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Predictive Modeling of PV Energy Production: How
to Set Up the Learning Task for a Better Prediction?
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Rashkovska, Member, IEEE

Abstract—In this paper, we tackle the problem of power predic-
tion of several photovoltaic (PV) plants spread over an extended
geographic area and connected to a power grid. The paper is
intended to be a comprehensive study of one-day ahead forecast
of PV energy production along several dimensions of analysis: i)
The consideration of the spatio-temporal autocorrelation, which
characterizes geophysical phenomena, to obtain more accurate
predictions. ii) The learning setting to be considered, i.e. using
simple output prediction for each hour or structured output
prediction for each day. iii) The learning algorithms: We compare
artificial neural networks, most often used for PV prediction
forecast, and regression trees for learning adaptive models. The
results obtained on two PV power plant datasets show that:
taking into account spatio/temporal autocorrelation is beneficial;
the structured output prediction setting significantly outperforms
the non-structured output prediction setting; and regression trees
provide better models than artificial neural networks.

Index Terms—PV energy prediction, spatial and temporal
autocorrelation, structured output, regression trees, ANNs.

I. INTRODUCTION

THE urgent need to reduce pollution emission has made
renewable energy a strategic European Union (EU) and

international sector. This has resulted in an increasing presence
of renewable energy sources and thus, significant distributed
power generation. The main challenges faced by this new
energy market are grid integration, load balancing and energy
trading. First, integrating such distributed and renewable power
sources into the power grid, while avoiding decreased reliance
and distribution losses, is a demanding task for the smart grid
effort. In fact, renewable power sources, such as photovoltaic
array, are variable and intermittent in their energy output, be-
cause the energy produced may also depend on uncontrollable
factors, such as weather conditions. Second, the main players
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in the energy market – the distributors and smaller companies
that act between offer (traders) and request in the supply chain
– have to face uncertainty not only in the request but also in
the offer, when planning the energy supply for their customers.
Third, the power produced by each single source contributes in
defining the final clearing price in the daily or hourly market
[4], thus making the energy market very competitive and a
true maze for outsiders.

In order to face these challenges, it is of paramount impor-
tance to monitor the production and consumption of energy,
both at the local and global level, to store historical data and
to design new, reliable prediction tools. In this work, we focus
our attention on photovoltaic (PV) power plants, due to their
wide distribution in Europe. During the last years, the forecast
of PV energy production has received significant attention
since photovoltaics are becoming a major source of renewable
energy for the world. Forecast may apply to a single renewable
power generation system [20], or refer to an aggregation of
large numbers of systems spread over an extended geographic
area [3][19]. Accordingly, different forecasting methods are
used. Furthermore, forecasting methods also depend on the
tools and information available. Diverse resources are used
to generate solar and PV forecasts depending on the forecast
horizon considered, ranging from measured weather and PV
system data to satellite and sky imagery cloud observations
used for very short-term forecasts (0 to 6 hours ahead),
to Numerical Weather Prediction (NWP) models used for
horizons beyond approximately six hours [15]. Several works
clarify that the best approaches make use of both measured
data and NWP [18][19].

In the literature, several data mining approaches have been
proposed for renewable energy power forecasting. Researchers
typically distinguish between two classes of approaches: phys-
ical and statistical. The former relies on the refinement of
NWP forecasts with physical considerations (e.g. obstacles and
orography) [5] or measured data (approach often referred to as
Model Output Statistics or MOS) [18][19], while the latter is
based on models that establish a relationship between histori-
cal values and forecasted variables. Statistical approaches may
or may not take into account NWP data. Some of them are
based on time series [8], while others learn adaptive models
from data, like autoregressive (AR) models [3], artificial neural
networks (ANNs) [20], or SVM classifiers [21]. In this respect,
it has been noted that physical property behavior (e.g. wind
speed and solar irradiation) exhibits a trail called concept
drift, i.e., they change characteristics over time [4]: Adaptive
models are generally considered to produce more reliable
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predictions regarding concept drift, but require a continuous
training phase. Combinations of statistical (ANN and SVM)
and physical (MOS) approaches for renewable energy power
forecasting have also been recently investigated [7].

Despite the existence of such data mining algorithms ap-
plied in renewable energy power forecasting for learning
adaptive models [3][4][20][21], there is no consensus about
the spatio-temporal information to be taken into account, the
learning setting to be considered and the learning algorithms to
be used. This paper considers all these aspects as dimensions
of analysis and investigates their real contribution in renewable
energy power forecasting. The paper is structured as follows.
Section II gives the motivation and contribution of the study.
Section III formalizes the problem, how spatial and tempo-
ral autocorrelation components are considered and how the
(non-)structured output learning task is defined. Section IV
presents the data collection and preprocessing. The dimensions
of analysis stated above are addressed in Section V, where
experiments are reported and results are discussed. Finally,
Section VI concludes the paper.

II. MOTIVATION AND CONTRIBUTION

The motivation for this paper comes from the different learning
settings that can be found in the literature for the task at hand.
Concerning the spatio-temporal information to be taken into
account, it is noteworthy that most of the previously referenced
work consider forecasting solutions for single plants and ig-
nore the information collected from/at other plants/sites in the
vicinity, even when this would be easily accessible (through
spatial information). In this work, we show that this informa-
tion loss may result in reduced accuracy of the forecasting
models, and we advocate an approach for learning forecasting
models from data related to multiple plants. Differently from
the few works in the literature that consider multiple plants
[3][19], our analysis also leverages the spatio-temporal auto-
correlation that characterizes geophysical phenomena, such as
weather conditions, to make more accurate predictions.

Indeed, site proximity of PV plants introduces spatial
autocorrelation1 in functional annotations and leads to the
violation of the usual assumption that observations are in-
dependently and identically distributed (i.i.d.). Although the
explicit consideration of these spatial dependencies brings
additional complexity to the learning process, it generally leads
to increased accuracy of learned models [22].

In addition, the production of PV plants is also affected by
temporal autocorrelation, since it: i) tends to have similar val-
ues at a given time in close days, ii) has a cyclic and seasonal
(over days and years) behavior, iii) tends to show the same
trend over time. While adaptive approaches (which typically
employ stream mining algorithms) deal with i) and iii), they
may fail to consider ii), since they tend to better represent the
most recently observed concepts, forgetting previously learned
ones [12]. On the contrary, time series-based approaches are
able to deal with iii), but may fail to consider i) and ii). In
fact, they typically require the size of the temporal horizon as

1Correlation among data values which is strictly due to the relative spatial
proximity of the objects that the data refer to.
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Fig. 1. Trend of pressure (hPa), cloud cover (%), humidity (%), wind speed
(m/s), irradiance (W/m2), temperature (◦C) (X-axis) with respect to the energy
produced (KWh) (Y-axis).

input: Considering a short-term horizon (e.g. daily) excludes
a long-term horizon (e.g. seasonal) and vice versa.

Although several approaches combine both the spatial and
the temporal dimensions [10] from stream data, they have
not been applied in the context of renewable energy power
prediction. Moreover, they do not take the spatial autocorre-
lation phenomenon into account and, thus, do not exploit the
spatial structure of the data [6]. In this paper, similarly to other
approaches, we exploit NWP to benefit from uncontrollable
factors, but additionally, we evaluate at which extent taking
into account spatial and temporal autocorrelation is beneficial.
While spatial autocorrelation is taken into account by resorting
to two well known techniques in spatial statistics, temporal au-
tocorrelation is considered by resorting to directional statistics.

Concerning the learning setting, in the existing work, the
classical solution is to learn a predictive model which predicts
the energy that will be produced at a specific hour and day
in the future. This approach, however, appears to be too
limiting if we consider that two consecutive hours are seen as
independent examples. An alternative solution is to resort to
approaches that learn predictive models for structured output
(structured output prediction) [16]. In principle, this approach
should be able to catch (and model) dependence between
consecutive hours of the same day, just as some time-series
methods do for short-term prediction.

Concerning the data mining algorithm, we investigate the
predictive performance obtained with two different algorithms,
one which learns ANNs and another one which learns regres-
sion trees. While ANNs have been extensively used for energy
prediction [4], regression trees have received significantly less
attention. Both algorithms are also able to deal with the non-
linearity of production with respect to some of the considered
features (see Fig. 1). In any case, we study and compare
their performance for the problem at hand. Actually, in our
framework, we can plug-in any learner which can learn models
for both non-structured and structured output.

The contributions of the paper aim to provide a compre-
hensive analysis of the problems described before and to
understand what matters if we want to achieve good and
reliable predictions. In particular, the contributions include:
1) The explicit consideration, with two different solutions,
of the spatial autocorrelation and the investigation of its
effect at different extents in predictive modeling of energy
production. In this way, weather conditions (e.g. temperature,



3

solar radiation, wind direction and (wind) speed, quantity of
rain) are appropriately exploited for forecasting purposes. 2)
The explicit consideration of the temporal autocorrelation and
the investigation of its effect at different extents in predictive
modeling of energy production, in order to deal with non-
stationary (cyclic and seasonal) data, in an adaptive model.
3) An investigation of the effect of the structured output
prediction approach. 4) An investigation of the effect of the
specific learning algorithm used. 5) The identification, by
means of a feature selection step, of the best variables to be
used for prediction. We orthogonally investigate all the aspects
discussed before through an extensive experimental evaluation
on two datasets for PV power plants in Italy and USA.

III. METHOD

The task we intend to perform is to predict PV power
generation from i) historical data on power production, ii)
weather forecast data provided by NWP systems, iii) weather
information collected by sensors, iv) geographic coordinates
of the plants, v) additional features representing spatial and
temporal autocorrelation. Similarly to [8], the output is a fine-
grained prediction for the next day at one hour intervals.

The learning algorithms update the prediction models ev-
ery day. We use historical weather information collected by
sensors as features in the training phase, whereas we use
weather forecast data provided by NWP systems as features
for predictions. Formally, let Pi be the i-th plant, we define:
• πi =< x, y >, the geographic coordinates of Pi,
• αi,j,h, a vector representing the sun’s position at the

location of Pi, on day j and at hour h,
• pi,j,h, a vector representing properties of Pi,
• wi,j,h, a vector for the observed weather data of Pi,
• w′i,j,h a vector that represents NWP forecast data for Pi,
• si,j,h, a vector modeling spatial autocorrelation at Pi,
• ti,j,h, a vector modeling temporal autocorrelation at Pi,
• yi,j,h, a value representing the production (KWh) of Pi.
In our approach, we use πi, αi,j,h, pi,j,h, wi,j,h, si,j,h,

ti,j,h (independent input features) and yi,j,h (dependent/target
variable), for training purposes and πi, αi,j,h, pi,j,h, w′i,j,h,
si,j,h and ti,j,h for prediction purposes. The value of the
predicted attribute – the energy production – is available only
during training. It is noteworthy that pi,j,h is used to represent
data about the plants, which are valid at a certain time-point.
Examples of features used in pi,j,h are: age of the plant,
number of working inverters and maximum plant production.
These data allow the learning algorithm to directly predict the
production, instead of the percentage of the production with
respect to the maximum plant production.

The applied spatial and temporal autocorrelation techniques
are discussed in the next two subsections. The last subsection
describes the two learning settings for predicting yi,j,h, namely
structured and non-structured output prediction.

A. Spatial Autocorrelation

The proximity of sensors induces spatial autocorrelation in
the data. According to [17], the inappropriate treatment of
sample data with spatial dependence could obfuscate important

a) b)

c)
Fig. 2. Different types of autocorrelation (dashed lines): Squares and circles
represent target and input features, respectively; bigger circles represent
different sites; N(v) represents the neighborhood of the site v. (a): Spatial
lag model. (b) and (c): Two forms of spatial cross-regressive model.

insights and observed patterns may even be inverted when
spatial autocorrelation is ignored. Taking autocorrelation into
account allows the models to avoid overfitting and exploit
information coming from close sites. To accommodate sev-
eral forms of spatial correlation, various models have been
developed in the field of spatial statistics. The most known
types are the spatial lag model and the spatial cross-regressive
model [2]. While the former considers autocorrelation on the
target variables, the latter considers cross-correlation between
input features at one site and target variables at other sites,
as well as cross-correlation between input features at one site
and input features at other sites (see Fig. 2).

We use two spatial statistics when building the cross-
regressive model between PV plants: 1) the Local Indicator of
Spatial Association (LISA) for representing a local measure
of spatial autocorrelation [1]; 2) the Principal Coordinates
of Neighbor Matrices (PCNM) for representing the spatial
structure in the data [9]. Compared to the classical STAR
model [23], which combines spatial and temporal information
in an autoregressive model, the advantage of the solution
we adopt is that we are able to embed spatial and temporal
information in new features rather than in the model (but
still taking autocorrelation into account). This gives us the
opportunity to plug-in any off-the-shelf learning algorithms
and to separately investigate the contribution of spatial and
temporal information.

To compute the LISA, the spatial neighborhood of an entity
(i.e. PV plant) is expressed as a matrix, and for each spatial
entity and data point observed in a time horizon, the local
Moran’s I index [1] is computed using the matrix. More
precisely, given n PV plants, the first step is to define a
neighborhood matrix δ of size n× n, such that:

δ[Pa, Pb] =

{
1 if dist(Pa, Pb) < maxDist

0 otherwise,
(1)

where Pa and Pb are two of the n plants. The maxDist
threshold is a user-defined parameter that determines the effect
of the autocorrelation. The elements of δ are then transformed:
δ′[Pa, Pb] =

1
|N(Pa)|δ[Pa, Pb], where N(Pa) is the set of nodes

which are at a distance less than or equal to maxDist with
respect to Pa. In this way, the sum of the elements on each
row in δ′ is either 0 or 1.

The subsequent step consists in computing the deviation of
the variable of interest with respect to the mean according to
the z-score normalization [14]. Since in our approach we are
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interested in identifying the contribution of the neighborhood
for each feature, this computation is performed for each feature
considered (e.g.: temperature, humidity, etc.). More formally,
for a plant Pa at day j and hour h, we compute:

z
(x)
a,j,h =

xi,j,h − x

σx
, (2)

where x is a generic variable used for representing either
weather condition, weather forecast or plant information (that
is, a generic element of the vectors w, w′ and p), x rep-
resents the average of the variable x and σx represents
the standard deviation of x. On the basis of z

(x)
a,j,h, it is

possible to compute the local Moran’s I for the variable x
of the plant Pa for day j and hour h (according to [1]):
I
(x)
a,j,h = z

(x)
a,j,h ·

∑
Pi∈N(Pa)

δ′[Pa, Pi] · z(x)i,j,h.
According to [25], we incorporate local spatial autocorrela-

tion terms as predictors in regression equations (in the vector
sa,j,h, which has one element for each possible variable x),
giving place to autoregressive models.

The PCNM is used to define new features which represent
the spatial structure of the data, so to exploit autocorrelation
in the learning phase. Its computation has three steps:

1) The Euclidean (geographic) distance matrix D between
plants is computed (D = [di,j ] = [dist(Pi, Pj)]).

2) A threshold value t is chosen to construct a truncated
distance matrix D∗ = [d∗ij ] as follows:

d∗ij =

{
dij if dij ≤ t
4t otherwise.

3) A principal coordinate analysis (PCoA) of the truncated
distance matrix D∗ is performed. This analysis consists
in the diagonalization of ∆, where:

∆ = −1

2

(
I− 1 · 1t

n

)
D∗2

(
I− 1 · 1t

n

)
(3)

with D∗2 = [(d∗ij)
2], I be the identity matrix and 1 be a

vector of 1s.
It has been proven (see [9]) that the eigenvectors of ∆

are vectors with unit norm maximizing Moran’s I under
the constraint of orthogonality, whereas the eigenvalues of
this matrix are equal to Moran’s I coefficients of spatial
autocorrelation (post-multiplied by a constant). They can also
be either positive or negative (because the original Euclidean
distance matrix has been truncated). Eigenvectors associated
with high positive (or negative) eigenvalues have high positive
(or negative) autocorrelation and describe global and local
structures. Since we are interested in considering only positive
spatial autocorrelation, only eigenvectors corresponding to
positive eigenvalues are kept and used as spatial descriptors.

The principal coordinates of each spatial descriptor (used as
features in si,j,h) are obtained by scaling each eigenvector uk
of ∆ to the length

√
λk, where λk is the eigenvalue associated

with eigenvector uk. Finally, the value of t used in D∗ is
defined as the maximum distance between two PV plants (t =
max
i,j

di,j), in order to guarantee that the data are all connected.

B. Temporal Autocorrelation

Weather data is inherently seasonal/cyclical. For instance,
summer days are featured by an increased irradiance compared

(a) (b)
Fig. 3. (a) Daily circumference. (b) Yearly circumference.

to winter days. Moreover, if we consider an absolute time
reference, the irradiance is almost equal for two (close) days
at the same hour. Hence, we expect to increase the reliability
of predictions if days closer to the prediction (target) day are
more influential in the model.

To account for both seasonal and daily cyclicity, we use two
alternative solutions. The first solution is simple and consists
in considering, as input features (independent variables), the
values of time and day scaled in the range [0,1] for both
training and target days. The second solution is to resort to
directional statistics which represent directional or circular
distributions of the data by “wrapping” the probability density
function around the circumference of a circle of unit radius.
We follow this approach by “wrapping” information collected
at a specific time-point around two circumferences, namely
the daily circumference and the yearly circumference (see Fig.
3). The former catches the distribution of the production over
the different hours of the day, while the latter catches the
distribution of the production over the 365 days of the year.

More specifically, for each day in the training (historical)
data, we compute its radial distance dr on the circumference
from the target day. Since the learning algorithm is able to
consider the similarity between two values, the value 2π −
dr is incorporated as input feature in the model (in ti,j,h).
Note that this approach requires an update of the model every
day, which is in line with the learning setting we consider.
However, the same approach cannot be adopted to catch the
distribution of the production over the different hours of the
day since this would require updating the model every hour.
The solution we adopt in this case is to directly include in the
model the radial value of the specific hour hr as input feature
(independent variable in ti,j,h). The disadvantage is that we
can not catch similarities in the energy produced between the
last and the first hours of the day when, however, PV energy
is not produced.

C. The learning setting: Structured and non-structured

As previously mentioned, we also investigate the applica-
tion of structured output prediction models to the specific
task. In particular, we consider multi-target models where,
instead of a single model that predicts the production at a
single hour, we have a single model that predicts 24 output
variables at the same time. In principle, learning multi-target
models should present some benefits over learning a local
model for predicting the production at each hour. Indeed, it
is generally recognized that structured models are typically
easier to interpret, perform better and overfit less than single-
target predictions [16]. In this specific application, multi-
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TABLE I
CORRESPONDENCES BETWEEN INDEPENDENT VARIABLES IN THE

NON-STRUCTURED AND STRUCTURED OUTPUT SETTINGS.

Non-structured Structured
αi,j,h αi,j,h=1:24

pi,j,h pi,j,h=1:24

wi,j,h wi,j,h=1:24

w′i,j,h w′i,j,h=1:24
si,j,h si,j,h=1:24

ti,j,h ti,j (only daily information)

target models can also exploit the dependencies between the
productions at two different hours of the same day. The main
issue is the collinearity problem, since the linear dependence
between attributes may negatively affect the learned model.

Formally, when a non-structured output prediction setting
is used, the predicted value is yi,j,h (for the plant i, at the
day j and hour h). On the contrary, if a structured output
prediction setting is used, the predicted value is a vector
[yi,j,1, yi,j,2, . . . , yi,j,24] (for the plant i, at the day j). Since
in the structured output prediction setting, the unit of analysis
is the day and in the non-structured output prediction setting
the unit of analysis is the hour, the independent variables
are different. In fact, in the non-structured output setting,
each training instance represents a single hour, while in the
structured output approach each training instance represents a
single day. This means that, in order to keep the same infor-
mation between the two settings, it is necessary to reserve 24
variables in the structured output setting to represent the value
observed for the same property. Formally, the correspondences
defined in Table I hold.

IV. DATA COLLECTION AND PREPROCESSING

Coherently with the problem definition provided in Section
III, we distinguish between data locally collected by sensors
installed on the PV power plants and data collected from
external sources, such as weather forecast services (NWP).
While locally collected data are used to initialize part of the
features in wi,j,h and the dependent variable yi,j,h, external
sources are used to initialize remaining features in wi,j,h

(that are not collected by sensors), as well as features in
w′i,j,h. The raw data are preprocessed and normalized before
subjecting them to the data mining algorithms. In this way,
we solve problems related to measurement errors, null values
and outliers, as explained in the following.

A. Locally Collected Data

The first problem we consider is how to deal with missing
values related to sensor failures or communication problems
for the features in wi,j,h. It is noteworthy that most of the PV
plants collect data every 10 or 15 minutes, thus we can still
estimate reliable hourly averages if few measurement values
are missing. However, if for a feature we cannot reliably
compute its average due to the presence of several null values,
we have to substitute them with a value returned by external
systems for the specific position and time. To make the values
collected by sensors comparable with the values returned by
external systems for the same feature (e.g. temperature), they

are both z-score normalized (see Equation (2)). If external
systems provide us with no information, we replace the null
value with the average of the feature observed for the same
month of the same year at the same hour. Similarly, in the
(rare) cases we are not able to reliably compute the hourly
average for the independent variable yi,j,h, we substitute it
with the average value observed by the sensors in the same
month at the same hour.

After replacing the missing values, we check for the pres-
ence of outliers: if the value of the feature x in wi,j,h observed
by the sensors is outside the range [x − 4 · σx;x + 4 · σx] (a
relaxed 3-sigma rule), we consider it an outlier and handle it
in the same way we handle null values.

B. External Data

In order to obtain external data, we query external services
which provide interpolated data for past days and NWP
values for the future days. Interpolated data are used either to
initialize features in wi,j,h which are not collected by sensors,
or, as previously mentioned, to correct incomplete and wrong
data (in wi,j,h) obtained by the sensors. On the contrary, NWP
values are used to initialize features in w′i,j,h.

Independently of the use of data obtained from external
sources, the input parameters we use for querying data are
latitude, longitude and time-stamp of interest. The obtained
features are: pressure, percentage of cloud cover, type of pre-
cipitation, intensity of precipitation, temperature, dew point,
ozone, wind speed, humidity, wind bearing and irradiance.
Once retrieved, all the values are z-score normalized (see (2)).

Finally, in order to appropriately learn a prediction model
(especially for ANNs), data must be scaled to the unit interval.
Hence, we apply a min-max normalization [14] for each final
feature, considering the min and max of the values observed
(for wi,j,h and w′i,j,h, obtained after z-score normalization).
Actually, we consider the max increased by 30 percent, to
handle future situations in which the observed values of each
feature might exceed the current maximum.

V. EXPERIMENTS

A. Datasets

In our empirical evaluation, we consider two datasets: a real
dataset, named PVItaly, collected by an Italian company, and
a dataset concerning the PV production in USA available at
the National Renewable Energy Innovation (NREL) web site
(http://www.nrel.gov/), and henceforth referred to as NREL.

PVItaly data are collected at regular intervals of 15 minutes
(measurements start at 2:00 and stop at 20:00 every day) by
sensors located on 18 plants in Italy. The time period spans
from January 1st, 2012 to May 4th, 2014. The installed peak
power of the PV arrays is between 982.80 KW peak and
999.99 KW peak, and the average is 995.71 KW peak. The
amount of missing values and outliers in the data is relatively
small, if compared to the total amount of data: around 1% for
missing values and around 3% for outliers.

The NREL dataset originally consists of simulated PV data
for 6000 plants for the year 2006. We perform cluster sampling
over the original dataset by first selecting 16 States with the
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TABLE II
INDEPENDENT VARIABLES USED IN DIFFERENT SCENARIOS. h IS NOT

USED IN THE DAILY SETTING.

Non-temporal Non-cyclic Cyclic
NoSpat. p, α, w j, h, p, α, w j, h, t, p, α, w
LatLon p, α, w, π j, h, p, α, w, π j, h, t, p, α, w, π
LISA p, α, w, slisa j, h, p, α, w, slisa j, h, t, p, α, w, slisa

PCNM p, α, w, spcnm j, h, p, α, w, spcnm j, h, t, p, α, w, spcnm

highest Global Horizontal Irradiation (GHI). Then, from each
State, we select 3 PV plants, resulting in PV data from 48
plants. The plant capacity is between 7 MW and 200 MW,
and the average is 82.37 MW.

The weather data is queried from Forecast.io (http://forecast.
io/), while the irradiance for the PVItaly dataset is queried
from PVGIS (http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php).
Forecast.io data comes from a wide range of data sources,
which are statistically aggregated to provide the most accurate
forecast possible for a given location. PVGIS data makes
use of monthly averages of daily sums of global and diffuse
irradiation. The averages represent the period 1981-1990. We
queried the PVGIS database for each day and plant separately
by using a custom-made wrapper, specifying the date and the
coordinates of the plants of interest (latitude and longitude).

More formally, for the defined vectors in Section III, the
following input features are considered:
• πi: latitude, longitude;
• j, h: day and hour, respectively;
• αi,j,h: altitude and azimuth, queried from SunPosition

(http://www.susdesign.com/sunposition/index.php);
• pi: site ID, brand ID, model ID, age in months;
• wi,j,h and w′i,j,h: ambient temperature, irradiance, pres-

sure, wind speed, wind bearing, humidity, dew point,
cloud cover, descriptive weather summary;

• slisai,j,h: LISA indexes I(x)i,j,h for each variable x from wi,j,h

(or wi,j,h) and αi,j,h;
• spcnmi : n PCNM coordinates (n = 15 for the PVItaly

dataset, n = 30 for the NREL dataset),
• ti,j,h: radial day distance dr and radial representation of

the hour hr.
All datasets, the results and the system are available at:

http://www.di.uniba.it/∼ceci/energyprediction/.

B. Experimental Settings

We distinguish between hourly and daily settings. In the
hourly setting, we investigate non-structured models with
single output - the production yi,j,h of the plant Pi at a
specified day j and specified hour h. In the daily setting, we
investigate structured models with 24 outputs - the productions
yi,j of the plant Pi for the hours from 1:00 to 24:00 on a
specified day j (actually, we only consider the interval 2:00-
20:00, because of the available data). For both settings, we
investigate several scenarios with increasing spatio/temporal
complexity (see Table II). Moreover, in the daily scenarios,
we consider the representation summarized in Table I. The
number of attributes and the number of examples considered
for each scenario for the both datasets are given in Table III.

For the evaluation, the datasets are randomly split into
training days (85%) and testing days (15%). The learning

TABLE III
NUMBER OF ATTRIBUTES PER SCENARIO. N: NUMBER OF EXAMPLES.

PVItaly Hourly (N = 276 811) Daily (N = 14 569)
Non-temporal Non-cyclic Cyclic Non-temporal Non-cyclic Cyclic

NoSpat. 15 18 19 230 233 234
LatLon 17 20 21 232 235 236
LISA 26 29 30 420 423 424
PCNM 30 33 34 245 248 249
NREL Hourly (N = 331 968) Daily (N = 17 520)

Non-temporal Non-cyclic Cyclic Non-temporal Non-cyclic Cyclic
NoSpat. 12 14 15 209 211 212
LatLon 14 16 17 211 213 214
LISA 21 23 24 380 382 383
PCNM 42 44 45 239 241 242

Fig. 4. Evaluation (training and testing) procedure with landmark window
model (left) and count-based sliding window model (right).

strategy is iterative - for each testing day, the model is learned
on all the previous days and tested on the considered day
(example(s) unseen by the trained model). After testing, the
testing day becomes part of the training set. This testing-
retraining procedure is repeated for each testing day and
the error contributes to the reported result. The evaluation
procedure is based on the “landmark window model” and on
the “count-based sliding window model” [11]. While the first
model takes into account all the historical data, the second
only takes into account the most recent window of a given
number of instances. We performed experiments with the
count-based sliding window model for window lengths 1000,
2000 and 4000 examples (see Fig. 4). We also investigate
different values for the maxDist threshold for the LISA
method. Experiments are run three times with different random
splits into training and testing sets, and the average error on
the test set is reported.

For ANNs, we use the encog implementation of the Re-
silient Propagation (RPROP+) algorithm for training neu-
ral networks (http://www.heatonresearch.com/wiki/Resilient
Propagation#Implementing RPROP.2B). RPROP+ is one of
the best general-purpose neural network training methods
implementing the back-propagation technique. It performs a
direct adaptation of the weight step based on local gradient
information. The basic principle is to eliminate the harmful
influence of the size of the partial derivative on the weight
step - it considers only the sign of the derivative to indicate
the direction of the weight update. We use RPROP+ since
it has been proven effective for renewable energy prediction
[4]. Furthermore, RPROP+ does not require typical ANN
parameters, such as learning rate and momentum, since they
are automatically tuned during the training phase. The ANN
topology has 1 hidden layer with the number of hidden neurons
equal to 2/3 of the sum of the number of inputs and outputs.

For regression trees, we use the system CLUS that views a
tree as a hierarchy of clusters (Predictive Clustering Trees -
PCTs): the top-node corresponds to one cluster containing all
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the data, which is recursively partitioned into smaller clusters
while moving down the tree. CLUS, including PCTs for multi-
target regression [16], is available at clus.sourceforge.net.

For the evaluation of the results, we consider three indicators
of the predictive performance, namely, the Root Mean Squared
Error (RMSE), the Mean Absolute Error (MAE) (MAE results
are available at www.di.uniba.it/∼ceci/energyprediction/) and
the improvement with respect to the persistence model (i.e.,
the model that forecasts the same production observed 24
hours before). For an analysis at a disaggregated level, we
also perform feature selection with the aim of automatically
identifying the most relevant input features for the task at
hand. According to [13], the feature selection step has been
performed as a best-first search in backward mode: starting
from the complete feature set, the worth of each subset of
attributes is evaluated by considering the individual predictive
ability of each feature along with their degree of redundancy.

C. Results and Discussion

The results on the PVItaly and NREL datasets for the inves-
tigated hourly and daily scenarios are reported in Table IV for
RPROP+ and CLUS. Negative percentages of improvement
mean that the investigated model does not outperform the
persistence model. The improvement of the best performing
results are highlighted in bold. The results show that the best
results for the PVItaly dataset are obtained in the setting LISA,
Non-cyclic, CLUS, Daily; while for the NREL dataset the best
results are obtained in the setting PCNM, Cyclic, CLUS, Daily.
Moreover, from the results, it is clear that the landmark model
outperforms the count-based sliding window model. This is
confirmed also statistically (see Table V, sections “TRAINING
WINDOW”). Finally, although there is no statistical evidence,
LISA with small values of maxDist show the best perfor-
mances for PVItaly. This is not confirmed in NREL, where
distances between plants are larger and behaviors at coarse-
grained granularity are caught by the models.

In addition to the results reported in the tables, we also per-
form a more systematic analysis in order to understand what
matters if we want to achieve good and reliable predictions.
According to the contributions stated in the introduction, we
compare the results across four dimensions:

1) Spatial: NoSpat. vs. LatLon vs. LISA vs. PCNM;
2) Temporal: Non-temporal vs. Non-cyclic vs. Cyclic;
3) Structural: Hourly vs. Daily;
4) Algorithmic: RPROP+ vs. CLUS.

All the above comparisons are orthogonally performed on both
real-world datasets. The different dimensions of analysis for
the landmark window model are graphically presented in Fig.
5. Additionally, the analysis is complemented with statistical
(Wilcoxon signed rank) tests (see Table V). The considered
LISA results are for maxDist of 15 km for the PVItaly dataset
and 600 km for the NREL dataset.

1) Spatial: The comparison in Fig. 5 (a) shows that, by
varying the spatial complexity, there is no single spatial
configuration which outperforms all the others. However, by
considering the statistical tests for spatial autocorrelation, we
can see that PCNM is the best performing method. The
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Fig. 5. Different dimensions of analysis for the landmark window model.
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TABLE IV
RPROP+ AND CLUS AVERAGE PERFORMANCE (3 RUNS) ON THE PVITALY AND NREL DATASETS. FOR LISA, A,B AND C INDICATE DIFFERENT

VALUES OF maxDist: 15 KM, 30 KM AND 45 KM FOR PVITALY, AND 300 KM, 600 KM AND 900 KM FOR NREL. S1000, S2000 AND S4000 INDICATE
THE SLIDING COUNT-BASED MODEL WITH DIFFERENT WINDOW LENGTHS.

PVItaly Dataset NREL Dataset
RPROP+ Hourly Daily Hourly Daily

Non-temp. Non-cyclic Cyclic Non-temp. Non-cyclic Cyclic Non-temp. Non-cyclic Cyclic Non-temp. Non-cyclic Cyclic
S1000 RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.%
NoSpatial0.139 -9.2 0.141 -10.4 0.140 -9.6 0.114 10.67 0.112 12.07 0.115 9.85 0.172 -42.4 0.139 -14.6 0.148 -21.9 0.123 -1.8 0.129 -6.6 0.130 -7.1
LatLon 0.137 -7.8 0.139 -9.5 0.141 -10.9 0.112 11.91 0.113 11.13 0.115 9.80 0.168 -38.3 0.131 -8.4 0.140 -15.8 0.127 -5.0 0.126 -3.7 0.147 -21.4
PCNM 0.147 -15.5 0.148 -16.3 0.149 -17.2 0.114 10.47 0.112 12.00 0.114 10.22 0.175 -44.6 0.139 -15.1 0.148 -22.6 0.112 7.54 0.112 7.59 0.117 3.64
LISA A 0.139 -9.5 0.140 -9.9 0.140 -10.3 0.124 2.76 0.124 2.61 0.128 -0.4 0.131 -8.0 0.121 0.39 0.121 0.27 0.105 13.60 0.101 16.47 0.107 11.89
LISA B 0.144 -12.9 0.143 -12.2 0.144 -13.3 0.126 0.65 0.126 1.12 0.131 -2.7 0.172 -42.3 0.135 -11.5 0.149 -23.1 0.116 4.51 0.123 -1.2 0.129 -6.5
LISA C 0.144 -12.7 0.143 -12.7 0.124 2.55 0.125 1.57 0.143 -12.6 0.126 0.74 0.130 -7.1 0.121 -0.2 0.118 2.32 0.102 15.55 0.105 13.17 0.101 17.02
S2000 RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.%
NoSpatial0.136 -7.0 0.137 -7.7 0.138 -8.7 0.114 10.22 0.113 11.54 0.115 9.77 0.166 -37.3 0.132 -8.9 0.127 -4.9 0.130 -7.2 0.128 -5.9 0.128 -6.0
LatLon 0.137 -7.3 0.140 -9.6 0.139 -9.0 0.115 9.49 0.112 12.22 0.114 10.20 0.163 -34.6 0.123 -1.4 0.123 -1.5 0.128 -5.8 0.131 -7.9 0.124 -2.2
PCNM 0.144 -13.4 0.146 -15.0 0.149 -17.1 0.114 10.52 0.115 9.58 0.116 9.17 0.163 -34.4 0.128 -6.0 0.127 -5.1 0.120 1.11 0.120 0.63 0.117 3.36
LISA A 0.135 -6.4 0.137 -8.0 0.138 -8.2 0.124 2.84 0.123 3.35 0.126 0.99 0.120 1.16 0.116 3.84 0.120 1.30 0.114 5.59 0.113 6.94 0.128 -5.3
LISA B 0.136 -7.1 0.139 -9.5 0.140 -9.8 0.128 -0.2 0.128 -0.7 0.128 -0.6 0.166 -36.8 0.130 -7.3 0.129 -6.4 0.134 -10.7 0.126 -4.0 0.132 -9.2
LISA C 0.139 -8.9 0.137 -7.6 0.141 -11.0 0.126 1.35 0.125 1.83 0.126 1.09 0.125 -3.1 0.114 5.78 0.116 4.24 0.111 8.27 0.112 7.67 0.119 1.77

S4000 RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.%
NoSpatial0.130 -1.7 0.133 -4.7 0.134 -5.0 0.108 14.91 0.109 14.03 0.109 14.35 0.162 -33.8 0.125 -3.5 0.127 -5.1 0.124 -2.6 0.126 -4.0 0.126 -3.9
LatLon 0.135 -6.1 0.133 -4.3 0.135 -6.2 0.110 13.69 0.110 13.43 0.112 12.11 0.157 -29.5 0.119 1.48 0.123 -1.5 0.125 -3.4 0.124 -2.6 0.137 -13.1
PCNM 0.145 -13.7 0.145 -14.0 0.142 -11.4 0.110 13.88 0.112 12.40 0.111 12.67 0.157 -29.2 0.120 1.19 0.129 -6.3 0.115 5.10 0.117 3.08 0.123 -1.3
LISA A 0.134 -5.3 0.135 -5.8 0.132 -4.0 0.116 8.85 0.118 7.03 0.117 8.30 0.112 7.79 0.105 13.18 0.107 11.35 0.121 -0.2 0.112 7.30 0.115 5.45
LISA B 0.135 -5.7 0.137 -7.8 0.138 -8.2 0.124 2.28 0.123 3.00 0.121 5.23 0.158 -30.7 0.123 -1.8 0.130 -7.3 0.129 -6.4 0.132 -8.6 0.135 -11.1
LISA C 0.138 -8.6 0.137 -7.9 0.138 -8.6 0.115 9.56 0.123 3.78 0.117 8.33 0.115 4.74 0.114 5.85 0.109 9.67 0.115 4.89 0.115 4.98 0.109 10.07

Landm. RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.%
NoSpatial0.115 9.50 0.114 10.44 0.116 8.94 0.103 18.73 0.102 20.02 0.102 19.85 0.162 -33.5 0.129 -6.3 0.128 -5.8 0.097 19.65 0.097 19.58 0.098 19.29
LatLon 0.115 9.37 0.114 10.15 0.115 10.00 0.102 19.51 0.102 19.63 0.101 20.49 0.159 -31.0 0.121 0.10 0.118 2.98 0.097 20.07 0.097 19.91 0.098 19.32
PCNM 0.113 10.86 0.116 9.13 0.116 8.77 0.102 19.77 0.102 19.63 0.102 20.21 0.155 -27.7 0.113 6.55 0.112 7.34 0.097 20.24 0.097 20.14 0.098 19.49
LISA A 0.115 9.71 0.117 8.44 0.117 7.93 0.102 19.91 0.103 19.44 0.101 20.99 0.115 5.25 0.105 13.24 0.106 12.78 0.099 18.39 0.107 11.44 0.11 10.14
LISA B 0.125 1.67 0.128 -0.1 0.126 1.27 0.113 11.19 0.117 8.26 0.117 8.28 0.161 -32.9 0.123 -1.3 0.122 -1.1 0.098 19.26 0.099 18.54 0.097 19.95
LISA C 0.125 1.91 0.128 -0.7 0.126 0.70 0.115 9.89 0.113 10.86 0.118 7.71 0.113 6.34 0.110 9.55 0.118 2.65 0.122 -0.3 0.103 15.15 0.11 9.44

PVItaly Dataset NREL Dataset
CLUS Hourly Daily Hourly Daily

Non-temp. Non-cyclic Cyclic Non-temp. Non-cyclic Cyclic Non-temp. Non-cyclic Cyclic Non-temp. Non-cyclic Cyclic
S1000 RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.%
NoSpatial0.111 12.85 0.110 13.93 0.133 -4.6 0.074 42.17 0.073 42.32 0.103 19.49 0.157 -29.9 0.114 5.76 0.137 -13.1 0.098 19.36 0.090 25.91 0.089 26.36
LatLon 0.108 15.45 0.107 16.11 0.131 -3.0 0.066 47.85 0.066 47.99 0.099 22.50 0.145 -19.7 0.113 6.76 0.133 -10.2 0.096 20.68 0.088 27.02 0.089 26.66
PCNM 0.108 15.27 0.108 15.36 0.130 -2.1 0.068 46.61 0.068 46.86 0.098 23.17 0.149 -23.0 0.112 7.63 0.136 -12.4 0.089 26.82 0.087 28.29 0.086 28.92
LISA A 0.109 14.59 0.109 14.77 0.133 -4.3 0.071 44.17 0.071 44.52 0.102 19.84 0.174 -43.3 0.139 -14.4 0.168 -39.0 0.109 9.92 0.111 8.15 0.112 7.41
LISA B 0.105 17.54 0.104 18.00 0.130 -2.0 0.063 50.36 0.063 50.62 0.098 22.84 0.160 -32.3 0.116 4.34 0.144 -19.0 0.093 23.26 0.090 25.51 0.090 25.98
LISA C 0.105 17.73 0.104 17.98 0.132 -3.9 0.064 49.94 0.063 50.22 0.101 20.76 0.175 -44.7 0.138 -13.9 0.157 -29.3 0.114 6.08 0.111 8.00 0.111 8.08

S2000 RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.%
NoSpatial0.111 12.88 0.110 13.38 0.132 -3.5 0.075 41.22 0.074 41.58 0.103 18.86 0.157 -29.9 0.114 5.76 0.129 -6.7 0.098 19.36 0.090 25.91 0.088 27.11
LatLon 0.107 15.66 0.107 15.58 0.129 -1.4 0.068 46.66 0.067 47.21 0.098 22.98 0.145 -19.7 0.113 6.76 0.127 -4.5 0.096 20.68 0.088 27.02 0.087 28.08
PCNM 0.108 15.29 0.108 15.14 0.129 -1.2 0.070 45.32 0.069 46.00 0.098 23.27 0.149 -23.0 0.112 7.63 0.127 -5.2 0.089 26.82 0.087 28.29 0.085 29.90
LISA A 0.108 15.17 0.108 15.12 0.131 -2.6 0.072 43.42 0.072 43.72 0.103 19.41 0.182 -49.9 0.139 -14.4 0.158 -30.6 0.112 7.36 0.111 8.15 0.104 14.18
LISA B 0.105 17.60 0.105 17.88 0.134 -5.1 0.064 49.76 0.063 50.19 0.109 14.50 0.160 -32.3 0.116 4.34 0.116 4.34 0.093 23.26 0.090 25.51 0.090 25.51
LISA C 0.105 17.26 0.105 17.31 0.130 -1.8 0.064 49.61 0.064 49.58 0.101 20.84 0.175 -44.7 0.138 -13.9 0.157 -29.3 0.114 5.88 0.111 8.01 0.111 8.08

S4000 RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.%
NoSpatial0.111 12.70 0.110 13.57 0.130 -2.4 0.076 40.68 0.075 40.92 0.101 20.86 0.157 -29.9 0.114 5.76 0.122 -0.6 0.098 19.36 0.090 25.91 0.088 27.29
LatLon 0.108 15.36 0.107 15.70 0.128 -0.9 0.068 46.37 0.068 46.60 0.095 25.09 0.145 -19.7 0.113 6.76 0.121 0.34 0.096 20.68 0.088 27.02 0.087 28.25
PCNM 0.108 15.25 0.108 15.20 0.129 -1.2 0.070 45.09 0.069 45.45 0.095 25.28 0.149 -23.0 0.112 7.63 0.119 1.46 0.089 26.82 0.087 28.29 0.085 29.73
LISA A 0.109 14.43 0.109 14.39 0.129 -1.4 0.073 42.96 0.072 43.12 0.101 20.59 0.182 -49.9 0.139 -14.4 0.149 -23.1 0.112 7.36 0.111 8.15 0.111 8.39
LISA B 0.112 11.98 0.112 12.27 0.136 -7.2 0.074 41.56 0.075 41.05 0.105 17.87 0.160 -32.3 0.116 4.34 0.127 -4.6 0.093 23.26 0.090 25.51 0.088 27.06
LISA C 0.105 17.53 0.104 17.97 0.138 -8.6 0.068 46.70 0.126 1.22 0.100 21.36 0.175 -44.7 0.138 -13.9 0.157 -29.3 0.114 5.88 0.111 8.00 0.111 8.08

Landm. RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.% RMSE Imp.%
NoSpatial0.110 13.78 0.109 14.43 0.120 6.05 0.077 39.64 0.077 39.90 0.107 16.04 0.142 -17.3 0.104 14.07 0.112 7.81 0.091 25.24 0.090 25.96 0.088 27.27
LatLon 0.106 16.82 0.106 16.85 0.121 5.10 0.070 45.37 0.069 45.80 0.093 27.27 0.133 -10.1 0.103 14.98 0.110 8.95 0.089 26.52 0.088 27.07 0.087 28.44
PCNM 0.106 16.69 0.107 16.44 0.122 4.38 0.072 43.70 0.071 44.32 0.093 26.97 0.137 -12.8 0.102 15.85 0.109 9.97 0.088 27.72 0.087 28.33 0.085 29.60
LISA A 0.108 15.46 0.108 15.11 0.121 4.83 0.074 41.57 0.074 41.86 0.105 17.68 0.182 -49.9 0.138 -13.9 0.139 -14.7 0.112 7.36 0.111 7.94 0.111 8.04
LISA B 0.115 10.04 0.114 10.77 0.134 -5.2 0.074 41.77 0.074 41.56 0.102 19.95 0.145 -19.6 0.106 12.82 0.113 6.77 0.091 24.71 0.090 25.51 0.088 27.10
LISA C 0.108 15.52 0.107 15.73 0.122 4.16 0.067 47.00 0.067 47.24 0.095 25.36 0.175 -44.7 0.138 -13.9 0.134 -10.8 0.114 5.88 0.111 8.00 0.110 9.06

PCNM method outperforms all other spatial configurations
(significantly outperforming NoSpat. and LISA). The LISA
method is not able to even outperform the simple LatLon
configuration. This means that modeling autocorrelation by
considering the spatial structure of the data (as PCNM does)
is, in the application at hand, much more important than di-
rectly considering auto-regressive information (as LISA does).
Finally, what is clear from the results is that considering spatial

autocorrelation (in any form) is generally beneficial (LatLon,
LISA and PCNM outperform NoSpat.).

2) Temporal: By analyzing the contribution of temporal
autocorrelation, we can see that results are not uniform in
the sense that there is no single temporal configuration which
outperforms the others over the two learning settings, the
two learning algorithms, and the two datasets. However, the
statistical tests show that the two configurations which exploit
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TABLE V
p-VALUES OF THE SIGNED WILCOXON RANK TESTS FOR DIFFERENT
DIMENSIONS OF ANALYSIS. IN BOLD STATISTICALLY SIGNIFICANT

VALUES (CONFIDENCE=0.05, UNLESS SPECIFIED OTHERWISE).

p-value winner
SPATIAL NoSpat. VS LatLon 0.0002 LatLon
(with Bonferroni NoSpat. VS LISA 0.954 LISA
correction < 0.05/6) NoSpat. VS PCNM 0.0008 PCNM

LatLon VS LISA 3.43E-05 LatLon
LatLon VS PCNM 0.775 PCNM
LISA VS PCNM 4.67E-05 PCNM

TEMPORAL Non-temp. VS Non-cyclic 0.005 Non-cyclic
(with Bonferroni Non-temp. VS Cyclic 0.594 Cyclic
correction < 0.05/3) Non-cyclic VS Cyclic 0.007 Non-cyclic
STRUCTURAL Hourly VS Daily 5.22E-09 Daily
ALGORITHMIC RPROP+ VS CLUS 4.39E-08 CLUS
TRAINING Sliding 1000 vs Landmark 8.15E-10 Landmark
WINDOW (RPROP+) Sliding 2000 vs Landmark 8.68E-10 Landmark
(with B. corr. < 0.05/3 Sliding 4000 vs Landmark 4.63E-09 Landmark
TRAINING Sliding 1000 vs Landmark 1.96E-04 Landmark
WINDOW (CLUS) Sliding 2000 vs Landmark 2.44E-04 Landmark
(with B. corr. < 0.05/3 ) Sliding 4000 vs Landmark 9.83E-05 Landmark

temporal autocorrelation (Non-cyclic and Cyclic) significantly
outperform the configuration that does not (Non-temporal),
with the cyclic configuration not outperforming the non-cyclic
one. This can be due to collinearity problems because of high
correlation between cyclic temporal features and non-cyclic
ones. Moreover, since in two out of four daily settings, the
best improvement is obtained with cyclic configuration, we
conclude that temporal autocorrelation is properly exploited in
the case of structured output prediction, where dependencies
between the productions at two different hours of the same
day provide a sort of “contiguity” with respect to the temporal
autocorrelation captured by the directional statistics.

3) Structural: By comparing the non-structured output pre-
diction setting with structured output prediction, we can clearly
see that the comparison is significantly in favor of the struc-
tured output prediction setting, confirming that dependence
between the predictions obtained at different hours of the same
day is of fundamental importance for improving predictions.

4) Algorithmic: CLUS outperforms RPROP+ with a great
margin, especially for the structured output prediction setting,
where it is able to improve the predictions of the persistent
model for more than 45% in the case of PVItaly (with the
combination Non-cyclic - LatLon) and of almost 30% in the
case of NREL (with the combination Cyclic - PCNM).

Concerning feature selection, the results reported in Table
VI show that it does not lead to improved performances.
This means that many and distinct features contribute to
provide information for better predictions. However, from the
application of the feature selection algorithm, we can still
have additional insights. In fact, the selected features confirm
that the added spatial and temporal features are considered
important for the prediction. For PVItaly, the selected features
are: day, date, hour (hourly setting), irradiance, humidity,
irradianceLISA, azimuthLISA, while for NREL they are: date,
day, hour (hourly setting), longitude, windspeed, altitude,
azimuth, cloudcoverLISA, azimuthLISA, PCNM27, PCNM28.

A different, better marked perspective of the results is
provided in Fig.6 where we compare the actual and predicted
curves of the production for 3 consecutive winter and summer
days for both datasets for the landmark window model. For the

TABLE VI
AVERAGE RMSE (OVER 3 RUNS) WITH AND WITHOUT FEATURE
SELECTION (FS). RESULTS WITHOUT FEATURE SELECTION ARE
OBTAINED WITH THE CONFIGURATION PCNM - NON-CYCLIC.

RPROP CLUS
PVItaly With FS Without FS With FS Without FS
Hourly 0.121 0.116 0.113 0.107
Daily 0.117 0.102 0.083 0.071
NREL With FS Without FS With FS Without FS
Hourly 0.127 0.113 0.115 0.102
Daily 0.122 0.097 0.105 0.087
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(a) PVItaly - January 1st, 2nd, 3th (b) PVItaly - May 4th, 5th, 6th
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(c) NREL - January 16th, 17th, 18th (d) NREL - May 2nd, 3th, 4th

Fig. 6. Predicted (solid line) vs. actual (dotted line) production for three
consecutive days (in January and May) of a single plant of PVItaly and NREL.
Results for PVItaly are obtained with the CLUS-Daily-LatLon-Non-cyclic
configuration, while for NREL are obtained with the CLUS-Daily-PCNM-
Non-cyclic configuration. The time intervals considered are 2:00 AM - 8:00
PM. The considered plant for PVItaly is located in Sannicandro di Bari, Italy
at latitude: 40.984261, longitude: 16.831031; the considered plant for NREL is
located in Riverside, California at latitude: 33.671418, longitude: -115.558126.

PVItaly dataset example, a decrease in predictive performances
can be observed under cloudy and rainy weather conditions
(typical for winter days) compared to sunny weather condi-
tions (typical for summer days). Moreover, the PVItaly dataset
has shown to be more challenging than NREL. Namely, the
PVItaly is real-world dataset, while the NREL dataset is
simulated. Therefore, it is not surprising for PVItaly to exhibit
greater oscillations than NREL.

VI. CONCLUSIONS

This paper studies the problem of PV energy prediction by
considering different dimensions of analysis: spatio/temporal
autocorrelation, the learning setting (structured output vs.
non-structured output) and the learning algorithm (ANNs vs.
regression trees), aiming to investigate the relevant aspects
for the problem at hand. Results clearly show that structured
output prediction models are much more accurate than models
that predict single outputs because structured output prediction
models can capture dependencies between different hours of
the same day. Moreover, experimental results confirm that
both forms of autocorrelation should be taken into account
in this specific application: While PCNM is the best way
to consider spatial autocorrelation, the simple consideration
of hour and day information is enough to properly catch
temporal autocorrelation. Finally, regression trees produce
significantly better predictions than ANNs, indicating that also
in PV energy prediction, hierarchical models are better than
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flat regression functions (this was also observed in [24] for
predicting electricity energy consumption).

As future work, we intend to directly consider autocorrela-
tion in the cost function (heuristic) used to learn the ANN. We
also plan to investigate more sophisticated learning methods
based on ensemble techniques.
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