
TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28

Medusa: A C++ Library for Solving PDEs Using Strong Form 1

Mesh-free Methods 2

JURE SLAK*, Jožef Stefan Institute, Slovenia and Faculty of Mathematics and Physics,

University of Ljubljana, Slovenia

GREGOR KOSEC*, Jožef Stefan Institute, Slovenia

3
Medusa, a novel library for implementation of non-particle strong form mesh-free methods, such as GFDM 4
or RBF-FD, is described. We identify and present common parts and patterns among many such methods 5
reported in the literature, such as node positioning, stencil selection, and stencil weight computation. Many 6
different algorithms exist for each part and the possible combinations offer a plethora of possibilities for 7
improvements of solution procedures that are far from fully understood. As a consequence there are still 8
many unanswered questions in the mesh-free community resulting in vivid ongoing research in the field. 9
Medusa implements the core mesh-free elements as independent blocks, which offers users great flexibility 10
in experimenting with the method they are developing, as well as easily comparing it with other existing 11
methods. The article describes the chosen abstractions and their usage, illustrates aspects of the philosophy 12
and design, offers some executions time benchmarks and demonstrates the application of the library on cases 13
from linear elasticity and fluid flow in irregular 2D and 3D domains.

Q1

14

CCS Concepts: • Mathematics of computing → Solvers; Mathematical software performance; Discretiza- 15
tion; Numerical differentiation; Computations on matrices; Partial differential equations; 16

Additional Key Words and Phrases: Strong form mesh-free methods, meshless methods, PDE, RBF-FD, object- 17
oridented programming 18

ACM Reference format: 19
Jure Slak and Gregor Kosec. 2021. Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free 20
Methods. ACM Trans. Math. Softw. 47, 3, Article 28 (April 2021), 25 pages. 21
https://doi.org/10.1145/3450966 22

23

1 INTRODUCTION 24

Mesh-free (also called meshless) methods for solving partial differential equations (PDEs) 25
arose in 1970s and are still an active topic of research in applied mathematics today. In mesh- 26
free methods the computational domain is represented by a cloud of points instead of a mesh of 27
elements, as is typical for mesh-based methods. The weak form mesh-free methods are most often 28

*Both authors contributed equally to this research.
The authors would like to acknowledge the financial support of the Slovenian Research Agency (ARRS) research core
funding No. P2-0095 and the Young Researcher program PR-08346.
Authors’ addresses: J. Slak, Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia, 1000, Faculty of Mathematics and
Physics, University of Ljubljana, Jadranska ulica 19, Ljubljana, Slovenia, 1000; email: jure.slak@ijs.si; G. Kosec, Jožef Stefan
Institute, Jamova cesta 39, Ljubljana, Slovenia, 1000; email: gregor.kosec@ijs.si.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0098-3500/2021/04-ART28 $15.00
https://doi.org/10.1145/3450966

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

https://doi.org/10.1145/3450966
mailto:permissions@acm.org
https://doi.org/10.1145/3450966

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:2 J. Slak and G. Kosec

analogous to the well-established Finite Element Method (FEM), while strong form methods29
are most often generalization of the Finite Difference Methods (FDM).30

Many strong form methods have been proposed throughout the years, starting from Smooth31
Particle Hydrodynamics (SPH) [Benz 1990], followed by generalizations of FDM with the Fi-32
nite Point method (FPM) [Oñate et al. 2001], the Generalized Finite Differences method [Gavete33
et al. 2003], and Radial basis function-generated Finite Differences (RBF-FD) [Tolstykh and34
Shirobokov 2003], to name a few. A significant development in RBF-FD has been a recently re-35
ported by using polyharmonic RBFs augmented with monomials [Bayona et al. 2017] to avoid36
stagnation errors and allow control over the rate of convergence. Substantial development has37
also been reported in the stabilization of the method in convection dominated regimes [Shankar38
and Fogelson 2018], in adaptive solution of elliptic problems [Oanh et al. 2017], in methods for39
positioning computational nodes [Slak and Kosec 2019a], and in surface meshless methods [Petras40
et al. 2018; Suchde and Kuhnert 2019].41

A number of mature software implementations exist for FEM, such as deal.II [Bangerth et al.42
2007], DOLFIN (part of the FEniCS Project) [Logg and Wells 2010], FreeFem++ [Hecht 2012],43
LifeV [Bertagna et al. 2017], GetFEM [Renard and Poulios 2020], and Firedrake [Rathgeber et al.44
2016], to name a few. Such a diverse ecosystem of general purpose implementations has not yet45
been developed for the field of strong-form meshless methods. There are implementations con-46
sisting of Matlab scripts and domain-specific applications, such as MFDMtool [Milewski 2013],47
GEC_RBFFD [Bayona et al. 2015], MFree2D [Liu 2002], RBFFD_GPU [Bollig 2014], and even a re-48
view paper by Nguyen et al. [2008] that specifically deals with computer implementation, includes49
its own set of Matlab scripts.50

Extensible, tested, documented, and published general-purpose libraries for mesh-free methods51
that would facilitate further research and practical applications of the field are scarce. For older52
and established particle-based methods, such as SPH, high-quality software packages are avail-53
able, both open source, such as DualSPHyiscs [Crespo et al. 2015], pySPH [Ramachandran et al.54
2019], SPlisHSPlasH [Bender 2016], SWIFT [Schaller et al. 2018]; and commercial, such as SPH55
flow [Nextflow Software 2015], Fluidix [OneZero Software 2008], Pasimodo [Inpartik & ITM Uni-56
versity of Stuttgart 2008], with both of the listings being nowhere near exhaustive. Another such57
package for particle-based methods is the Aboria library [Robinson and Bruna 2017]. Few com-58
mercial mesh-free implementations are known to the authors. One is the Midas MeshFree [MIDAS59
Information Technology Co. 2018] package, which uses the Implicit Boundary Method and a back-60
ground integration grid to perform simulations, and claims to perform “finite element analysis.”61
Another package is the MESHFREE software [Fraunhofer Gesellschaft 1999], which implements62
the Finite Pointset Method [Tiwari and Kuhnert 2003] and has an impressive suite of examples.63
Yet another package is the NOGRID [NOGRID GmbH 2006], which also implements the Finite64
Pointset Method. Some other commercial packages, such as Abaqus [Dassault Systèmes 2012] in-65
clude mesh-free simulations as a part of their suite. However, they are not freely accessible and66
are usually focused on a single method. In 2014, Hsieh and Pan published ESFM: An essential soft-67
ware framework for meshfree methods [Hsieh and Pan 2014], which is an object-oriented C++68
framework for computations using weak-form meshless methods and claims to be the first of its69
kind. However, it is not publicly available and the authors only show examples of linear elasticity70
problems in the paper. Another package to note is the RBF Python package [Hines 2015] (although71
not present in the standard Python Package Index), which implements RBF interpolation and RBF-72
based PDE solution techniques.73

Many packages for PDE solving such as deal.II, DOLFIN, FreeFem++, LifeV, FetFEM, Du-74
alSPHyiscs, Aboria, and ESFM libraries use the C++ programming language. FreeFem++75

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:3

implements its own extended language on top of C++ core, while FEniCS and Firedrake offer a 76
Python interface. Nonetheless, C++ seems to be the language of choice for many such applica- 77
tions, with the potential of adding the bindings for other languages in the future. No open-source 78
C++ library for dealing with strong form meshless methods is known to authors. Therefore, to 79
help further research and development in the field of strong form meshless methods, we present 80
an open source C++ library Medusa (http://e6.ijs.si/medusa). 81

Our team started the development of Medusa library in 2015 to support our research in the 82
field [Kosec 2018; Kosec et al. 2019] and to ease implementation of applied solutions [Maksić et al. 83
2019]. Over time, the interface grew and matured, putting emphasis on modularity, extensibility 84
and reusability. Similarly to listed FEM libraries, it relies heavily on the C++ template system 85
and allows the programs to be written independently of the number of spatial dimensions with 86
negligible runtime and memory overhead. Special care is also taken to increase expressiveness and 87
to be able to explicitly translate mathematical notation into program source code. However, source 88
code is still standard compliant C++, which allows the user to use entirety of the C++ ecosystem. 89
The open-source nature of the library is a novelty compared to the other libraries. 90

The rest of the article is organized as follows: A brief overview of strong-form meshless methods 91
is presented in Section 2, where the most common part of strong form meshless methods are 92
identified and described. This is followed by the presentation of the library in Section 3, which 93
also includes the relevant abstractions and rationale behind some design decisions. Two more 94
interesting computational examples are presented in Section 4 with measurements of execution 95
time presented along with comparison to FreeFem++ presented in Section 5. 96

2 STRONG FROM MESH-FREE METHODS 97

Similarly to many other methods, the general parts of the solution procedure for strong form 98
mesh-free methods are: 99

(1) Domain discretization: The geometry of the spatial domain is discretized by placing com- 100
putational nodes and finding their stencils. This part is described in more detail in Sec- 101
tion 2.1. 102

(2) Differential operator discretization: The spatial partial differential operators are discretized 103
using method specific techniques. This part is described in more detail in Section 2.2. 104

(3) PDE discretization: The remaining time-dependent part of the PDE is discretized and then 105
solved either implicitly or explicitly, with time iteration, or by only solving the implicit 106
sparse system once, for elliptic problems. This part is described in more detail in Sec- 107
tion 2.3. 108

Even if the overall problem solution procedure is more complicated and involves coupled equa- 109
tions, additional physical models or non-linearities, such as in computational fluid dynamics, the 110
above three parts represent the core of the solution procedure. From our experience, these parts 111
and their components are the elements worthy of abstraction and general implementation. 112

A more detailed description of the three parts is given in the following subsections, with their 113
respective implementations presented in Sections 3.1, 3.2, and 3.3. 114

2.1 Domain Discretization 115

A discretization of a bounded domain Ω ⊂ Rd consists of N nodes X = {p0,p2, . . . ,pN−1} placed 116
in the interior and on the boundary of the domain. Each node is assigned a stencil (also called 117
neighborhood or support) consisting of some nodes near it. We will denote the size of the stencil 118
of ith node with ni and the indices of stencil nodes with I (i) = (Ii,1, Ii,2, . . . , Ii,ni

). The stencil of 119

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

http://e6.ijs.si/medusa

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:4 J. Slak and G. Kosec

the ith node N (i) is the ni -tuple120

N (i) = (pIi,1 ,pIi,2 , . . . ,pIi,ni
). (1)

Each node should be in its own stencil, and for simplicity, we assume that it is the first one, i.e.,121
Ii,1 = i holds for all i = 1, . . . ,N . Boundary nodes are assigned outer unit normals �ni .122

Generation of nodal distributions has sometimes been considered as an easy and not too relevant123
first step. This is partly due to the fact that existing mesh generators could be used to generate124
a suitable mesh and the user can simply discard the connectivity information [Liu 2002]. Besides125
being conceptually flawed, such approach is also computationally wasteful and does not easily126
generalize to higher dimensions. Some authors even reported having difficulties to obtain node127
distributions of sufficient quality [Shankar et al. 2018].128

Developed software packages usually support a combination of geometric primitives, which can129
be rotated, scaled, or translated, and also offer a way for working with real-world geometry, using,130
e.g., STL files. This is an approach taken by FreeFem++, Fenics and deal.II. The same is true for131
meshless packages, like DualSPHysics, and the node generation itself is described in detail in the132
documentation of the GenCase command. Other techniques for meshless node generation include133
iterative approaches [Liu et al. 2010], advancing front methods [Löhner and Oñate 2004], or sphere134
packing [Choi and Kim 1999]. An algorithm described in Drumm et al. [2008] has been successfully135
used with the Finite pointset method.136

With the rising popularity of non-particle based meshless methods, research into suitable node137
generation algorithms also increased [Fornberg and Flyer 2015; Zamolo and Nobile 2018]. This138
includes two algorithms for variable density node generation in irregular domains in arbitrary139
dimensions: our original algorithm [Slak and Kosec 2019a] published in 2019 and another described140
in an arXiv preprint [van der Sande and Fornberg 2019]. Both of these algorithms are implemented141
in Medusa. In addition, Medusa also provides classic discretizations of basic geometric shapes,142
support for gridded nodes and an ability to easily define custom node generation schemes (e.g.,143
hexagonal). Medusa also offers support for adding so-called “ghost nodes” to the boundary.144

The remaining part of the discretization is to define the stencils, which is fully automated and145
considered part of the solution procedure in nearly all meshless methods. The most widely used146
type of stencils consists of some number of closest neighbors. Besides those, balanced stencils can147
be used in adaptive solutions [Oanh et al. 2017]. Both approaches are implemented in Medusa,148
along with the ability to only restrict the stencils to certain node types. It is also simple to define149
custom stencil selection algorithms, for example visibility-based stencils [Nguyen et al. 2008], as150
shown in Section 3.1.151

2.2 Differential Operator Discretization152

Most strong-form meshless approximations approximate a partial differential operatorL at a point153
p with a linear functional wT

L,p , using an approximation of the form154

(Lu) (p) ≈
∑

j ∈I (p)

(wL,p)ju (pj) = w
T
L,pu, (2)

where point p is not necessarily one of the computational nodes. However, the stencil indices155
I (p) and stencil nodes N (p) represent computational nodes. The values wL,p are called sten-156
cil weights or sometimes shape functions, as a legacy terminology originating from weak-form157
methods. Other approximations such as of Hermite type collocation [Li and Mulay 2013] are also158
possible, but less common.159

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:5

We will describe two possibilities to obtain the stencil weights wL,p that cover many meshless 160
formulations and are also included in Medusa by default. The first is the generalized weighted 161
least squares (GWLS) method, which includes many commonly used meshless approximations, 162
such as SPH approximations [Benz 1990], Finite Point Method [Oñate et al. 2001], Generalized Fi- 163
nite Difference method [Gavete et al. 2003], radial basis functions-generated finite differences 164
(RBF-FD) [Tolstykh and Shirobokov 2003], meshless local strong-form method [Slak and Kosec 165
2019b], Finite Pointset Method [Tiwari and Kuhnert 2003], diffuse approximate methods [Wang 166
et al. 2012], and many more. 167

The second is a more specific radial basis functions-generated finite differences (RBF- 168
FD) approximation with monomial augmentation, which also offers some speed improvements. 169
Other custom approximation schemes can be implemented and used, such as schemes that put 170
additional constraints on the center weights to achieve diagonal dominance in differentiation ma- 171
trices [Suchde and Kuhnert 2019]. 172

2.2.1 Generalized Weighted Least Squares. An approximation of function u : Rd → R around 173
p∗ is sought in the form 174

û (p) =
m∑

i=1

αibi

(
p − p∗

s

)
= b

(
p − p∗

s

)T

α (3)

whereb = (bi)m
i=1 is a set of basis functions,bi : Rd → R,α = (αi)m

i=1 are the unknown coefficients, 175
and s is a positive scaling factor. For simplicity, we will assume that I (p) = (1, . . . ,n) and N (p) = 176
(p1, . . . ,pn). Note that if monomials are chosen for bi , then we obtain the same setup as for the 177
standard moving/weighted least squares (MLS/WLS) formulation [Levin 1998]. 178

Using the known values ui in nearby nodes pi , the error 179

ei = û (pi) − ui = b

(
pi − p∗

s

)T

α − ui (4)

can be computed. A weighted norm of the error vector e = (ei)n
i=1 is then minimized. It can be 180

expressed as 181

‖e ‖22,w =
n∑

i=1

(wiei)2 = ‖W e‖22 = ‖W (Bα −u)‖22 , (5)

where B is a rectangular matrix of dimensionsn ×m with rows containing basis function evaluated 182
at points pi : 183

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1

(
p1−p∗

s

)
. . . bm

(
p1−p∗

s

)
...

. . .
...

b1

(
pn−p∗

s

)
. . . bm

(
pn−p∗

s

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
bj

(
pi − p∗

s

)]m,n

j=1,i=1

=

⎡⎢⎢⎢⎢⎣b
(
pi − p∗

s

)T⎤⎥⎥⎥⎥⎦
n

i=1

, (6)

and W is a diagonal matrix of weights, Wii = ω ((pi − p∗)/s), where ω : Rd → (0,∞) is a weight 184
function. Choosingω ≡ 1 gives the unweighted version. The arguments of bj are shifted and scaled 185
to ensure better conditioning of matrix B [Nguyen et al. 2008]. 186

If we wanted to construct an approximant from known values ofui , then we could just compute 187
coefficients α with standard methods for solving least square problems, such as normal equations 188
with Cholesky decomposition, QR decomposition, or SVD decomposition. However, to obtain an 189
approximation of L|p , we express α in closed form using Moore-Penrose pseudoinverse as 190

α = (WB)+Wu (7)

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:6 J. Slak and G. Kosec

and substitute it in the definition (3) of û, which becomes191

û (p) = b

(
p − p∗

s

)T

(WB)+Wu . (8)

The value (Lu) (p) can be approximated by applying operator L to û, which gives192

(Lu) (p) ≈ (Lû) (p) = (Lb)

(
p − p∗

s

)T

(WB)+Wu = wT
L,pu, (9)

where the weights wT
L,p are computed as193

wT
L,p = (Lb)

(
p − p∗

s

)T

(WB)+W . (10)

Note that the computation of Moore-Penrose pseudoinverse is not really necessary, since wT
L,p194

can be computed by first solving the (possibly) underdetermined system195

(WB)Ty = (Lb) ((p − p∗)/s) (11)

for y and then computing wL,p =Wy. System (11) can be solved using QR, SVD or any other196
appropriate decomposition, however, depending onm,n, and properties ofbj , it can even be square197
and positive definite, making it possible to use Cholesky, LDLT, or LU decompositions.198

2.2.2 Radial Basis Function-generated Finite Differences with Monomial Augmentation. We again199
consider a partial differential operator L at a point p of form200

(Lu) (p) ≈
n∑

j=1

(wL,p)ju (pj) = w
T
L,pu, (12)

where pi are the neighboring nodes to p. The unknown weights in approximation (12) can be201
computed by enforcing equality for n basis functions. A natural choice are monomials, which are202
also used in FDM, resulting in the Finite Point Method [Oñate et al. 2001].203

In the RBF-FD discretization the equality is satisfied for radial basis functions ϕ j , which are204
functions205 ⎧⎪⎪⎨⎪⎪⎩ϕ j (p) = ϕ��

�����p − p
∗

s
−
pj − p∗

s

����� �� = ϕ��
���p − pj

���
s

��, j = 1, . . . ,n
⎫⎪⎪⎬⎪⎪⎭ , (13)

generated by a radial function ϕ : [0,∞) → R and defined over the set of nearby centers pj . The206
center of the coordinate system is once again shifted to p∗ and distances are scaled by s > 0 to207
improve conditioning.208

Each ϕ j , for j = 1, . . . ,n gives rise to one linear equation209

n∑
i=1

wiϕ j (pi) = (Lϕ j)

(
p − p∗

s

)
, (14)

for unknowns wi obtained by substituting ϕ j for u in Equation (2). These equations form the fol-210
lowing linear system:211 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ
(‖p1−p1‖

s

)
· · · ϕ

(‖pn−p1‖
s

)
...

. . .
...

ϕ
(‖p1−pn ‖

s

)
· · · ϕ

(‖pn−pn ‖
s

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
w1
...

wn

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(Lϕ1)

(
p−p∗

s

)
...

(Lϕn)
(

p−p∗

s

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:7

where ϕ j have been expanded for clarity. The above system can be written more compactly as 212

Aw = �ϕ . (16)

The matrix A is symmetric, and for some ϕ even positive definite. Other approximation properties 213
are also well studied [Wendland 2004]. Additionally, the computation up to now is the same as 214
using GWLS with n =m and bj = ϕ j . 215

To ensure consistency up to a certain order, the computation can be augmented with mono- 216
mials. Let q1, . . . ,ql be polynomials forming the basis of the space of d-dimensional multivariate 217

polynomials up to and including total degreem, with l =
(
m+d

d

)
. 218

Additional constraints are enforced by extending Equation (16) as 219[
A Q
QT 0

] [
w
λ

]
=

[
�ϕ

�q

]
, Q =

⎡⎢⎢⎢⎢⎢⎢⎣
q1 (p1) · · · ql (p1)
...

. . .
...

q1 (pn) · · · ql (pn)

⎤⎥⎥⎥⎥⎥⎥⎦ , �q =

⎡⎢⎢⎢⎢⎢⎢⎣
(Lq1) (p∗)
...

(Lql) (p∗)

⎤⎥⎥⎥⎥⎥⎥⎦ , (17)

where Q is a n × l matrix of polynomials evaluated at nodes pi and �q is the vector of values 220
assembled by applying considered operator L to the polynomials at p∗. 221

Weights obtained by solving Equation (17) are taken as values for wL,p , while values λ are 222
discarded. 223

2.3 PDE Discretization 224

With stencil weights wL,p computed, they are mostly used in two main patterns. The first is to 225
explicitly approximate (Lu) (p), with the field u being known, such as in explicit time iteration, 226
during linearization of nonlinear PDEs, or simply to obtain a derivative of the field. The second is 227
in implicit form, when we wish to obtain a field u, such that the field values satisfy a set of linear 228
equations. This usually happens when solving elliptic problems or during time iteration with at 229
least partially implicit methods, such as Crank-Nicholson and implicit Euler’s method. 230

Both usage patterns are described on typical examples in low-level detail in the following sec- 231
tions. We judged that these patterns of spatial approximation are common enough that suitable 232
abstractions are offered in Medusa (see Section 3.3) to avoid error-prone handling of indices, code 233
repetition, and poor readability. 234

2.3.1 Explicit Evaluation. Consider a sample time-dependent initial value problem on domain 235
Ω 236

∂u

∂t
(p, t) = (Lu) (p, t) in Ω, (18)

237
u (p, t) = f (p, t) at t = 0, (19)

238
u (p, t) = дd (p, t) on Γd , (20)

239
∂u

∂�n
(p, t) = дn (p, t) on Γn , (21)

where Γd and Γn are Dirichlet and Neumann boundaries, respectively, and f , дd , and дn are known 240
functions. Using explicit Euler scheme in time, starting at t = 0 with timestep Δt , we define uk

i = 241
u (pi ,kΔt). Time iteration using strong form meshless approximations is performed as follows: 242

u0
i = f (pi), (22)

243

uk+1
i = uk

i + Δt
(
wT
L,pi

uk
I (i)

)
, for internal nodes pi , (23)

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:8 J. Slak and G. Kosec

244

uk+1
i = дd (pi , (k + 1)Δt), for Dirichlet nodes pi , (24)

245

uk+1
i =

дn (pi , (k + 1)Δt) −∑ni

j=2 u
k
Ii, j

∑d
�=1 n� (w∂�,pi

)j∑d
�=1 n� (w∂�,pi

)1

, for Neumann nodes pi , (25)

where Neumann boundary conditions are obtained by equating the discretized version (28) to дn246
and expressing ui . Explicit discretization of Neumann boundary conditions is obtained by approx-247
imating coordinate partial derivatives with their discrete versions248

∂u

∂�n
(pi , t) =

d∑
�=1

n� (∂�u) (pi) ≈
d∑
�=1

n�w
T
∂�,pi

uI (i) =

d∑
�=1

n�

ni∑
j=1

(w∂�,pi
)juIi, j

(26)

249

=

d∑
�=1

n�

ni∑
j=1

(w∂�,pi
)juIi, j

=

ni∑
j=1

uIi, j

d∑
�=1

n� (w∂�,pi
)j = (27)

250

= ui

d∑
�=1

n� (w∂�,pi
)1 +

ni∑
j=2

uIi, j

d∑
�=1

n� (w∂�,pi
)j , (28)

where we used Ii,1 = i anduI (i) is the vector of function values in stencil nodesuI (i) = (u (pj))j ∈I (i) .251
The Equations (22–25) contain explicit evaluations of meshless discretizations on known fields.252

Similar expressions, containing the same explicit evaluations can be obtained for other time dis-253
cretizations or for vector functions u.254

2.3.2 Implicit Solution. Consider a boundary value problem255

Lu = f in Ω, (29)
256

u = дd on Γd , (30)
257

∂u

∂�n
= дn on Γn , (31)

where Γd and Γn are Dirichlet and Neumann boundaries, respectively, and f , дd , and дn are known258
functions. Each of the above equations is approximated by a linear equation in corresponding259
computational nodes. The system of linear equations can be written as Mu = r , where ith row of260
the system corresponds to the equation that holds in node pi . Formally, the matrix M and right-261
hand side r are given by262

Mi, Ii, j
= (wL,pi

)j , for j = 1, . . . ,ni , ri = f (pi), for internal nodes pi , (32)
263

Mi,i = 1, ri = дd (pi), for Dirichlet nodes pi , (33)
264

Mi, Ii, j
=

d∑
�=1

n� (w∂�,pi
)j , for j = 1, . . . ,ni , ri = дn (pi), for Neumann nodes pi . (34)

Matrix M is a sparse matrix with at most
∑N

i=1 ni nonzero entries. Solution of the system Mu = r265
is the numerical approximation of u.266

The Equations (32–34) define the unknown field u implicitly by using stencil weights. Similar267
approximations can be obtained for vector equations, or in implicit timestepping schemes.268

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:9

3 SOFTWARE DESCRIPTION 269

Looking at existing finite element software packages and based on our experience with imple- 270
menting strong-form meshless PDE solution procedures, we isolated a set of implementation re- 271
quirements: 272

• Modularity. Ability to change approximation, node generation, stencil selection, and other 273
algorithms is of crucial importance for fast prototyping that is needed in research. The goal 274
of Medusa is that different reported meshless methods can be rapidly constructed by using 275
different combinations of provided classes. 276

• Dimension independence. The mathematical PDE formulation is independent of the dimen- 277
sion of the problem, and we strive to conserve this property in the implementation as well. 278
Implemented approximations, node placing algorithms, and operators can be used in any 279
domain dimensionality simply by changing a template parameter, e.g., there is virtually no 280
difference between code for solution of problem in 2D or 3D, or any other dimensionality. 281

• Extensibility. Allowing users to define their own shapes, approximations, and operators en- 282
ables wide applicability, e.g., implementing additional stabilizations such as upwind or hy- 283
perviscosity is straightforward. 284

• Composability. The library can be used with other already existing infrastructure, such as 285
ODE or nonlinear solvers, or HPC infrastructure, such as PETSc or Trilinos. 286

• Readability. A clear mapping from mathematical notation to code helps reduce errors in the 287
code. Additionally, dealing with objects representing abstract concepts such as operators, 288
vector fields, and domains directly instead of matrices and lists of indices also helps avoid 289
bugs. 290

• Small overhead due to the abstraction: The runtime has small and often negligible overheads 291
in comparison with “bare-bones” implementations. 292

• Parallelization. When possible, parallelization can be handled internally, so the program can 293
remain relatively unchanged if the user decides for parallel execution. 294

• Ease of use. This involves easy import and export of common file formats, access to examples, 295
and technical documentation. 296

We designed the Medusa library with above requirements in mind, and although still lacking 297
in some of the above requirements, such as distributed parallelism, we believe it is a useful tool. 298
The library is written in C++ using object-oriented approach and C++’s strong template system to 299
achieve modularity, extensibility, and dimension independence. The library has no requirements, 300
apart from the C++ standard library and optionally the HDF5 C library [Folk et al. 2011] for reading 301
and writing binary HDF5 files. However, we include four open-source third-party libraries, namely, 302
the Eigen [Guennebaud et al. 2010] library for linear algebra, nanoflann [Blanco and Rai 2014] 303
library for spatial-search structures, tinyformat [Foster et al. 2011] library for simple formatting, 304
and RapidXML [Kalicinski 2011] for XML file processing. These four libraries have been packaged 305
together with Medusa source code for simplicity. An external version of Eigen can be easily used 306
as well. 307

Medusa is licensed under MIT license, but the included libraries Eigen, nanoflann, tinyformat, 308
and RapidXML are licensed under Mozilla Public License (v. 2.0), BSD license, Boost Software 309
License, and dual Boost Software license/MIT license, respectively. The repository also includes 310
the Google test library, which is licensed under BSD 3-Clause “New” or “Revised” License, but is 311
used for unit testing purposes and not necessary for core functionality. 312

The official website of the library is http://e6.ijs.si/medusa. The library is developed using 313
the git versioning system and the development is ongoing on GitLab https://gitlab.com/e62Lab/ 314

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

http://e6.ijs.si/medusa

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:10 J. Slak and G. Kosec

medusa. The library uses cmake build system and can be used as a cmake submodule or as a315
standard standalone static C++ library. Long compile times associated with large amounts of316
C++ templates are somewhat mitigated by separating declarations from template definitions into317
Medusa_fwd.hpp and other included files, explicitly instantiating most common class instances318
and linking them. If other instances are desired, then they can be explicitly instantiated or full319
template definitions available in Medusa.hpp can be included.320

Quality of implementation is ensured through continuous integration, which build the library321
and runs its test suite, documentation generation tools, linters, and compiles and runs all exam-322
ples. This aims to minimize the risk of regressions, stale documentation, or examples and ensures323
code validity, uniform code style, and validity of system dependencies. The library also includes324
numerous assertions, which can be disabled at compile time, that help catch errors earlier in the325
debugging phase. We use Google test testing framework to develop and run over 300 tests. The326
de facto standard documentation generation tool Doxygen is used to generate the technical docu-327
mentation, which is available at http://e6.ijs.si/medusa/docs. The cpplint style and code checker328
is used. Additionally, our wiki page is available at http://e6.ijs.si/medusa/wiki, where more detailed329
explanations of examples, the theory behind the methods, practical applications, and further in-330
formation about development and potential building issues can be found.331

The following section describes main modules of Medusa, dealing with domains, approx-332
imations, and PDE discretization. Almost all core classes are templated using a vec_t type,333
which contains two essential pieces of information: the dimension of the computational domain334
(vec_t::dim) and the scalar type used for numerical computations (vec_t::scalar_t), e.g.,335
or complex .336

3.1 Domains337

The main class representing domain discretizations is the338
DomainDiscretization class, which closely resembles the description of domain discretizations339
given in Section 2.1. It includes a list of d-dimensional points pi , each one has an associated340
integer type τi , with positive τi for internal nodes and negative τi for boundary nodes (τi = 0 is341
reserved). The types can be assigned by the user to differentiate between different types of the342
boundary, with, e.g., −1 representing the Dirichlet and −2 the Neumann boundary. All boundary343
nodes also have their outer unit normals �ni stored. Additionally, stencil indices I (pi) are stored344
for each node. Stencils of varying sizes are supported.345

Domain discretizations can be constructed by discretizing one of the predefined shapes, in-346
cluding d-dimensional spheres, cubes, 2d polygons, 3d polyhedra (given by STL files), as well347
as their unions, differences, translations, and rotations. Most of them support discretization of348
boundaries with arbitrary spacing function h. For discretizations of domain interiors, two dimen-349
sion independent variable density node generation algorithms are implemented, GeneralFill and350
GrainDropFill, based on Slak and Kosec [2019a] and van der Sande and Fornberg [2019], respec-351
tively. Other node generation algorithms, such as grid-based fills and surface filling algorithms,352
are also available.353

Two stencil selection algorithms are also available, FindClosest, which constructs stencils us-354
ing the indices of defined number of closest nodes, and FindBalancedSupport, which also ensures355
that stencils are balanced around the central node.356

Listing 1 demonstrates some of the capabilities for creating and handling domains. Figure 1357
shows the domains produced by the source code in Listing 1. The left part shows a 2D domain358
with relatively coarse variable density discretization, with interior and boundary nodes and also359
shows stencils for a few selected nodes. The right part shows a uniform discretization of a 3D360
model, obtained from an STL file.361

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

https://gitlab.com/e62Lab/medusa
https://gitlab.com/e62Lab/medusa
https://gitlab.com/e62Lab/medusa
https://gitlab.com/e62Lab/medusa
http://e6.ijs.si/medusa/docs
http://e6.ijs.si/medusa/wiki

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:11

Fig. 1. Domain discretizations produced by Listing 1. A few selected nodes are shown along with their sup-

port nodes in the left figure. The right figure shows a denser discretization of a STL model.

Fig. 2. A comparison of closest-point and visibility based stencils.

Listing 1. Construction and discretization of domains. 362

The domain discretization can also be constructed or modified manually, by addInternalNode, 363
addBoundaryNode, or removeNodes methods. Similarly, custom stencils can be constructed manu- 364
ally by assigning the stencils for each node. Custom stencil selection algorithms can also be defined 365
in a reusable manner as a callable that accepts the domain and constructs its stencils. Such callable 366
can be supplied to the findSupport method. Listing 2 shows a definition of a simple algorithm 367
for computing visibility based stencils and a comparison with closest point stencils is shown in 368
Figure 2. The example is taken from the customization examples included in the Medusa repository. 369

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:12 J. Slak and G. Kosec

Listing 2. Definition of a visibility-based stencil selection algorithm.370

3.2 Approximations371

The library currently includes two approximation engines for computing that implement the372
procedures described in Section 2.2. These are , ,373

, , , , ,374
, with reasonable defaults for last few parameters. Template pa-375

rameters allow for various combinations of basis functions bj , RBFs ϕ, weight functions ω, scaling376
function s , and solvers to be used. By default, the library includes monomial and RBF bases,377
Gaussian, Multiquadric, Inverse multiquadric, and Polyharmonic RBFs, three scaling functions,378
various weights, and a variety of solvers included with Eigen. It is also easy for users to add their379
own RBFs, weights, and bases. Since templates offer a (static) version of duck typing, any class380
with the interface conforming to the, e.g., RBF concept as described in the documentation, can be381
used.1 Examples of custom definitions are available in the examples that come with Medusa.382

The power of this generality is shown in Figure 3, where errors of various approximation setups383
are shown. The Laplacian operator was approximated on a regular grid Gh of points with spacing384
h covering the unit square [0, 1]2. The error of the approximation was computed as385

eh = max
pi ∈Gh

���wT
∇2,pi

u I (i) − (∇2u) (pi)��� .
The test function was chosen to be u (x ,y) = sin(πx) sin(πy). Five different approximation setups386
were tested:387

1http://e6.ijs.si/medusa/docs/html/concepts.html.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

http://e6.ijs.si/medusa/docs/html/concepts.html

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:13

Fig. 3. Error of approximating the Laplacian with different approximation setups. Less than 1 minute of

computing time was needed to produce the data for this plot.

(1) RBF-FD with Gaussian RBFs bj (p) = exp(‖p − pj ‖2/σ 2), using stencil of n = 9 closest 388
nodes with no monomial augmentation, σ = 100, and with scaling s equal to the dis- 389
tance to the nearest neighbor. LU decomposition was used to solve the system for stencil 390
weights. 391

(2) Like (1), but with σ = 5 and without scaling (s = 1). 392
(3) Like (2), but with SVD decomposition. 393
(4) GWLS with m = 5 monomial basis functions up to order 2, n = 9 closest nodes, Gaussian 394

weight with σ = 1, scaling to closest node, and SVD decomposition. 395
(5) RBF-FD with polyharmonic splines ϕ (r) = r 5 and monomial augmentation of orderm = 2 396

with n = 12 closest nodes. 397

The definition of these setups in Medusa is shown in Listing 3. Stencil sizes are not included, as 398
their computation was already shown in Listing 1. 399

Listing 3. Definition of various important approximations. 400

These setups present some of the problems and answers in meshless strong form methods in 401
recent years. The question of choice of the shape parameter for RBFs is a long-standing one, since 402
the shape parameter often presents a tradeoff between accuracy and the condition number of 403
the matrix A [Wendland 2004]. Case (2) exhibits the expected behavior that Gaussian approxima- 404
tions converge until the condition number is too high, and numerical errors become predominant. 405
Jagged behavior can be smoothed by using SVD decomposition, however, the overall outcome 406
is the same. A simple remedy for this instability is to scale the shape parameter (or the space) 407
to keep the condition number constant. This solves the problems with numerical instability but 408
causes the approximation to diverge in a characteristic fashion with two local minimums [Bayona 409

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:14 J. Slak and G. Kosec

et al. 2010]. This lack of convergence is also often called divergence due to “stagnation errors.”410
Two more convergent cases are included: one is the Finite point method (Case (4)), which achieves411
similar behavior and accuracy to FDM [Oñate et al. 2001], and another is RBF-FD using PHS aug-412
mented with monomials (Case (5)) [Bayona et al. 2017], where accuracy and convergence order413
can be easily controlled through augmentation.414

3.3 Operators415

This module defines one of the core functions of the library, which takes a domain discretization416
with nodes pi , an approximation engine and a list of operators (L1, . . . ,L�), and computes and417
stores stencil weights (wLj ,pi

)N , �
i=1, j=1 for all operators and all computational nodes in the domain.418

These weights are stored in a ShapeStorage class.419
The library supports computing shapes for first and second derivatives, as well as for the Lapla-420

cian operator. Note that this allows for construction of arbitrary second-order operators as421

wL,p =
∑

1≤ |α | ≤2

aα (p)w∂α ,p , for L =
∑

1≤ |α | ≤2

aα (p)
∂

∂xα
, (35)

where |α | = ∑d
i=1 αi and ∂

∂x α =
∂ |α |

∂x α
1 · · ·x

αd
are the standard multiindex notations. This would also422

cover the Laplacian operator, however, Equation (35) is not necessarily the most efficient nor423
the most numerically stable way of computing the Laplacian for certain basis functions. User-424
defined operators are supported as well, with the only requirement being that the user im-425
plements application of the operator for a class of basis functions that is used in their code.426
Our examples include solving the biharmonic equation to demonstrate this extensibility (see427
examples/customization/custom_operators_biharmonic.cpp).428

The ShapeStorage class stores the computed weights for a chosen set of operators in space-429
efficient way. These shapes can be used to implicitly express or explicitly computeLu, as described430
in Sections 2.3 and its subsections.431

For given scalar or vector fieldu, we directly support most common scalar and vector operators,432
such as coordinate derivatives of first and second order, Laplacian, gradient, divergence, gradient433
of divergence, directional derivatives, as well as any user-defined operators.434

Two examples of PDE solutions will be given in this section to illustrate the functionality of435
the library for explicit and implicit solving. Special effort was put into readability of the solution436
procedures to give the user a direct mapping from the mathematical solution procedure to the437
source code.438

3.3.1 Explicit Operators. Consider the problem of type (18–21):439

∂u

∂t
(x ,y, t) = ∇2u + 5 in Ω, (36)

440

u (x ,y, t) = 0 at t = 0, (37)
441

u (x ,y, t) = x on Γd , (38)
442

∂u

∂�n
(x ,y, t) = 0 on Γn , (39)

on the 2D domain Ω constructed in Listing 1, where Γn is the inner circle boundary and Γd the443
outer boundary. The problem is solved in Listing 4 and the solution procedure follows (22–25).444
The solution is shown on the left side of Figure 4.445

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:15

Fig. 4. Solution of the heat equations (36–39) on the left and convection-diffusion problem (40) on the right.

Listing 4 begins after the domain has been constructed and the sets of indices interior, 446
boundary, and circle, corresponding to the interior, outer boundary in inner boundary nodes, 447
respectively, have been defined. We use the WLS approximation with nine Gaussians on stencils 448
of 13 nodes and a Gaussian weight. The computeShapes method computes shapes for Laplacian 449
and first derivatives, which are then stored. The explicit operators op are a collection of meth- 450
ods that implement the spatial parts of the formulas (22–25) from Section 2.3.1 and greatly help 451
with the readability of the solution procedure. They operate on dense scalar or vector fields that 452
conform to a specified interface, so even std::vector<vec_t> can be used, as long as the type 453
vec_t supports basic arithmetic operations. The temporal part of the equation can be solved with 454
more advanced methods than the explicit Euler method used in Listing 4, either by using ODE in- 455
tegrators included in Medusa or by using an external solver, such as odeint [Ahnert and Mulansky 456
2011] or SUNDIALS [Hindmarsh et al. 2005]. 457

Listing 4. Solving the heat equations (36–39) explicitly. 458

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:16 J. Slak and G. Kosec

3.3.2 Implicit Operators. Consider a boundary value problem of type (29–31):459

−2∇2u + 8 (2, 1,−1) · ∇u = 1 in Ω, u = 0 on ∂Ω, (40)

where Ω is the right domain in Figure 1. The Listing 5 shows the source code needed to solve the460
problem implicitly, as described in Section 2.3.2.461

Listing 5. Solving convection-diffusion equation (40) implicitly.462

For approximation, we use the Polyharmonic RBFs with augmentation of order 2 on463
stencils of 45 closest nodes. After computing the weights, the appropriately allocated sparse464
matrix and right side are assembled. The matrix is defined and provided to Medusa by465
the user and is assumed to be correctly preallocated. Medusa offers a helper for that,466
as shown in Listing 5. By giving the user control of the matrix, additional equations467
can be inserted in the matrix, which can be useful when solving problems with addi-468
tional constraints or coupled problems. An example of both of these are included in the469
Medusa’s example suite (see examples/coupled_domains/poisson_coupled_domains.cpp and470
examples/poisson_equation/poisson_neumann_2D.cpp).471

The implicit operators op hold a reference to the matrix and the right-hand side and fill them472
with the appropriate weights, taken from storage, implementing formulas (32–34). This is done473
to improve readability; note the similarity between the line of the source code, which defines the474
equation in the interior, and the Equation (40). The implicit system can also be amended manually,475
if desired. The intuitive mathematical syntax supports expressions of form

∑
� α�L�u = r , where476

0th, 1st, and 2nd derivatives are supported for L� , as well as directional derivatives, gradients of477
divergence, Laplacian, and any user-defined operators (an example of the user-defined Biharmonic478
operator from Medusa’s example suite also shows its usage in implicit solving). Another benefit of479
this system is that (in DEBUG mode) checks are performed that the operators added together always480
write to the same matrix row, to avoid indexing errors.481

Overall, the abstractions for implicit and explicit operators are in our opinion one of the best482
features of Medusa library. They allow the user to think in terms of field and operators, instead483
in terms of arrays and indices, which are much more error-prone. This shift has been present in484
FEM implementations for a while, with FreeFem++, Fenics, and deal.II implementing these types of485
abstractions; however, it has not been noted in the strong form community, and finite difference486
codes are often riddled with poorly readable discretization code, clouding the overall problem487

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:17

solution procedure. Munthe-Kaas and Haveraaen in 1996 introduced the concept of coordinate 488
free numerics [Munthe-Kaas and Haveraaen 1996], which encompasses this idea, and Medusa has 489
been investigated in this direction as well [Slak and Kosec 2018]. 490

3.4 Miscellaneous 491

There are a few additional modules in the library that simplify its usage or offer often needed 492
utilities. The “types” module implements nicer interfaces and additional functionality to types 493
used to represent (physical) vectors, scalar fields, vector fields, and containers, while retaining 494
full compatibility with Eigen. Input and output capabilities from and to CSV, XML, and HDF file 495
formats are supported. Some basic integrators for solving ODEs, such as RK4, are also included. 496

4 EXAMPLES 497

Plenty of examples are included in the Medusa repository (see the examples/ folder) and a tutorial 498
for solving the Poisson equation is available on the website. The examples included in the repos- 499
itory offer many different setups for solving Poisson boundary value problems, which are used 500
to demonstrate different features. Additionally, the repository includes examples solving prob- 501
lems from electromagnetic scattering, which includes support for complex numbers, Navier-Stokes 502
equations for fluid simulation, problems from linear elasticity, and simulation of wave propaga- 503
tion. The instructions for compiling and running these examples are available on the wiki and 504
from the README in the examples folder. 505

In this article, we include examples from linear elasticity and fluid mechanics. The source 506
code for both examples is included in the article’s repository: https://gitlab.com/e62Lab/2019_P_ 507
Medusa. 508

4.1 Linear Elasticity 509

Small displacements in an isotropic homogeneous linearly elastic material under stress are de- 510
scribed by Cauchy-Navier equations 511

(λ + μ)∇(∇ · �u) + μ∇2�u = �f , (41)

where �u are unknown displacements, �f is the loading body force, and λ and μ are material con- 512
stants, called Lamé parameters. The stress tensor σ is computed as 513

σ = λ tr(ε)I + 2με, ε =
∇�u + (∇�u)T

2
, (42)

where I is the identity tensor. 514
We consider a beam of dimensions L ×W in 2D and L ×W ×T in 3D, occupying the area [0,L] × 515

[0,W] in 2D and [0,L] × [0,W] × [0,T] in 3D. The beam is fixed on the side with the first coordinate 516
equal to 0, experiences a downwards traction of size F on the side with the first coordinate equal 517
toW and zero traction elsewhere. Note that this is not the classical Timoshenko beam, although 518
the library was also validated against that problem [Slak and Kosec 2019b]. 519

Additionally, some cavities (also with no traction boundary conditions) were added to the 520
domain. The problems were solved for L = 15, W = 5, T = 2, with E = 72.1 · 109, ν = 0.33 and 521
F = 1, 000. Polyharmonic radial basis function on 25 nearest nodes with monomial augmentation 522
od second order were used both in 2D and 3D. The results are shown in Figure 5, colored according 523
to von Mises stress. 524

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

https://gitlab.com/e62Lab/2019_P_Medusa
https://gitlab.com/e62Lab/2019_P_Medusa

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:18 J. Slak and G. Kosec

Fig. 5. Cantilever beams with and without cavities in 2D and 3D. Displacements are multiplied by a factor

105 in 2D and 5 · 104 in 3D.

4.2 Simulation of Natural Convection525

The natural convection problem is governed by coupled Navier-Stokes, mass continuity, and heat526
transfer equations527

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇p + μ

ρ
∇2v +

1

ρ
b, (43)

528

∇ ·v = 0, (44)

529

b = ρ (1 − β (T −Tref))д, (45)

530

∂T

∂t
+v · ∇T = λ

ρcp
∇2T , (46)

wherev (u,v,w), p,T , μ, λ, cp , ρ, д, β , Tref, and b stand for velocity, pressure, temperature, viscos-531
ity, thermal conductivity, specific heat, density, gravitational acceleration, coefficient of thermal532
expansion, reference temperature for Boussinesq approximation, and body force, respectively. The533
problem is defined on a unit square domain with vertical walls kept at constant different temper-534
atures, while horizontal walls are adiabatic. In generalization to 3D, front and back walls are also535
assumed to be adiabatic [Wang et al. 2017]. The problem is solved with implicit timestepping and536
projection method for pressure-velocity coupling [Slak and Kosec 2019a]. We used PHS RBF-FD537
with augmentation of order 2 to solve the problem. Results in terms of velocity and temperature538
contour plots are presented in Figure 6 for Prandtl number 0.71 and Rayleigh numbers 108 in 2D539
and 106 in 3D, respectively. The obtained numerical values for the regular cases are compared with540
reference solutions in Table 1. More details about the solution procedure and results can be found541
in [Slak and Kosec 2019a] and the source code is available in this articles repository.542

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:19

Fig. 6. Solution of natural convection problem for Ra=108 in 2D (top left), Ra=106 in 3D (top right), and on

irregular 2D and 3D domains (bottom row).

Table 1. Comparison of Results, Obtained with Medusa, and Reference Data

Ra
vmax (x, 0.5) x umax (0.5, y) y

present (a) (b) present (a) (b) present (a) (b) present (a) (b)

2D

106 0.2628 0.2604 0.2627 0.037 0.038 0.039 0.0781 0.0765 0.0782 0.847 0.851 0.861
107 0.2633 0.2580 0.2579 0.022 0.023 0.021 0.0588 0.0547 0.0561 0.870 0.888 0.900
108 0.2557 0.2587 0.2487 0.010 0.011 0.009 0.0314 0.0379 0.0331 0.918 0.943 0.930

Ra
wmax (x, 0.5, 0.5) x umax (0.5, 0.5, z) z

present (c) (d) present (c) (d) present (c) (d) present (c) (d)

3D

104 0.2295 0.2218 0.2252 0.850 0.887 0.883 0.2135 0.1968 0.2013 0.168 0.179 0.183
105 0.2545 0.2442 0.2471 0.940 0.931 0.935 0.1564 0.1426 0.1468 0.144 0.149 0.145
106 0.2564 0.2556 0.2588 0.961 0.965 0.966 0.0841 0.0816 0.0841 0.143 0.140 0.144

The reference sources are (a): Couturier and Sadat [2000], (b): Kosec and Šarler [2008], (c): Wang et al. [2017], (d):
Fusegi et al. [1991].

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:20 J. Slak and G. Kosec

5 BENCHMARKS543

While the design of Medusa is mainly focused on modularity and extensibility, we still take care544
that the implementation is reasonably efficient. To this end, we compare the performance of545
Medusa with the mature FreeFem++ library for solving PDEs. Note that we will be comparing546
two different methods for solving PDEs, which by themselves have different complexity, and it is547
not the purpose of this measurements to compare the methods, nor the quality of implementa-548
tions. We simply wish to establish that Medusa execution times are in the same ballpark as the549
FreeFem++ ones for the same problem.550

The comparison is done on the Poisson boundary value problem551

−∇u = f in Ω, u = u0 on ∂Ω, (47)

for u0 (x) =
∏d

i=1 sin(πxi) and f = −∇2u0 on Ω = B (0, 1) \ B (0, 1/2) in 2D and 3D. Medusa imple-552
mentation uses RBF-FD with PHS on n = 9 and n = 35 closest nodes in 2D and 3D, respectively.553
FreeFem++ implementation solves the corresponding variational formulation using P1 elements.554
The problem itself and the FreeFem++ code were taken from FreeFem++’s own example suite.555

FreeFem++ and its dependencies were compiled from source, as was Medusa. Medusa is heavily556
templated to achieve extensibility and speed, and the price is paid with longer compile times. We557
took some steps to reduce the compile times through explicitly instantiating the main structures558
for most commonly used types, which reduced compile times significantly. After the initial com-559
pilation on the library, each subsequent compilation of the source code takes around 12 s for the560
solution of Equation (47).561

Both implementations were run single-threaded on a laptop computer with Intel(R) Core(TM)562
i7-7700HQ CPU @ 2.80 GHz processor with 16 GB of DDR4 RAM. Each time measurement was563
repeated nine times and the median values are shown in Figure 7, with error bars showing standard564
deviation of the measurements.565

Both methods attain expected convergence rate N −2/d and similar accuracy, with RBF-FD per-566
forming slightly worse. The difference in execution times is almost exclusively due to node placing567
in Medusa being faster than meshing in FreeFem++. The execution time is also highly dependent568
on the number of stencil nodes, which can be lowered or increased, and on the choice of sparse569
linear solver and its parameters. The Conjugate Gradient solver was chosen in FreeFem because570
it performed best, and BiCGStab with ILUT(5, 10−2) preconditioner was chosen for Medusa. The571
solvers took approximately the same amount of time.572

Parts of the Medusa solution procedure were also timed separately: namely, domain discretiza-573
tion, stencil selection, stencil weight computation, matrix assembly, preconditioner computation,574
iterative solution, and post-process error computation. Figure 8 shows these times with respect575
to the number of nodes and a ratio of time spent on each part of the solution procedure. These576
measurements also show the scaling behavior of different parts of the solution procedure. Com-577
putational time complexity of most parts is linear or log linear, with the exception of the linear578
solver. For most problems with explicit time iteration, the iteration itself is so time-consuming that579
domain discretization and weight computation are negligible, since they are only performed once580
at the beginning of the iteration.581

Execution time ratio can vary significantly in different setups. For 2D problems with second-582
order methods, construction of domain discretization can take more than 50% of the total time.583
For high-order methods with large support sizes and augmentation orders, weight computation584
can severely dominate, even as high as 80%. For more complicated problems and larger N , linear585
solver can take up almost 90% of the time.586

These separate time measurements also serve as a guideline for optimization and parallelization.587
Weight computation is trivially parallelizable and is already included in Medusa for shared memory588

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:21

Fig. 7. Errors and execution times of FreeFem++ and Medusa when solving Equation (47) in 2D and 3D.

Each time measurement was repeated nine times. The median value is shown with error bars representing

the standard deviation.

Fig. 8. Errors and execution times of FreeFem++ and Medusa when solving Equation (47) in 2D and 3D.

architectures, using OpenMP. Support for parallel sparse solvers is also included in Eigen, and 589
other parallelization efforts are ongoing. 590

Additionally, we reviewed the cost of abstractions in performance critical sections by compar- 591
ing execution time with a “bare-bones” implementation [Slak and Kosec 2018] and by analyzing 592

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:22 J. Slak and G. Kosec

assembly instructions with Compiler Explorer [Godbolt et al. 2019] until we were satisfied with593
incurred costs, which are now small to negligible.594

6 CONCLUSIONS AND OUTLOOK595

In this article, we presented an overview of abstractions and implementation of Medusa, a general596
purpose C++ library for solving PDEs with strong-form methods. The library provides core ele-597
ments of meshless solution procedures as standalone blocks that can be pieced together or swapped598
to ease research, development, and testing of meshless methods, all in a dimension-independent599
manner. It allows to define custom node generation and stencil selection procedures, basis func-600
tions, weights functions, RBFs, approximation schemes, and linear operators, relying heavily on601
C++ templating system and most commonly used classes are explicitly instantiated to avoid long602
compile times. We have demonstrated this modularity and extensibility by constructing several re-603
ported mesh-free methods, and many more examples are available in the documentation. Special604
attention is also paid to readability of the resulting code, which closely resembles the mathematical605
description of the problem and allows the user to think in terms of operators and fields instead of606
arrays and indices. The library is also tested for correctness with a suite of unit tests and offers tech-607
nical documentation and other informal discussions on its website. A basic comparison of Medusa608
with FreeFem++ on a Poisson problem showed it is comparable in execution time for similar ac-609
curacy. The Medusa library repository is available at https://gitlab.com/e62Lab/medusa and this610
article’s repository (https://gitlab.com/e62Lab/2019_P_Medusa), which contains the source code611
of all examples, along with the plotting scripts and the source of this manuscript.612

Although Medusa is primarily intended as a research platform for mesh-free community, it613
offers enough features for solving 3D coupled problems, such as the illustrated thermo-fluid trans-614
port problem in an irregular 3D domain. Other problems, such as linear elasticity, complex-valued615
electromagnetic scattering, and wave propagation are also included in the examples.616

The ongoing and future development of Medusa is aimed in several directions. One is to increase617
the geometric capabilities of Medusa by adding a module for discretization of parametric surfaces,618
and potentially extending it to handle Computer-aided Design objects, pushing Medusa a step619
closer to the engineering simulation software.620

Another important direction is parallelism, since at the moment only naive shared memory621
parallelization of modules that are trivial to execute in parallel is offered. We are developing a622
parallel version of node positioning algorithms as well as a domain decomposition module required623
for distributed parallel execution.624

Finally, binding for other languages, such as Python or Julia, is planned to be included, to in-625
crease the prototyping ability and accessibility of the library.626

Throughout all other development, we will also (albeit conservatively) extend the set of approx-627
imations, bases, node generation algorithms, and other elements offered by default, with useful628
developments from ongoing research in core meshless areas. Potential future additions include629
better support for adaptivity and coupled problems.630

ACKNOWLEDGMENTS631

The authors would like to acknowledge other contributors to the Medusa library (and its previous632
unpublished versions), listed in alphabetical order: Urban Duh, Mitja Jančič, Maks Kolman, Jure633
Lapajne, Jure Močnik - Berljavac, Anja Petkovć, Anja Pirnat, Ivan Pribec, Tjaž Silovšek and Blaz634
Stojanovič.635

REFERENCES

Karsten Ahnert and Mario Mulansky. 2011. Odeint–solving ordinary differential equations in C++. In AIP Conference Pro-636
ceedings, Vol. 1389. American Institute of Physics, 1586–1589. DOI:https://doi.org/10.1063/1.3637934637

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

https://gitlab.com/e62Lab/medusa
https://gitlab.com/e62Lab/2019_P_Medusa
https://doi.org/10.1063/1.3637934

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:23

W. Bangerth, R. Hartmann, and G. Kanschat. 2007. deal.II – A general purpose object oriented finite element library. ACM 638
Trans. Math. Softw. 33, 4 (2007), 24/1–24/27. DOI:https://doi.org/10.1145/1268776.1268779 639

Victor Bayona, Natasha Flyer, Bengt Fornberg, and Gregory A. Barnett. 2017. On the role of polynomials in RBF-FD ap- 640
proximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332 (2017), 257–273. DOI:https://doi.org/10.1016/ 641
j.jcp.2016.12.008 642

V. Bayona, N. Flyer, G. M. Lucas, and A. J. G. Baumgaertner. 2015. A 3-D RBF-FD solver for modeling the atmospheric 643
global electric circuit with topography (GEC-RBFFD v1. 0). Geosci. Model Dev. 8, 10 (2015), 3007. DOI:https://doi.org/10. 644
5194/gmd-8-3007-2015 645

Victor Bayona, Miguel Moscoso, Manuel Carretero, and Manuel Kindelan. 2010. RBF-FD formulas and convergence prop- 646
erties. J. Comput. Phys. 229, 22 (2010), 8281–8295. DOI:https://doi.org/10.1016/j.jcp.2010.07.008 647

Jan Bender. 2016. SPlisHSPlasH. Retrieved from https://github.com/InteractiveComputerGraphics/SPlisHSPlasH. 648
W. Benz. 1990. Smooth particle hydrodynamics: A review. In The Numerical Modelling of Nonlinear Stellar Pulsations. 649

Springer, 269–288. DOI:https://doi.org/10.1007/978-94-009-0519-1_16 650
Luca Bertagna, Simone Deparis, Luca Formaggia, Davide Forti, and Alessandro Veneziani. 2017. The LifeV library: Engi- 651

neering mathematics beyond the proof of concept. arXiv preprint arXiv:1710.06596 (2017). 652
Jose Luis Blanco and Pranjal Kumar Rai. 2014. nanoflann: A C++ header-only fork of FLANN, a library for Nearest Neighbor 653

(NN) with KD-trees. Retrieved from https://github.com/jlblancoc/nanoflann. 654
Evan Bollig. 2014. Radial Basis Function Finite Differences on the GPU. Retrieved from https://github.com/bollig/rbffd_gpu/. 655
Y. Choi and S. Kim. 1999. Node generation scheme for meshfree method by Voronoi diagram and weighted bubble packing. 656

In 5th US National Congress on Computational Mechanics. 657
H. Couturier and S. Sadat. 2000. Performance and accuracy of a meshless method for laminar natural convection. Numer. 658

Heat Transf.: Part B: Fundam. 37, 4 (2000), 455–467. DOI:https://doi.org/10.1080/10407790050051146 659
Alejandro J. C. Crespo, José M. Domínguez, Benedict D. Rogers, Moncho Gómez-Gesteira, S. Longshaw, R. Canelas, Renato 660

Vacondio, A. Barreiro, and O. García-Feal. 2015. DualSPHysics: Open-source parallel CFD solver based on Smoothed 661
Particle Hydrodynamics (SPH). Comput. Phys. Commun. 187 (2015), 204–216. DOI:https://doi.org/10.1016/j.cpc.2014.10. 662
004 663

Dassault Systèmes. 2012. Abaqus Unified FEA. Retrieved from https://www.3ds.com/products-services/simulia/products/ 664
abaqus/. 665

Christian Drumm, Sudarshan Tiwari, Jörg Kuhnert, and Hans-Jörg Bart. 2008. Finite pointset method for simulation of the 666
liquid–liquid flow field in an extractor. Comput. Chem. Eng. 32, 12 (Dec. 2008), 2946–2957. DOI:https://doi.org/10.1016/ 667
j.compchemeng.2008.03.009 668

Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011. An overview of the HDF5 technology 669
suite and its applications. In Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases. ACM, 36–47. DOI:https: 670
//doi.org/10.1145/1966895.1966900 671

Bengt Fornberg and Natasha Flyer. 2015. Fast generation of 2-D node distributions for mesh-free PDE discretizations. 672
Comput. Math. Applic. 69, 7 (2015), 531–544. DOI:https://doi.org/10.1016/j.camwa.2015.01.009 673

Chris Foster et al. 2011. tinyformat: Minimal, type safe printf replacement library for C++. Retrieved from http://rapidxml. 674
sourceforge.net. 675

Fraunhofer Gesellschaft. 1999. MESHFREE. Retrieved from https://www.meshfree.eu/. 676
T. Fusegi, Jae Min Hyun, K. Kuwahara, and B. Farouk. 1991. A numerical study of three-dimensional natural convection in 677

a differentially heated cubical enclosure. Int. J. Heat Mass Transf. 34, 6 (1991), 1543–1557. DOI:https://doi.org/10.1016/ 678
0017-9310(91)90295-p 679

L. Gavete, M. L. Gavete, and J. J. Benito. 2003. Improvements of generalized finite difference method and comparison with 680
other meshless method. Appl. Math. Model. 27, 10 (2003), 831–847. DOI:https://doi.org/10.1016/S0307-904X(03)00091-X 681

Matt Godbolt, Rubén Rincón, Patrick Quist, Austin Morton, Jared Wyles, Chedy Najjar, Simon Brand, and Filipe Cabecinhas. 682
2019. Compiler explorer. Retrieved from https://github.com/mattgodbolt/compiler-explorer. 683

Gaël Guennebaud, Benoît Jacob et al. 2010. Eigen v3. Retrieved from http://eigen.tuxfamily.org. 684
Frédéric Hecht. 2012. New development in FreeFem++. J. Numer. Math. 20, 3-4 (2012), 251–266. DOI:https://doi.org/10.1515/ 685

jnum-2012-0013 686
Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban, Dan E. Shumaker, and Carol S. Woodward. 687

2005. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 3 (2005), 688
363–396. DOI:https://doi.org/10.1145/1089014.1089020 689

Trever Hines. 2015. RBF: Python package containing the tools necessary for radial basis function (RBF) applications. Re- 690
trieved from https://github.com/treverhines/RBF. 691

Yo-Ming Hsieh and Mao-Sen Pan. 2014. ESFM: An essential software framework for meshfree methods. Adv. Eng. Softw. 76 692
(2014), 133–147. DOI:https://doi.org/10.1016/j.advengsoft.2014.06.006 693

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.5194/gmd-8-3007-2015
https://doi.org/10.5194/gmd-8-3007-2015
https://doi.org/10.1016/j.jcp.2010.07.008
https://github.com/InteractiveComputerGraphics/SPlisHSPlasH
https://doi.org/10.1007/978-94-009-0519-1_16
https://github.com/jlblancoc/nanoflann
https://github.com/bollig/rbffd_gpu/
https://doi.org/10.1080/10407790050051146
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1016/j.cpc.2014.10.004
https://www.3ds.com/products-services/simulia/products/abaqus/
https://www.3ds.com/products-services/simulia/products/abaqus/
https://doi.org/10.1016/j.compchemeng.2008.03.009
https://doi.org/10.1016/j.compchemeng.2008.03.009
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1016/j.camwa.2015.01.009
http://rapidxml.sourceforge.net
http://rapidxml.sourceforge.net
https://www.meshfree.eu/
https://doi.org/10.1016/0017-9310(91)90295-p
https://doi.org/10.1016/0017-9310(91)90295-p
https://doi.org/10.1016/S0307-904X(03)00091-X
https://github.com/mattgodbolt/compiler-explorer
http://eigen.tuxfamily.org
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1145/1089014.1089020
https://github.com/treverhines/RBF
https://doi.org/10.1016/j.advengsoft.2014.06.006

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

28:24 J. Slak and G. Kosec

Inpartik & ITM University of Stuttgart. 2008. Pasimodo. Retrieved from https://www.itm.uni-stuttgart.de/en/software/694
pasimodo/.695

Marcin Kalicinski. 2011. RapidXml. Retrieved from https://github.com/c42f/tinyformat.696
Gregor Kosec. 2018. A local numerical solution of a fluid-flow problem on an irregular domain. Adv. Eng. Softw. 120 (2018),697

36–44. DOI:https://doi.org/10.1016/j.advengsoft.2016.05.010698
Gregor Kosec and Božidar Šarler. 2008. Solution of thermo-fluid problems by collocation with local pressure correction.699

Int. J. Numer. Meth. Heat Fluid Flow 18, 7/8 (2008), 868–882. DOI:https://doi.org/10.1108/09615530810898999700
Gregor Kosec, Jure Slak, Matja Depolli, Roman Trobec, Kyvia Pereira, Satyendra Tomar, Thibault Jacquemin, Stéphane P.701

A. Bordas, and Magd Abdel Wahab. 2019. Weak and strong from meshless methods for linear elastic problem under702
fretting contact conditions. Tribol. Internat. (2019). DOI:https://doi.org/10.1016/j.triboint.2019.05.041703

David Levin. 1998. The approximation power of moving least-squares. Math. Comput. 67, 224 (1998), 1517–1531. DOI:https:704
//doi.org/10.1090/s0025-5718-98-00974-0705

Hua Li and Shantanu S. Mulay. 2013. Meshless Methods and Their Numerical Properties. CRC Press.706
Gui-Rong Liu. 2002. Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press. DOI:https://doi.org/10.1201/707

9781420040586708
Ying Liu, Yufeng Nie, Weiwei Zhang, and Lei Wang. 2010. Node placement method by bubble simulation and its application.709

Comput. Model. Eng. Sci. 55, 1 (2010), 89.710
Anders Logg and Garth N. Wells. 2010. DOLFIN: Automated finite element computing. ACM Trans. Math. Softw. 37, 2 (2010),711

20. DOI:https://doi.org/10.1145/1731022.1731030712
Rainald Löhner and Eugenio Oñate. 2004. A general advancing front technique for filling space with arbitrary objects. Int.713

J. Numer. Meth. Eng. 61, 12 (2004), 1977–1991. DOI:https://doi.org/10.1002/nme.1068714
M. Maksić, V. Djurica, A. Souvent, J. Slak, M. Depolli, and G. Kosec. 2019. Cooling of overhead power lines due to the natural715

convection. Int. J. Electric. Power Energy Syst. 113 (Dec. 2019), 333–343. DOI:https://doi.org/10.1016/j.ijepes.2019.05.005716
Ltd. MIDAS Information Technology Co.2018. midas MeshFree. Retrieved from http://www.midasmeshfree.com/.717
Sławomir Milewski. 2013. Selected computational aspects of the meshless finite difference method. Numer. Algor. 63, 1718

(2013), 107–126. DOI:https://doi.org/10.1007/s11075-012-9614-6719
H. Munthe-Kaas and M. Haveraaen. 1996. Coordinate free numerics: Closing the gap between “pure” and ‘applied” math-720

ematics. ZAMM Z. angew. Math. Mech 76, S1 (1996), 487–488.721
Nextflow Software. 2015. SPH-flow. Retrieved from https://www.nextflow-software.com/solvers/sphflow/.722
V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot. 2008. Meshless methods: A review and computer implementation723

aspects. Math. Comput. Simul 79, 3 (2008), 763–813. DOI:https://doi.org/10.1016/j.matcom.2008.01.003724
NOGRID GmbH. 2006. NOGRID. Retrieved from https://www.nogrid.com/.725
Dang Thi Oanh, Oleg Davydov, and Hoang Xuan Phu. 2017. Adaptive RBF-FD method for elliptic problems with point726

singularities in 2D. Appl. Math. Comput. 313 (2017), 474–497. DOI:https://doi.org/10.1016/j.amc.2017.06.006727
Eugenio Oñate, F. Perazzo, and J. Miquel. 2001. A finite point method for elasticity problems. Comput. Struct. 79, 22–25728

(2001), 2151–2163. DOI:https://doi.org/10.1016/s0045-7949(01)00067-0729
OneZero Software. 2008. Fluidix. Retrieved from https://www.fluidix.ca/.730
Argyrios Petras, Leevan Ling, and Steven J. Ruuth. 2018. An RBF-FD closest point method for solving PDEs on surfaces. J.731

Comput. Phys. 370 (2018), 43–57. DOI:https://doi.org/10.1016/j.jcp.2018.05.022732
Prabhu Ramachandran, Kunal Puri, Aditya Bhosale, A. Dinesh, Abhinav Muta, Pawan Negi, Rahul Govind, Suraj Sanka,733

Pankaj Pandey, Chandrashekhar Kaushik et al. 2019. PySPH: A Python-based framework for smoothed particle hydro-734
dynamics. arXiv preprint arXiv:1909.04504 (2019).735

Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T. McRae, Gheorghe-736
Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. 2016. Firedrake: Automating the finite element method by737
composing abstractions. ACM Trans. Math. Softw. 43, 3 (2016), 1–27. DOI:https://doi.org/10.1145/2998441738

Yves Renard and Konstantinos Poulios. 2020. GetFEM: Automated FE modeling of multiphysics problems based on a generic739
weak form language. ACM Trans. Math. Softw. 47, 1 (2020).740

Martin Robinson and Maria Bruna. 2017. Particle-based and meshless methods with Aboria. SoftwareX 6 (2017), 172–178.741
DOI:https://doi.org/10.1016/j.softx.2017.07.002742

Matthieu Schaller, Pedro Gonnet, Peter W. Draper, Aidan B. G. Chalk, Richard G. Bower, James Willis, and Loïc Hausam-743
mann. 2018. SWIFT: SPH with inter-dependent fine-grained tasking. Astrophysics Source Code Library (2018), ascl–1805.744

Varun Shankar and Aaron L. Fogelson. 2018. Hyperviscosity-based stabilization for radial basis function-finite difference745
(RBF-FD) discretizations of advection–diffusion equations. J. Comput. Phys. 372 (2018), 616–639. DOI:https://doi.org/746
10.1016/j.jcp.2018.06.036747

Varun Shankar, Robert M. Kirby, and Aaron L. Fogelson. 2018. Robust node generation for meshfree discretizations on748
irregular domains and surfaces. SIAM J. Sci. Comput. 40, 4 (2018), 2584–2608. DOI:https://doi.org/10.1137/17m114090x749

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

https://www.itm.uni-stuttgart.de/en/software/pasimodo/
https://www.itm.uni-stuttgart.de/en/software/pasimodo/
https://github.com/c42f/tinyformat
https://doi.org/10.1016/j.advengsoft.2016.05.010
https://doi.org/10.1108/09615530810898999
https://doi.org/10.1016/j.triboint.2019.05.041
https://doi.org/10.1090/s0025-5718-98-00974-0
https://doi.org/10.1090/s0025-5718-98-00974-0
https://doi.org/10.1201/9781420040586
https://doi.org/10.1201/9781420040586
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1002/nme.1068
https://doi.org/10.1016/j.ijepes.2019.05.005
http://www.midasmeshfree.com/
https://doi.org/10.1007/s11075-012-9614-6
https://www.nextflow-software.com/solvers/sphflow/
https://doi.org/10.1016/j.matcom.2008.01.003
https://www.nogrid.com/
https://doi.org/10.1016/j.amc.2017.06.006
https://doi.org/10.1016/s0045-7949(01)00067-0
https://www.fluidix.ca/
https://doi.org/10.1016/j.jcp.2018.05.022
https://doi.org/10.1145/2998441
https://doi.org/10.1016/j.softx.2017.07.002
https://doi.org/10.1016/j.jcp.2018.06.036
https://doi.org/10.1016/j.jcp.2018.06.036
https://doi.org/10.1137/17m114090x

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Medusa: A C++ Library for Solving PDEs Using Strong Form Mesh-free Methods 28:25

Jure Slak and Gregor Kosec. 2018. Parallel coordinate free implementation of local meshless method. In MIPRO 2018: 41st 750
International Convention on Information and Communication Technology, Electronics and Microelectronics, May 21–25, 751
2018, Opatija, Croatia (2018-05-23) (MIPRO proceedings), Karolj Skala (Ed.). IEEE, Croatian Society for Information 752
and Communication Technology, Electronics and Microelectronics, 194–200. DOI:https://doi.org/10.23919/mipro.2018. 753
8400034 754

Jure Slak and Gregor Kosec. 2019a. On generation of node distributions for meshless PDE discretizations. SIAM J. Sci. 755
Comput. 41, 5 (Oct. 2019), A3202–A3229. DOI:https://doi.org/10.1137/18M1231456 756

Jure Slak and Gregor Kosec. 2019b. Refined meshless local strong form solution of Cauchy–Navier equation on an irregular 757
domain. Eng. Anal. Bound. Elem. 100 (Mar 2019), 3–13. DOI:https://doi.org/10.1016/j.enganabound.2018.01.001 758

Pratik Suchde and Jörg Kuhnert. 2019. A meshfree generalized finite difference method for surface PDEs. Comput. Math. 759
Applic. 78, 8 (Oct. 2019), 2789–2805. DOI:https://doi.org/10.1016/j.camwa.2019.04.030 760

Sudarshan Tiwari and Jörg Kuhnert. 2003. Finite pointset method based on the projection method for simulations of 761
the incompressible Navier-Stokes equations. In Meshfree Methods for Partial Differential Equations. Springer, 373–387. 762
DOI:https://doi.org/10.1007/978-3-642-56103-0_26 763

A. I. Tolstykh and D. A. Shirobokov. 2003. On using radial basis functions in a “finite difference mode” with applications 764
to elasticity problems. Comput. Mechan. 33, 1 (2003), 68–79. DOI:https://doi.org/10.1007/s00466-003-0501-9 765

Kiera van der Sande and Bengt Fornberg. 2019. Fast variable density 3-D node generation. arXiv:1906.00636 [math.NA] 766
(2019). 767

Cheng-An Wang, Hamou Sadat, and Christian Prax. 2012. A new meshless approach for three dimensional fluid flow and 768
related heat transfer problems. Comput. Fluids 69 (2012), 136–146. DOI:https://doi.org/10.1016/j.compfluid.2012.08.017 769

Peng Wang, Yonghao Zhang, and Zhaoli Guo. 2017. Numerical study of three-dimensional natural convection in a cu- 770
bical cavity at high Rayleigh numbers. Int. J. Heat Mass Transf. 113 (2017), 217–228. DOI:https://doi.org/10.1016/j. 771
ijheatmasstransfer.2017.05.057 772

Holger Wendland. 2004. Scattered Data Approximation. Vol. 17. Cambridge University Press. 773
Riccardo Zamolo and Enrico Nobile. 2018. Two algorithms for fast 2D node generation: Application to RBF mesh- 774

less discretization of diffusion problems and image halftoning. Comput. Math. Applic. 75, 12 (June 2018), 4305–4321. 775
DOI:https://doi.org/10.1016/j.camwa.2018.03.031 776

Received January 2019; revised August 2020; accepted September 2020 777

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 28. Publication date: April 2021.

https://doi.org/10.23919/mipro.2018.8400034
https://doi.org/10.23919/mipro.2018.8400034
https://doi.org/10.1137/18M1231456
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1016/j.camwa.2019.04.030
https://doi.org/10.1007/978-3-642-56103-0_26
https://doi.org/10.1007/s00466-003-0501-9
https://doi.org/10.1016/j.compfluid.2012.08.017
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057
https://doi.org/10.1016/j.camwa.2018.03.031

TOMS4703-28 ACMJATS Trim: 6.75 X 10 in May 2, 2021 10:15

Author Query

Q1: AU: Please supply the CCS Concepts 2012 codes per the ACM style indicated on the ACM
website. Please include the CCS Concepts XML coding as well.

