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The performance of a Differential Evolution for Multi-objective Optimization (DEMO) in
a non-linear coupled transport problem, solved by a Meshless Local Strong Form Method
(MLSM), is assessed from different points of view. First, the behaviour of the optimiza-
tion algorithm is tested for different scenarios, ranging from optimization of trivial diffusive
transport to more complex non-linear natural convection problems. And second, a hybrid
parallel implementation of both, the optimization and simulation codes, is introduced to op-
timize execution time, since such simulation based optimization might require vast amount of
computational power. The goal of optimization is to partially cover the differentially heated
cavity with non-permeable obstacles to maximally obstruct the flow with a minimal possible
coverage. Different scenarios are taken into account to analyse the optimization performance.
The results are presented in terms of temperature contours, velocity fields, Pareto fronts,
optimizer convergence analyses, analyses of optimizer stability, and finally, parallel execution
performance.
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1. Introduction

The most straightforward approach towards technological development is experimen-
tal fabrication and testing of the products. Such approach is, as a rule, expensive and
time-consuming, and in many cases impossible to realize. The experiments are often also
limited by the measurement equipment. The alternative is the use of appropriate compu-
tational modelling. The well tested and validated simulations can provide detailed insight
into the tackled phenomena and can be easily coupled with optimization algorithms.

In this paper we focus on the numerical optimization of coupled transport phenomena
described by three coupled Partial Differential Equations (PDEs) and a supporting con-
stitutive equation. A momentum transport modelled with Navier-Stokes equation and
coupled with a mass continuity equation form a fluid flow part of the model, which is
additionally coupled with a heat transport, modelled with diffusion-convection equation.
There are many natural and technological problems that can be tackled with similar
diffusive-convective based models, e.g., weather dynamics, aerodynamics, solidification,
semiconductor simulations Kosec and Trobec (2015), and many more.

The principal incitement in this work is the minimization of energy losses in a
differentially-heated air-filled square cavity de Vahl Davis (1983) by means of obstructing
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natural convection flow. The cavity is differentially heated on two sides and thermally
isolated on the other two sides. The differences in air density due to the temperature
gradients drive the fluid flow into pronounced natural convection flow patterns. The en-
ergy transport over the domain, i.e., energy losses, is therefore not governed solely by
diffusion but also convection. The most straightforward solution of the problem at hand
would be to simply fill the whole domain with a good non-permeable insulator. How-
ever, our goal here is to minimize the energy losses and insulating material consumption,
therefore we fill only portion of the domain with non-permeable obstacles to alter the air
flow, and consequently minimize the energy losses due to convection. There are numerous
examples of similar systems where one would be interested in such optimization, e.g.,
designing windows or other insulating elements for buildings, optimizing heat storage
systems, optimizing heat distribution within rooms, etc.

The problem is naturally not solvable in a closed form and therefore a numerical ap-
proach is required. We use the Meshless Local Strong form Method (MLSM) Kosec et al.
(2014), a strong form variant of meshless method Šterk and Trobec (2008), for spatial
discretization of governing PDEs, explicit time stepping and artificial compressibility
method for treating the pressure velocity coupling Malan and Lewis (2011). The sim-
ulator is coupled with an optimizer that implements the Asynchronous Master Slave
Differential Evolution for Multi-objective Optimization (AMS-DEMO) algorithm De-
polli, Trobec, and Filipič (2013), which is a parallel evolutionary algorithm Eiben and
Smith (2003) for multi-objective optimization Zitzler and Thiele (1998); Coello, Lamont,
and Veldhuizen (2006); Abraham, Jain, and Goldberg (2005) of real-valued functions.
The coupling of optimizer and simulator is done through the cost function. At given pa-
rameters, i.e., positions of the obstacles, simulator computes steady-state temperature,
pressure and velocity fields. The value of cost function - the total heat flux through the
domain with specified obstacles - can be easily determined from the computed fields. This
value is then passed on to the optimizer, which computes a new input parameter set for
the simulator. The optimizer iterates as long as the optimization convergence criterion
is not met or the number of performed iterations grows too large.

One of the important aspects of the problem is the execution time. The simulation
time can be controlled through the complexity of the simulation, by setting the out-
put accuracy through spatial and temporal resolution. However, the results have to be
reasonable, therefore the problem cannot be computed with a handful of computational
nodes and a few time steps, but more likely with thousands of nodes and thousands
of time steps, resulting in simulation times measured in, at least, minutes. In addition,
stochastic optimization, such as implemented by an evolutionary algorithm, typically
requires vast number of iterations to converge, counted in thousands or millions. Soon,
the computational cost becomes too high for practical use. Consequently, the efficiency
of the computer implementation and execution is of a grave importance if we want to
acquire adequate results in a reasonable time.

This paper presents a coupling of parallel optimization (AMS-DEMO) and parallel
simulation (MLSM) that work together to exploit a parallel computer system with high
efficiency. Shared-memory parallel simulator is coupled with a distributed evolutionary
optimizer and executed on a cluster of multi-core computers.

Several different cavity setups are considered to evaluate both the simulator and the
optimizer. The results are presented in terms of temperature contour plots, velocity
profiles, analysis of heat losses, Pareto fronts of optimal solutions, convergence of optimal
solutions, and sensitivity analysis of the optimizer and parallel execution performance.
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2. Test case definition

The natural convection is modelled by three coupled PDEs. Diffusion equation for en-
ergy transport, Navier Stokes equation for momentum transport, and mass continuity
equation. The Boussinesq approximation is used for coupling the heat and momentum
transport. The model is a well-know fluid flow benchmark test in the literature usually
referred to as de Vahl Davis test de Vahl Davis (1983). The model is defined by the
following system of equations

∇ · v = 0, (1)

ρ
∂v

∂t
+ ρ∇ · (vv) = −∇P +∇ · (µ∇v) + b, (2)

ρ
∂ (cpT )

∂t
+ ρ∇ · (cpTv) = ∇ · (λ∇T ) , (3)

b = ρ [1− βT (T − Tref)] g, (4)

where λ stands the thermal conductivity, v(u, v) for the velocity, t for the time, cp for
the specific heat, ρ for the density, P for the pressure, µ for the viscosity, b for the
body force, T for the temperature, βT for the thermal expansion coefficient, Tref for
the reference temperature and g for the gravitational acceleration. The problem is fully
characterized by two dimensionless numbers: the Prandtl number (Pr = µcp/λ) and the
Rayleigh number (Ra= |g|βT (∆T ) Ω3ρ2cp/λµ). In this paper a 2D quadratic air filled
cavity (Pr = 0.71) at different Rayleigh numbers is considered, where obstacles are used
to alter the flow structure (Figure 1). Besides standard de Vahl Davis test we also consider
a test case where horizontal walls are differentially heated and vertical ones isolated -
basically de Vahl Davis test, rotated by π/2. For further discussions we will name the de
Vahl Davis case a horizontal case and the rotated case a vertical case. The Obstacles are
rectangular with edges parallel to the edges of the cavity, built of material with different
properties than the fluid. Most importantly, the material is non-permeable and is a better
thermal insulator. Therefore obstacles can be used to break the fluid flow structures as
well as to act as an insulation. Thermal conductivity of the obstacles is set to 25% of the
free media thermal conductivity.

2.1 Numerical solution

The presented transport requires numerical integration of governing PDEs to acquire
solution. Since our goal is to construct an effective parallel implementation, the local
numerical approach is preferred, therefore a local meshless principle Wang, Sadat, and
Prax (2012); Kosec and Šarler (2008) for spatial discretization and explicit time stepping
for temporal discretization is employed. The considered fields, namely velocity, pressure,
and temperature, over a local subset of computational nodes, i.e., support domain, are
approximated as

u(x) =
m∑
i=1

pi(x) ai , (5)
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Figure 1.: Principal scheme of the problem, horizontal case (left) and vertical case (right).

where ai, pi = [1, x, y, x2, y2, xy, ...] stand for approximation coefficients and monomial
basis, respectively. The goal here is to solve system of second order PDEs, and to obtain
non-trivial first and second derivatives a minimal basis of five monomials is used. There-
fore to determine corresponding coefficients at least five support nodes are required.
In such set-up, i.e. set-up with support domain size the same as the number of basis
functions, the approximation coefficients can be determined exactly by solving the local
system defined by one equation (5) for each support node

~u = ~A~α, (6)

where ~u = (u(~x1), ..., u(~xnS
)) stand for vector of support field values, Ai,j = pi(~xj) for

system matrix, ~xj for position of j-th support node, and ~α = (a1, ...am) stands for vector
of coefficients. Now, we can formulate all required operators

(
∇ = (∂/∂x, ∂/∂y) and

∇2 = ∂/∂x2 + ∂/∂x2
)

to solve governing system of equations

∂

∂xε
u(x) =

nS∑
j=1

( m∑
i=1

A−1
i,j

∂

∂xε
pi(x)

)
u(~xj), (7)

∇2u(x) =

nS∑
j=1

( m∑
i=1

A−1
i,j∇

2pi(x)

)
u(~xj). (8)

where ε = (x, y) denotes the coordinate. To simplify the notation, local shape functions
are introduced

χLj (~x) =
m∑
i=1

A−1
i,j Lpi(xj), (9)

where L stands for the general partial differential operator. Now, a general Operator L
can be applied simply by multiplying the shape functions with values of the corresponding
field in support domain nodes, i.e.

Lu(x) =

nS∑
j=1

χLj uj . (10)
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All the information about the nodal topology and the differential operator is now stored
in the shape functions. The presented formulation is convenient for implementation since
most of the complex operations, i.e. finding support nodes and building shape functions,
are computed in advance. In the main simulation, the pre-computed shape functions are
then convoluted with the vector of field values in the support to evaluate the desired op-
erator. The shape function construction has asymptotical complexity of O

(
NDnSm

2
)
,

where ND stands for total number of discretization nodes. In addition, the determi-
nation of support domain nodes also consumes some time, for example, if a kD-tree
data structure is used, first the tree is built with O (ND logND) and then additional
O (ND (logND + nS)) for collecting nS supporting nodes. Two types of boundary condi-
tions are considered in the governing system, namely Dirichlet and Neumann. Dirichlet
are trivial to apply. The Neumann boundary conditions are computed as

v −
nS∑
j=2

χ
∂/∂ε
j u(~xj)

χ
∂/∂ε
1

= u(~x1), (11)

where we assumed that j = 1 node is a boundary node and v stands for boundary value.
The well-known problem of solving fluid flow problems is a pressure-velocity coupling.

There are different approaches towards coupling governing equations, namely continuity
(1) and momentum (2) equations. In general, one solves a Poisson pressure or pres-
sure correction equation Ferziger and Perić (2002). Here, we are interested only in the
steady-state solution and also prefer the local approach, which can be easily parallelized.
Therefore we employ the artificial Compressibility Method (ACM) Zienkiewicz, Taylor,
and Zhu (2005). First, the velocity and temperature are computed from the previous
time step (12,13). Second, the velocity is driven towards solenoidal field by correcting
the pressure (14).

T1 = T0 +
∆t

ρcp
[∇ · (λ∇T0)−∇ · (ρcpT0v0)] (12)

v̂1 = v0 +
∆t

ρ
[−∇P0 +∇ · (µ∇v0) + b0 −∇ · (ρv0v0)] . (13)

P1 = P0 − ς∆t∇v̂, (14)

where ∆t and ς stand for the time step length and the relaxation parameter, respectively.
Indices 0 and 1 stand for the current and the next time step, respectively. Note that
no special boundary conditions for pressure are used, i.e., the pressure on boundaries
is computed with the same approach as in the interior of the domain. When all the
computations are done for all the computational nodes, the simulation proceeds to next
time step, i.e., the values of the fields in the next time step override the values of the
current time step. The simulation proceeds as long as the convergence criterion, i.e., the
difference between | T1 − T0 |, is not below a threshold value in all nodes. A scheme of
implementation is presented in Figure 2.
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Figure 2.: Scheme of simulator implementation.

2.2 Optimization

The global optimization requires the use of stochastic optimization procedure. Further-
more, since we wish to minimize both the amount of material used for obstacles and the
energy losses, we must employ a multi-objective optimization technique. In this work we
use the AMS-DEMO algorithm, a parallel evolutionary algorithm for multi-objective op-
timization of real-valued functions. Evolutionary algorithms are a subgroup of stochastic
optimization algorithms Burke and Kendall (2003) and can solve problems for which the
analytical form of the cost function is unknown, but the function can be numerically
evaluated for any given set of input parameters. In the presented problem, the numerical
simulation serves as the cost function evaluator.

The description of optimization methodology starts with a subsection that focuses on
the multi-objective optimization methodology, and continues with the subsection on the
AMS-DEMO algorithms.

2.2.1 Multi-objective optimization

Multi-objective optimization problems are tasks that require optimizing a vector func-
tion:

y = f(x)

where x is a vector of n decision variables defined over R, and y is a vector of m objectives:

x = (x1, x2, . . . , xn),

y = (y1, y2, . . . , ym).

There are two Euclidean spaces associated with multi-objective optimization. These
are the n-dimensional decision variable space of solutions to the problem, and the m-
dimensional objective space of their images under f . Feasible solutions are vectors x in
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decision variable space that satisfy I inequality and J equality constraints

gi(x) ≥ 0, i = 1, 2, . . . , I,

hi(x) = 0, j = 1, 2, . . . , J.

The objective space is partially ordered according to the Pareto dominance relation
Abraham, Jain, and Goldberg (2005). Given two objective vectors, a and b; a is said to
dominate b iff a is not worse than b in all objectives and is better than b in at least one
objective. Formally, assuming a minimization problem, this can be written as:

a ≺ b iff

∀k ∈ {1, 2, . . . ,m} : ak ≤ bk and

∃l ∈ {1, 2, . . . ,m} : al < bl.

Note that for a pair of solutions a and b, there are three Pareto dominance relation
combinations possible:

a ≺ b and b ⊀ a or

a ⊀ b and b ≺ a or

a ⊀ b and b ⊀ a

Namely, either a dominates b, b dominates a, or neither dominates the other, thus
making them not comparable. The solution to a multi-objective optimization problem,
called the Pareto optimal set Abraham, Jain, and Goldberg (2005), is a set of feasible
solutions, whose images in the objective space, called the Pareto front, are not compa-
rable with each other and are not dominated by any other feasible solution. The Pareto
optimal front forms a hyper surface in the objective space. The task of multi-objective
optimization is to find a non-dominated set of solutions, representing an approximation
for the Pareto front, rather than finding one absolutely best solution. This is to assist the
user of multi-objective optimization in deciding on the final solution, using additional
preferences.

2.2.2 AMS-DEMO

Differential Evolution for Multi-objective Optimization (DEMO) Robič and Filipič
(2005) is an evolutionary strategy for solving multi-objective optimization problems
Price, Storn, and Lampinen (2005). It is an iterative algorithm operating on a set of
solutions called population. In each iteration, every solution from the population acts
as a parent p to a newly created trial solution (also called candidate) c. To arrive at
trial solutions, parents are modified by the application of differential mutation and uni-
form crossover. Differential mutation takes three or more members of the population
x1,x2,x3, [x4 . . .xnp

] ∈ P, where np is the population size, to help construct a mutation
vector v by vector addition and scalar multiplication. A common way of calculating the
mutation vector, and also used here, is using the formula v = x1 + F · (x2 − x3), where
F ∈ R is a constant, most often from the interval (0, 2]. The mutation is followed by
uniform crossover, which either takes the elements of the parent vector or the mutation
vector, with a fixed probability Pc, creating a trial solution:

∀i ∈ {1, 2, . . . , n} : ci =pi with probability 1− Pc
vi with probability Pc
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Selection is then performed, by testing Pareto dominance between the trial solutions are
their parents in a pair-wise manner. The dominated solutions are discarder while the
dominating solutions form the population of the next iteration. In case neither solution
dominates the other, both of the involved solutions are added to the population. Since
more than one solution is sometimes added to the population, population size increases
with time. To oppose this increase, the population is reduced back to its original size at
the end of every iteration, by applying the non-dominated sorting and the crowding dis-
tance metric from the NSGA-II algorithm Deb et al. (2002) to discard the worst solutions.
The algorithm finishes either after a fixed number of performed cost function evaluations,
after a solution of predefined quality is found, after the solutions have converged with a
satisfyingly high confidence or after a similar terminating condition is met.

Asynchronous Master-Slave DEMO (AMS-DEMO) is a parallel extension of DEMO.
It is able to exploit heterogeneous computer architectures with large number of compute
nodes, while retaining very good parallel efficiency Depolli, Trobec, and Filipič (2013).

3. Results

Four problem cases of varying difficulty are devised to test the performance of the cou-
pling of the optimizer and simulator. Within each case, all the fluxes are normalized
relative to the flux through an empty domain governed solely by diffusion Šterk and
Trobec (2008), thus the solutions for vertical cases can be compared across cases but not
to the solutions for the horizontal case, and vice-versa

3.1 Experimental setup

Experiments are executed on a homogeneous cluster of 20 computers interconnected with
Gigabit Ethernet network. The heart of each computer is single quad-core processor
Intel Xeon E5520. The execution of simulation based optimization is parallelized on two
levels. First, the simulation exploits multi-core architecture of cluster nodes with shared-
memory parallelism, using OpenMP. Second, the optimization (AMS-DEMO) makes use
of all the available cluster processors by distributing separate simulations among the
nodes of the cluster, using MPI. Both simulator and optimizer executables are written
in C++, compiled with GCC 4.8 with optimizations enabled by -O3 switch. OpenMP
is built into the compiler while the MPI is implemented through the Open MPI library.
Optimizer and simulator communicate via file system, bash scripts, and Ubuntu 12.04
operating system.

All simulations were executed with the following parameters: 81 × 81 uniformly dis-
tributed nodes on the edges and inside a cavity of dimensionless size 1× 1, MLSM time
step dt = 2.5 · 10−5, maximal allowed dimensionless time tmax = 20 and steady state
criteria | T1 − T0 |< 10−7.

3.2 Case 1: fill whole domain with obstacles

For the first case, a simplified model without fluid flow is used. The optimizer is given a
differentially heated square cavity and the option to place one or several pieces of better
insulator (obstacles) in the domain. Obstacle positions are unconstrained, while their
size is constrained upwards by the size of the cavity divided by the number of obstacles.
Since the solution of diffusion does not comprise non-linear responses, it is relatively easy
to understand, numerically solve, and - most importantly - to optimize. The diffusion
problem can be also understood as building an insulator out of two solid materials with
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different thermal properties.
Since the obstacle material is a better insulator than the cavity material, the optimal

result is achieved when the obstacles fill the whole cavity. Although the optimal solution
is obvious to human, the same does not hold for the stochastic optimization logic and
this test serves as a benchmark of the optimization procedure. In other words, we have
a ”closed form” solution against which we can compare the solutions obtained by opti-
mization procedure, i.e., we can assess the performance of the optimization. This task
is further divided into four increasingly difficult subtasks, each given a different number
and size of obstacles to work with, listed in Table 1. For each subtask, the single optimum
solution is to set obstacle sizes to their maximum and to arrange them in a grid. The
best solutions (out of 10 runs) are plotted in Figure 3.

With increasing complexity of the optimization problem, the optimization finds less
optimal solutions and is unable to cover the cavity completely. This remains so even
though the increase in number of parameters is always countered by the increased pop-
ulation size. The optimization procedure can place one obstacle almost optimally and it
performs very well with four obstacles. For higher number of obstacles, i.e., 9 and 16,
we can notice a slight drop in solution quality. Although optimization settings could be
optimized to produce better results, the fine tuning of several parameters of optimization
is beyond the scope of this work. It should also be be noted that better results could be
found on the account of running optimization for a longer time.

The convergence of solutions is shown in Figure 4, and is slower for the sub-cases with
more obstacles than for the sub-cases with less obstacles. Much larger populations would
likely help in obtaining better results in terms of heat flux but for the price of even higher
number of performed simulations for a single optimization run.

3.3 Case 2: Efficiently obstruct the fluid inside a cavity

For the second experiment, a two-objective problem with conflicting criteria is tackled.
The cavity is filled with fluid, which can be obstructed by non-permeable obstacles. The
optimizer is given the freedom of positioning 10 obstacles within the cavity with no
restriction on their sizes. Six sub-cases are prepared (see Table 2), where the Rayleigh
number and heat flow direction are varied. This time we search for the best insulator
with minimal material consumed, therefore the solutions are measured using two criteria
for minimization: the area covered by obstacles and the heat flux through the cavity.

A few examples of dominant solutions are presented in Figure 5. The plots are arranged
in rows, one row for each sub-case. Within rows, seven trade-off solutions from the Pareto
front are plotted, from the one with the minimal area coverage and the greatest flux on
the left to the one with the maximal area coverage and the smallest flux on the right.

From the figure it follows that the optimization favors long and thin obstacles placed
either vertically for limiting horizontal flux or horizontally for limiting vertical flux while
keeping coverage low. Note that the heat flux itself is governed by the convective air

Table 1.: Settings of the optimizer

Sub-cases

Number of obstacles 1 4 9 16
Obstacle max size 1 x 1 1/2 x 1/2 1/3 x 1/3 1/4 x 1/4

Number of cost function parameters 4 16 36 64
Population size 20 30 40 50
Number of simulations 2000 6000 12000 18000
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(a) 1 obstacle (b) 4 obstacles

(c) 9 obstacles (d) 16 obstacles

Figure 3.: Temperature contour plot and obstacle positions for Case 1.
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Figure 4.: Convergence of the optimal solution expressed by the heat flux as a function
of the number of performed simulations. Statistics are made over 10 repetitions of the
optimization task.

flow, which always follows circular patterns, and thus the direction of obstacles is not
directly implied by the heating direction. To limit flux even more, coverage is sacrificed
and obstacles get thicker until they fill the cavity almost completely. Usage of several
obstacles is less pronounced, in most cases only one or two obstacles are used. To get the
full picture of how the results cover the flux and coverage trade-off, the Pareto optimal
fronts are plotted on Figure 6.
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Table 2.: Settings of the optimizer

Sub-cases

Heat flow direction Horizontal Vertical
Rayleigh number 104 105 106 104 105 106

Number of obstacles 10
Obstacle max size 1 x 1
Number of parameters 40
Population size 50
Number of simulations 5000

For the lower two Rayleigh numbers (Ra) - which should translate to an easier problem
- Pareto front shows seemingly even distribution of solutions with variable trade-off
between the obstacle coverage or the heat flux optimization. For the Ra= 106, however,
the solutions are clearly not evenly distributed, which hints at an incomplete convergence
of the algorithm due to the more difficult problem.

For this two-objective case the convergence of results is checked via hypervolume in-
dicator Zitzler and Thiele (1998). Hypervolume indicator transforms a set of objective
vectors into a single number, which in essence summarizes the coverage and distribution
of the set of solutions in the objective space. It is a dimensionless number on the interval
[0, 4] for two-objective cases, with higher numbers indicating more optimal solutions.
Using hypervolume indicator, we show the convergence of solutions for Case 2 in Fig-
ure 7. To emphasize the different convergence rates we also summarize the number of
performed simulations before the front of solutions converged in Table 3. We set the
criterion for convergence to a hypervolume indicator change of less than 0.1 % per 100
simulations; but the results are robust to small changes in the criterion - the relative
differences between sub-cases remain similar. From the figure and the table it is clear
that the convergence is still incomplete for the case with horizontal flow and Ra=106,
after 5000 evaluations.

Table 3.: Convergence of solutions in sub-cases expressed as the number of performed
simulations before the convergence criterion is met.

Flow direction
Horizontal Vertical

104 1850 1650
Rayleigh number 105 1800 1350

106 5000+ 4650

3.4 Parameter sensitivity of the optimizer

There are several parameters to the optimizer and they are quite difficult to set up in an
optimal manner. To make things worse, there is no known mapping between the prob-
lem definition and the optimal parameter set for the optimizer. Therefore, the optimal
parameter set cannot be determined prior to the actual optimization runs. Fortunately,
though, optimizer will work well enough with almost any combination of parameter val-
ues, except for the most extreme ones. To shed some light onto the problem of parameter
selection, a scan over the parameter space is performed. The task of filling the whole

11



March 11, 2016 Engineering Optimization article

(a) Horizontal, Ra=104

(b) Horizontal, Ra=105

(c) Horizontal, Ra=106

(d) Vertical, Ra=104

(e) Vertical, Ra=105

(f) Vertical, Ra=106

Figure 5.: Obstacle positions for Case 2. Plots (a) through (c) represent the horizontal
flux sub-case for different trade-offs between the coverage and flux optimization, while
plots (d) through (f) do the same for the vertical flux sub-cases.

cavity with four obstacles is selected as the test case for optimizer. Note that the re-
sults would differ if either a different number of obstacles was selected or the task of
optimization was different.

The three most important parameters of the optimizer are taken into consideration
for the scan: crossover probability cp, scaling factor F , and population size np. For both
cp and F , the input set of values is set to [0.1, 0.2, ..., 0.9], while for np, the input set of
values is [10, 20, ..., 50]. Each of the parameters is varied across its input set of values
individually with five optimization runs executed for each value. The convergence of the
mean solution as a function of the number of performed simulations is used to show the
difference between the parameter selections.

Firstly, the results of varying cp are shown on Figure 8. cp is a parameter that has the
greatest influence on the convergence rate of the solutions and on the quality of the best
solutions found. Low values lead to the best results (lowest heat flux), with minimum
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Figure 6.: Pareto fronts discovered by the optimization.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
2.8

3

3.2

3.4

3.6

3.8

4

Number of trials

h
y
p
er
v
o
lu
m
e
in
d
ic
a
to
r

 

 

Horizontal Ra=104

Vertical Ra=104

Horizontal Ra=105

Vertical Ra=105

Horizontal Ra=106

Vertical Ra=106

Figure 7.: Convergence of the optimal solution expressed by the hypervolume indicator as
a function of the number of performed simulations. Statistics are made over 10 repetitions
of the optimization.

being around 0.3. Only the highest values, namely 0.8 and 0.9 are extremely bad choices.
Secondly, the results of varying F are shown on Figure 9. In contrast to the previous

figure, this one is much less dynamic, which implies that the optimizer is far more robust
to selection of F than it is to the selection of cp. There is no clear pattern in the figure,
which is most likely caused by a very low number of repetitions. Given more repetitions,
one value might peak as the best, and less likely, there could be more than one near-
optimal peak hiding in the value of F . However, the results are clear enough in showing
that just about any value of F between 0.2 and 0.9 works well.

Lastly, the results of varying np are shown in Figure 10. Population size is known
to have a pronounced effect on the evolutionary algorithms, and AMS-DEMO is no
exception. Although almost any value works, low values represent a trade-off of faster
convergence rate for the price of finding less optimal solutions. Raising the value moves
the trade-off towards slower convergence rate but convergence to better solutions. There
is of course a sensible limit to the value of np - the value at which the absolute optimal
solution or a solution below a certain cost threshold is found, depending on how the
optimizer is used. Raising np above this limit would only make the algorithm converge
slower, since it makes it more random. The final limit of np is the total number of
simulations performed, at which the algorithm degenerates to the ordinary Monte-Carlo
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Figure 8.: Convergence of the optimal solution for varying crossover probability cp.
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Figure 9.: Convergence of the optimal solution for varying scaling factor F .
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Figure 10.: Convergence of the optimal solution for varying population size.

optimization. The experimental results confirm all the above rules, with the exception
of np = 20 being worse than np = 30, which is unexpected. Again, the divergence from
the rules is almost certainly only the result of the noise caused by the low number of
optimization repetitions.

3.5 Parallel speedup and efficiency

We are also interested in the efficiency of the parallelization, which we measure through
parallel speedup. Since solver and optimizer are parallelized separately, the parallel
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Figure 11.: Speedup of the simulation and the optimization execution.

speedup is also two-part. The first part of speedup is due to the execution of the parallel
simulator on multiple cores of a single cluster node, while the second part is due to the
distributed execution of simulations on the cluster. Speedup s is computed as:

s =
t1
tn
,

where t1 is the execution time on 1 unit and tn is the execution time on n units. The
unit is either core, for the simulation speedup, or computer, for the optimizer speedup.
The two parts of speedup are tested in separate experiments and the total speedup is
then calculated.

In the first experiment, a robust speedup measurement of the simulator is obtained,
rooted on the experiments made so far. One hundred parameter sets are randomly taken
from one of the performed optimization runs of each case, and used as input for the
speedup experiment. This experiment comprises simulator executions that are set to
execute on 1-4 cores of a single computer with each run repeated on the one hundred
inputs. Since results do not differ significantly between the cases, only the joined results
are shown on the left of Figure 11. Speedups are calculated from total execution times,
which include serial pre-processing, post-processing, input and output operations. Simu-
lator is capable of much higher speedups than shown here, especially when more complex,
in terms of spatial resolution, simulations take place, reducing the relative ratio of the
serial algorithm portion over the parallel portion Kosec et al. (2014).

In the second experiment, AMS-DEMO speedup is estimated. AMS-DEMO attempts
to minimize computer idle time by allowing a non-deterministic execution, causing the
convergence of solutions to differ for different number of computers used. The detailed
statistical analysis a large number of runs of AMS-DEMO has been performed in Depolli,
Trobec, and Filipič (2013), with the main finding that no statistically significant differ-
ences are found in the convergence rate of solutions produced by different runs as long
as the number of processing units is lower than the population size. A justified simplifi-
cation can thus be made to ease the speedup measurements for the number of processing
units less than the population size. For each tested number of processing units – in our
case cluster nodes, AMS-DEMO is left to run until a predefined number of simulations
is executed. A modification of Case 2 is devised, set to stop after 1000 simulations to
shorten the execution time, while keeping the overhead of the sequential parts of the
algorithm similarly low, as it would be in a longer run. This experiment depends very
little on the choice of case and other details of the simulation and is therefore performed
only once. Although the experiment respects the rule of running on less computers than
the population size, the calculated speedup is called weak speedup, to account for the
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fact that the solutions of different runs are not completely equivalent. The right part of
Figure 11 shows the weak speedup calculated as the fraction of the total execution time
on n computers relative to execution time on a single computer, with input, output, MPI
environment setup and other serial overheads included. To eliminate noise introduced by
the large variation in simulation times (standard deviation is 35% of the mean simulation
time), the individual run times were normalized by the mean simulation time of the run.
The result is a near-linear weak-speedup of the optimizer that scales well over the tested
number of computers.

Finally, the two independently measured speedups are multiplied to get the theoretical
speedup on 80 cores relative to a single core. This is done by taking the speedup mean
value at 4 cores from and multiplying it by the speedup at 20 computers (both are
available on Figure 11). The total speedup is thus approximately 3.25× 19.73 = 64.12.

4. Discussion and conclusions

The paper is focused on displaying the potency of the simulation-based optimization.
The presented case of obstructing air-flow with simple obstacles shows interesting ar-
rangements resulting in optimal obstruction that would be hard to predict without the
synergy between the numerical simulator and the multi-objective optimization. The test
case could be extended in various areas of design: insulation, large living and working
spaces, air conditioning, heat storage and heat engines.

Furthermore, a the simulation-based optimization is executed in a parallel manner on a
computer cluster. Although a modestly sized cluster is used, the parallel optimization can
be executed on a much larger number of computers, and is not limited by the population
size Depolli, Trobec, and Filipič (2013). Simulation exploits the shared-memory model
of a multi-core computer, and is also capable of switching to GPUs Kosec and Zinterhof
(2013) or other accelerator boards that proliferate in the modern high performance com-
puting hardware. The combination of the two is efficient at utilizing modern hardware
resources and providing a tool for handling physics-based optimization problems of much
larger scale.
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