# Detection of Heart Rate Variability From a Wearable Differential ECG Device Mipro DC VIS

Jure Slak Gregor Kosec

"Jožef Stefan" Institute, Ljubljana, Slovenia

June 3, 2016

#### Problem

- A wearable sensor constantly records the heart activity of an active subject for several days
- Limited resources ⇒ low frequency (120 Hz)
- Precisely detect beat-to-beat times and their variability

# Heartbeat sample



Figure: Beat to beat time between two characteristic points.

#### Method derivation

- Separated in two stages
  - Coarse global search: find the most steep downwards slope between two measurements



■ Fine local search: approximate the function using MLS and find the root of the second derivative – inflection point

#### Method derivation – MLS

- The value of the electrical potential is approximated from the n nearby measurements  $\underline{\mathbf{f}}$ .
- The approximation  $\hat{f}$  is introduced as a linear combination of m arbitrary basis functions  $(b_j)_{j=1}^m$

$$\hat{f} = \sum_{j=1}^{m} \alpha_j b_j$$

■ Minimize the weighted 2-norm of the residual error

$$\|\underline{\mathbf{f}} - \hat{f}(\underline{\mathbf{t}})\|_{w}^{2} = \sum_{i=1}^{n} \left( f_{i} - \sum_{j=1}^{m} \alpha_{j} b_{j}(t_{i}) \right)^{2} w(t_{i})$$

- This defines the unknown coefficients  $\alpha_i$ .
- Note: we are free to choose n and m.

### Example of fit on a heartbeat-like function



Figure: Approximation of a heartbeat-like function.

Once the approximation is constructed, simply search for the inflection point using bisection.

## Search for optimal parameters

Optimize the support size and number of basis against simulated heartbeat.



Conclusion: 10 basis functions and 15 support values.

Also: MLS is unnecessary.

#### Generated and detected times



#### Generated and detected times



Figure: Generated BTB times and their global detection.

#### Results

#### Some properties of the algorithm:

- lacktriangle Average error of BTB times:  $0.263\,\mathrm{ms}$
- $\blacksquare$  Maximal error of BTB times:  $0.829\,\mathrm{ms}$
- Error of the HRV: 0.035 ms
- Computational complexity:  $O(b + n^3 + m \log(1/\epsilon))$
- C++ implementation analyses 1000 heartbeats ( $\approx 10^5$  measurements) in 0.27 s.
- Can withstand 25 % noise

# Detecting 25 % noised signal



Jure Slak Gregor Kosec

# Actual heartbeat example



Figure: Detection of heart beat from the input measured by wearable sensor.

#### Conclusion

Thank you!

Questions?