev-
eral largely independent subpopulations that occasionally exchange a few solutions. In
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an island EA, each processor represents an island, running a serial EA on a subpopula-
tion. A new operator is introduced – migration, that handles the exchange of solutions
between the islands. Migration occurs either in a predefined intervals, e.g. every several
generations, or after special events, e.g. when subpopulations start to converge. Because
the communication is less frequent, its overhead is smaller compared to the master-slave
parallelization type. In general, speedup increases with the number of islands, but the
overall efficiency depends on how well the problem is suited for solving with multiple-
population EAs compared to single-population EAs. Heterogeneous computers can also
be very efficiently used by the island model EAs, as shown in [5]. MOEAs may use the
island model as defined for EAs in general or extend it by dividing multiobjective opti-
mization into subproblems and then assigning each island a different subproblem. One
approach to this is shown in [47], where each subpopulation (an island) is assigned a fit-
ness based on a different objective function. Another approach is dividing the objective
space into segments and then exploring one segment per island. The difficulty of this
approach lies in guiding or bounding the islands to search within their segment, and in
dividing the objective space fairly among the islands without the prior knowledge of its
shape. The attempts so far seem promising [22, 11, 60], showing good speedups on small
number of islands.

Diffusion model EAs split the population into multiple small subpopulations and di-
vide them among the processing nodes. Every subpopulation is allowed to communicate
only with a predefined neighborhood of other subpopulations – the variation operators
are only applied on sets of solutions from one subpopulation and its neighborhood. Dif-
fusion model EAs can also be considered single-population with structurally constrained
interactions between solutions. Parallelization of this type has the largest communication
overhead among the mentioned types and requires computer architectures with numerous
processors and fast interconnections. Speedup and efficiency depend greatly on the prop-
erties of interconnections and the suitability of the problem to the structural constraints
imposed by the algorithm. An example of diffusion model MOEA can be found in [56].

Hybrid parallel EAs are an attempt to minimize the weaknesses of the basic algorithm
types through their hierarchic composition. For example, the island model may be im-
plemented on top of the master-slave, providing possibility to use all available processing
nodes, while keeping the number of islands variable. Hybrid EAs can be adapted to the
underlying hardware architecture to a high degree, but their design and implementation
are more complex. The combination of master-slave and island models is most often used
in hybrid parallel EAs and MOEAs, as for example in [47, 34].
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2.5.1 Taxonomy of Parallel Metaheuristics for MO

MOEAs are representatives of the parallel metaheuristics for multiobjective optimization,
with two main parallelization strategies used – single-walk and multiple-walk [45].

Single-walk parallel metaheuristics are aimed at speeding up the underlying sequen-
tial algorithms while preserving their basic behavior, which means that the sequential
traversal through the search space is preserved by applying parallelism in two ways – by
parallel function evaluation – fitness function is computed for several solutions in parallel,
or by parallel operator – the search operators of the method are applied in parallel. Mas-
ter slave parallelization type is the implementation of the single-walk parallel function
evaluation strategy, because fitness function is most often the most complex and time
demanding step of the EA, while it can be calculated concurrently for multiple solutions.

Multiple-walk parallel EAs represent an effort to improve the solution quality by
means of multiple concurrent traversals (search threads) through the search space. Search
threads may either be completely independent or cooperative (they share the collected
information among themselves). Depending on the way the Pareto front is built during
the optimization process, two variants may be considered. In algorithms with centralized
Pareto front, search threads are continuously improving a global Pareto front throughout
the optimization process. In contrast, algorithms with distributed Pareto front implement
separate local Pareto fronts for each search thread, and a mechanism that merges local
fronts into a global front at the end of the optimization procedure. Updating a global
Pareto front is a communication intensive task and for performance reasons the algorithms
with centralized Pareto fronts without exception implement phases during which they
work on distributed Pareto fronts and update the global Pareto front only at the end of
each phase [45]. Island and diffusion models are examples of the multiple-walk strategy
and may use either distributed or centralized Pareto front.

2.5.2 Speedup

Speedup is a measure that captures the relative benefit of solving a problem in parallel [40].
Formally, speedup S on p processors is the ratio of the time required to solve a problem
on a single processor t(1) to the time required to solve it on p identical processors t(p):

S(p) =
t(1)
t(p)

. (2.3)

Traditionally, speedup of an algorithm is defined relative to the best known serial al-
gorithm, making t(p) the time required by the parallel algorithm that we wish to calculate
speedup for, and t(1) the time required by the best known serial algorithm. We will call
thus defined speedup absolute to separate it from the relative speedup, which is defined
relative to the original serial algorithm. We feel that relative speedup is more meaningful
in this dissertation and will use it exclusively, referring to it simply as speedup.
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Calculating absolute speedup is problematic for two reasons. The first one is the
definition of the best algorithm for the problem – is this the best optimization algorithm
overall, or simply the best optimization algorithm for the given problem? The former
definition is too broad; there is no absolutely best optimization algorithm known, nor is
there a way of a meaningful comparison of optimization algorithms that would yield only
one that is absolutely best. The latter definition lacks generalization and is meaningless
to us, because we are trying to build a general parallel optimization algorithm, and are
not only interested in solving our test problems in record breaking time. The second
reason for the absolute speedup being problematic is that it contains no information
on the properties of the parallelization method, which we are trying to evaluate along
with the proposed parallel algorithm. Relative speedup, on the other, is less dependent
on the optimization problem we are trying to solve and tells us mostly how efficient the
parallelization method is. It can also be extended to absolute speedup or speedup relative
to any other algorithm one might wish to compare our proposed parallel algorithm to – by
multiplying it with the speedup of the original algorithm relative to the desired baseline
algorithm.

The upper limit for speedup equals p and is called linear speedup. Sometimes algorithm
implementations seem to go over this limit, yielding super linear speedup – speedup higher
than p. There are two possible reasons for super linear speedup. The first reason are
the additional resources provided by the parallel architecture, such as increased cache
size and memory throughput. These can have big enough effect on some algorithms
to push their speedup above p, but are very platform specific. Super linear speedup is
therefore caused by the specific computer architecture and not by the algorithm itself. The
second reason lies in the changes made to the algorithm while parallelizing it. Sometimes
changes that are aimed at increasing the parallel portion of the algorithm for a more
effective parallelization inadvertently improve the algorithm. An excellent example are
the island model EAs. Often a serial single-population EA is parallelized into an island
model EA, making it multiple-population. Although the obtained parallel algorithm can
exhibit speedups much larger than p over the original algorithm, this only indicates the
inefficiency of the original algorithm. Using a multiple-population serial algorithm for a
comparison instead of the original algorithm, the obtained parallel algorithm would only
exhibit speedup equal to or lower than p.

A measure related to speedup is efficiency, which is simply the speedup normalized
with the number of processors:

E(p) =
S(p)

p
. (2.4)

Efficiency thus lies between 0 and 1, with 1 corresponding to the linear speedup. Increas-
ing the number of processors is accompanied with an increase in communication overhead,
causing the efficiency to drop. Some parallel systems – a combination of an architecture
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and an algorithm – are scalable, i.e. have the ability to keep the efficiency fixed if both
the problem size and the number of processors increase simultaneously.

In case of the master-slave EAs, speedup is easy to measure because these algorithms
traverse the search space identically to their serial counterparts. Therefore, using the
same settings for both, they can be compared directly. More care should be taken when
dealing with parallel EAs that do not traverse the search space in the same way as their
serial counterparts. Basic island and diffusion EAs that have been developed from single
population serial EAs, are such examples. These algorithms sometimes exhibit super
linear speedup and could be serialized, producing a new serial algorithm that is faster
than the original one. Only this new serial algorithm should then be used as a base
for calculating the speedup. Furthermore, the new serial algorithm would have some
additional parameters that are limited by the hardware on the parallel version – such as
the number of islands or the structure of interconnections. When comparing the serial and
parallel version, these parameters should be set to their best values and not identically
to the parallel version. The only limiting factor for serialization could be hardware (for
example, multiple-population EAs require more memory than single-population EAs).
In such cases, parallelization would alleviate hardware constraints as well as provide the
speedup. The obtained speedup would be due to two factors, the parallel execution
and the algorithm improvements, with either factor unobtainable from the measurements
alone.

We explore the master-slave EAs speedup in more detail, to estimate its limitations.
We start with the theoretical limit on speedup according to the Amdahl’s law:

Smax =
1

(1− P ) + P
p

, (2.5)

where P is the parallel portion of the algorithm and p is the number of processors.
The actual speedup of an algorithm will depend on how well the parallel portion can be
spread up among p processors. Considering the simplest master-slave parallelization type,
where only fitness evaluations are parallelized, P is the portion of the serial algorithm
execution time spent on fitness evaluation. It should be noted that through the process
of parallelization, the interprocessor communication is added to the algorithm, which
effectively decreases its parallel portion. As demonstrated later on, when communication
between processors is taken into consideration, P can still reach very high values if fitness
evaluation is complex and time consuming. On the other hand, p is limited by the
population size N . Only the population of a single generation can be evaluated at a
time, even when more processors are available. Speedup upper bound therefore equals
the population size:

lim
P→1

Smax = lim
P→1

1
(1− P ) + P

N

= N . (2.6)
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Another important observation is that not only should N ≤ p, but N should also divide
p (we write this as N | p), for the algorithm to fully utilize all processors. The algorithm
requires dNp e iterations to fully evaluate the population and therefore has dNp ep processor
time slots to fill with N tasks (fitness evaluations). It is free to choose the best way to
allocate the tasks to processor time slots over the iterations but there will always remain
(N mod p) unallocated slots per generation, leaving the same number of processors idle.
Knowing this we can derive the effective number of processors used by the algorithm:
peff = N/dNp e. For example, having p = 10 and N = 15, we get peff = 7.5. We see that
having the population size which is not a multiple of number of processors reduces the
effective number of processors. We could lower p to 8, the first integer greater than peff ,
and still achieve the same speedup. Substituting p with peff in Equation 2.5, we can write
the equation for maximum achievable speedup as

Smax(p) =
1

(1− P ) +
P×dN

p
e

N

. (2.7)

An example of Smax(p) for population size N = 32 and parallel fraction P = 1 is shown
in Figure 2.3.
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Figure 2.3: Maximum speedup Smax and processor idle time vs. the number processors p for a
master-slave parallel EA with parallel portion P → 1 and population size n = 32.

The dependence of speedup on the number of processors is alleviated by the insensi-
tivity of EAs to the population size. Because of the stochastic nature of EAs, the best
population size for a given problem can be only approximately determined. Thus an
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approximate interval rather than the exact number for the best size is usually found.
Because population size can be chosen as any number from this interval, it can usually
be set to a multiple of the number of processors. In cases when optimal selection of the
population size within the interval is not possible, the maximum speedup is smaller by
the factor Sopt, which is the speedup of the EA with the optimal population size relative
to the EA with the observed population size:

Smax∗ =
Smax

Sopt
. (2.8)



Chapter 3

Examples of Multiobjective Optimization Problems

This chapter presents two real-life multiobjective optimization problems, that were used
for AMS-DEMO evaluation. The first problem is taken from industry and deals with
tuning process parameters (the amount of cooling in different stages) for steady-state
steel casting, which we will also refer to as the cooling problem. The second problem
comes from theoretical research of human heart electrical activity, where ECG model
parameters are required to be estimated from the desired output of the model. We shall
refer to it as the ECG problem.

3.1 Tuning of Process Parameters for Steady-State Steel Cast-

ing

Continuous casting of steel is widely used at modern steel plants to produce various steel
semi-manufactures. For the plant to operate safely while producing the highest quality
steel, several parameters of the casting process must be properly set. We will present this
optimization problem, and add a short description of the simulator and its parameters.

3.1.1 Optimization Problem

The continuous casting process is schematically shown in Figure 3.1. In this process,
liquid steel is poured into a bottomless mold which is cooled with internal water flow.
The cooling in the mold extracts heat from the molten steel and initiates the formation
of a solid shell. The shell formation is crucial for the support of the slab behind the mold
exit. The slab enters the secondary cooling area where additional cooling is performed
by water sprays. Led by the support rolls, the slab gradually solidifies and finally exits
the casting device. At this stage it is cut into pieces of predefined length.

The secondary cooling area of the casting device is divided into nine cooling zones
and the cooling water flows in the zones can be set individually. In each zone, cooling
water is dispersed to the slab at the center and corner positions. Target temperatures are
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Figure 3.1: A schematic view of continuous casting of steel.

specified for the slab center and corner in every zone and the optimization task is to tune
the cooling water flows in such a way that the resulting slab surface temperatures match
the target temperatures as closely as possible. From metallurgical practice this is known
to reduce cracks and inhomogeneities in the structure of the cast steel. Formally, an
objective f1 is introduced to measure deviations of actual temperatures from the target
ones:

f1 =
NZ∑
i=1

|T center
i − T center∗

i |+
NZ∑
i=1

|T corner
i − T corner∗

i |, (3.1)

where NZ denotes the number of zones, T center
i and T corner

i the slab center and corner
temperatures in zone i, and T center∗

i and T corner∗
i the respective target temperatures in

zone i. This objective encompasses the key requirement for the process to results in
high-quality cast steel.

In addition, there is a requirement for core length, lcore, which is the distance between
the mold exit and the point of complete solidification of the slab. The target value for
the core length, lcore∗, is prespecified, and the actual core length should be as close to
it as possible. Shorter core length may result in unwanted deformations of the slab as
it solidifies too early, while longer core length may threaten the process safety. This
requirement can be treated as the second objective, f2:

f2 = |lcore − lcore∗|, (3.2)

and the optimization task is then to minimize both f1 and f2 over numerous possible
cooling patterns (water flow settings). The two objectives are conflicting, hence it is
reasonable to handle this optimization problem in the multiobjective manner.
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In the optimization procedure, water flows cannot be set arbitrarily, but according
to the technological constraints, as specified in Table 3.1. For each zone, lower and
upper bounds are prescribed for the center and corner water flows. Moreover, to avoid
unacceptable deviations of the core length from the target value, a hard constraint is
imposed: f2 ≤ ∆lcore

max. Solutions violating the water flow constraints or the core length
constraint are considered infeasible. In our experiments, the target core length, lcore∗,
was 27 m and the maximum allowed deviation from the target, ∆lcoremax, was 7 m.

3.1.2 Mathematical Model

A prerequisite for optimization of the continuous casting process is an accurate math-
ematical model of the casting process, capable of calculating the temperature field in
the slab as a function of coolant flows and evaluating it with respect to the objectives
given by Equations (3.1) and (3.2). For this purpose we use a numerical simulator of
the process, which considers steady-state conditions, i.e. with parameters held constant
in time. The simulator is based on the Finite Element Method (FEM) discretization of
the temperature field and the related nonlinear heat transfer equations are solved with
relaxation iterative methods [30].

The simulator is set to slab cross-section of 1.70 m × 0.21 m and casting speed
of 1.6 m/min that is exercised when the process needs to be slowed down to ensure the
continuity of casting, for example, when a new batch of molten steel is delayed. Candidate
solutions are encoded as 18-dimensional real-valued vectors, representing coolant flow
values at the center and the corner positions in the nine zones of the secondary cooling
area. Target temperatures and parameter constraints are shown in Table 3.1.

3.2 Parameter Estimation for the ECG Simulator

Electrocardiogram (ECG) is a diagnostic and monitoring tool that records heart activity
by measuring electrical currents, originating in the heart, on the body surface. Model-
ing the electric activity of a human heart provides useful insight into ECG generating
mechanisms that can in turn be used to further the understanding of ECG and improve
its diagnostic benefits. There are two main approaches to modeling which attack the
problem at different levels. One is modeling of ion currents on the level of individual my-
ocardium (heart muscle tissue) cells as for example in [61]. Due to complexity of realistic
cell models, simulations of this sort have very high computational cost and are mostly
used to simulate smaller patches of tissue and not the whole heart. Another approach
uses simplified cell model consisting of only action potential (AP) – a function defining
cell’s electric activity – that decreases computational cost by several orders of magnitude
and thus enables simulation of the whole heart or a heart cross section [52, 53]. We used
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the second approach in [24, 23], where an inverse problem of determining myocardium cell
properties from the measured ECG was solved using a newly developed ECG simulator
and a simulation-based optimization.

3.2.1 Optimization problem

One important aspect of building an ECG simulator is knowing its limits, i.e. knowing
which ECG phenomena can or can not be simulated with it. We are aware of several
limitations imposed by the simulator, such as the inability to simulate all of the ECG
features because of the prohibitively large spatial resolution it would require; the incor-
rect absolute ECG amplitudes and even the relations between the amplitudes of ECGs
measured at different positions on the body because of the simplified model of the body
that assumes uniform and infinite conductivity of the simulated tissues and the air; and
the inability to simulate local defects in myocardial tissue because the simulator imple-
ments layered myocardium with identical properties of APs in each layer. In addition
to these predicted limits, we have identified several additional limits through the simu-

Table 3.1: Target temperatures and water flow constraints for the cooling problem

Zone Target Parameter Min. flow Max. flow
number [◦C] number [m3/h] [m3/h]

Center positions
1 1050 1 0 50
2 1040 2 0 50
3 980 3 0 50
4 970 4 0 10
5 960 5 0 10
6 950 6 0 10
7 940 7 0 10
8 930 8 0 10
9 920 9 0 10

Corner positions
1 880 10 0 50
2 870 11 0 50
3 810 12 0 50
4 800 13 0 10
5 790 14 0 10
6 780 15 0 10
7 770 16 0 10
8 760 17 0 10
9 750 18 0 10
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lation of various scenarios. We present here a scenario, which was found to be the most
appropriate for evaluation of the parallel algorithms.

One of the advantages of performing ECG simulation on a 3-dimensional heart model
is the ability to simulate multiple ECGs on different body locations simultaneously. Sim-
ilarly, ECGs are recorded at different body locations in real measurements. For this
scenario, we simulate ECGs on two locations on the body, that coincide with the loca-
tions of V2 and V5 electrodes of the standard 12-channel ECG measurement [43]. This
scenario aims to lower the computational complexity of the simulation as much as possible,
therefore only a prominent ECG feature called the T wave is simulated simultaneously
on the two specified electrodes. In real ECG measurements, the location of the T wave
peak is delayed by several ten milliseconds on V5 compared to V2. To evaluate to what
extent the simulator is able to replicate this delay, we perform a two-objective optimiza-
tion, where objectives are the Pearson correlation coefficients between the simulated and
measured ECG on V2 and V5.

3.2.2 Computer model

We use an improved ECG simulator, based on the one described in [24], which was
successfully used to demonstrate multiple ways of generating U wave, which is one of the
smallest features of ECGs. The presented simulator has been improved in three areas –
the heart model shape, positioning of observation points (locations on the body where
the ECG is simulated) and the AP model.

Ultimately the aim is to use medical scans for the shape of the heart model, and either
a mathematical model for layering, or an improvement of the simulator that would elimi-
nate the requirement for layers. Currently we continue using the mathematical model for
simultaneous creation of shape and layers. We are able to create heart models comprising
two ventricles of independent sizes and independent numbers of layers. A model of the
heart, comprising of 241135 cubic millimeter cells with left ventricle representing just over
80 % of total mass, is presented in Figure 3.2. Because we are simulating only one of the
most prominent features of the ECG in this scenario, we do not need the full resolution
and complexity of the presented model. Therefore, we double the size of model cells in all
dimensions, increasing their volume 8 times, from 1 mm3 to 8 mm3. This way we get a
coarse model which consists of 8 times less cells, allowing for approximately 8 times faster
simulation. In spite of lower spatial resolution, ECGs simulated using the coarse model
are very similar to the ones generated by the basic model. The differences in T waves –
the feature of ECG we are interested in – are shown on the simulated V2 in Figure 3.3
and on the simulated V5 in Figure 3.4. For even lower computational complexity, the
simulations on the coarse model are set to a low temporal resolution, with steps of 10 ms
in the time interval from 200 ms to 500 ms after the excitation start – a total of only 31
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Figure 3.2: Improved heart model, featuring a larger left ventricle (the main thick oval), and a
smaller right ventricle (the thinner oval attached to the main one), cut just below the atria, which
are not modeled.

steps.

200 250 300 350 400 450 500

V 2coarse

V 2normal

Figure 3.3: Comparison of the simulated ECG on the electrode V2 using the coarse (2 mm
spatial resolution) and the basic (1 mm spatial resolution) heart models. Vertical scale is unlabeled
because the realistic amplitudes of ECGs are not simulated.
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200 250 300 350 400 450 500

V 5coarse

V 5normal

Figure 3.4: Comparison of the simulated ECG on the electrode V5 using the coarse (2 mm
spatial resolution) and the basic (1 mm spatial resolution) heart models. Vertical scale is unlabeled
because the ECGs are not simulated with realistic amplitudes.

For the additional speedup of the optimization, the objective function is composed of
two steps. In the first step, the initial simulation is performed using a one-dimensional
heart model (also called string model) composed of only two cells. If needed, In the second
step an extensive simulation is performed using the above described three-dimensional
heart model. The initial simulation on the simplified string model is very fast but also
inaccurate and can only simulate a single ECG at a time. There is however a strong
correlation between the ECG simulated using the string model and the ECGs simulated
using the three-dimensional model on both selected electrodes (see Figure 3.5), making
the string model suitable for filtering out extremely bad solutions.

The objective function first calculates the Pearson correlation coefficient between the
ECG simulated using the string model and the ECG measured on V2. If the coefficient
is negative (indicating a very poor solution), the objective function terminates, returning
both objectives equal to this coefficient. Otherwise the extensive simulation is performed
using the three-dimensional model, calculating both objectives separately and accurately.
The correlations between randomly generated solutions and the measured ECGs are ex-
pected to be distributed equally between positive and negative, causing the second step
of the objective function to be skipped half of the time on the initial random population.
Figure 3.6 shows how the ratio of solutions entering the second stage of objective function
increases with the number of performed evaluations. The chance of creating very bad so-
lutions that would not pass the first stage of evaluation evidently drops dramatically as
the quality of solutions in the population increases. Still, the two phase evaluation should
lower the time requirements for optimization.
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Figure 3.5: The correlation between results of the first and the second step of evaluation function
shown separately for both objectives. While the second step is done for a different measuring
positions for each objective using the three-dimensional model, the first step is calculated using a
string model and its results apply to both objectives. 20000 randomly selected evaluations, that
were performed during tests are shown. Their distribution is typical for a single optimization run
on a single processor.
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Figure 3.6: Probability for a solution generated after N evaluations to enter the second stage
of the ECG problem objective function. The source for this graph are all the generated solutions
from 100 runs, with 10000 evaluations each. The graph is smoothed with a Gauss filter with
σ = 32 for clarity.
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To get realistic positioning of observation points, the heart model is placed into a
virtual elliptic cylinder that represents human torso. Observation points are then placed
on this cylinder, simulating the placement of electrodes for a multichannel ECG mea-
surement [10] as shown in Figure 3.7. The simulated ECGs obtained with the described
model can be compared to the multichannel ECG measurements, allowing for more rig-
orous tests of the simulator than would be possible using only the standard 12-lead ECG
measurements. Observation points corresponding to V2 and V5 in measurements are
used in the presented optimization scenario.

Figure 3.7: Front view on the observation points on the torso relative to the improved heart
model. Points in front of the torso are marked with circles, points on the back of the torso with
dashed circles. Positioning of the observation points simulates the placement of electrodes for a
multichannel ECG measurement.

In the experiments for [24], the ECG problem required setting three unknown APs,
for three AP layers, with three free parameters each, in a way that maximized the fidelity
of simulated ECGs. We further propose a modification of AP model [63, 64]. We replace
one of the sigmoidal function with an asymmetric sigmoidal function, which requires
an additional parameter to control the asymmetry. Since then, we have also changed
the simulator to only require setting two unknown APs, thus the optimization problem
described in this chapter has eight parameters and the candidate solutions are encoded
as 8-dimensional real-valued vectors.





Chapter 4

Parallel Algorithms Based on DEMO

In this chapter, two parallel implementations of DEMO are presented. We use the variant
DEMO/parent described in [55], using DE/rand/1/bin scheme as the base algorithm
because it already proved comparable to the state-of-the art algorithms for multiobjective
optimization [54]. Used on the continuous casting optimization problem [30], however,
proved very time consuming, with single run taking more than 3 days to complete on
an average PC. To speed it up, it was parallelized to run on a computer cluster, using
message passing as a means of communication. Given the properties of the available
cluster of 16 identical dual-processor computers with fast interconnections, master-slave
parallelization model was selected as the most appropriate and has been used in both
parallel algorithm implementations. First, generational DEMO algorithm is presented,
which uses a modified DEMO and the standard master-slave parallelization. It is used
as a baseline for comparison with the more sophisticated AMS-DEMO algorithm, which
uses the original DEMO and a modified master-slave parallelization type.

4.1 Generational DEMO

First we present a parallel algorithm for numerical multiobjective optimization on ho-
mogeneous parallel computer architectures. It is based on DEMO that is first converted
from steady-state to generational and then parallelized using the standard master-slave
parallelization type. Although designed for use on homogeneous parallel computer ar-
chitectures, it can use heterogeneous architectures as well, but with lower utilization of
faster processors. This algorithm has also been published in [29].

4.1.1 Description

The optimization procedure is performed in three stages: initialization, generational com-
putation, and finalization. The initialization consists of reading the input files and set-
tings, and the setup of initial population. Generational computation iterates over gener-
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ations, where in each iteration fitness values are calculated for individuals of the current
population and the evolutionary algorithm operators are applied to them, creating the
next generation. In finalization, the results are formatted and returned to the user.

While the initialization and finalization are run by the master process, the generational
computation is run in parallel by all processes. Each iteration starts with the master
process holding a vector of individuals of unknown fitness. These are then evaluated by
the master and slave processes in parallel, requiring interprocess communication, which is
implemented as message passing, in a two-part coupled fashion. The first part distributes
the data on the individuals among the slave processes, and the second part returns the
fitness values to the master process. For the sake of simplicity, only the data on one
individual is transferred to each slave process per communication couple. This forces the
communication couple to happen more than once per generation if the population size is
larger than the number of processors. The part in which the master process receives the
results from the server processes is also blocking, i.e. it waits for all the results before
it continues execution, effectively synchronizing the processors. Coupled with multiple
communication couples per generation, this causes some unnecessary synchronizations.
After the fitness values for all individuals are known, the master process applies the
evolutionary algorithm operators and creates the next generation. Slave processes are
idle at this time, waiting to receive the data on individuals of the next generation.

The parallelization approach employed by the generational DEMO is, in the context
of multiobjective optimization, known as the Parallel Function Evaluation (PFE) variant
of the single-walk parallelization [45]. It is aimed at speeding up the computations, while
the basic behavior of the underlying algorithm remains unchanged.

4.1.2 Estimated Execution Time

What will be the expected benefits of generational DEMO running on several processors in
comparison to generational DEMO or the original DEMO running on a single processor,
solving an optimization problem? One should be able to answer this question before
starting the optimization, to use the most appropriate number of processors. We provide
an analytical model for prediction of execution times of generational DEMO in dependence
of the number of processors and the evaluation time. In the model, we assume evaluation
to be the most demanding part of DEMO, making the time it takes to execute other
parts of the algorithm negligible in comparison. Two conditions have to be fulfilled for
this assumption to hold.

The first one is that the evaluation time has to be significantly longer than the commu-
nication time. On modern hardware, communication time is in the order of milliseconds
or less, making this evaluation dependent and thus problem related. The condition holds
for most real-life problems, including our test problems. On the other hand, it does not
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Algorithm 4.1: Generational DEMO – master process

1 create an empty initial population P
2 while stopping criterion not met do
3 create an empty population Pnew

4 if P empty then
5 fill Pnew with popSize random solutions
6 else
7 foreach solution P from P do
8 randomly select three different solutions I1, I2, I3 from P
9 create a candidate solution C := I1+F·(I2 − I3)

10 alter C by crossover with P

11 Parent (C) ← P

12 add C into Pnew

13 repeat
14 n← min(number of unevaluated solutions in Pnew, number of slaves + 1)
15 select n unevaluated solutions from Pnew: C1..Cn

16 send C2..Cn to slaves into evaluation
17 evaluate C1

18 receive fitnesses of C2..Cn from slaves
19 for solutions Ci, i = 1..n and their parents from Pnew do
20 if Ci dominates Parent (Ci) then
21 leave Ci in Pnew

22 else if Parent (Ci) dominates Ci then
23 replace Ci with Parent (Ci) in Pnew

24 else
25 add Parent (Ci) into Pnew

26 until all solutions from Pnew evaluated
27 if Pnew contains more than popSize solutions then
28 truncate Pnew

29 P← Pnew

30 send termination request to all slaves

hold for test problems, such as those introduced in [71], which are defined as evaluation
functions which can be calculated extremely fast.

The second one is related to parallel setup. Although parallel DEMO variants re-
quire very little computation other than solution evaluation, there is a computationally
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Algorithm 4.2: Generational DEMO – slave process

1 while termination not requested do
2 wait to receive a message from master
3 if the message contains an individual C for evaluation then
4 evaluate C

5 send the fitness of C to the master

expensive step that can require significant execution time. This is the calculation of the
crowding distance metric, which is required for population truncation, and has compu-
tational complexity of O(Mn log n), where M is the number of objectives and n is the
population size. It could amount to significant execution time on very large n and/or M .

Assuming the evaluation to be the most demanding part, the execution time of gen-
erational DEMO tgen equals the number of generations N/n times a single generation
processing time. The single generation processing time is dominated by the evaluation
of the population, which is a parallel evaluation of p solutions on p processors tpar(p),
repeated bn/pc times, plus a parallel evaluation of the remaining n mod p solutions on p

processors:

tgen =
N

n

(
tpar(p)

⌊
n

p

⌋
+ tpar(n mod p)

)
. (4.1)

The parallel evaluation time of m solutions is the expected value of the maximum of m

evaluation times te:

tpar(m) = E

(
m

max
i=1
{te,i}

)
. (4.2)

It can be approximated as the mean of the cumulative distribution function (CDF) of
maximum time of m evaluations, which equals the CDF of the solution evaluation time,
raised to the power of m. An important note to the parallel evaluation time is, that
it does not only increase with the mean evaluation time but also with the evaluation
time variability, causing a drop in performance if either the optimization problem or the
parallel architecture causes the evaluation time to vary. The effect can be observed if the
Equation 4.1 is plotted against p for varying evaluation time variability, as the example
in Figure 4.1 clearly shows.

On one hand, our estimated execution times indicate a very good speedup of genera-
tional DEMO on homogeneous computer architectures and large numbers of processors.
The algorithm is limited, on the other hand, by the requirement that p divides population
size, and does not handle variations in evaluation time well. The next section describes
a new parallel algorithm, which is devised primarily to overcome these two limitations.
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Figure 4.1: Generational DEMO execution time vs. the number of processors p, with varying
standard deviation of evaluation time. Time is shown relative to the execution time on a single
processor. In the legend, σ stands for standard deviation of te and µ stands for mean value of te.
The results indicate a steady degradation in performance with increasing σ.

4.2 AMS-DEMO

By shifting the main task of the algorithm from traversing the search space in the same
way as it would on a single processor, towards keeping the slaves constantly occupied, we
create a new parallel algorithm, called AMS-DEMO , which greatly exceeds the flexibility
of generational DEMO. AMS-DEMO however remains effective only on problems with
long evaluation time.

4.2.1 Description

Conceptually, AMS-DEMO works as p asynchronous and independent DEMO algorithms
working on a shared population, as shown on the right hand side of Figure 4.2. The
master-slave model is used for parallelization, with the slaves running on all of the p

processors and the master running as an additional process on one of the processors.
Population is stored on the master, where the variation operators and selection are also
applied, while the slaves only evaluate the solutions supplied to them by the master as
shown on the left hand side of Figure 4.2. Because the slaves operate asynchronously,
there is no need for them to be load-balanced. In practice this means AMS-DEMO is
able to use heterogeneous computer systems, computers with varying background load,
dynamic number of processors, and that there are no performance based restrictions
on the population size and on the number of processors. Another advantage of the
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asynchronous nature of the algorithm is its robustness to a loss of a processor during the
execution, for example, due to network related problems.

Figure 4.2: Standard division of operations between the master and slaves for the master-
slave parallelization model (left), which holds for both generational DEMO and AMS-DEMO. In
contrast to the master-slave algorithms being equivalent regardless of the number of processors
they run on, AMS-DEMO exhibits a different behavior (right). It is equivalent to several serial
DEMO algorithms, one for each processor, sharing a population while being independent in other
respects.

All the slaves only wait a minimum amount of time between the evaluations, while the
master, on the other hand, performing operations orders of magnitude shorter, spends
most of the time waiting. This, however, does not decrease the efficiency of the algorithm,
since the master shares a processor with one of the slaves, causing that processor to never
be idle, by either executing the master or the slave process. When running on a single
processor, even though separated into two processes, the algorithm behaves identically to
the original DEMO algorithm.

The communication between the master and the slaves is in the form of asynchronous
message passing. Message passing means that communication consists of a sender send-
ing a message and a receiver receiving the message. The asynchronous nature of the
communication manifests as the ability of the sender and receiver to handle messages
independently of each other. In contrast, the synchronous message passing used in gener-
ational DEMO requires the sender and the receiver to participate in the communication
simultaneously, which synchronizes them. This requires the sender to wait for the re-
ceiver to start listening before it can pass on the message, and the receiver to anticipate
the message. Generational DEMO requires the processors to be synchronized at the time
messages are either gathered from the slaves or sent to the slaves, making the synchronous
message perfect for the task. For AMS-DEMO, the asynchronous message passing per-
forms better, because it spends no time waiting on synchronization.

To utilize the asynchronous communication to full extent, AMS-DEMO introduces
local queues of solutions pending evaluation to the slaves. A slave with a local queue
is able to start evaluation of a solution from the front of its queue immediately after
it completes the previous evaluation. It only briefly interrupts the chain of continuous
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evaluations by sending the last evaluation results to the master, and by checking for, and
processing of any pending messages from the master. Both of these operations are fast
because of the asynchronous message passing.

Note that in our implementation, the queue of length one is equivalent to no queue at
all, because the solution at the front of the queue is the one being evaluated – the slave
only removes it after it has evaluated it. Queue of length two should suffice to eliminate
all the wait time for the slave, because the slave does not require more than one solution
waiting in the queue. There are possible exceptions to this rule, such as the cases where
the communication time is of the same order of magnitude as the evaluation time, and
the cases where it is beneficial to send more than one solution per message because of
expensive communication.

4.2.2 Selection Lag

We explore an important difference between AMS-DEMO and the original DEMO – the
difference in the way solutions are related to the population. The difference can be easily
demonstrated if we observe a solution from its creation to its selection. In the original
DEMO, the population does not change in this observed time period. In AMS-DEMO,
while the observed solution is being evaluated on one processor, some number of other
solutions may complete evaluation on other processors. If they survive the selection,
these solutions change the population in between the observed solution creation and its
selection. This causes a lag in exploitation of good solutions. We will call it selection lag
and define it per solution as the number of solutions that undergo selection in the time
between the observed solution’s creation and selection. Selection lag l(s) therefore counts
the number of possible changes to the population (the number of replaced solutions) that
are not known to AMS-DEMO when it creates the observed solution s, but would be
known to the original DEMO under the same circumstances. Because every selection is
coupled with the creation of a new solution, selection lag can also equals the number of
solutions created while an observed solution is being evaluated. In other words, selection
lag of a solution is the number of solutions that could be created differently in the original
DEMO than they are in AMS-DEMO, because the processing of the observed solution
differs between these two algorithms.

It should be stressed that the changes to the population counted by selection lag are
possible, but not necessary. Furthermore, although the probabilities of changes depend
linearly on selection lag, they also depend on the probability for the offspring to survive
selection. Finally, a change in the population does not always cause a deviation of the
AMS-DEMO search path relative to the original DEMO search path. The probability
of causing it depends on the size of the population. For larger populations, for exam-
ple, variation operators have increased probability of selecting solutions that remained
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unchanged during the last l(s) selections, therefore making any change to the population
irrelevant.

Defined per solution, selection lag does not say much about the algorithm as a whole,
only about one of the solutions processed by the algorithm. Yet, individual selection
lags accumulate to significant changes in AMS-DEMO behavior compared to the original
DEMO behavior. We therefore define selection lag of AMS-DEMO as the value of function
l(s) across all solutions processed in a single run. Its most important property is its mean,
which equals pq−1, where p is the number of processors (which in turn equals the number
of slaves) and q is the queue size (equal on all slaves). We show this equality through an
example. In the simplest case, with queue size 1 and equal evaluation times, the slaves
work as follows. They are assigned the solutions and start evaluating them in an orderly
fashion. Slave 1 is assigned solution 1, then slave 2 is assigned solution 2, and so on
until the last slave p is assigned solution p. Because all evaluation times are equal, the
slaves finish evaluations and receive the next set of p solutions in the same order as they
received the first set. Slave 1 is assigned solution p + 1, slave 2 solution p + 2 and so on.
Therefore, selection lag for all solutions, given as the number of solutions created during
their evaluation, equals p− 1. Mean selection lag is then also p− 1.

If the evaluation times are allowed to vary in the given example, selection lag may
no longer equal p − 1 for all solutions. Mean selection lag, however, remains p − 1 due
to the fact that any increase in one solution’s selection lag must produce an equivalent
decrease in selection lags of other solutions. This is also best shown on an example of
two solutions, a and b, evaluated in parallel, with a undergoing selection just prior to
b. a has selection lag la and b has selection lag lb. If the evaluation time of a were to
increase just enough for it to undergo selection after b instead of prior to b, la would
increase by 1. But this change in evaluation time of a would also influence b. Its selection
lag would necessarily decrease by 1, because one solution less, namely a, would undergo
selection, while b was being evaluated. Thus any transposition of the evaluation order of
two solutions changes their selection lags symmetrically, keeping their mean selection lag
unchanged. This rule can also be extended to all possible permutations of the evaluation
order, since any permutation can be represented as a composition of transpositions.

On the introduction of queues, the time between creation and selection of a solution
lengthens by the time the solution in question waits in queue. The number of solutions
generated in this time equals the number of solutions in front of the queue (q−1), plus the
number of solutions generated in this time on other processors (q−1)(p−1). The average
solution selection lag or the total number of solutions generated in the time the solution
in question is waiting or being evaluated is therefore (q − 1) + (q − 1)(p − 1) + (p − 1),
which can be simplified to pq − 1.

For the final word on selection lag, it should be noted that although selection lag fully
explains the changes of the original DEMO algorithm arising from the parallelization,
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it does so only if its full distribution is observed. Its mean is only the most important
characteristic, with the benefit of being easily calculated. We can assume, however, that
as long as selection lags of solutions deviate little from the mean, which they do on our
test problems, the errors we make by observing only mean selection lags are negligible.

4.2.3 Implementation Details

Although the master process of AMS-DEMO mainly implements the functionality of
the original DEMO algorithm, the inclusion of communication and slave supervision
complicates it somewhat. Its pseudocode is listed in Algorithm 4.3, Function 4.4 and
Function 4.5.

Algorithm 4.3: AMS-DEMO algorithm – master process

1 create empty queues Q1 . . . Qp /* local copies of the queues on slaves */

2 create empty population P
3 parentIndex ← 1
4 numEvaluated ← 0
5 while stopping criterion not met do
6 while ∃k : |Qk| ≤ minimumQueueLength do
7 c = Create (parentIndex )
8 select index j such that ∀k ∈ [1 . . . n] : |Qj | ≤ |Qk|
9 add c to Qj

10 send a message containing c to slave Sj

11 parentIndex ← (parentIndex + 1) mod popSize

12 while no pending messages from slaves do wait
13 extract solution c from the first pending message
14 remove c from Qj , where j is the number of the slave that sent the message
15 Selection (c)
16 numEvaluated ← numEvaluated + 1
17 if numEvaluated is a multiple of popSize then
18 truncate P to contain no more than popSize solutions
19 randomly enumerate solutions from P

20 send termination request to all slaves

While the original DEMO provides an initialization step in which the initial popu-
lation is generated and evaluated, AMS-DEMO does not and thus avoids the required
synchronization of processes associated with such a step. AMS-DEMO rather starts with
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Function 4.4: Create(i)
Input: global population P of size popSize

global algorithm parameter F

index of the parent i

Result: creates a new candidate solution c and stores a link to its parent
1 if |P| < popSize then
2 randomly create a solution c
3 mark c as unevaluated
4 mark c as the parent of itself
5 append c to P
6 else
7 randomly select three different solutions x1, x2, x3 from P
8 create a candidate solution c := x1 + F · (x2 − x3)
9 select pi, the i-th element of P

10 alter c by crossover with pi

11 mark pi as the parent of c

12 return c

Function 4.5: Selection(c)
Input: global population P

candidate solution c
Result: modifies P by performing selection between c and its parent

1 locate parent p of c in P
2 if p not found in P then
3 select p as a random element of P

4 if p is not evaluated then
5 replace p with c
6 else
7 compare c to p
8 if c dominates p then
9 replace p with c

10 else if p dominates c then
11 keep p
12 else
13 keep p and add c to P
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an empty population P and modifies the way it creates solutions in its main loop, as it
can be seen from Function 4.4, to allow for different creation of solutions of the initial
population from those of the subsequent ones.

Because the solutions of the initial population are now created in the main loop, but
they do not have parents to compete against, the process of selection must be able to
detect them and allow them to bypass it (see Function 4.5). Before the offspring c and
its parent p enter the selection, the parent is examined (line 1 of Function 4.5). If it is
marked as unevaluated, then the offspring bypasses the selection and directly replaces
the parent. There are two possible scenarios resulting in the parent being marked as
unevaluated. The first and the more common one is that the offspring is a part of the
initial population, having no parent, and was marked as the parent of itself when it was
created (line 3 of Function 4.4). The second and rarer scenario is, that the parent is a
member of the initial population and has not finished evaluating yet. Possibly because it
is being evaluated on a one of the slower processors comprising the parallel computer. In
such a case, the two related solutions (the parent and the offspring) simply switch their
roles. The offspring skips the selection and replaces the parent in the population. Then,
after the parent is evaluated, the parent undergoes selection in which it competes against
the offspring.

The slave process of AMS-DEMO is much simpler as it only does evaluations of
solutions supplied by the master. Its pseudocode is listed in Algorithm 4.6. It consists of
two main parts – checking for and processing of messages from the master, and evaluating
solutions. Messages from the master can be of two types. Messages of the first type
contain a solution to be evaluated, while the messages of the second type contain a
request for termination. The slave receiving the latter terminates immediately, even if
there are solutions waiting in its queue.

Algorithm 4.6: AMS-DEMO algorithm – slave process

1 create empty queue Q

2 while termination not requested do
3 if Q empty then
4 while no pending messages from master do
5 wait for a message

6 push solutions from received messages into Q

7 else
8 evaluate the top element of Q

9 send the evaluation results to the master
10 pop the top element of Q
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4.2.4 Estimated Execution Time

The AMS-DEMO execution time (wall clock time) is calculated from the sum of execution
times of individual processors, divided by the number of processors p. Because we work
under the assumption of evaluation time being orders of magnitude longer than times of
communication, output operations, and DEMO operators, all of which can therefore be
safely neglected, we can say the sum of execution times of all processors equals the sum
of all evaluation times (which equals the average evaluation time te times the number
of evaluations N) plus the sum of all idle times. Since the master does not perform
evaluations and shares a processor with a slave, we can ignore it in this calculation. The
slaves are only idle at the end of the optimization, from the time the first slave has finished
its last evaluation, until the time the last slave has finished its last evaluation. Assuming
equally fast processors and slightly varying te, the slaves that started evaluations at
the same time will end up performing evaluations completely asynchronously – at any
moment in time, each one will have a different portion of its current evaluation already
performed. Given enough evaluations have passed, the portions of current evaluation
already performed will be distributed uniformly on all the slaves. When the solution
that fulfills the stopping criterion is evaluated and received by the master, the slave
that evaluated it has 0 idle time. The other (p − 1) slaves are terminated at this point,
causing all the work on their current evaluations to be discarded and the time they spent
performing their last evaluations can be counted as idle time, since it produced no useful
results. They experience idle time that on average equals the mean of proportion of
evaluation already performed times the mean evaluation time: 0.5te, making total idle
time of the system tidle

AMS = 0.5(p− 1)te. Although we analyzed the scenario in which the
stopping criterion is based on the solution quality, similar holds if the stopping criterion
is a predefined limit on the total number of evaluations. The only difference is that in the
latter case, the other (p−1) slaves no longer perform evaluations that are interrupted and
then discarded, but rather do not receive any new solutions to evaluate and are actually
idle. Putting the partial equations together and then simplifying, the estimated execution
time for AMS-DEMO is:

tAMS =
teN + 0.5(p− 1)te

p
=

te(N + 0.5(p− 1))
p

. (4.3)

Note that since the estimated working or non-idle time depends on N , the estimated idle
time does not. It is constant with respect to N , causing the ratio of idle time versus non-
idle time to decrease with increasing N . AMS-DEMO therefore experiences relatively
less idle time and is more efficient, the more evaluations it has to perform. Total idle
time can also grow quite large even when compared to wall clock time. In Figure 4.3 we
plot tAMS and tidle

AMS versus p for N = 1000. Although tidle
AMS is the sum of idle times on all

processors and as such not directly comparable to tAMS, the two graphs plotted together
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give insight into the expected efficiency of AMS-DEMO. Significant amount of processor
time can be spent waiting even though AMS-DEMO synchronizes processors only once –
at the end of the execution. At p = 45, tidle

AMS becomes greater than tAMS, the described
parallel system performs as if 44 out of the total 45 processors was constantly busy and
1 was constantly idle.
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Figure 4.3: AMS-DEMO wall clock time as the function of the number of processors p when the
total number of evaluations N is set to 1000. Although they are not directly comparable, the sum
of idle times for AMS-DEMO is also shown on the same axis. Both graphs are plotted relative to
evaluation time te.

To end the chapter on parallel algorithms, a short summary is given. To speedup
DEMO, two parallel variants were implemented, both based on master-slave paralleliza-
tion type. Both were described in detail in this chapter. First variant – generational
DEMO – extends a modified (from steady-state to generational) DEMO using the stan-
dard master-slave parallelization type. Its main properties include an easy to implement
parallelization and deterministic behavior independent of the number of processors. It
executes efficiently only when the population size is a multiple of the number of proces-
sors, the processor set is homogeneous and the evaluation time is constant. Generational
DEMO is used as a baseline for comparison with the more sophisticated second par-
allel variant of DEMO – AMS-DEMO, which extends an unmodified DEMO using a
modified master-slave parallelization type. AMS-DEMO executes efficiently on sets of
homogeneous as well as heterogeneous parallel computers, on any number of computers,
on dynamically changing number of computers and when evaluation time is variable. In
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contrast to generational DEMO, AMS-DEMO also executes identically to DEMO on a
single processor. Its path through search space then increasingly deviates with every ad-
ditional processor, which is expected to slow down the convergence rate. The measure of
this deviation is named selection lag and a way of calculating its expected value is given.
The equations for estimating execution time of both algorithms are also given and will
be used to support analysis in the next chapter.



Chapter 5

Numerical Experiments and Results

This chapter first presents the experimental setup and the tests carried out to empirically
evaluate AMS-DEMO and to compare it to generational DEMO. Next, the results are
presented, starting with the results of the optimization, followed by the analysis of AMS-
DEMO convergence and parallel speedup, both measured experimentally. Following are
the analytical projections of the behavior of both algorithms on untested number of
processors. At the end, a test on a heterogeneous computer architecture is presented.

5.1 Experimental Setup

The implementation of the presented algorithms is in C++ and compiled with gcc v3.3.3
for target 64-bit Linux system. For interprocess communication, MPICH library [35]
version 1.2.7 is used, which is the implementation of MPI (Message Passing Interface)
standard [58]. A cluster of 17 dual-processor nodes (each node being a personal computer)
is used for empirical evaluation. Each node contains two AMD Opteron 244 processors,
1024 MB of RAM, a hard disk drive, six 1000 MB/s Full Duplex Ethernet ports and an
independent installation of the Fedora Core 2 operating system. During the experiments,
all nodes are required to be running only the background system processes which leaves
nearly all capabilities to be used by the algorithm. The nodes are all interconnected
through an Ethernet switch, and, in addition, there are several direct interconnections
between the nodes (see Figure 5.1). Nodes 1 through 16 are connected by a toroidal
4-mesh, and nodes 1 through 4 are directly connected to node 17. This node also serves
as a host node, through which users access the cluster. Switch is used to connect pairs
of nodes that are not connected directly. This makes the use of any desired topology
possible. In our tests, star topologies of various sizes were used.

When selecting multiple computers from the cluster for experiments, our choice of
computers was based only on their availability and we did not try to use sets of comput-
ers with physical interconnections that form a star topology. Although this fact could

55
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cause some difference in run times between runs on different subsets of computers, it is
negligible, because, as we will show later on, the total communication time is orders of
magnitude shorter than the total run time and is actually within the run time variability.
Tests using a single processor were performed in pairs on a single computer when possible,
each processor performing its own test run. We also never used only one of the processors
of a computer for a test run that required multiple processors. Since all of our tests on
multiple processors were executed on an even number of processors, we always used both
processors on all the used computers. All of the performed tests required multiple runs,
which were usually performed on several different sets of computers – again, selected de-
pending on their availability. An exception were tests on 32 processors which were always
performed on the same set of computers. We noticed no significant differences between
runs of tests performed on different set of computers.

Figure 5.1: Architecture of the computer cluster used in tests. All nodes are interconnected
either directly or through the Ethernet switch, forming a fully connected graph.

5.1.1 Varying the Queue Length

Although the queues have been implemented in AMS-DEMO to reduce the slave idle time
to a minimum, they also allow simulating more processors than are available on the test
architecture, as we will show further on. This allows for a simulation of a curious AMS-
DEMO property – the ability to run on a number of processors that is larger than the
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population size. Although there are other possibilities of simulating additional processors,
e.g. running multiple processes on a single processor, queues are chosen to simultaneously
expose the drawbacks of their use.

AMS-DEMO running on p slaves, each having a queue of length q, explores the ob-
jective space in a similar fashion as if it were running on p times q slaves, each having a
queue of length 1. This is because AMS-DEMO behavior changes with its selection lag,
which was shown to equal pq − 1. The same selection lag may be obtained through dif-
ferent values of p and q, therefore, increasing queue length emulates the use of additional
processors. Although the settings of AMS-DEMO that produce the same selection lag
produce very similar behavior, there is a difference between executing the algorithm on
less processors with longer queues and running it on more processors with shorter queues.
If a number of solutions are inserted into a single queue, they undergo selection in the
same order as they have been inserted in. On the other hand, if the same number of
solutions are distributed among different processors and the evaluation time varies, they
are likely to undergo selection in a different order. This manifests as an increase in the
variance of the selection lag, and, although difficult to quantify, has some influence on the
algorithm behavior. We believe the standard deviation to be too small for its influence to
be discernible from the noise and therefore we ignore it in further analysis. We perform
the analysis of selection lag in Subsection 5.3.1, where we defend the decision to ignore
the selection lag variance in our experiments.

To demonstrate AMS-DEMO capability to run on a number of processors greater
than population size, queues were used to emulate 320 and 640 processors on the cooling
problem, and 64, 128, 256, and 512 processors on the ECG problem. All the tests with
increased queue lengths were performed using the same algorithm parameters as for the
basic tests with queue length of 1. The results of the tests were used directly for the
analysis of convergence, while for the analysis of speedup they were combined with a
prediction of run times. The queue length of 1 was used for basic tests because it produced
negligible wait times for the slaves.

5.2 Optimization Results

In this section we discuss the effectiveness of the optimization – the quality of results,
starting with the cooling problem, followed by the ECG problem.

5.2.1 Experiments with Steady-State Steel Casting Simulator

The optimization of the steady-state steel casting process served primarily as a test bed
for a comparison between generational DEMO and AMS-DEMO and is the continuation
of the work done in [25]. Therefore, the population size was first selected as the one
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that suits the problem, while also being a multiple of the number of processors, allowing
a good performance of the standard master-slave parallelization type based generational
DEMO. As shown in previous work [26], solving the continuous casting with optimization
problem DEMO seems to work best with population sizes between 20 and 40, which
coincides well with the 34 available processors. Number 34 unfortunately has only four
divisors (1, 2, 17, and 34). For tests with a generational algorithm, having numerous
divisors is important as it allows for numerous tests where population size is a multiple of
the number of processors. Therefore, the population size of 32 was chosen, which has six
divisors (1, 2, 4, 8, 16, and 32). With this population size, six tests with various number
of processors and maximum efficiency (minimum processor idle time) were possible for
generational DEMO. Further algorithm settings were adopted from previous experiments
[31] and were as follows: scaling factor F 0.5 and crossover probability 0.05.

Figure 5.2: Nondominated front of solutions for the cooling problem obtained with generational
DEMO.

It turned out that both parallel algorithms were able to discover the solutions known
from previous applications of the original DEMO [31] demonstrating conformance with it.
To illustrate the results, Figure 5.2 shows the resulting nondominated front of solutions
(approximating the Pareto optimal front) found by generational DEMO. The conflicting
nature of the two objectives – improving the coolant flow settings with respect to one
objective makes them worse with respect to the other is evident from the presented non-
dominated front of solutions. In addition, a systematic analysis of the solutions confirms
that the actual slab surface temperatures are in most cases higher than the target tem-
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peratures, while the core length is shorter than or equal to the target core length. Exact
temperature differences for three solutions from the front displayed in Figure 5.2, two on
the boundaries of the front and one trade-off, from the center of the front, are shown in
Figure 5.3. The corresponding three sets of coolant settings (parameters of the solutions)
are shown in Figure 5.4.

Figure 5.3: Differences from optimal temperatures in three solutions in three solutions to the
cooling problem, taken from both boundaries and the center of the nondominated front of solu-
tions, shown in Figure 5.2, sorted by their temperature difference sum. The corresponding core
length deviations are −2.4 m, −1.2 m, and 0.0 m.

Figure 5.4: Optimized coolant flows for the three solutions shown in Figure 5.3

5.2.2 Experiments with ECG Simulator

For a thorough test of AMS-DEMO, the way its convergence rate changes with the in-
creasing number of processors has been analyzed. A test of convergence required large
number of repeated runs with varying number of processors but otherwise fixed problem
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setup, to make it possible for statistical analysis to discern small changes in convergence
rates. The presented ECG problem has the desired properties that enable a large number
of repeated runs in a limited time frame and was therefore used mainly for the estimation
of convergence rate. Generational DEMO was not tested on this problem as the test would
require similar execution time as the test of AMS-DEMO, while its convergence rate is
not of interest in this dissertation. But before we move on to convergence rate tests, let
us observe the qualitative optimization results that we found for the ECG problem.

The obtained optimization results are somewhat surprising; the simulator always pro-
duces ECGs with nearly identical positions of the T wave peaks on both electrodes. In
Figure 5.5, the optimization results are shown as the nondominated front of solutions
after 10000 evaluations. The two criteria are marked as V2 fit and V5 fit and indicate
how well do the simulated ECGs on electrodes V2 and V5 fit the measured ECGs on the
same electrodes. Both are calculated as 1 minus correlation between the measured and
simulated ECG on the observed electrode. Two extreme solutions – in which either the
first or the second criterion is optimized the most – are shown in Figure 5.6 along with
the measured ECG that was used as the target in the objective function. The presented
solutions clearly indicate that while the simulator generates the shape of the T wave in
great fidelity on two electrodes simultaneously, it is unable to generate a delay between
the T wave peaks on two electrodes. This is further confirmed when all the nondominated
solutions are examined. All nondominated solutions exhibit great fidelity in reproduced T
wave shapes and the same timing of T waves on both simulated electrodes. This timing,
which lies between the timings of both measured T wave peaks, determines the position

Figure 5.5: Nondominated front of solutions for the ECG problem after 10000 evaluations on a
single processor.
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of a solution on the front: the closer it is to the correct timing on a given electrode, the
better will the objective for the same electrode be, and the worse will the other objective
be.

Solution 1: objective function value = (0.00130, 0.08443)

Solution 2: objective function value = (0.06615, 0.00075)

Figure 5.6: Typical solutions to the ECG problem. Because we are only interested in the shape
of solutions, y axis has no unit specified and amplitudes of solutions are scaled to match the target
ECGs.

How can this optimization result be interpreted? We gain two insights into the ECG
simulator through it. First, the obvious one – the simulator is not able to generate
accurate ECG on several electrodes simultaneously, it requires further improvements.
The second insight is more subtle but also more useful; the results indicate that none
of the mechanisms of ECG generation that are built into the simulator can generate the
delay between T waves on different electrodes. There must be an additional mechanism
responsible for the delay.
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5.3 Analysis of AMS-DEMO

In this section, AMS-DEMO is compared against the serial algorithm and against the
generational DEMO in a detailed analysis of the convergence and speedup on varying
number of processors. To make the experimental results directly comparable, no algo-
rithm parameters other than the number of processors varies between the tests on the
same problem. Nevertheless, the tested algorithms are not equivalent even on the same
parameter set, because each takes a different path through the search space, producing
different results. Therefore, even though we run the algorithms for a fixed number of
evaluations, we monitor their performance characteristics relative to the solution quality
and not the number of evaluations.

5.3.1 Convergence

Convergence of the algorithms is characterized by the quality of the nondominated set
of solutions in dependence of the number of performed evaluations. The quality of the
nondominated set of solutions was evaluated using the hypervolume indicator IH (also
called the S metric) [73, 70], which is a measure of the hypervolume of objective space
dominated by a set of solutions. A set of solutions that dominates a bigger hypervolume
(a larger surface area in the case of two objectives) of the objective space is better than
a set of solutions that dominates a smaller hypervolume of the objective space. The
properties of the hypervolume indicator [39] enable the observation of the convergence of
solutions towards the optimum within a single run, and comparison of achieved solutions
between two or more runs. On the other hand, the hypervolume indicator is sensitive to
the properties of the nondominated front of solutions [9], such as the uniformness of the
distribution of solutions along the front, making comparison between different algorithms
less reliable. The properties of the nondominated front of solutions are mainly influenced
by the variation operators and the truncation of solutions, which do not differ among the
algorithms we compare. The comparison is therefore valid.

In the tests of convergence, we take the original DEMO as the baseline for comparison
with both parallel algorithms. For the cooling problem, we perform 25 runs of each algo-
rithm with the stopping criterion set to 9600 evaluations, and for the parallel algorithms,
we take the number of processors p = {1, 2, 4, 8, 16, 32, 320, 640}. The experiment would
benefit from having more than 25 runs per test, providing more confident statistical re-
sults, but 25 is a practical limit because of the long execution times; for example, a single
run of the original DEMO takes close to 80 hours to complete. For a more precise sta-
tistical analysis we use 100 runs of AMS-DEMO on the ECG problem with the stopping
criterion set to 10000 evaluations. More runs are possible because of the shorter time per
run; a single run of the original DEMO on this problem takes just over 15 hours. Because
of shorter time per run and because more precise statistical analysis is possible, we also
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use p = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}, which is different from p used on the cooling
problem.

Convergence on the Cooling Problem

We first use the results obtained on the cooling problem to compare the convergence of
the original and generational DEMO algorithms. Since p does not affect the convergence
of generational DEMO, there is no need to analyze the convergence in dependence of
p. Therefore we analyze the difference between the algorithms which hold for every p.
Figure 5.7 shows the mean convergence rates of the algorithms characterized by mean IH ,
obtained from 25 runs for each algorithm, as the function of the number of evaluations
N . The differences, plotted in Figure 5.8, are found to be statistically insignificant on the
whole tested range. The IH values for the figures were calculated for every generation in
case of generational DEMO and for every number of evaluations which is a multiple of
population size – after every truncation of the population, for the original DEMO.

Figure 5.7: Comparison between the mean convergence rates of the original DEMO and genera-
tional DEMO on the cooling problem. Mean hypervolume indicator values IH of 25 runs for each
algorithm are plotted as a function of the number of performed evaluations N .

The results indicate that generational DEMO converges as fast as the original DEMO
on the cooling problem. This means that changing DEMO from steady-state to gen-
erational did not degrade its performance and indicates a possibility for a very good
performance of generational DEMO on multiple processors. Another positive effect of



64 CHAPTER 5. NUMERICAL EXPERIMENTS AND RESULTS

Figure 5.8: The difference between the mean convergence rates of the original DEMO and
generational DEMO on the cooling problem. The value of generational DEMO hypervolume
minus the original DEMO hypervolume (both means over 25 runs) is plotted as a function of the
number of performed evaluations N .

the convergences not differing significantly is that in further tests, we can compare gener-
ational DEMO to the original DEMO based only on the number of performed evaluations.

Next, the convergence of AMS-DEMO is tested experimentally. It should be noted
that when the number of processors drops to one, AMS-DEMO reverts back to the original
DEMO – given the same random generator and seed, AMS-DEMO algorithm traverses
the same path through the search space as the original DEMO, and has no calculation
overhead. Therefore, tests of AMS-DEMO on a single processor are taken also as tests of
the original DEMO. For each test run the value of IH was measured after every population
truncation.

Due to the changes in the algorithm, required by the parallelization, AMS-DEMO
performance is expected to decrease when the number of processors increases. Figure 5.9
shows the IH of the last population of each test run on the cooling problem. Aside from
the scattering of the lower quality results and with the exception of p = {320, 640}, there
is little visual difference in the distributions between the final IH on different numbers
of processors. The distributions also do not appear normal, which is confirmed with
high confidence by the Kolmogorov–Smirnov test. Furthermore, the hypotheses that
the underlying distributions of the last population are the same for one processor as for
any other tested number of processors, cannot be rejected even at 90% confidence for
p = {1, 2, 4, 8, 16, 32}, using the two-sample Kolmogorov–Smirnov tests. Therefore, the
difference in results when p is less or equal to the population size n, after 9600 evaluations
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appears to be too small to be discerned with the statistical tests performed on the sample
size of 25 runs. On p that is 10 or 20 times larger than n, however, the lowering of the
convergence rate can already be clearly seen.

Figure 5.9: Hypervolume indicator IH of the final populations (after 9600 evaluations) of all
AMS-DEMO runs, for all tested numbers of processors p on the cooling problem.

Convergence rate is further shown in two different ways. In Figure 5.10, mean IH is
plotted against N , showing a distinctly worse convergence rate for p = {320, 640} than
for the other values of p, a group of visually similar convergence rates for p = {1, 2, 4, 8},
and slightly worse convergence rates at lower values of N for p = {16, 32}. In Figure 5.11,
IH = {3.5, 3.65, 3.75, 3.82} is pre-specified, and the 95% confidence interval for mean N

at which AMS-DEMO reaches the given IH , are shown for all tested p. Mean values of N

indicate that increasing the number of processors does slow down the convergence even for
p ≤ 32. Their confidence intervals, however, are quite large, making statistical confidence
in such conclusions small. As Figure 5.9 shows, not all runs not reach IH = 3.82 before
they complete 9600 evaluations, when they are stopped. For p = 640 there are only two
runs that reach it, therefore mean N is not calculated for this value of IH . For the other
10 runs out of 175 on p < 640 that do not reach IH = 3.82, the values of N are estimated
from their value of IH at N = 9600 and the average convergence rate of all the other runs
for the same value of p.

The statistical significance of the differences in number of evaluations required for
AMS-DEMO for specified p to reach various IH is determined using the two-sample
Kolmogorov–Smirnov test. As shown in Figure 5.12, the differences are statistically
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Figure 5.10: Hypervolume indicator IH as a function of the number of evaluations N for AMS-
DEMO on the cooling problem.

Figure 5.11: Mean number of evaluations N for AMS-DEMO to reach predefined solution
quality on the cooling problem. Solution quality is specified with the hypervolume indicator IH

in labels. Best estimates for means are marked with × and connected with solid line, their 95%
confidence intervals are marked with +, and connected with dashed lines. The value of mean N

at p = 640, IH = 3.82 is not available because only 2 out of 25 runs on p = 640 reach IH = 3.82.

significant (P -value < 0.05) only for p = {16, 32} on the interval of IH ∈ [3.26 . . . 3.77].
This is consistent with our expectations; the difference between DEMO and AMS-DEMO
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increases with the number of processors and is more important in the early stage of lower
quality solutions and faster convergence, and less important in the later stage of higher
quality solutions and slower convergence. The difference is also not detected immediately
but rather after the initial random population is significantly improved.

Figure 5.12: The significance of convergence rate slow down on p > 1 for IH ∈ [3.1 . . . 3.85]. The
null hypotheses are that using p ∈ {2, 4, 8, 16, 32} processors does not require more evaluations
than using only 1 processor to reach the same value of IH . Results plotted here are filtered with
Gauss filter with σ = 0.02 to reduce the noise in P -value and thus make individual curves more
clearly visible.

Convergence on the ECG Problem

The tests on the ECG problem were designed to provide more information regarding the
AMS-DEMO convergence and they fulfill this goal very successfully. In the Figure 5.13,
IH is plotted against N , producing a graph very similar to the one from the tests on the
cooling problem. Convergence notably slows down with increasing N , yet there is little
difference between curves for p ≤ 16. Figure 5.14 is again similar to the figure obtained
from the tests on the cooling problem but with narrower confidence intervals for the mean
N , thanks to a larger number of test runs. There is little visible difference in convergence
rate for p ≤ 16, but there is also a clear lowering of the convergence rate for larger values
of p.

Since large number of test runs provides a very good estimate of mean N required for
AMS-DEMO to reach the desired IH value, another plot is possible. Figure 5.15 shows
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Figure 5.13: The hypervolume indicator IH as a function of the number of evaluations N for
AMS-DEMO on the ECG problem. Only up to 4000 evaluations out of 10000 are plotted as the
curves visually overlap almost completely from there on.

Figure 5.14: Mean number of evaluations N for AMS-DEMO to reach predefined solution quality
on the ECG problem. Solution quality is specified with the hypervolume indicator IH in labels.
Best estimates for means are marked with × and connected with solid line, their 95% confidence
intervals are marked with +, and connected with dashed lines.

the convergence rate of AMS-DEMO running on p processors relative to the original
DEMO, calculated as the ratio between the mean N the compared algorithms require to
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reach a certain IH . It makes clear that the convergence rates are about constant for all
p, and for AMS-DEMO at p ≤ 8 are very similar to the convergence rate of the original
DEMO (depicted by the vertical line). In contrast to previous figures, the convergence
rate for p = 16 visibly lags behind those of smaller numbers of p and the convergence rate
for p = 4 seems to be constantly the best, even better than the convergence rate of the
original DEMO. Convergence rates of p ≥ 32 are clearly lower than that of the original
DEMO but nevertheless, the convergence rate at about 0.5 of the original convergence
rate seems very good for 512 processors, which is almost 10 times the population size.
A more quantitative analysis of the achieved convergence rate will be given in the next
section, where speedup of AMS-DEMO running on various numbers of processors will be
discussed.

Figure 5.15: Convergence rate of AMS-DEMO on p processors (specified in labels) relative to
the original DEMO on the ECG problem, as a function of the hypervolume indicator IH . Numbers
smaller than 1 indicate a convergence slower than that of the original DEMO.

Analysis of Selection Lag

So far we have been discussing convergence as a function of p, based on the dependence of
the convergence rate on the selection lag l, and the linear dependence between mean l the
number of processors. Since mean of l does not fully describe l, we show the distributions
of l for the experimentally tested values of p. Figure 5.16 and Figure 5.17 show the
distributions of l on the cooling problem for directly tested values of p and emulated
values of p, respectively, while Figure 5.18 and Figure 5.19 show the same for the ECG



70 CHAPTER 5. NUMERICAL EXPERIMENTS AND RESULTS

problem. All figures were plotted using data from log files of the master process, which
contain a sequence of evaluated individuals marked with the number of the slave that
evaluated them, in an order they were received and processed by the master process. All
test runs, i.e. 25 per value of p for the cooling problem and 100 per value of p for the
ECG problem, and all evaluated solutions within each test run were used to plot the
distributions of l.

Figure 5.16: Distributions of selection lag l for various numbers of processors p on the cooling
problem. Probabilities are only plotted if higher than 0.001 to limit the amount of overlap of the
distribution tails.

Besides having a mean of pq−1, as predicted, peaks of almost all distributions of l are
at pq−1. Exceptions are only the distributions for p = {320, 640} on the cooling problem.
These two have peaks at slightly larger values of l, because they are asymmetrical, with
a fatter left tail. This is likely the result of evaluation time te distribution for the cooling
problem. On the ECG problem the distributions of l, in contrast, reflect only very faintly
the two peak nature of the distribution of te. Along the very pronounced peak at l = pq−1,
there is also a weak peak at l = 0, almost too small to be visible in the figures.

We conclude that some real-life scenarios of non-constant evaluation time (such as
the two presented in our test problems) do not have a large influence on the selection lag
distribution. Observing the presented distributions of selection lag, mean is confirmed as
their most informative measure. The number of processors, closely coupled to the mean
selection lag, is therefore also confirmed as a good indicator of the AMS-DEMO behavior.

To summarize, the results of the convergence tests confirm the predicted lowering of
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Figure 5.17: Distributions of selection lag l for tests with emulated values of number of processors
p on the cooling problem. Note that y axes does not match Figure 5.16. Probabilities are only
plotted if higher then 0.0002 to limit the amount of overlap of the distribution tails.

Figure 5.18: Distributions of selection lag l for various numbers of processors p on the ECG
problem. Probabilities are only plotted if higher than 0.001 to limit the amount of overlap of the
distribution tails.

the convergence rate of AMS-DEMO with increasing selection lag. Selection lag tracks
the number of processors as predicted, meaning that the convergence rate lowers with
increasing number of processors p. The limit up to which AMS-DEMO converges as fast
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Figure 5.19: Distributions of selection lag l for tests with emulated values of number of processors
p on the ECG problem. Probabilities are only plotted if higher than 0.001 to limit the amount of
overlap of the distribution tails.

as the original DEMO is not clear though. On the cooling problem, the convergence of
AMS-DEMO seems to slow somewhat even with p as low as 2, while on the ECG problem,
the slow down only occurs at p ≥ 16. The slow down is also quite moderate; it decreases
at a slower rate than p increases, indicating the speedup will increase for the whole tested
range of processors.

5.3.2 Speedup

Using speedup, we primarily address the performance of AMS-DEMO compared to the
original DEMO. We also do a comparison with generational DEMO, which provides a
deeper insight into the differences arising from the use of asynchronous versus synchronous
parallelization. For the input data, we use the same test as for the analysis of convergence.
Speedup is calculated using execution times of serial and parallel algorithms as defined
by Equation 2.3. Execution times are the times in which the compared algorithms reach
the same predefined quality of solutions. We measure the quality of solutions as the
hypervolume indicator IH of the nondominated set of solutions and therefore the parallel
execution time of the algorithm running on p processors is referred to as t(p, IH). We can
now rewrite speedup S as a function of two variables p and IH as:

S(p, IH) =
t(1, IH)
t(p, IH)

. (5.1)
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Table 5.1: The distribution of total execution times for test both problems, given as the mean
± standard deviation in seconds

p Generational DEMO AMS-DEMO

Cooling problem

1 298502 ± 1576 293667 ± 3758
2 145584 ± 5646 152952 ± 1678
4 79751 ± 446 76815 ± 783
8 41105 ± 389 38370 ± 168

16 21454 ± 183 19279 ± 59
32 11019 ± 276 9629 ± 18

ECG problem

1 55720 ± 326
2 27986 ± 138
4 14013 ± 86
8 7024 ± 54

16 3504 ± 36
32 1756 ± 17

This equation applies only to AMS-DEMO, which is an algorithm that works differently on
different numbers of processors. Speedup for generational DEMO can be calculated with
basic speedup equation (Equation 2.3) because its convergence, as confirmed in previous
section, is not significantly different from the convergence of the original DEMO.

To calculate the speedup, measurements of parallel execution time, also called wall
clock time, are required. Parallel execution time is the time in which the algorithm in
question terminates because it reaches its termination condition, and is measured from
the first of the processes that starts the execution, to the last of the processes to finish
the execution. For the presented parallel algorithms, the master process is both the
first to start and the last to finish, therefore we measure parallel execution time as the
execution time of the master process. In addition, we embed timers with the precision
of 1µs into the algorithms at main points of interest – the evaluation, communication,
waiting for messages, input / output operations, and DEMO operators. Although the
main use of these timers is in the analysis of parallel algorithms, which is discussed in
the next section, we also use them to measure execution time t(p, IH) as the time of the
first population truncation which produces the population with the specified value of IH .
Table 5.1 summarizes total execution times (wall clock times) for both test problems. All
times are specified in seconds, as mean value ± standard variation. Only the tests with no
emulated processors are shown. Note that ECG problem is not specified in generational
DEMO column as it was not solved with generational DEMO.
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To aid the analysis, the speedup was broken down into two factors – the speedup due to
the increased computational resources provided by the use of multiple processors, Sp, and
the speedup due to the changes in the algorithm that were necessary for parallelization,
Sc:

S(p) = Sc(p)Sp(p) . (5.2)

The former tells us how many times more the problem related computation (overhead
not included) is done per time unit on p processors in comparison to 1 processor, and
the latter how many times less computational effort is required by the algorithm to reach
solutions of similar quality on p processors than on 1 processor or, in other words, how
much is the convergence faster on p processors than on 1 processor. It is evident from
the algorithm convergence tests that in the case of AMS-DEMO, increasing p causes an
increase in computational effort (lowers the convergence rate), therefore Sc is expected
to be less than 1. Computational effort is measured as the number of evaluations Nq

required by the algorithm running on p processors to reach a predefined solution quality
IH , thus Sc can be calculated as:

Sc(p, H) =
Nq(1, IH)
Nq(p, IH)

. (5.3)

Finally, the speedup arising from the use of multiple processors, Sp, can be calculated as
the ratio of the numbers of performed evaluations per time unit Nt on p processors and
on 1 processor:

Sp(p) =
Nt(p)
Nt(1)

. (5.4)

From Table 5.2 the average difference between the AMS-DEMO and the generational
DEMO can be observed on the cooling problem for IH ∈ [3.1 . . . 3.85]. The expected
decrease in AMS-DEMO efficiency as the result of the increasing number of processors
is quantified in a column for Sc under AMS-DEMO. AMS-DEMO therefore gets pro-
gressively less efficient than the original DEMO with every additional processor. On the
other hand, a high, nearly linear Sp for small numbers of p implies a very good utilization
of processors. The opposite holds for the generational DEMO. While it is as efficient
as the original DEMO in utilizing evaluations, it is less efficient at utilizing additional
processors, which is reflected in smaller Sp. At p = n, generational DEMO reaches its
limit in the number of processors it can utilize, which means all further increases in p do
not change its speedup, which stays at its maximum value. Note that for the calculation
of speedups S(p) and Sp(p) for values p > 32, execution times are calculated using Equa-
tion 4.3. Sc(p), on the other hand, is calculated from measured IH(p) for all p. Also note
that Equation 5.2 does not hold for the table – this is because the involved quantities in
table are means and not individual values, for which the equation holds.

AMS-DEMO speedups on the ECG problem are summarized in Table 5.3. As on the
cooling problem, in the calculation of speedups S(p) and Sp(p) for values p > 32, execution
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Table 5.2: Comparison between AMS-DEMO and generational DEMO in terms of the mean
speedup on the cooling problem for IH ∈ [3.1 . . . 3.85]

AMS-DEMO Generational DEMO
p S(p) Sc(p) Sp(p) S(p) Sc(p) Sp(p)

Measured

1 1 1 1 1 1 1
2 1.95 0.97 2.02 1.91 1 1.9
4 3.77 0.98 3.86 3.75 1 3.74
8 7.42 0.93 8.01 7.27 1 7.26
16 12 0.78 15.4 13.9 1 13.9
32 24.4 0.80 30.6 27.1 1 27.1

Partially emulated

320 95.9 0.36 267 27.1 1 27.1
640 118 0.29 405 27.1 1 27.1

Table 5.3: AMS-DEMO speedup on the ECG problem for IH ∈ [3.7 . . . 3.976]

p S(p) Sc(p) Sp(p)

Measured

1 1.000 1.000 1.000
2 1.966 1.006 1.997
4 4.116 1.037 3.982
8 7.580 0.971 7.922
16 14.17 0.939 15.68
32 27.36 0.913 30.74

Partially emulated

64 44.95 0.785 59.73
128 75.35 0.691 113.6
256 117.8 0.581 210.8
512 167.6 0.461 381.9

times are calculated using Equation 4.3, while Sc(p) is calculated from measured IH(p)
for all p, and Equation 5.2 does not hold because the values in the table are means.

Observing the speedups calculated from the tests on the cooling problem, the conclu-
sion is that on homogeneous computer architectures, the algorithms closely match, with
generational DEMO in a slight advantage on p ≤ n, and AMS-DEMO in clear advantage
on p ≥ n. These tests do favor generational DEMO slightly, when using p that divides
n, but it is expected that in most real-life problems n could easily be tuned to a multiple
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of p, while keeping it in the interval that suits the problem. From the tests on both
problems, it is clearly seen that the drop in efficiency of AMS-DEMO with increasing
p is compensated by a very good utilization of available processors. On both problems,
increasing p always yields greater S. In cases when p is higher than n, AMS-DEMO
provides speedups far beyond the capabilities of generational DEMO.

5.4 Analytical comparison

Based on the analytical models for prediction of run time, we compare AMS-DEMO to
the original DEMO and generational DEMO, providing a way to estimate the efficiency
of parallel algorithms on problems and parallel architectures not tested in this thesis.
Analytical model is evaluated by the timer data collected in the tests described previously.

As mentioned before, we use software timers with resolution of 1 µs to measure the
duration of each repetition of the most time consuming steps of presented parallel al-
gorithms – solution evaluation, communication, waiting for messages, input / output
operations and DEMO operators together with the parallelization overhead. Evaluation
time of solutions is measured on slave and master processes for generational DEMO, and
only on slave processes for AMS-DEMO, whose master process does not evaluate solu-
tions. In case of generational DEMO, the communication and waiting for messages are
not separated in the source code, so the two are timed together.

We analyze the gathered time data to assure parallel algorithms behave as expected,
and to contrast the processor utilization efficiency of AMS-DEMO to inefficiency of gen-
erational DEMO. First, we take a look at the separation of execution time into the main
steps that are summarized for generational DEMO master in Table 5.4 and AMS-DEMO
master in Table 5.5. These times confirm that the evaluation accounts for the most of
the execution time in all cases. Communication and wait times associated with it only
become important on multiple processors on generational DEMO. Input / output oper-
ations, comprised of algorithm reading the input parameters from a file, writing both
intermediate and final results, and timer values to files, proved negligible for both algo-
rithms. So did the DEMO operators. Further analyses can thus be simplified by ignoring
the time requirements of input / output operations and DEMO operators.

Considering generational DEMO, we can understand communication times better by
analyzing them per generation. In addition to the communication time and the evaluation
time as measured on the master process, Figure 5.20 also shows the maximum time of all
evaluations in a generation. It can be seen that the measured communication time roughly
equals the difference between the longest evaluation time and the evaluation time on the
master process. Measured communication time is therefore, as predicted, mostly spent
waiting for the longest evaluations. Pure communication time can be estimated as the
sum of communication and evaluation times on the master process, from which the longest
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Table 5.4: The separation of wall clock time among the steps of the generational DEMO algo-
rithm on the cooling problem, given as the mean ± standard deviation in seconds

1 processor 32 processors

Total 298502 ± 1762 11019 ± 308
Evaluation and waiting 298502 ± 1762 9911 ± 376

Communication 1108 ± 129
Input/output 0.323 ± 0.012 0.307 ± 0.001

DEMO operators 0.141 ± 0.017 0.135 ± 0.003

evaluation time is subtracted. It sums up to 1.2 seconds for the shown optimization run,
which can be translated to 4 milliseconds per generation on average. Although this is
only a rough estimate, it shows that communication times are an order of magnitude
longer than the times of the input / output operations and the variation operators, but
still negligible in comparison to the evaluation time.

Figure 5.20: Single run of evaluation and interprocess communication times per generation of
generational DEMO on the cooling problem on 32 processors. Evaluation time of the master
process is contrasted with the longest evaluation time of all the processes. The difference between
the these times matches closely the communication time.

Master process of AMS-DEMO spends most of the time idle, but as described before,
this has no effect on the algorithm performance, since the master always shares processor
with one slave. In comparison to generational DEMO, input / output operations in AMS-
DEMO have a greater time complexity that also varies with the number of processors, on
the account of writing additional debugging information, spread up among the proces-
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Table 5.5: The separation of the wall clock time among the steps of the AMS-DEMO algorithm
on the ECG problem

1 processor 32 processors

Total 55273 ± 286 1747 ± 17
Communication 2.48 ± 0.13

Idle 55269 ± 286 1739 ± 17
Input/output 2.71 ± 0.74 1.61 ± 0.07

DEMO operators and overhead 1.48 ± 0.02 4.02 ± 0.14

sors. Similarly, for AMS-DEMO, the time complexity of DEMO operators and overhead
is larger and increases with the number of processors. The parallelization overhead,
comprised of working with local copies of queues and storing links between parents and
offspring, can be assumed to cause this variability. Unfortunately it is tightly interwoven
with the DEMO operators, which makes it impractical to measure them separately.

The presented time measurements confirm that estimations of the execution time
in Equation 4.1 and Equation 4.3 were constructed correctly, using only the most time
demanding steps of both parallel algorithms. To establish the accuracy of the equations
and possibility to use them for prediction of behavior of the presented algorithms, the
estimated execution times are compared against the experimentally measured execution
times in calculation of the speedup due to use of additional processors, Sp.

Estimations of the execution time require the distributions of evaluation time to be
specified. Therefore, the distributions are estimated from the measurements for both test
problems. We use the measurements made by 1µs resolution timer that measures every
evaluation separately. The results are presented in Figure 5.21 for the cooling problem
and in Figure 5.22 for the ECG problem. Both problems exhibit some variability in their
evaluation time, and the distribution of the ECG problem evaluation time consists of two
separate peaks at 0 s and at 5.5 s, which are the consequence of a two stage evaluation,
where the second, more time demanding stage, is not always executed. There is also a part
of the distribution to the right of the plotted area of te for the ECG problem (7183 samples
out of 1000000) consisting of very long evaluations, lasting from 6.25 s to 320 s. These
long evaluations are caused by the hardware taking several orders of magnitude longer
to calculate exponential function xy observed for some rare combinations of arguments
x and y than it does for others. Furthermore, the distribution of evaluation times on
the ECG problem contains a time dimension as well – the number of extremely bad
solutions that evaluate extremely fast decreases as the algorithm converges, as we have
seen in Subsection 5.2.2. We make an additional plot of the number of evaluations that
last less than a second (fast evaluations) relative to the hypervolume indicator IH of the
nondominated set of solutions in Figure 5.23. The presented decrease in the number of
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fast evaluations with the increasing IH is not of much use for prediction of run times
though, because the convergence of IH is not known beforehand.

Figure 5.21: Distributions of evaluation times for the cooling problem made by timing 240000
evaluations, that were performed during the test runs on 32 processors.

Then, using the obtained evaluation time distributions, the estimated and measured
Sp are calculated and plotted in Figure 5.24 and Figure 5.25. Both figures show accurate
estimations of speedup, even though the evaluation time variability in dependence of
IH is ignored in our runtime estimations for the ECG problem. There are slight errors
between the predicted and measured speedups of the generational DEMO that occur
because of the small number of experimental runs, that do not smooth out variations in
te completely.

5.5 Test on a heterogeneous computer architecture

To test the AMS-DEMO flexibility, a heterogeneous computer architecture has been cre-
ated for experimental optimization of the cooling problem. Two computers from the
cluster described in Section 5.1 and two desktop computers have been connected via a
Gigabit Ethernet switch, creating a six processor architecture. Details of the heteroge-
neous architecture along with the statistics of a single AMS-DEMO run are summarized
in Table 5.6. Total execution time of the run equals 49407 s. Aside from the differences
in the declared processor clock frequencies, the computers also feature different operating
systems, and in the table, the two desktop computers are named according to these. Al-
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Figure 5.22: Distributions of evaluation times for the and ECG problem made by timing 1000000
evaluations, that were performed during the test runs on 32 processors.

though different mean evaluation times among the computers have been expected when
setting up the architecture, the additional nondeterministic variation in evaluation times
were found, which differed between the computers as shown in Figure 5.26. This nonde-
terministic behavior was not explored any further but it should serve as a warning that
some nondeterminism in evaluation times can be expected on real computer systems and
real optimization problems.

The results from the heterogeneous architecture obtained by averaging five AMS-
DEMO runs are compared against the estimated performance of generational DEMO on
the same computer architecture. Two possible settings of the generational DEMO are
considered, that differ only in the population size. The first setting uses the population
size of 32, the same as used in the AMS-DEMO tests, which is not a multiple of the number
of processors, and therefore causes a degradation of performance of the generational
DEMO. For the second setting, the population size is adjusted to the nearest multiple
of the number of processors, which is 30. The performance of the generational DEMO
was estimated using Equation 4.1 and the distributions of the evaluation times from
Figure 5.26. Note that we decided to calculate execution times instead of measuring
them because the experiments requiring dedicating desktop computers for this task for
extended periods of time were impractical.

In Table 5.7 the performance of AMS-DEMO and generational DEMO on the het-
erogeneous architecture are summarized. It follows that AMS-DEMO has a significant
advantage over generational DEMO on the presented architecture in processor utiliza-
tion, resulting in the processors being idle for only a negligible 14 seconds on average. On
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Figure 5.23: Probability of generating a solution from a population with a given IH which
will evaluate in less than 1s (will only go through the first stage of the evaluation) on the ECG
problem, taken from 100 runs of AMS-DEMO on 32 processors (total of 1000000 evaluations).
Mean values are plotted in circles and solid line, while the confidence intervals of the mean at
0.99 confidence are plotted in crosses and dashed lines. Each point represents a mean of 10000
evaluations therefore there is a total of 100 points plotted, most of them grouped on the right of
the graph, because most of the evaluations is typically done when IH of the active population is
high.

the account of long idle times of processors, the wall clock times of generational DEMO
algorithm are 21 % or 11 % longer, depending on whether we use population size of 30 or
32, than those of AMS-DEMO for the same number of evaluations. AMS-DEMO remains
faster even when also consider the Sc, which equals 1 for generational DEMO and lies
between 0.93 and 0.98 for AMS-DEMO solving the ECG problem on 6 processors (esti-
mated from rows for 4 and 8 processors in Table 5.2). This means AMS-DEMO requires
between 2 % and 7 % more evaluations than generational DEMO for the similar quality
solutions – not enough to offset the much shorter wall clock time.



82 CHAPTER 5. NUMERICAL EXPERIMENTS AND RESULTS

Figure 5.24: Estimated (lines) and measured (markers) speedups Sp for generational DEMO
and AMS-DEMO on the cooling problem.

Figure 5.25: Estimated (lines) and measured (markers) speedups Sp for generational DEMO
and AMS-DEMO on the ECG problem. Note that there are no measured speedups marked for
generational DEMO because generational DEMO was not applied on the ECG problem.
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Table 5.6: Technical data and performance of the heterogeneous computer architecture

Cluster Windows PC Linux PC

Number of processors 4 1 1

Operating system 64 bit Linux 32 bit Windows 64 bit Linux

Processor type Opteron 244 Athlon 64 Athlon 64

Clock frequency 1800 MHz 2200 MHz 2000 MHz

Number of 1551 1702 1719
evaluations 1551
per processor 1537

1540

Mean evaluation time 31.98 s 29.01 s 28.73 s

Figure 5.26: Probability distribution of the evaluation time on the cooling problem on computers
from the heterogeneous test architecture.

Table 5.7: Comparison of algorithm performances on the heterogeneous computer architecture

AMS-DEMO Generational DEMO

Population size 32 32 30
Wall clock time 49669 s 60176 s 54939 s
Mean processor idle time 14 s 11077 s 5625 s
Idle time ratio 0.028 % 18.4 % 10.2 %





Chapter 6

Conclusions and Further Work

The steady-state Differential Evolution for Multiobjective Optimization (DEMO) algo-
rithm was parallelized using an asynchronous master-slave parallelization type, creating
the Asynchronous Master-Slave DEMO (AMS-DEMO). The AMS-DEMO utilizes queues
for each slave, which reduce the slave idle time to a negligible amount. Because of its
asynchronous nature, the algorithm is able to fully utilize heterogeneous computer archi-
tectures and is not slowed down even if the evaluation times are not constant.

Unlike the more common synchronous master-slave parallelization of generational al-
gorithms, which traverse the decision space identically on any number of processors, the
asynchronous master-slave parallelization changes the trajectory in which the algorithm
traverses the decision space. Selection lag – a property that characterizes this change
entirely – was identified. Selection lag depends linearly on the number of processors and
queue sizes, and has an adverse effect on the algorithm, increasing the number of evalu-
ations required to find high quality solutions. Tests on real-world problems indicate the
effect of selection lag is hardly noticeable for selection lags lower than about half the pop-
ulation size. Only for larger selection lags does the increase in the number of evaluations
become statistically significant. Nevertheless, we find that when increasing the number of
processors, the requirement for additional evaluations caused by the increased selection
lag is outweighed by the additional computational resources provided by the additional
processors, resulting in shorter optimization times and larger speedups. This property is
robust, and holds for all the performed tests, even with the number of processors up to
several times the population size.

The constraints for the number of processors were also relaxed, compared to the
constraints imposed by the synchronous master-slave parallelization. The number of
processors does not require to divide the population size and may even exceed it. The
asynchronous master-slave parallelism also allows for dynamically changing number of
processors, whether it be intentional or accidental – which makes it robust in error han-
dling, and convenient for use even on computer architectures with dynamically changing
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load or with unreliable communication networks.
We tested the AMS-DEMO algorithm on two multiobjective optimization problems.

Both problems were solved successfully and in much shorter time than by the serial al-
gorithm. Therefore, the parallelization of the optimization algorithm was used to make
optimization more manageable while in the future it might serve to support solving more
demanding versions of the same problems. The efficiency of the proposed AMS-DEMO
algorithm was contrasted against a simpler and more straight-forward parallelization in
which the DEMO algorithm had first been made generational and then parallelized using
synchronous master-slave parallelization method. The tests reveal that the synchronous
master-slave parallelism can be equally fast or slightly faster on a homogeneous architec-
ture, even when the evaluation times are not constant. When the conditions unfavorable
to synchronous parallelism accumulate, however, the AMS-DEMO gains advantage, as
the test on a heterogeneous architecture shows. We conclude that when the conditions
are favorable – population size is a multiple of the number of processors, evaluation time
is near constant, and architecture is homogeneous – a simpler synchronous master-slave
parallelization could still be preferred over the more complex asynchronous master-slave;
otherwise the latter delivers much greater speedups.

Although the predictions made by the analysis and the test results so far agree, the
AMS-DEMO should be further tested on other problems before making firm conclusions.
Since the parallelization properties of the AMS-DEMO depend largely on the proposed
asynchronous master-slave parallelization method and less so on the original DEMO al-
gorithm, a sensible next step would be exploring the proposed parallelization type inde-
pendently of the base algorithm it is applied on. Its applicability to other algorithms,
both single and multiobjective, would be of special interest. Finally a more in-depth
understanding of the selection lag and new ways to minimize its negative effects remain
topics of further work.
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[31] Filipič B.; Tušar T.; Laitinen E. Preliminary numerical experiments in multiobjective opti-
mization of a metallurgical production process. Informatica 31(2), 233–240, (2007).

[32] Flynn M. J. Some computer organizations and their effectiveness. Transactions on Computers

21(9), 948–960, (1972).

[33] Fox G. C.; Johnson M. A.; Lyzenga G. A.; Otto S. W.; Salmon J. K.; Walker D. W. Solv-

ing problems on concurrent processors. Vol. 1: General techniques and regular problems.
(Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988).

[34] Ghazali Talbi E.; Meunier H. Hierarchical parallel approach for GSM mobile network design.
Journal of Parallel and Distributed Computing 66(2), 274–290, (2006).

[35] Gropp W.; Lusk E.; Doss N.; Skjellum A. High-performance, portable implementation of the
MPI Message Passing Interface Standard. Parallel Computing 22(6), 789–828, (1996).

[36] Heermann D. W.; Burkitt A. N. Parallel algorithms in computational science. (Springer-
Verlag New York, Inc., New York, NY, USA, 1991).

[37] Herrero J. M.; Blasco X.; Martinez M.; C. Ramos J. S. Non-linear robust identification using
evolutionary algorithms: Application to a biomedical process. Engineering Applications of

Artificial Intelligence 21(8), 1397–1408, (2008).

[38] Hiroyasu T.; Miki M.; Watanabe S. Parallel evolutionary optimization of multibody systems
with application to railway dynamics. Multibody System Dynamics 9(2), 143–164, (2003).

[39] Knowles J.; Corne D. On metrics for comparing non-dominated sets. In: Proceedings of the

2002 Congress on Evolutionary Computation Conference – CEC’02, 711–716. (IEEE Press,
2002).

[40] Kumar V.; Grama A.; Gupta A.; Karypis G. Introduction to parallel computing: Design

and analysis of algorithms. (Benjamin-Cummings Publishing Co., Inc., Redwood City, CA,
USA, 1994).



90 BIBLIOGRAPHY

[41] Liu P.; Kang L.; de Garis H.; Chen Y. An asynchronous parallel evolutionary algorithm
(apea) for solving complex non-linear real world optimization problems. Neural, Parallel and

Scientific Computations 10(2), 179–188, (2002).

[42] Luna F.; Nebro A. J.; Alba E. Parallel Evolutionary Multiobjective Optimization. In: Parallel

Evolutionary Computations, 33–56. (Springer Berlin, Heidelberg, 2006), (2006).

[43] Macfarlane P. W.; Lawrie T. D. V. (ed.). Comprehensive Electrocardiology: Theory and

Practice in Health and Disease, volume 1. (Pergamon Press, New York, 1st edition, 1989).

[44] Mai G. C.; F C. A.; Rose D. Low cost cluster architectures for parallel and distributed
processing, (2000).

[45] Nebro A. J.; Luna F.; Talbi E.-G.; Alba E. Parallel multiobjective optimization. In: Alba
E. (ed.), Parallel Metaheuristics, 371–394. John Wiley & Sons, New Jersey, (2005).

[46] Oliveira L. S.; R.Sabourin ; Bortolozzi F.; Suen C. A methodology for feature selection using
multi-objective genetic algorithms for handwritten digit string recognition. International

Journal of Pattern Recognition and Artificial Intelligence 17, 2003, (2003).

[47] Parsopoulos K. E.; Tasoulis D. K.; Pavlidis N.; Plagianakos V. P.; Vrahatis M. N. Vec-
tor evaluated differential evolution for multiobjective optimization. In: 2004 Congress on

Evolutionary Computation (CEC 2004), 204–211. (2004).

[48] Price K.; Storn R. M.; Lampinen J. A. Differential Evolution: A Practical Approach to

Global Optimization. Natural Computing Series. (Springer-Verlag, Berlin, 2005).

[49] Price K. V.; Storn R. Differential evolution: A simple evolution strategy for fast optimization.
Dr. Dobb’s Journal 22(4), 18–24, (1997).

[50] Quagliarella D.; Vicini A. Sub-population policies for a parallel multiobjective genetic al-
gorithm with applications to wing design. In: Proceedings of the 1998 IEEE International

Conference On Systems, Man, and Cybernetics – SMC 1998, 3142–3147. (1998).

[51] Radtke P. V. W.; Oliveira L. S.; Sabourin R.; Wong T. Intelligent zoning design using multi-
objective evolutionary algorithms. In: Proceedings of the 7th International Conference on

Document Analysis and Recognition – ICDAR 2003, 824–828. (2003).

[52] Ritsema van Eck H. J.; Kors J. A.; van Herpen G. The U wave in the electrocardiogram: A
solution for a 100-year-old riddle. Cardiovascular Research 67(2), 256–262, (2005).

[53] Ritsema van Eck H. J.; Kors J. A.; van Herpen G. Dispersion of repolarization, myocardial
iso-source maps, and the electrocardiographic T and U waves. Journal of Electrocardiology

39(4 Suppl), 96–100, (2006).
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[65] Trobec R.; Jerebič I.; Janežič D. Parallel algorithm for molecular dynamics integration.
Parallel computing 19(9), 1029–1039, (1993).
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