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Abstract. Predicting the output power of renewable energy production plants
distributed on a wide territory is a valuable goal, both for marketing and energy
management purposes. In this paper, we describe Vi-POC (Virtual Power Oper-
ating Center) – a distributed system for storing huge amounts of data, gathered
from energy production plants and weather prediction services. Due to the hetero-
geneity and the high volume of data, it is necessary to exploit suitable Big Data
analysis techniques in order to perform a quick and secure access to data that can-
not be obtained with traditional approaches for data management. We use HBase
over Hadoop framework on a cluster of commodity servers in order to provide
a system that can be used as a basis for running machine learning algorithms.
We perform one-day ahead forecast of PV energy production based on Artificial
Neural Networks in two learning settings – structured and non-structured output
prediction. Preliminary experimental results confirm the validity of the approach,
also when compared with a baseline approach.

1 Introduction

Recently, renewable energy research is gathering a lot of attention due to the strategic
and urgent need of reducing pollution emission. A key problem for renewable energy
producers is the exact quantification of the amount of energy that can be pushed over
the electric network. This problem arises as energy cannot be stocked efficiently; thus,
they are forced to give it for free if they produce more energy than the network can
use or they will pay a huge penalty if they do not provide the expected amount. In
this perspective, the Vi-POC project has been developed in order to support renewable
energy providers with a framework for collecting, storing, analyzing, querying and re-
trieving data coming from heterogeneous renewable energy production plants (such as
photovoltaic, wind, geothermal, Sterling engine, water running) distributed on a wide
territory. Moreover, Vi-POC features an innovative system for real-time prediction of
the energy production which integrates data coming from production plants and weather
production services.

The data coming from production plant are quite heterogeneous, they arrive at a
continuously fast rate and their volume increases continuously. These features pose
several challenges that can be solved using Big Data techniques [1, 6, 8, 9, 12–16].



Nowadays, dealing with a big volume of data is very challenging, since traditional tech-
nologies, like Relational Database Management System (RDBMS) or classical object
oriented programming, are not well suited for this purpose. As Big Data also arise at
high speed and variety, we need to cope with requirements like scalability. Traditional
RBDMS are not suitable for the typical size and scalability requirements of Big Data. In
order to meet these requirements, distributed non-relational database management sys-
tems have been proposed. The use of non-relational database approach, also known as
NoSQL (Not Only SQL), allows for avoidance of unneeded complexity, high through-
put, horizontal scalability and possible running on commodity hardware, and avoidance
of expensive object-relational mapping.

Many open source technologies were developed in order to effectively handle mas-
sive amounts of data. The majority of these technologies are based on the MapReduce
programming model. This paradigm makes easier to implement solutions based on the
use of distributed systems for executing analysis tasks. However, although MapReduce
is well suited for large distributed data processing where fast performance is not an
issue, its high-latency batch model is not effective for fast computations or real data
analysis. The most widespread implementation of the MapReduce programming model
is Hadoop MapReduce, part of the Hadoop framework. Although Hadoop is a really
pervasive technology, it has some drawbacks, especially when dealing with algorithms
based on iterative operations.

In our project, we exploited HBase - an open source, non-relational, distributed
database model. HBase is an Apache project and runs on top of Hadoop Distributed
File System (HDFS), providing Google BigTable-like capabilities for Hadoop, i.e., it
provides a fault-tolerant way of storing large quantities of sparse data. HBase main
features include good compression performances, in-memory execution of operation,
and bloom filters on a per-column basis as in BigTable.

In this paper, we describe our end-to-end framework that, starting from the data
leaning step, allows a better engineering of data structures in order to support data anal-
ysis and prediction of energy production. As for the prediction of the energy production,
we propose a method for long-term forecast (one-day ahead) of photovoltaic energy
production based on Artificial Neural Networks (ANN) and investigate the performance
of structured and non-structured output prediction models. While in non-structured out-
put prediction, a prediction model generates the forecast for a specific hour in the future,
in structured output prediction, a prediction model generates the forecast for 24 hours
in the future [11][4]. In principle, the main advantage of structured output prediction
is in the implicit consideration of the dependence of the predictions at two consecutive
hours.

In [7], we described the high level architecture of our system. In this paper, we
will describe the actual implementation of the prototype along with the implementation
issues that are crucial for building a system for Big Data management and analysis.

2 HBase Data Model

HBase data model is “sparse, distributed, persistent, multi-dimensional sorted map”.
HBase is distributed and persistent features are guaranteed by automatically storing



data in a redundant way by exploiting a specialized distributed file system as HDFS,
that spread data across different machines that usually represent different nodes of a
given cluster. Moreover, data are stored in a multi-dimensional map for fast indexing by
row key, column and version. Furthermore, data are also partitioned across nodes of the
cluster in regions composed of a contiguous range of row. Every region is served by only
one machine, denoted as Region Server. However, this data model lacks some useful
operations available for classical RDBMS solutions, like joins, foreign keys, referential
integrity and transaction support. If the application being implemented requires these
features, they need to be implemented ad-hoc.

HBase allows for significant reduction of the overall storage space required for sav-
ing relevant information. The operation performed for storing more information in a
single key is referred to as mashing and can be performed in several ways, as value
concatenation or by formatting data using a suitable delimiter. Mashing has several im-
portant advantages: i) Row key ordering allows fastest querying compared to alternative
query patters such as time-stamp based querying or column qualifier based querying; ii)
It allows partial scan of the HBase data based on mash ordering ; iii) As tables are par-
titioned in regions among nodes, tables should not contain a huge number of columns
Properly exploiting row keys allows to define tables exhibiting the above mentioned
feature as mashing causes column values to collapse in a single row key identifier.

Finally, row key design plays a crucial role for load balancing among region servers.
When tuples are inserted in the data store, if they share a row key prefix, they will be
stored in the same region server causing an unbalanced cluster loading. This drawback
is referred to as hot spotting. However, it is possible to avoid hot spotting by exploiting
strategies such as salting (adding a random value as row key prefix to make the value
distribution uniform), hashing (the hash code of the key is used instead of the row key
identifier). It is also possible to apply reversed row key identifier in order to obtain the
least significant digit as prefix. The rationale of this choice relies in the fact that often
last digits change more frequently than the ones preceding it (e.g. the time-stamp).

3 Renewable Energy Case Study

The Vi-POC project aims at designing and implementing a prototype which is able
to manage renewable energy production plants distributed over the national territory.
Vi-POC implements an innovative system for real-time prediction of the energy pro-
duction capability of each plant. It exploits big data techniques explained above in or-
der to deal with the heterogeneity of data coming from different renewable resources,
such as photovoltaic (PV), wind, geothermal, Sterling engine, water running. Vi-POC
is intended to make the prediction available from GSE (Gestore Servizi Energetici
http://www.gse.it/) more efficient, effective and reliable. In particular, Vi-POC
intents to predict real-time energy production with higher precision as it exploits his-
torical information about production and weather conditions. The high accuracy and
efficiency will allow energy market operators to implement a more effective purchasing
strategy.

We exploited an HBase storage system designed for storing weather information
and plant sensor data. These data are exploited by clients running data mining algo-

http://www.gse.it/


rithms to predict the output power of the plants. Every plant sends periodically all the
data collected by installed sensors. The time granularity is set based on the type and the
dimension of the plant. Data coming from the plants usually consists of different mea-
sures gathered from several sensors at a given time-stamp. Moreover, the number and
the type of sensors may differ among plants. Forecast data instead, consists of various
predicted weather parameters forecasted for a given time and location.

Separation between the plants and the computation cluster is a key concept. The
plants, in fact, do not send their measurements directly to the computation cluster, but
to a separated storage level, made of several file servers. Different fault tolerance strate-
gies are applied among these levels in order to avoid the block of the entire system due
to the failure of one of the components. Data is then taken by computation cluster’s Ex-
tract, Transform and Load (ETL) tool and stored in a non-relational distributed database
across the nodes of the cluster itself.

Our architecture stores the data on a HBase system consisting of three tables for
storing: plant information, measurements from plants and forecasting information. To
store data regarding a location, we use Geohash5. It is a standard way to represent
latitude/longitude information as a string of characters having very useful properties.
As an example, sites close to each another share the same prefix in the string.

HBase performances heavily decrease when more than three column families are
used because flushing and compaction are performed on a per-region basis. Thus, if
a column family is carrying the bulk of the data being flushed, the adjacent families
will also be flushed even though the amount of data they carry is small. As a conse-
quence, when many column families are exploited, the flushing and compaction inter-
action can heavily decrease system performances. In this respect, we designed column
family schemas having at most two column families.

3.1 Table schemas

Based on the above considerations, we designed tables as described below (we do not
report the actual name of each attribute as they are coded by the plant owner and they
are not easily understandable).

Table Plants:
– RowKey: concatenation of the type of the plant (solar, wind, hydroelectric) and a

plant identifier;
– Column family 1: contains as many attributes as the cardinality of data. Every at-

tribute represents raw information as the configuration parameters or the coordi-
nates of the plant;

– Column family 2: stores log information about maintenance operations for the spe-
cific plant.

Table Measure:
– RowKey: concatenation of the identifier of the plant, the reverse time stamp and the

measurement type;

5 www.geohash.org



– Column family: stores all collected measures. The number of attributes is equal to
the cardinality of counters being collected.

Table Predicted Measure:
– RowKey: the same structure as the Measure table;
– Column family: stores the measures predicted by mining algorithms. The number

of attributes is equal to the cardinality of predicted data.

Table Weather Data:
– RowKey: concatenation of Geohash, reverse time stamp, measurement type and

server identifier, where server identifier is used to trace which server sent the pre-
diction;

– Column Family 1: used to store collected weather data.
– Column Family 2: used to store predicted weather data (weather forecasts).

3.2 Long-term forecast of PV energy production

During the last years, the forecast of PV energy production has received significant at-
tention since photovoltaics are becoming a major source of renewable energy for the
world [2]. Forecasting methods depend on the tools and information available, the fore-
cast horizon, the number of plants considered and the size of the geographic area they
cover [17]. Diverse resources are used to generate solar and PV forecasts, ranging from
measured weather and PV system data, satellite and sky imagery cloud observations, to
Numerical Weather Prediction (NWP) models [10]. The best approaches make use of
both measured data and NWP models.

In the literature, several data mining approaches have been proposed for renew-
able energy power forecasting. It has been noted that physical (e.g. wind speed and
solar irradiation) property behavior exhibits a trail called concept drift, i.e., they change
characteristics over time [5]. In this respect, adaptive models are generally considered
to produce more reliable predictions regarding concept drift, but require a continuous
training phase [3][18].

In this case study, we propose an adaptive method for long-term forecast (one-
day ahead) of PV energy production based on ANN. The proposed approach exploits
NWP to benefit from uncontrollable factors (such as weather conditions). We investi-
gate structured (all hours of the forecasted day are outputs from a single ANN model)
and non-structured output prediction models (each hour of the forecasted day is output
from one ANN model).

Method The machine learning task is to predict the PV power generation using the
following input attributes:

– the geographic coordinates of the plant: latitude and longitude,
– the sun positions at the location of the plant: altitude and azimuth, queried by Sun-

Position (http://www.susdesign.com/sunposition/index.php),
– the properties of the plant: site ID, brand ID, model ID, age in months,
– weather data: ambient temperature, irradiance, pressure, wind speed, wind bearing,

humidity, dew point, cloud cover, descriptive weather summary.

http://www.susdesign.com/sunposition/index.php


Additionally, in the case of structured output prediction, also the day is passed as fea-
ture, while in the case of non-structured output prediction, besides the day, also the
hour. In the training phase, we use historical weather information collected by sensors,
while for prediction purposes, we use weather forecast data provided by NWP systems
(data are normalized according to the z-score). The output is the prediction of the power
production (KWh) for the next day at one hour intervals. The prediction models are up-
dated on a daily basis.

Experiments In our empirical evaluation, we consider a real dataset collected at regular
intervals of 15 minutes (measurements start at 2:00 AM and stop at 8:00 PM every day)
by sensors located on 18 plants in Italy. The time period spans from January 1st, 2012 to
May 4th, 2014. The weather data is queried from Forecast.io (http://forecast.
io/), while the irradiance is queried from PVGIS (http://re.jrc.ec.europa.
eu/pvgis/apps4/pvest.php). As anticipated before, the raw data are prepro-
cessed and normalized according to the z-score normalization, before using them for
ANN learning, in order to resolve measurement errors.

In this paper, we use the encog implementation of the Resilient Propagation (RPROP+)
algorithm for training neural networks (http://www.heatonresearch.com/
wiki/Resilient_Propagation#Implementing_RPROP.2B). RPROP+ is one
of the best general-purpose neural network training methods implementing the back-
propagation technique. We use RPROP+ since it has been proven effective for renew-
able energy prediction [5]. For the evaluation, the dataset is split into training days
(85%) and testing days (15%). Experiments are run three times and average results are
collected. For each run the network is trained incrementally on the training dataset until
a testing day is found. Then, it is repeatedly first tested on the testing day and after that
it is re-trained with the sample added to the training set, together with all the training
days before the next testing day. At the end, the average performance over all the test
samples is reported as a result.

We distinguish between hourly (non-structured) and daily (structured output) set-
tings. In the hourly setting, we investigate non-structured ANN models with single out-
put - the production of the plant at a specified day and specified hour. In the daily setting,
we investigate structured ANN models with 19 outputs - the productions of the plant
for the hours from 2:00 AM to 8:00 PM on a specified day. Moreover, in each setting,
we investigate the performance of models that do not take into account any spatial in-
formation about the data (No Spatial) and models that take into account the latitude and
longitude of the plant as spatial information (Lat Lon).

Results and discussion The results for the investigated hourly and daily scenarios
are reported in Table 1. We consider three indicators of the predictive performance,
namely the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and
the improvement with respect to the persistence model (i.e., the model that forecasts the
same production observed 24 hours before).

The results clearly show improvement of the predictive performance over the per-
sistence model, with the structured-output prediction model outperforming the non-
structured one, both in No Spatial and Lat Lon models. From Table 1, we can also

http://forecast.io/
http://forecast.io/
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
http://www.heatonresearch.com/wiki/Resilient_Propagation#Implementing_RPROP.2B
http://www.heatonresearch.com/wiki/Resilient_Propagation#Implementing_RPROP.2B


Table 1. Performance results for one-day ahead PV power forecast for hourly (non-structured)
and daily (structured output) settings. No spatial (Lat Lon) indicate results without (with) geo-
graphic coordinates of the plant.

RMSE MAE Impr. over the persistence mod. [%]
No Spatial Hourly 0,121 0,080 16,622
No Spatial Daily 0,111 0,068 23,966
Lat Lon Hourly 0,119 0,078 17,745
Lat Lon Daily 0,109 0,067 25,369
Persistence model 0,146 0,085

(a) January 4th, 5th, 6th. (b) May 4th, 5th, 6th.

Fig. 1. Predictions (green) and measurements (red) of the productions for three consecutive days
of a single plant. The three consecutive days are taken from January and May. Results are obtained
with the daily (structured) setting. We recall that the time intervals considered are 2:00 AM - 8:00
PM. Results are obtained including geographic coordinates.

notice that geographic coordinates play an important role in the prediction effective-
ness - the Lat Lon models outperform the No Spatial models. This suggests that spatial
autocorrelation phenomena should be taken into account when constructing predictive
models for the production of geographically distributed plants [19].

The predictive performance of the model can also be graphically inspected from
Figure 1, where the predicted vs. measured power production are presented for three
consecutive typical cold (in January) and warm (in May) days. In both cases we re-
port predictions for partially cloudy days. The predictions are obtained using the best
performing model, i.e. structured output considering the latitude and longitude as input
attributes. The plots confirm that the ANN models predict the production for the next
day visually better in winter than in summer days.

4 Conclusions

In this paper, we have presented the project Vi-POC – a distributed system for stor-
ing, querying and analyzing data collected from renewable energy production plants. In
particular, we have described its data model and its forecasting capabilities. We have
empirically shown its predictive capabilities and compared cases with structured output
prediction and non-structured output prediction. Results confirm that predictive capabil-
ities are better in case of structured output prediction, probably because of the implicit
consideration of the dependence of the predictions at consecutive hours.
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