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Abstract. Domain discretization is considered a dominant part of solution procedures for
solving partial differential equations. It is widely accepted that mesh generation is among the most
cumbersome parts of the FEM analysis and often requires human assistance, especially in complex
3D geometries. When using alternative mesh-free approaches, the problem of mesh generation is
simplified to the problem of positioning nodes, a much simpler task, though still not trivial. In this
paper we present an algorithm for generation of nodes on arbitrary d-dimensional surfaces. This
algorithm complements a recently published algorithm for generation of nodes in domain interiors,
and represents another step towards a fully automated dimension-independent solution procedure for
solving partial differential equations. The proposed algorithm generates nodes with variable density
on surfaces parameterized over arbitrary parametric domains in a dimension-independent way in
O(N logN) time. It is also compared with existing algorithms for generation of surface nodes for
mesh-free methods in terms of quality and execution time.
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1. Introduction. Generation of nodes on surfaces and their enclosed volumes
has many application in different fields of science and engineering, ranging from com-
puter graphics, particularly rendering [3], to mesh-free numerical analysis of partial
differential equations (PDEs) [25]. In general, specific applications require specific
properties of generated nodes, e.g. for dithering in computer graphics a blue noise
distribution is often desired [3], while in mesh-free numerical analysis nodes have to be
positioned regularly enough to support stable numerical approximation of differential
operators [25]. In the context of mesh-free analysis positioning algorithms have been
developed and tested with different mesh-free numerical methods [11, 17, 23, 25, 30].
However, the treatment of boundaries, i.e. discretization of surfaces, has often been
overlooked, obtained ad-hoc, or with algorithms for generation of surface meshes,
which are needed in mesh based methods. Such approach is conceptually flawed as
the whole point of mesh-free methods is to completely remove meshing from the pro-
cedure. Furthermore, it is also computationally inefficient, as surface mesh generation
algorithms, such as [24] and [18], spend a great deal of time generating connectivity
relations, only for those relations to be discarded later. This inefficiencies and in-
creased demand for node generation on surfaces encourage researches to developed
specialized algorithms.

Existing algorithms for point generation on parametric surfaces use different tech-
niques, which are often generalizations of algorithms for spatial node generation. The
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most straightforward is the naive sampling, which generates parametric points in the
parametric space, and then maps the points to the surface without any additional
processing. Such approach inherently results in a non-uniform and distorted distribu-
tion. To avoid distortions, conformal mappings can be a promising option [11], if they
are easily available for the surface and if the node placing algorithm in the parametric
space supports variable spacing. Original spatial density can be scaled by square root
of the Gramian of the parametric map to account for the non-uniformity caused by
the map. If not analytically available, conformal mappings can be computed numeri-
cally [12], but the computation is expensive and not worth it, in general. For specific
surfaces, such as spheres or tori, there are simpler specialized algorithms for point
generation [14]. For general surfaces, probabilistic approaches are available [7, 16]
which generate uniformly distributed points, but they are often not suitable as node
generators for PDE discretization due to the potentially high irregularity. However,
both naive and probabilistic approaches can be useful to generate initial distributions
for iterative discretization generation schemes, such as minimal energy nodes [15], en-
ergy functional minimization [28] or via dynamic simulation with attractive/repulsive
forces [24, 17], which are also commonly used in graphics community for various pur-
poses, such as texture generation [27]. Another approach to surface node generation
was presented in the paper by Shankar, Kirby and Fogelson [23], which presents sur-
face reconstruction, surface node generation and spatial node generation algorithms.
The algorithms were used to obtain discretizations suitable for strong form mesh-free
methods, and the surface node generation technique they used is called supersampling-
decimation, which samples the parametric space with increased density, maps the
points and then decimates the mapped points to conform to the required nodal spac-
ing.

Existing algorithms for node generation on curved surfaces have their shortcom-
ings. Algorithms based on conformal maps are practical only for specific classes of
surfaces, probabilistic algorithms usually do not produce distributions of sufficient
quality and iterative schemes are needed to improve them, making them less efficient.
The naive and supersampling-decimation approaches have their benefits in simplicity
and speed in some cases, but the published version in [23] only deals with cases where
the surface is homeomorphic to a sphere S1 or S2, parametric domain is a rectangle
and nodal spacing is constant. In this paper we present an algorithm for discretization
of surfaces that works in arbitrary dimensions with variable nodal spacing, with irreg-
ular surfaces and parametric domains, but at the cost of requesting the user to supply
the Jacobian ∇r of the surface map. It has guaranteed O(N logN) time complexity
regardless of the domain shape and nodal spacing and the running time is comparable
to published algorithms

The rest of the paper is organized as follows. The proposed surface node placing
algorithm is presented in section 2 along with possible generalizations, the comparison
with existing surface placing algorithms is presented in section 3, its use in meshless
numerical simulations is presented in section 4 and conclusions are presented in sec-
tion 5.

2. Node generation algorithm. Boundaries of computational domains can be
represented in different forms. Most common ones are as parametrizations (possibly
split into patches), such as produced with non-uniform rational B-splines (NURBS) [22]
or Radial Basis Functions (RBFs) [4], as level-sets [31] or as subdivision surfaces [19].
Different representations have different desirable and undesirable properties, as dis-
cussed in e.g. [26]. We will assume that a parametric representation of the boundary in
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question is given as r : Ξ ⊂ RdΞ → ∂Ω ⊂ Rd, along with the Jacobian ∇r. Most of the
algorithms described in the introduction also work with parametric representations,
and a way to construct them is also offered in [23]. Some surface quantities obtained
from higher order derivatives, such as curvature, may also be required to solve PDEs,
but they will not be used during node generation. The elements of parametric space
Ξ will be called parameters, and the elements of target space ∂Ω will be called points
or nodes, when specific emphasis on discretization is desired. Usually, the dimension
dΞ will be d− 1, but as described in subsection 2.2 this is not a requirement.

Given a nodal spacing function h : ∂Ω ⊂ Rd → (0,∞), we wish to place nodes on
∂Ω, such that spacing around node p ∈ ∂Ω is approximately equal to h(p).

The proposed node placing algorithm takes a regular parametrization r, its Ja-
cobian ∇r, a nodal spacing function h and a set of “seed parameters” X from Ξ as
input. If no seed parameters are supplied by the user, the algorithm chooses a ran-
dom starting parameter inside Ξ. It returns a set of regularly distributed nodes on
the surface ∂Ω, conforming to the spacing function h.

The node spacing does not take place directly in the target space Rd. Instead,
we place parameters in the parametric space Ξ using the same principle as for spatial
node placing. However, the distance between two parameters ξ1 and ξ2 is not chosen
to be local spacing h but is instead computed in such a way, that the distance between
points r(ξ1) and r(ξ2) is approximately h. A spatial search structure of points in Rd
is maintained to check for proximity violations.

The node placing algorithm processes nodes sequentially. Initially, seed parame-
ters are put in a queue and their corresponding points in the spatial search structure.
In each iteration, a parameter ξi is dequeued, and expanded into a set of candidate
parameters Hi, by generating a set of directions, represented by unit vectors ~si,j that
approximately uniformly cover all possible spatial directions in Ξ.

To derive how far from ξi a candidate parameter must be placed to achieve
appropriate distance between points, we consider a candidate parameter ηi,j ∈ Hi in
the direction ~si,j from ξi,

(2.1) ηi,j = ξi + αi,j~si,j ,

for some distance αi,j > 0. Denote the point corresponding to ξi as pi = r(ξi). We
would like the distance between the candidate point r(ηi,j) and pi in ∂Ω to be equal
to h(pi)

(2.2) ‖r(ηi,j)− r(ξi)‖ = h(pi),

where ‖ · ‖ is the standard Euclidean distance. Using first order Taylor’s expansion,
we write

(2.3) r(ηi,j) = r(ξi + αi,j~si,j) ≈ r(ξi) + αi,j∇r(ξi)~si,j .

Substituting the linear approximation (2.3) in (2.2), we obtain an equation for αi,j as

(2.4) h(pi) = ‖r(ξi) + αi,j∇r(ξi)~s− r(ξi)‖ = αi,j‖∇r(ξi)~si,j‖,

where we took into account the positivity of αi,j . This equation is solved for αi,j to
obtain the candidate parameter

(2.5) ηi,j = ξi +
h(pi)

‖∇r(ξi)~si,j‖
~si,j , αi,j =

h(pi)

‖∇r(ξi)~si,j‖
.
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Higher order terms of the approximation could be used in (2.3), but the equation (2.4)
would also be of higher order and higher derivatives of r would be required.

The set of candidates Hi is generated from directions ~si,j as

(2.6) Hi =

{
ξi +

h(pi)

‖∇r(ξi)~si,j‖
~si,j | ~si,j ∈ directions(ξi)

}
.

Candidate parameters that lie outside of the parametric space Ξ are discarded. Ad-
ditionally, candidate parameters whose corresponding points lie too close to already
accepted points are also rejected. The remaining candidate parameters are enqueued
for expansion and their corresponding points are added to the spatial search structure.

When checking the distance from a candidate point to its closest already existing
point, the algorithm compares the found distance with ‖r(ηi,j)−r(ξi)‖ =: ĥi,j instead
of h(pi). Unless this adjustment is made, no candidates would be accepted in areas

where ĥi,j is smaller than h(p), since point pi itself would be too close. On curves,
this might even cause the algorithm to terminate prematurely.

Figure 1 illustrates the process of candidate generation on a surface parameterized
with r(ξ1, ξ2) = (ξ1, ξ2, 3 sin ξ1 sin ξ2). Parameters in parametric space Ξ (left) are
generated in a way that when mapped to the main domain ∂Ω (right), they are
approximately h apart.

Fig. 1. Illustration of candidate generation by the proposed algorithm in parametric space Ξ
(left) and main domain ∂Ω (top), around parameter ξ = (8.42, 5.99) with spacing h = 0.23.

Figure 2 illustrates the execution of the proposed algorithm on a part of a unit
sphere (non-standardly) parameterized by r(ξ1, ξ2) = (cos ξ1 sin ξ2

2 , sin ξ1 sin ξ2
2 , cos ξ2

2)
with a constant nodal spacing. The algorithm begins with a single node (leftmost
image) and then expands it in all directions. Subsequent images show progress of the
proposed algorithm and the final result (rightmost image).

An efficient implementation with an implicit queue contained in the array of final
points and the k-d tree spatial structure [21] is presented as Algorithm 2.1.

The proposed algorithm includes generation of random unit direction vectors on
line 8, that needs to be clarified. There are different ways of generating unit vectors
that cover all possible directions well, according to discussion in [25], randomized
pattern candidates technique shall be used. A set of random unit vectors is obtained
by randomly rotating a fixed discretization of a d-dimensional unit ball. The set of
candidates candidates(n) on a unit ball in 2D is obtained simply by
(2.7)

candidates(n) =

{
(cosϕ, sinϕ); ϕ ∈ {0, ϕ0, 2ϕ0, . . . , (n− 1)ϕ0}, ϕ0 =

2π

n

}
.
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Fig. 2. Execution illustration of the proposed algorithm algorithm (left to right) in parametric
domain Ξ (bottom) and main domain ∂Ω (top). Part of a unit sphere was sampled with nodal
spacing h = 0.08.

In d dimensions, the discretization of a unit ball is obtained by recursively discretizing
appropriate d− 1 dimensional slices along the last coordinate.

The number of generated candidates n in each iteration on line 8 is also a free
parameter in our implementation of the proposed algorithm and recommendations
based on the dimension dΞ are given in [25]. We will use n = 2 when dΞ = 1 and
n = 15 when dΞ = 2 in our analyses, unless stated otherwise.

2.1. Time complexity analysis. We will derive the time complexity in terms of
the number of generated nodes. Let us denote the number of starting points with Ns,
the number of final points with N , the cost of spatial search structure precomputation,
query and insertion with P (Ns), Q(N) and I(N) respectively, the cost of evaluating
r with e1 and the cost of evaluating ∇r with e2. All other operations are assumed to
have (amortized) constant cost.

The main while loop (line 4) iterates exactly N times and the inner for loop
(line 8) iterates n times. Each iteration of the inner for loop executes one query and
one r evaluation. Every candidate was inserted once and ∇r is evaluated once for
each node when expanding it, since its value can be stored for later use in the inner
for loop. Therefore, the total time complexity of the proposed algorithm is equal to

TPA-general = P (Ns) +

N∑
i=1

(I(N) + e1 + e2 +

n∑
j=1

(e1 +Q(N)))(2.8)

= O(P (Ns) +N(n+ 1)e1 +Ne2 +NnQ(N) +NI(N)).

Since we are using a k-d tree as the spatial search structure, we know that P (Ns) =
O(Ns logNs), Q(N) = O(logN) and I(N) = O(logN). Both e1 and e2 are also
usually constant cost operations and Ns = O(N) (usually even Ns � N). This
simplifies equation (2.8) to

(2.9) TPA = O(Ns logNs + nN + nN logN) = O(nN logN).

Other data structures can be used in special cases. If h is constant, a background
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Algorithm 2.1 Proposed surface node placing algorithm.

Input: Parametric domain Ξ ⊆ RdΞ , given by its characteristic function χΞ : RdΞ → {0, 1}.
Input: Parametrization r : Ξ→ ∂Ω ⊂ Rd and its Jacobian matrix ∇r.
Input: A list of starting parameters X from the parametric domain Ξ.
Input: A nodal spacing function h : ∂Ω ⊂ Rd → (0,∞).
Input: Number of candidates generated in each iteration n.
Output: A list of points in ∂Ω distributed according to spacing function h.

1: function proposedAlgorithm(Ξ, r,∇r, h,X , n)
2: T ← kdtreeInit(r(X )) . Initialize spatial search structure on points r(X ).
3: i← 0 . Current node index.
4: while i < |X | do . Until the queue is not empty.
5: ξi ← X [i] . Get next parameter values from the start of the queue.
6: pi ← r(ξi) . Compute the corresponding node in ∂Ω.
7: hi ← h(pi) . Compute its nodal spacing.
8: for each ~si,j in candidates(n) do . Loop through random unit vectors.
9: ηi,j ← ξi + hi

‖∇r(ξi)~si,j‖
~si,j . Calculate new candidate.

10: if ηi,j ∈ Ξ then . Discard candidates outside the parametric domain.
11: ci,j ← r(ηi,j) . Compute the candidate point in ∂Ω.

12: ĥi,j ← ‖ci,j − pi,j‖ . Compute the actual spacing.
13: ni,j ← kdtreeClosest(T, ci,j) . Find nearest node for proximity test.
14: if ‖ci,j −ni,j‖ ≥ ĥi,j then . Test that ci,j is not too close to other nodes.
15: append(X ,ηi,j) . Enqueue ηi,j as the last element of X .
16: kdtreeInsert(T, ci,j) . Insert ci,j into the spatial search structure.
17: end if
18: end if
19: end for
20: i← i+ 1 . Dequeue current parameter and move to the next one.
21: end while
22: return r(X )
23: end function

grid with spacing O(h/
√
d) can be faster, but less space efficient, supporting query

and insert operations in O(1). Additionally, when when sampling simple curves from
a single starting point, the search structure is unnecessary as the parameters are
sampled in the interval and we can simply advance in both directions and the only
conflict can appear when the two ends of the curve potentially meet.

In this article, we will be using the general k-d tree version of the algorithm unless
stated otherwise explicitly.

2.2. Remarks on generalizations. In general, the parametrization function r
does not need to map to a smooth boundary ∂Ω of a domain Ω. However, having
orientability and co-dimension one allows the algorithm to also uniquely generate unit
normals from ∇r. Normal generation aside, neither orientability nor co-dimension are
requirements for the algorithm. The algorithms works in exactly the same manner if
dΞ < d− 1, e.g. for a curve embedded in 3D space.

Additionally, there are also no problems with self-intersecting surfaces. As an
example of that, the discretization of the (non-orientable) Roman surface is shown
in Figure 3. The Roman surface is a mapping of the real projective plane RP2 in R3,
given by

(2.10) r(θ, ϕ) = (R2 cos θ sin θ sinϕ,R2 cos θ sin θ cosϕ,R2 cos2 θ cosϕ sinϕ).
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Fig. 3. Nodes generated by the proposed algorithm on the Roman surface (2.10) with R =
1, h = 0.005.

Although all examples in this paper only deal with closed surfaces, the generaliza-
tion to bounded surfaces is straightforward. First, the boundary is to be discretized,
using the proposed algorithm, followed by discretization of remaining of the surface
using the generated boundary nodes as seed nodes.

There is also a possibility to extend the algorithm to surfaces defined by multi-
ple possibly intersecting patches, such as models created by Computer aided design
(CAD) software or parameterized submanifolds. The algorithm can discretize the sur-
face patch by patch and the spatial search structure keeps all the information about
stored nodes from the previous patches, to check for spacing violations. Problems
might arise on patch joints, similarly to front-joints, which could be dealt with post-
process algorithms [17]. However, further discussion on this topic is out of scope of
this paper and is left for future work.

3. Discussion and comparison. The proposed algorithm is compared with
the supersampling-decimation technique, recently published by Shankar, Kirby and
Fogelson [23], and the naive sampling algorithm, which was also used in [23] to show
the significance of the supersampling-decimation technique. A brief description of
both algorithms follows, using the same notation as in section 2. When needed, we
will refer to the naive algorithm as NA, to the supersampling-decimation approach as
SD and to the proposed algorithm as PA.

3.1. Existing algorithms.

3.1.1. Naive parametric sampling. Naive parametric sampling attempts to
generate a discretization of a surface parameterized with r : Ξ ⊂ RdΞ → ∂Ω ⊂ Rd,
by discretizing Ξ with nodal spacing h, obtaining a set of parameters XΞ. The dis-
cretization points are obtained by simply mapping elements of XΞ to the surface, i.e.
the resulting set of points X is given by X = r(XΞ).

This type of sampling is useful for its simplicity, especially if Ξ is box-shaped, h
constant and gradients ∇r are not too large. The algorithm is included in this paper
mostly as a reference to put results in perspective.
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3.1.2. Supersampling-decimation. The supersampling algorithm is based on
the naive algorithm, except that the discretization of the parametric space Ξ uses
spacing hΞ := h/γ instead of h, where γ > 0 is called the supersampling factor. This
is done in order to generate enough nodes even where the mapping r might cause them
to spread out on the surface. After the set of parameters XΞ with spacing h/γ has
been generated, decimation or thinning is performed, to keep only the appropriate
nodes. The parameters are mapped to the surface in sequence, accepting only the
points that are not too close to already accepted ones. This requires the use of a
spatial search structure that supports ball queries. The end result is a set of nodes X
in ∂Ω, that are spaced approximately by h.

The algorithm as described in [23] assumes that Ξ is either a line or a rectangle
and that spacing h is constant. Additionally, γ is not chosen directly, but indirectly
by estimating the number of nodes N on the generated surface as N = |∂Ω|/hd
and generating τN of them, with spacing hX = dΞ

√
|Ξ|/(τN) = h dΞ

√
|Ξ|/(τ |∂Ω|),

effectively choosing γ = dΞ

√
τ |∂Ω|/|Ξ|. As |∂Ω| is not known directly, is is estimated

with the surface of an (oriented) bounding box of Ω.
We will similarly take into the account the scaling due to different surface areas,

but will scale h directly by τ , using γ = τ dΞ

√
|∂Ω|/|Ξ|. Value τ = 5 will be sufficient

in most cases and will be used unless otherwise specified.

3.2. Setup for comparison. In this paper we focus on generating nodes for
use in meshless numerical analysis and therefore all analyses are done with guide-
lines established in [25] in mind. These include local regularity, minimal spacing
requirements, computational efficiency and the number of tuning parameters. In the
following discussion we analyze algorithm presented in section 2 and compare it to
the naive and supersampling algorithms.

In most of the analyses we will use a polar curve used in [23], given by

(3.1) rp(ϕ) = | cos(1.5ϕ)|sin(3ϕ), rp(ϕ) = (rp(ϕ) cosϕ, rp(ϕ) sinϕ), ϕ ∈ [0, 2π)

and a heart-like surface in 3D, given by

(3.2) rh(u, v) = (
√

1− v2 cos(u) + v2,
√

1− v2 sin(u), v), (u, v) ∈ [0, 2π)× [−1, 1).

Both of these parametrizations have large variations in absolute value of partial deriva-
tives, which makes them good candidates for analyses.

All three algorithms were implemented in C++ using the same library for k-
d tree spatial search structure (nanoflann [2]) and the same linear algebra library
(Eigen [13]) to ensure as fair comparison as possible. This implementation of the
proposed algorithm is included in the Medusa library [20], a C++ library focused on
tools for solving Partial Differential Equations with strong-form meshless methods.
Its standalone C++ implementation is also available at [8].

3.3. Local regularity. We begin our analysis by visually comparing the node
sets, generated with different algorithms. In Figure 4 we can see their performance on
the polar curve rp. It is clear that the naive algorithm does not perform well on curves
with variable derivatives. We can also see some irregularly big gaps between nodes
generated by the supersampling algorithm, since the supersampling algorithm is based
on the naive algorithm. However, this can be improved by choosing a bigger value of
the supersampling parameter τ , at greater cost to execution time and memory. Nodes
generated by the proposed algorithm only have one visually bigger gap, where two
sides of the parametric domain meet.
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Fig. 4. Comparison of different algorithms on a 2D polar curve from (3.1) sampled with h = 0.06

In Figure 5 we can see their performance in 3D on the heart-like surface rh. Naive
algorithm’s performance is similarly poor as in 2D case. Nodes generated by the
supersampling algorithm have bigger gaps only around (1, 0, 1) and (1, 0,−1), where
partial derivatives of rh diverge. In the same way as in the 2D case, increasing τ gives
better results, but the increase must be dependent on h to achieve good quality in all
cases. The proposed algorithm also performs worse near those points. However, it can
handle such problematic areas automatically and provides stable results regardless the
h. A more in-depth analysis of minimal and maximal spacing for various h is presented
in subsection 3.4.

Fig. 5. Comparison of different algorithms on a 3D heart-like surface from (3.2) sampled with
h = 0.05

To further analyze local regularity, we examine the distribution of distances to
nearest neighbors. For each node pi we find c nearest neighbors pi,j , j = 1, 2, . . . c

and calculate the average distance between them d̄i = 1
c

∑c
j=1 ‖pi − pi,j‖. We also

calculate the maximum and minimum distances for each point, dmin
i and dmax

i , where

(3.3) dmin
i = min

j=1,...c
‖pi − pi,j‖, dmax

i = max
j=1,...c

‖pi − pi,j‖.

with c = 2 for dΞ = 1 and c = 3 for dΞ = 2. The results are presented in terms of
normalized distances (d̄′, (dmin

i )′, etc.) which are scaled by h, e.g.

(3.4) d̄′ = d̄/h.

Numerical results of this analysis are shown in Table 1.
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Fig. 6. Histogram of normalized average distances to 2 nearest neighbors a polar curve
from (3.1) sampled with h = 0.00003. τ = 5, n = 2. Note the different scaling on the horizon-
tal axes.

Figure 6 shows the distribution of normalized average distances for 2 nearest
neighbors on the polar curve. The supersampling algorithm and the proposed al-
gorithm perform much better than the naive algorithm, with distribution of nodes
generated by the proposed algorithm being of higher quality. The proposed algorithm
produces distribution with normalized mean distance much closer to the target value
1 in comparison to the supersampling algorithm. Furthermore, the standard deviation
of d̄′ of nodes generated by the proposed algorithm is a few orders of magnitude smaller
than the standard deviation of d̄′ of nodes generated by the supersampling algorithm
(see Table 1). Both algorithms show similar mean difference between the maximum
and minimum distance, with the supersampling algorithm performing slightly better
in this aspect.

Fig. 7. Histogram of normalized average distances to 3 nearest neighbors on a heart-like surface
from (3.2) sampled with h = 0.008.

Figure 7 shows the same plots for 3 neighbors on the heart-like surface. The results
are also similar to the dΞ = 1 case, the proposed algorithm has a more favorable mean
and standard deviation of d̄′ than supersampling algorithm, while the naive algorithm
is much worse than both of them. However, the differences between the proposed
and supersampling algorithms are much smaller than in the previous analysis. It
is important to note that increasing the supersampling parameter τ would, to some
degree, improve the results of supersampling, however at greater computational cost.

A graph of d̄′i for each node pi with error bars showing (dmax
i )′ and (dmin

i )′ is shown
in Figure 8 for the polar curve. From this graph we can see that all three algorithms
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Table 1
Numerical quantities related to local regularity. 2D polar curve from (3.1) sampled with h =

0.00003 and 3D heart-like surface from (3.2) sampled with h = 0.004.

case alg. mean d̄′i std d̄′i mean
(

(dmax
i )

′ −
(
dmin
i

)′)
dΞ = 1

PA 1.0001 5.1483× 10−4 1.1136× 10−10

SD 1.1403 0.1715 5.7655× 10−9

NA 1.9550 1.8386 2.7922× 10−8

dΞ = 2

PA 1.0357 0.0374 3.8888× 10−4

SD 1.0764 0.0473 3.3444× 10−4

NA 0.8946 0.2086 0.0013

have degraded performance only on certain points on the curve, where derivatives of
rp rapidly increase. Nevertheless, the proposed algorithm handles curves with large
derivatives better.

Fig. 8. Graph of normalized average distances to 2 nearest neighbors on a 2D polar curve
from (3.1) sampled with h = 0.003. Error bars show minimal and maximal normalized distances to
2 nearest neighbors. Note the different y-axis range in the plots.

Figure 9 shows the same analysis as Figure 8 for dΞ = 2 case. The differences
between the supersampling and the proposed algorithm decrease and it can be seen
that the supersampling algorithm actually has fewer outliers with high valued d̄′i and
(dmax
i )′ or low valued (dmin

i )′.

Fig. 9. Graph of normalized average distances to 3 nearest neighbors on a 3D heart-like surface
from (3.2) sampled with h = 0.5. Error bars show minimal and maximal normalized distances to 3
nearest neighbors. Note the different y-axis range in the plots.
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3.4. Minimal and maximal spacing requirements. Minimal and maximal
spacing guarantees are in principle inherited from the underlying algorithm used to
discretize Ξ, but they are distorted by application of r in the naive algorithm. Su-
persampling algorithm ensures directly that minimal spacing h is respected in its
decimation step. The proposed algorithm uses ĥi,j instead of h to check for distance
violations, and this introduces an error caused by using linear Taylor’s approxima-
tion. The exact spacing at point p = r(ξ) is equal to h(p), while the actual computed

spacing is equal to ĥ(ξ, ~s) = ‖r(ξ+ (h(p)/‖∇r(ξ)~s‖)~s)− r(ξ)‖. We wish to estimate

the error ∆h(ξ, ~s) = h(p) − ĥ(ξ, ~s), specifically, we would like upper bounds of the
form |∆h| ≤ M . Three types of bounds are of interest: where M depends on ξ and
~s, where M depends only on ξ and where M is independent and the bound is global.

Proposition 3.1. The following estimates hold for the error of local node spacing
radius due to linear approximation in (2.3):

|∆h(ξ, ~s)| ≤
√
dΞ

2
h(p)2

max
i=1,...,dΞ

max
θ∈[0,α]

∣∣~sT(∇∇ri)(ξ + θ~s)~s
∣∣

‖∇r(ξ)~s‖2
, α =

h(p)

‖∇r(ξ)~s‖
,(3.5)

|∆h(ξ)| ≤
√
dΞ

2
h(p)2

max
i=1,...,dΞ

max
ζ∈B̄(ξ,ρξ)

σ1((∇∇ri)(ζ))

σdΞ(∇r(ξ))2
, ρξ =

h(p)

σdΞ(∇r(ξ))
,(3.6)

|∆h| ≤
√
dΞ

2
h2
M

σ1,M (∇∇r)

σ2
dΞ,m

(∇r)
,(3.7)

where

hM = max
ξ∈Ξ

h(p),(3.8)

σ1,M (∇∇r) = max
i=1,...,dΞ

max
ξ∈Ξ

σ1((∇∇ri)(ξ)),(3.9)

σdΞ,m(∇r) = min
ξ∈Ξ

σdΞ(∇r(ξ)),(3.10)

and σi(A) denotes the i-th largest singular value of A.
In particular, this means that the relative error in spacing |∆h|/h decreases lin-

early with h for well behaved r and the algorithm for placing points on surfaces asymp-
totically retains the minimal spacing and quasi-uniformity bounds of the underlying
algorithm for flat space.

Proposition 3.1 tells us that the relative error due to linear approximation when
computing α is of order h, where the proportionality constant depends on properties
of ∇r and ∇∇r. Its proof is given in Appendix A.

To analyze minimal and maximal spacing quantitatively, we can use standard
concepts (see e.g. [29, 14]), such as maximum empty sphere radius and separation
distance. For a set of points X = {x1, . . . , xN} ⊆ ∂Ω, the maximum empty sphere
radius is defined as

(3.11) rmax,X = sup
x∈∂Ω

min
1≤j≤N

‖x− xj‖

and the separation distance is defined as

(3.12) rmin,X =
1

2
min
i 6=j
‖xi − xj‖
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For numerical computation we compute rmin,X exactly using a spatial search structure,
such as a k-d tree, and we estimate rmax,X by discretizing the surface with a much
smaller nodal spacing h and finding the maximum empty sphere with center in one
of the generated nodes.

According to Proposition 3.1 we conclude that rmin,X /h ≥ 1+|∆h|/h for constant
h. This bound has been tested on a torus parameterized with r(ξ1, ξ2) = ((cos ξ2 +
2) cos ξ1, (cos ξ2+2) sin ξ1, sin ξ2), ξ1, ξ2 ∈ [0, 2π]. By using a computer algebra system,
we can calculate that σ1,M (∇∇r)/σ2

dΞ,m
(∇r) = 3 and compare this with practical

results, shown in Figure 10. We can see that the rmin,X obeys its lower bound.

Fig. 10. Comparison of practical separation distance and its theoretical lower on nodes gener-
ated by the proposed algorithm on a torus in 3D.

Figure 11 shows a graph of maximum empty sphere radius and normalized sep-
aration distance of the polar curve rp. For the naive and supersampling algorithms,
normalized maximum empty sphere radius is increasing with decreasing h, because
neither of them is able to adapt to the varying value of partial derivatives, and both
perform poorly when ∇rp has high values and when h is smaller. The proposed al-
gorithm scales much better, i.e. rmax remains relatively stable, but does not have a
strict separation distance minimum of 0.5, due to the linear approximation error, as
discussed previously.

Fig. 11. Graph of separation distance and maximum empty sphere radius for different h on the
polar curve rp (3.1). Note the different y-axis spans on the plots.

In Figure 12 we can see the same graph for the heart-like surface rh (3.2). The
results are similar, however rmax is increasing faster and does not seem bounded for
nodes generated by the proposed algorithm. The reason is similar to the one in 2D,



14 U. DUH, G. KOSEC AND J. SLAK

only in this case, higher order partial derivatives are increasing faster. If this is causing
problems, the proposed algorithm can be improved by using higher orders in the Taylor
expansion discussed in section 2. The performance of the supersampling algorithm
can also be improved by using the higher value of the supersampling parameter τ ,
which delays the problem until even smaller h. To mitigate this issue, τ should be
appropriately increased every time h is decreased.

Fig. 12. Graph of separation distance and maximum empty sphere radius for different h for
the heart-like surface rh (3.2). Note the different y-axis spans on the plots.

3.5. Spatial variability. An important feature of the proposed algorithm, which
other algorithms discussed here do not posses, is sampling of parametric surfaces with
non-constant spacing functions h. As a demonstration, a spherical model of Earth (us-
ing the parametrization in spherical coordinates) was sampled by the proposed algo-
rithm, with density function h representing altitudes at different points on Earth. Our
implementation of the proposed algorithm has generated 100 457 nodes in less than
0.3 s on an Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz. The necessary data was
acquired from Matlab®’s topo.mat file, also available from US National Geophysical
Data Center [5]. The results can be seen in Figure 13.

Fig. 13. Spherical Earth model sampled proportionally with altitude, N = 100 457.

3.6. Computational complexity and execution time. Theoretical compu-
tational complexity of the proposed algorithm was already analyzed in subsection 2.1,
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and was derived to be

(3.13) TPA = O(nN logN),

for the general version with a k-d tree spatial structure. The computational complex-
ity of the naive algorithm is clearly

(3.14) TNA = O(N),

since the parameters are generated on a grid inside a box-shaped parametric domain
Ξ and mapped to the surface.

The computational complexity of the supersampling-decimation algorithm can
be written in terms of the number of generated parameters. If Np is the number of
parameters that are generated in the parametric domain Ξ with spacing hΞ = h/γ, the
time complexity of the algorithm is O(Np log(Np)), as the mapping of the parameters
taken O(Np) time and closest node queries take log(Np) per node using a k-d tree
data structure. To compare this result other time complexities, it would need to
be expressed in terms of N , the number of finally accepted nodes. It always holds
that N ≤ Np, but relating N to Np in the form of Np = O(f(N)) is not trivial in
general and depends on the parametrization r. However, by our choice of γ it can
be estimated that the SD algorithm generates τdΞ | obb ∂Ω|/|∂Ω| more points than it
returns, where | obb ∂Ω| and |∂Ω| are surface areas of the oriented bounding box and
the parameterized surface, respectively. Thus we can informally estimate

(3.15) TSD ≈ O
(
τdΞ
| obb ∂Ω|
|∂Ω|

N log

(
τdΞ
| obb ∂Ω|
|∂Ω|

N

))
.

To achieve good quality of nodes, the parameter τ needs to be as large or larger
than maxp∈∂Ω ‖∇r(p)‖. Nonetheless, the supersampling-decimation algorithm can
be faster than the proposed algorithm in many real world cases, while the proposed
algorithm offers consistent execution time over a wider range of cases.

To compare the actual execution time of the three algorithms they were run with
various h on curve rp (3.1) and the heart-like surface rh (3.2). The measurements
were done on a machine with an Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz

processor and 64 GB DDR3 RAM. Code was compiled with g++ (GCC) 8.1.0 for
Linux with -std=c++11 -O3 -DNDEBUG flags. Measurements for each data point were
executed 9 times and the median time was taken. The results are shown in Figure 14.

Growth factors obtained from practical results match the theoretical time com-
plexities. A different choice of τ can make the supersampling algorithm faster or
slower than proposed algorithm. Both are able to generate 106 nodes in order of a
few seconds in dΞ = 1 case and in order of few 10s of seconds in dΞ = 2 case.

4. Mesh-free numerical analysis example. In this section we demonstrate
the performance of the proposed algorithm in providing the discretization of domain
boundary for meshless solution of PDEs. Consider a domain Ω bounded by the polar
curve rp in 2D and bounded by the heart-like surface rh in 3D.

For the closed form solution we choose u2(x, y) = sin(πx) cos(2πy) in 2D and
u3(x, y, z) = sin(πx) cos(2πy) sin(1

2πz) in 3D and define the following Poisson problem
in d dimensions (for d = 2, 3):

∇2u = f in Ω,(4.1)

u = ud on Γe,(4.2)

~n · ∇u = g on Γn,(4.3)
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Fig. 14. Execution time for different algorithms for different densities in 2D and 3D. Sampling
of 2D polar curve from (3.1) and 3D heart-like surface from (3.2). The values k represent the
estimated line slopes.

where f and g are computed from ud.
The domain Ω is discretized in two steps. First, boundary ∂Ω is discretized using

the proposed algorithm. In the second step, the interior of Ω is populated with nodes
using the algorithm introduced in [25] where the boundary nodes from the first step
are used as the seed nodes.

Once the domain is fully populated with nodes, a radial basis function-generated
finite differences (RBF-FD) method, using polyharmonic basis functions augmented
with monomials is used. RBF-FD using polyharmonics augmented with monomials
is a promising mesh-free method that combines the robustness of classical RBF-FD
but circumvents the stagnation errors and achieves high-order accuracy by leveraging
monomial augmentation [1].

We used RBF-FD with monomial augmentation up to order m ∈ {2, 4, 6}, where
we chose stencil size n = 4

(
m+2

2

)
in 2D and n = 4

(
m+3

3

)
in 3D, based on guidelines

from [1], to obtain the mesh-free approximations of the differential operators involved.
The resulting sparse system is solved with BiCGSTAB using an ILUT preconditioner.

Figures 15 and 16 show the relative discrete p-norm error ep = ‖u− û‖p/‖u‖p for
increasing number of nodes in two cases. In one case, only Dirichlet boundary condi-
tions were used (Γe = ∂Ω and Γn = ∅) and in the other case, labeled “mixed”, Dirichlet
boundary conditions were used for boundary nodes with negative x-coordinate and
Neumann boundary conditions were used otherwise.

The error behaves as expected in 3D, but starts diverging when the number of
nodes is big in 2D. This is because of finite precision errors discussed by Flyer et
al. [10]. Until that point, the error also behaves as expected in 2D.

5. Conclusions. A new algorithm for generating nodes on parametric surfaces
was developed and compared with naive parametric sampling and the supersampling-
decimation algorithm [23]. All three algorithms require that a parametrization r of a
curve/surface in question is given.

Of the three algorithms, both supersampling and the proposed algorithm produce
quasi-uniform discretizations. The proposed algorithm requires that ∇r is given in
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Fig. 15. Convergence of Poisson’s equation u(x, y) = sin(πx) cos(2πy) with different boundary
conditions and monomials up to order m on nodes generated by the proposed algorithm and the
algorithm presented in [25] on 2D polar curve from (3.1). The values k represent the estimated line
slopes until the error starts diverging.

addition to r, which can be problematic, but is usually known in case of closed form
parametrization, RBF models or CAD models. Contrary to the other two algorithms,
the proposed algorithm supports generation of nodes with variable nodal spacing, and
on irregular parametric domains. It also adapts to parametrizations with variable
‖∇r‖ without modifications. We also proved minimal spacing requirements of the
proposed algorithm, for both uniform and variable spacing.

Both the proposed and the supersampling-decimation algorithm support genera-
tion of nodes in arbitrary dimensions. The time complexity of the proposed algorithm
is O(N logN) to generate N nodes in all cases, while the time complexity of the
supersampling algorithm varies a lot with τ and the properties of the parametriza-
tion r. The execution times of the algorithm are comparable, with execution time
of supersampling-decimation algorithm depending heavily on choice of τ . It takes
around 1 s to generate 106 nodes in 2D and 10 s to generate 106 nodes in 3D.

Future work is focused on the parallelization of the underlying spatial generation
algorithm, with some successful preliminary results [6] and analyzing the behavior of
the algorithm for surfaces composed of multiple patches, with the ultimate goal to
support automatic meshless discretization of CAD models.

Acknowledgments. The authors would like to acknowledge the financial sup-
port of the ARRS research core funding No. P2-0095 and the Young Researcher pro-
gram PR-08346.

Appendix A. Node spacing error proposition.

Proposition 3.1. The following estimates hold for the error of local node spacing
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Fig. 16. Convergence of Poisson’s equation u(x, y, z) = sin(πx) cos(2πy) sin( 1
2
πz) with mixed

boundary conditions and monomials up to order m on nodes generated by the proposed algorithm
and the algorithm presented in [25] on 3D heart-like surface from (3.2). The values k represent the
estimated line slopes.

radius due to linear approximation in (2.3):

|∆h(ξ, ~s)| ≤
√
dΞ

2
h(p)2

max
i=1,...,dΞ

max
θ∈[0,α]

∣∣~sT(∇∇ri)(ξ + θ~s)~s
∣∣

‖∇r(ξ)~s‖2
, α =

h(p)

‖∇r(ξ)~s‖
,(A.1)

|∆h(ξ)| ≤
√
dΞ

2
h(p)2

max
i=1,...,dΞ

max
ζ∈B̄(ξ,ρξ)

σ1((∇∇ri)(ζ))

σdΞ(∇r(ξ))2
, ρξ =

h(p)

σdΞ(∇r(ξ))
,(A.2)

|∆h| ≤
√
dΞ

2
h2
M

σ1,M (∇∇r)

σ2
dΞ,m

(∇r)
,(A.3)

where

hM = max
ξ∈Ξ

h(p),(A.4)

σ1,M (∇∇r) = max
i=1,...,dΞ

max
ξ∈Ξ

σ1((∇∇ri)(ξ)),(A.5)

σdΞ,m(∇r) = min
ξ∈Ξ

σdΞ(∇r(ξ)),(A.6)

and σi(A) denotes the i-th largest singular value of A.
In particular, this means that the relative error in spacing |∆h|/h decreases lin-

early with h for well behaved r and the algorithm for placing points on surfaces asymp-
totically retains the minimal spacing and quasi-uniformity bounds of the underlying
algorithm for flat space.

Proof. The following estimate for a ∈ R and b, c ∈ Rn will be used:

(A.7) |a− ‖b+ c‖| ≤ |a− ‖b‖|+ ‖c‖.
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The dependence of α on ξ and ~s will also be written explicitly, α(ξ, ~s). We begin
to estimate the error locally

|∆h(ξ, ~s)| ≤ |h(p)− ĥ(ξ, ~s)|(A.8)

= |h(p)− ‖r(η)− r(ξ)‖| = |h(p)− ‖α(ξ, ~s)∇r(ξ)~s+R(ξ, ~s)‖|(A.9)

≤ |h(p)− ‖α(ξ, ~s)∇r(ξ)~s‖|+ ‖R(ξ, ~s)‖(A.10)

=

∣∣∣∣h(p)− h(p)

‖∇r(ξ)~s‖
‖∇r(ξ)~s‖

∣∣∣∣+ ‖R(ξ, ~s)‖(A.11)

= ‖R(ξ, ~s)‖,(A.12)

where R(ξ, ~s) is the remainder of the Taylor approximation

(A.13) R(ξ, ~s) = r(η)− r(ξ)− α∇r(ξ)~s,

which can also we viewed as an Taylor expansion of r(p + α~s) around α = 0. The
remainder can be further estimated component-wise:

(A.14) ‖R(ξ, ~s)‖ ≤
√
dΞ max

i=1,...,dΞ
‖Ri(ξ, ~s)‖.

Using the Lagrange form of remainder for each component of R(ξ), we arrive at

(A.15) Ri(ξ, ~s) =
1

2
h(p)2~s

T(∇∇ri)(ξ + θ~s)~s

‖∇r(ξ)~s‖2

for some θ ∈ [0, α], where ∇∇ri is the Hessian matrix of ri. Thus we can bound each
component as

(A.16) |Ri(ξ, ~s)| ≤
1

2
h(p)2 maxθ∈[0,α] |~sT(∇∇ri)(ξ + θ~s)~s|

‖∇r(ξ)~s‖2
,

which gives us the local error bound for a point-candidate pair:

(A.17) |∆h(ξ, ~s)| ≤
√
dΞ

2
h(p)2

max
i=1,...,dΞ

max
θ∈[0,α]

∣∣~sT(∇∇ri)(ξ + θ~s)~s
∣∣

‖∇r(ξ)~s‖2
.

To estimate the error around p for all candidates, we can further bound (A.16) more
independently of ~s by using

‖∇r(ξ)~s‖ ≥ σdΞ(∇r(ξ)) > 0(A.18) ∣∣~sT(∇∇ri)(ξ + θ~s)~s
∣∣ ≤ σ1((∇∇ri)(ξ + θ~s))(A.19)

where σdΞ is the smallest singular value of the Jacobian, which is positive as r is
regular and σ1 is the largest singular value of the Hessian. Following that, we can
bound Ri as

|Ri(ξ, ~s)| ≤
1

2
h(p)2 maxζ∈[0,α] σ1((∇∇ri)(ξ + θ~s))

σdΞ(∇r(ξ))2
(A.20)

≤ 1

2
h(p)2

max
ζ∈B̄(ξ,ρξ)

σ1((∇∇ri)(ζ))

σdΞ(∇r(ξ))2
(A.21)
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where

(A.22) ρξ =
h(p)

σdΞ(∇r(ξ))
≥ α(ξ, ~s)

is the radius of the closed ball B̄(ξ, ρξ) centered at ξ. The inequality (A.21) holds as
the maximum is sought over a larger domain. This gives the local estimate around a
point as

(A.23) |∆h(ξ)| ≤
√
dΞ

2
h(p)2

max
i=1,...,dΞ

max
ζ∈B̄(ξ,ρξ)

σ1((∇∇ri)(ζ))

σdΞ(∇r(ξ))2
.

To obtain a simple global estimate, we take the maximum of (A.23) over ξ

|∆h| ≤ max
ξ∈Ξ

√dΞ

2
h(p)2

max
i=1,...,dΞ

max
ζ∈B̄(ξ,ρξ)

σ1((∇∇ri)(ζ))

σdΞ(∇r(ξ))2

(A.24)

≤
√
dΞ

2
h2
M

max
i=1,...,dΞ

max
ξ∈Ξ

max
ζ∈B̄(ξ,ρξ)

σ1((∇∇ri)(ζ))

minξ∈Ξ σ2
dΞ

(∇r(ξ))
(A.25)

≤
√
dΞ

2
h2
M

σ1,M (∇∇r)

σ2
dΞ,m

(∇r)
,(A.26)

where

hM = max
ξ∈Ξ

h(p),(A.27)

σ1,M (∇∇r) = max
i=1,...,dΞ

max
ξ∈Ξ

σ1((∇∇ri)(ξ)),(A.28)

σdΞ,m(∇r) = min
ξ∈Ξ

σdΞ(∇r(ξ)),(A.29)

and the equality in (A.28) holds since the inner maximum over local balls is superfluous
when the maximum is sought over the whole domain. In particular, if h is constant,
the absolute error is of order h2 and the relative error is linear.
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