
Detection of Heart Rate Variability From a
Wearable Differential ECG Device

Jure Slak*, Gregor Kosec**
*student at Jožef Stefan Insitute, Department of Communication Systems, Ljubljana, Slovenia

**Jožef Stefan Insitute, Department of Communication Systems, Ljubljana, Slovenia
jure.slak@student.fmf.uni-lj.si, gregor.kosec@ijs.si

Abstract – The precise heart rate variability is extracted
from an ECG signal measured by a wearable sensor that
constantly records the heart activity of an active subject
for several days. Due to the limited resources of the wear-
able ECG device the signal can only be sampled at relatively
low, approximately 120 Hz, frequency. Besides low sampling
rate the signal from a wearable sensor is also burdened with
much more noise than the standard 12-channel ambulatory
ECG, mostly due to the design of the device, i.e. the elec-
trodes are positioned relatively close to each other, and the
fact that the subject is active during the measurements. To
extract heart rate variability with 1 ms precision, i.e. 10 times
more accurate than the sample rate of the measured signal, a
two-step algorithm is proposed. In first step an approximate
global search is performed, roughly determining the point
of interest, followed by a local search based on the Mov-
ing Least Squares approximation to refine the result. The
methodology is evaluated in terms of accuracy, noise sensi-
tivity, and computational complexity. All tests are performed
on simulated as well as measured data. It is demonstrated
that the proposed algorithm provides accurate results at a
low computational cost and it is robust enough for practical
application.

I. INTRODUCTION

It is well known that the morphology of ECG sig-
nals changes from beat to beat as a consequence of phys-
ical activity, sensations, emotions, breathing, etc. of the
subject [1]. The most straightforward measure of these
changes is the heart rate variability (HRV), i.e. small vari-
ations of beat duration. HRV characterizes the timings of
hearth cells repolarization and depolarization processes.
The HRV is typically determined by measuring the in-
tervals between two consecutive R-waves (RRI) or inter-
vals between R and T waves (RTI). Several vital signals
can be identified from the HRV and therefore it is of-
ten used as a health status indicator in different fields of
medicine, e.g. neurology [11], cardiac surgery [5], heart
transplantation [3] and many more. Typical HRV values
of healthy subjects are approximately 40 ms for RRI and
2 ms for RTI [2] (see Figure 1). Therefore it is important
to detect considered waves with at least 1 ms accuracy for
practical use [6]. This paper deals with the detection of
HRV in ECG signal provided by a Wearable ECG Device
(WECGD) that is paired with a personal digital assistant
(PDA) via Bluetooth Smart protocol [4]. The WECGD,
due to the hardware limitations, only measures the signal,
while the PDA takes care of data visualization, basic anal-
ysis and transmission of the data to a more powerful server
for further analyses. In contrast to a standard ambulatory

12-channel ECG measurement, where trained personnel
prepare and supervise the measurement of subject at rest,
the WECGD works on a single channel, the subject is ac-
tive and since the WECGD is often placed by an untrained
user its orientation might be random, resulting in addi-
tional decrease of signal quality. In order to maintain sev-
eral days of battery autonomy The WECGD also records
the heart rate with significantly lower frequencies and res-
olution in comparison to ambulatory measurements. In
this paper we analyse a possible local, i.e. only short his-
tory of measurement data is required, algorithm for detec-
tion of heart rate variability with 1 ms precision of a signal
recorded with 120 Hz.

The rest of the paper is organized as follows. In sec-
tion II a detection algorithm is presented, in section III
results are discussed, and in section IV conclusions are
presented.

II. DETECTION METHOD

In order to evaluate the HRV, the characteristic point
of each heart beat has to be detected in the signal, which
is provided as values of electric potential sampled with a
frequency 120 Hz. Since the HRV is computed from dif-
ferences of consequent characteristic points the choice of
the characteristic point does not play any role, as long as
it is the same in every beat. In this work we choose to
characterise the beat with a minimal first derivative, in an-
other words, we seek the points in the signal with the most
violent drop in electric potential (Figure 1) that occurs be-
tween R and S peaks.
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Figure 1. Beat to beat time between two characteristic points.

The detection method is separated in two stages,
namely global and local. The goal of the global method is
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to approximately detect the characteristic point, while the
local method serves as a fine precision detection, enabling
us to detect HRV with much higher accuracy.

A. Coarse global search
In the first step the algorithm finds a minimal first

derivative of a given signal on a sample rate accuracy, i.e.
1/ν. The global search method is next to trivial. The algo-
rithm simply travels along the signal, calculating the dis-
crete derivative and storing the position of minimal values
found so far. Since the points are sampled equidistantly,
minimizing ∆y

∆t is equal to minimizing ∆y. The middle of
the interval where the largest drop was detected is taken as
the global guess tG. The results of the global search are
presented in Figure 2.
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Figure 2. Global search detection of two beats.

B. Fine local search
The global search provides only coarse, limited to

sample points, positions of the characteristic points. To
push accuracy beyond 1/ν, the signal has to be repre-
sented also in between the sample points. A monomial
approximation function based on a Moving Least Squares
approach [10] is introduced for that purpose.

The value of the electrical potential at arbitrary time
t0 is approximated. Denote the vector of n known val-
ues near t0 by f (called support), and the times at which
they were measured by t. The approximation f̂ of f is
introduced as a linear combination of m in general arbi-
trary basis functions (bj)

m
j=1, however in this work only

monomials are considered.

f̂ =

m∑
j=1

αjbj (1)

The most widely used approach to solve above prob-
lem and find the appropriate f̂ is to minimize the weighted
2-norm of the error, also known as the Weighted Least
Squares (WLS) method.

‖f − f̂(t)‖2w =

n∑
i=1

(fi − f̂(ti))
2w(ti), (2)

In the above equation w is a nonnegative weight function.

The only unknown quantities are the m coefficients
α of the linear combination, which can be expressed as

a solution of an overdetermined linear system WBα =
Wf , where W is the n × n diagonal weight matrix,
Wii =

√
w(ti) and B is the n × m collocation ma-

trix, Bij = bj(ti). There are different approaches to-
wards finding the solution. The fastest and also the
least stable and accurate is to solve the Normal System
BTWTWBα = BTWTWf , a more expensive but also
more stable is via QR decomposition, and finally the most
expensive and also the most stable is via SVD decompo-
sition [9]. The resulting vector α is then used to calcu-
late f̂(t) for any given t. The derivatives are approxi-
mated simply by differentiating the approximating func-
tion, f̂ ′ =

∑m
j=1 αjb

′
j .

The WLS approximation weights the influence of sup-
port points using the weight function w. Usually, such a
weight is chosen that points closest to t0 are more impor-
tant in the norm in comparison to the nodes far away. Nat-
urally such approximation is valid only as long as the eval-
uation point is close to the t0. A more general approach
is a Moving Least Square (MLS) approximation, where
coefficients α are not spatially independent any more, but
are recomputed for each evaluation point. Naturally, such
an approach is way more expensive, but also more pre-
cise. A comparison of both methods, i.e. WLS and MLS,
is shown in Figure 3.
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Figure 3. MLS and WLS approximation of a heartbeat-like function
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The task of finding the minimal value of the first
derivative is equivalent to the task of finding the zero of
the second derivative. This zero will be our local ap-
proximation tL of the beat time, f̂ ′′(tL) = 0. There-
fore an approximation function with a non constant sec-
ond derivative, i.e. approximation function with a mini-
mal 3rd order monomial basis, is constructed. The most
straightforward approach to find its root is the simple bi-
section. Bisection requires initial low and high bounds
that can be estimated from characteristic point tG pro-
vided by the global method. Using the fact that the QRS
intervals last approximately ∆tQRS = 0.1 s [8, 7], we can
seek for the root of the second derivative on an interval
[tG −∆tQRS/2, tG + ∆tQRS/2], and at given sample rate
this translates to the search interval of two sample points
away from tG in each direction.



C. HRV calculation and error estimation
Given sampled heartbeat, the fine local search de-

scribed in section B produces the vector of `+ 1 detected
times tL := (tL,i)

`+1
i=1 of the RS slopes. Their successive

differences represent a vector r̂ of detected beat to beat
times, the durations of RR intervals.

r̂ = (r̂i)
`
i=1, r̂i = tL,i+1 − tL,i

Let r be the vector of (usually unknown) actual beat to
beat times. Then the heart rate variability (HRV) h is de-
fined as

h := std(r) =

√√√√1

`

∑̀
i=1

(ri − r̄)2,

where r̄ stands for the average beat to beat time, r̄ =∑`
i=1 ri/`. The HRV estimation ĥ is calculated as the

standard deviation of the detected times r̂.

In the following analyses the actual vector r will be
known, since the synthesized heartbeat will be analysed.
The most obvious error measures are the absolute error of
HRV, eh = |ĥ − h| and the absolute error of the aver-
age heart beat er̄ = |¯̂r − r̄|. Using the vector of errors
e = |r − r̂| the average error ea =

∑
ei/` and the maxi-

mal error eM = max(e) can be assessed.

III. RESULTS AND DISCUSSION

A. Approximation set-up
In first step the approximation free parameters,

i.e. weight function, support size, and number of basis
functions, have to be assessed. A single heartbeat is ex-
tracted and approximated with all possible combinations
of basis functions with orders from 2 to 10 and symmetric
supports of sizes from 3 to 15 using both WLS and MLS.
An global algorithm described in section A was used to
produce the initial guesses. For demonstration four sam-
ple cases are presented. The weight function was the same
in all four cases, a Gaussian distribution with µ = tG and
σ = m/4, which makes sure that all support points are
taken into account, but the central ones are more impor-
tant.

The simplest case is when the support size is the same
as number of basis functions resulting in an interpolation.
In this case, the weight function is not important, making
WLS and MLS entirely equivalent as seen in Figure 4.

In case of small support and small order of monomial
basis WLS performs worse than MLS and the approaches
differ significantly. However, as we increase the order of
the polynomial basis the difference within the bisection
interval becomes negligible. This transition can be ob-
served in Figures 5 and 6.

As predicted, the support size is important. Both meth-
ods perform badly when too many surrounding measure-
ments are taken into account while still using a low order
polynomial approximation. Note that in Figure 7 the ini-
tial guess is barely improved and the beat shape is skewed
away from the RS drop.

The conclusion is, that for our purposes MLS approx-
imation is unnecessary, as WLS provides good enough re-

sults, when used appropriately. Further analysis to deter-
mine the best choice of parameters m and n is presented
in section C.

★★
954 956 958 960 962 964

-0.6

-0.4

-0.2

0.2

0.4

known values support ★ initial guess MLS solution WLS solution

bisection interval

Comparison between MLS and WLS approximation, order = 4, support = 5

MLS approx. WLS approx. MLS 2nd der. WLS 2nd der.

Figure 4. Sufficiently small support implies interpolation, making
weight function useless and MLS equal to WLS.
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Figure 5. MLS and WLS differ when approximating with a low order
polynomial.
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Figure 6. MLS and WLS match when approximating with a high order
polynomial.
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Figure 7. Expected bad behaviour with too many support points and a
low order approximation.



B. Computational complexity
The presented algorithm is a streaming algorithm, re-

quiring a buffer to store the current beat in the signal.
Let b be the number of measurements per beat, stored
in a buffer of length b. The global part of the algorithm
makes O(b) operations, being a simple local search. The
local part is more expensive. First a n × m matrix is
constructed in O(mn) and the right hand side vector is
copied from the buffer. The system is then solved us-
ing SVD decomposition in O(mn2 + n3). Note that as
m = O(n), this step takes O(n3). The minimal first
derivative is found using bisection. To achieve tolerance
ε, dlog2(1/ε)e function evaluations are needed, each cost-
ing O(m) operations. Total time complexity is there-
fore equal to O(b + n3 + m log(1/ε)). Note, that us-
ing MLS would require O(n3) for each function evalu-
ation, resulting in a significantly worse time complexity
of O(b + n3 log2(1/ε))). The calculation of average and
variance is done later, after the wanted amount of signal
has already been analysed.

In practice the algorithm executes very fast, using typ-
ical values b = 150, m = 6, n = 11 and ε = 10−10

it runs approximately 0.27 s to analyse 1000 heartbeats
(≈ 105 data points). The algorithm was compiled from
C++ source code using g++5.3.0 with -O2 flag and run
on an Intel(R) Core(TM) i7-4700MQ processor.

C. Simulated heartbeat with known variability
The first set of tests for the presented method was per-

formed using a simulated heartbeat. A single real heart-
beat was taken and then replicated thousand times, each
time shifted by a random offset T , distributed normally
around zero, T ∼ N (0, σ2), with σ = 1

2ν = 1
2∆t. This

means that a decent amount of measurements will be more
than ∆t apart, a difference that must be detected by global
search for method to work. However, around half of the
measurements are less than ∆t apart, forming suitable
ground for testing the precision of the local search. At
given sample frequency, σ equals 4.167 ms.

The generated beat to beat times, coarsely detected
and finely detected times are presented in Figure 8.
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Figure 8. Generated beat to beat times and their global detection.

Beat to beat time precision is significantly improved
by the local search. As seen in Figure 9, the distributions
of generated and detected heart beats match very well.
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Figure 9. Generated RRI times and their global detection. The middle
two coarse detection columns continue off the chart, but are not shown

completely for clarity.

Results of RRI and HRV detection by global and lo-
cal search are presented in Table 1. The generated times
were taken as precise and the algorithm was run to pro-
duce global and local approximations. Then the average
RRI time and HRV were calculated for each data set sep-
arately. The average RRI time is estimated very well with
both methods, but the precision of the global method is
not satisfactory when measuring heart rate variability. The
precision is significantly improved using the local search.

A chart showing the average error of the detected
times is shown in Figure 10. The red values indicate in-
valid region with more basis functions than support points.
Although the under-determined system could be solved
with SVD, in this paper we do not consider that option.
Increasing the order of approximations improves results
in the beginning, however ultimately a stability limit is
reached where approximation system becomes unstable,
i.e. the condition number of the matrix becomes critical,
resulting in decrease of accuracy to the level of a coarse
detection approach. The best results are obtained with or-
der of basis 10–12 and 13–15 support values. From Fig-
ure 10 we can also conclude that using MLS is not bene-
ficial enough to justify its computational cost.
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Figure 10. Comparison of WLS and MLS errors using different orders
and support sizes.

TABLE 1. RESULTS AND ERRORS OF THE RRI AND HRV
DETECTION.

quantity [s] generated coarse fine

r̄ 0.861136 0.861139 0.861136

er̄ 0 3.34 · 10−6 2.83 · 10−8

h 0.004102 0.005324 0.004137

eh 0 0.001222 3.52 · 10−5

ea 0 0.002969 0.000263

eM 0 0.007778 0.000829



D. Noise analysis
The method presented in this paper relies heavily on

the values of the derivative. Normally, derivatives are very
sensitive to noise. To analyse noise sensitivity of the algo-
rithm a real heart beat signal was taken and normalized by
subtracting the average and then divided by maximal ab-
solute value, transforming measurements onto the interval
[−1, 1]. A uniform noise of level p was then applied to
every measurement. Specifically, a uniformly distributed
random number on the interval [−p, p], for fixed p ∈ [0, 1]
was added to every measurement point.

Example of the noised and normalized beat and the
behaviour of the algorithm is shown in Figure 11.
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Figure 11. Detecting heart beat in a 25 % uniformly noised signal.

An approximate calculation of the critical noise level
can be made. Let ν be the sample frequency and p the
noise level. The critical noise level is such, that the
maximal noise derivative is comparable to the maximal
derivative of the signal. The maximal noise derivative is
achieved when to subsequent measurements take extreme
values of p and −p, resulting in drop of magnitude 2p. In
the actual heartbeat, the maximal drop appears during R
and S peaks. Taking maximal number of nodes in QRS
complex to be d0.1νe as before, and with respect to Fig-
ure 1 the RS drop contains at most one third of them, we
approximate the maximal drop between two subsequent
measurements as the total RS drop divided by number
of nodes included. Taking into account that the RS drop
equals 2 after normalization, we obtain

∆ymax =
2

1
3d0.1νe

≈ 60
1

ν
.

The critical noise level is such, that both noise levels are
approximately equal

2pcrit ≈ 60
1

ν
.

At sample frequency of 120 Hz this yields

pcrit ≈ 0.25.

The algorithm was tested as described above for noise
levels p ∈ [0, 1] with a step of 1 %. Results are presented
in Figure 12. Note that the rise in error corresponds nicely
with predicted critical noise.

A little bit more can be achieved using simple statis-
tical analysis. When noise levels are around critical, a
few false beats may be recognized among the actual ones.
The RRI time before and after the false beat will devi-
ate greatly from the average RRI time. Therefore, we can
choose to ignore extreme values, as they are very likely to
be wrong. Average and standard deviation are both sen-
sitive to extreme data points, however the median is not,
and while extreme values occur rarely, the median should
give a good sense of what the “correct” beat to beat time
is. To detect the extreme values a Median Absolute Devia-
tion (MAD) was chosen as the simplest and robust enough
approach. In this method, the median of differences from
the median is taken as the estimate of data variability. All
values that differ more that five times MAD from the me-
dian are ignored. The results of applying this technique
are also shown in Figure 12.
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Figure 12. Variability detection at different noise levels.

E. Actual heartbeat analysis
The presented method was tested on sample inputs

from the wearable sensor. Detected beats are presented
in Figure 13. Average beat to beat time of the subject
was ¯̂r = 0.888264 s and heart rate variability equals
ĥ = 0.282443 s.

IV. CONCLUSION

In this paper a simple MLS based algorithm for accu-
rate detection of HRV from a low sample rate ECG signal,
typically provided by a wearable sensor, is demonstrated.
The algorithm is formulated in a fairly general way. Most
of the approximation parameters can be easily changed.
However, to keep the analyses within the reasonable lim-
its, only the order of monomial basis and the support size
are varied to find the optimal set-up. It is demonstrated
that increasing order of basis as well as support size im-
proves results up to roughly m = 12 and/or n = 20, at
which point the system matrix becomes ill-conditioned.
Based on the presented analyses a basis of 10th order sup-
ported with 15 nodes is claimed to be the optimal set-up.
It is also demonstrated that using a way more computa-
tionally expensive MLS, in comparison to WLS, does not
improve accuracy enough to justify it.
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Figure 13. Detection of heart beat from the input measured by wearable sensor.

Based on results from approximation analyses a fast
two-stage streaming algorithm for HRV detection is devel-
oped. The algorithm is tested on synthetic as well as ac-
tual data, achieving good performance. It is demonstrated
that the detected beat times of a simulated heartbeat dif-
fer from the actual ones with an average absolute error of
0.263 ms at sample frequency of 120 Hz. In other words
the detection accuracy is roughly ten times more accurate
in comparison with a coarse one. The method is also sta-
ble up to approximately 25 % noise and computationally
extremely effective, successfully processing 1000 heart-
beats in approximately 0.27 s on a standard laptop com-
puter.

In future work we will focus on full analysis, including
different basis and weight functions, as well as non-linear
MLS to fit also the basis shape parameters.
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