Partition-of-Unity Based Error Indicator for Local Collocation Meshless Methods

Jure Slak

"Jožef Stefan" Institute, Parallel and Distributed Systems Laboratory

1. 10. 2021, Mipro 2021

• Classical approaches:

Finite Difference Method, Finite Element Method

- Problems: inflexible geometry, mesh generation
- Response: mesh-free methods (EFG, MLPG, FPM)

JSI 🕄

Domain discretization:

- Points x_i on the boundary and in the interior
- Point neighborhoods $N(x_i)$
- Classical Finite Differences:

$$u''(x_i) \approx \frac{1}{h^2}u(x_{i-1}) - \frac{2}{h^2}u(x_i) + \frac{1}{h^2}u(x_{i+1})$$

Generalized Finite Differences:

$$(\mathcal{L}u)(x_i) \approx \sum_{x_j \in N(x_i)} w_j^i u(x_j)$$

+ exactness for a certain set of functions (e.g. monomials)

Problem:

$$\mathcal{L}u = f \quad \text{on } \Omega,$$
$$u = u_0 \quad \text{on } \partial \Omega$$

- 1. Discretize domain Ω
- 2. Find neighborhoods $N(x_i)$
- 3. Compute weights w^i for approximation of \mathcal{L} over $N(x_i)$
- 4. Assemble weights in a sparse system Wu = f
- 5. Solve the sparse system Wu = f
- 6. Approximate/interpolate the solution

The solution might not be good enough.

If we knew which regions had the highest error, we could increase the density of nodes there \rightarrow *h*-adaptivity

Giving an estimate of the error based on the domain and the computed solution is a job of an **error indicator**.

Adaptivity

Algorithm 1 Adaptive solution algorithm.

Input: Initial discretization $D^{(0)} = (X^{(0)}, \tau^{(0)}, S^{(0)}, \vec{n}^{(0)})$ of Ω . Input: Global error tolerance ϵ . Input: Maximal number of adaptive iterations J. **Output:** The adaptive solution *u*. 1: function AdaptiveSolve($\Omega, D^{(0)}, \epsilon, J$) for $i \leftarrow 0$ to J do 2: $u^{(j)} \leftarrow \text{SOLVE}(D^{(j)})$ 3: 4: if j < J then $e^{(j)} \leftarrow \text{ESTIMATEERROR}(D^{(j)}, u^{(j)})$ 5: $e_m^{(j)} \leftarrow \text{MEAN}(e^{(j)})$ 6: if $e_m^{(j)} < \epsilon$ then 7: return $u^{(j)}$ 8: 9: end if $\begin{array}{l} R^{(j)} \leftarrow \{i \mid i=0, \ldots | X^{(j)}|-1; \ e^{(j)}[i] > e^{(j)}_m \} & \triangleright \mbox{ Above-average error.} \\ D^{(j+1)} \leftarrow \mbox{ REFINE}(\Omega, D^{(j)}, R^{(j)}) \end{array}$ 10:11: end if 12:13:end for return $u^{(J)}$ Maximal number of iterations reached. 14:15: end function

Partition-of-unity error indicator

The global solution is made up of glued local solutions.

Partition-of-unity error indicator - zoom

We compute the variability of local solutions in test points.

8

Partition-of-unity error indicator - sample

Comparison with the real error for our example.

Consider a problem in d-dimensions (for d = 2 and d = 3)

$$\nabla^2 u = f \quad \text{in} \quad \Omega, \tag{1}$$
$$u = g \quad \text{on} \quad \partial\Omega,$$

where $\Omega = [0,1]^d$ and the f and g are computed from the manufactured solution

$$u(\boldsymbol{x}) = \frac{1}{25\|4\boldsymbol{x} - 2\|^2 + 1}.$$

Automatic adaptivity – Poisson example

Distribution of nodes:

Automatic adaptivity – results

13

All computations were done using open source Medusa library.

Medusa

Coordinate Free Mehless Method implementation http://e6.ijs.si/medusa/

Thank you for your attention!

Acknowledgments: ARRS research core funding No. P2-0095.