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ABSTRACT
Predicting the output power of renewable energy production plants
distributed on a wide territory is a valuable goal, both for market-
ing and for energy management purposes. Vi-POC (Virtual Power
Operating Center) project aims at designing and implementing a
prototype able to achieve this goal. Due to the heterogeneity and
the high volume of data, it is necessary to exploit suitable Big Data
techniques to perform quick and secure access to data, which can-
not be obtained with traditional approaches for data management.
In this paper, we describe Vi-POC – a distributed system for storing
huge amounts of data, gathered from energy production plants and
weather prediction services. We use HBase over Hadoop frame-
work on a cluster of commodity servers in order to provide a system
that can be used as a basis for running machine learning algorithms.
In particular, we perform one-day ahead forecast of PV energy pro-
duction based on Artificial Neural Networks in two learning set-
tings, that is, structured and non-structured output prediction. Pre-
liminary experimental results confirm the validity of the approach.

1. INTRODUCTION
Recently, renewable energy research is gathering a lot of atten-

tion due to the strategic and urgent need of reducing pollution emis-
sion and finding new revenue streams for utility companies. Indeed,
wholesale vendors lead the utility sector because those companies
provide energy to the most relevant share of private and industrial
users. Due to their dominant position, they are able to gather huge
amount of valuable information. In particular, they have access
to both external and internal data, including sensor data from pro-
ducing assets, real-time or end-of-day price data from a multitude
of related markets, counter-party credit data, position management
information, and many others. However, due to the availability of
new (low cost) technologies, also small producers are able to collect
data about their business. Indeed, data coming from small produc-
tion plants are quite heterogeneous, they arrive continuously (fast)
and their volume increases at an unprecedented growth rate. These
features pose several challenges that can be solved using Big Data
techniques [1, 2, 3]. Moreover, these challenges are crucial for
achieving several business objectives, such as reducing enterprise
risk and shortening decision response times, thus enabling traders
and decision makers to quickly react to sudden changes of market
quotations. Furthermore, Big Data techniques can help manage-
ment staff to maximize company returns both in short and long
time horizons.

In this perspective, Vi-POC project has been developed in or-
der to support renewable energy providers with a framework for
collecting, storing, analyzing, querying and retrieving data com-
ing from heterogeneous renewable energy production plants (such
as photovoltaic, wind, geothermal, Sterling engine, water running)
distributed on a wide territory. Moreover, Vi-POC features an in-
novative system for real-time prediction of the energy production,
integrating data coming from production plants and weather pre-
diction services. Indeed, a key problem for low-business energy
producers is the exact quantification of the amount of energy that
can be pushed over the power supply network. This problem arises
as energy cannot be stocked efficiently; thus, they are forced to give
it for free if they produce more energy than the network can use or
they will pay a huge penalty if they do not provide the expected
amount.

In this paper, we describe our end-to-end framework that allows a
better engineering of data structures in order to support data analy-
sis and prediction of energy production, thus offering a good trade-
off between effective storage and efficient analysis of data. As for
the prediction of the energy production, we propose a method for
long-term forecast (one-day ahead) of photovoltaic energy produc-
tion based on Artificial Neural Networks (ANN) and investigate the
performance in two settings - structured and non-structured output
prediction. While in non-structured output prediction a prediction
model generates the forecast for a specific hour in the future, in
structured output prediction, a prediction model generates the fore-
cast for 24 hours in the future [15][5]. In principle, the main ad-
vantage of structured output prediction consists in the implicit con-
sideration of the dependence of the predictions at two consecutive
hours.

In [10, 9], we described the high-level architecture of our system.
In this paper, we will describe the actual implementation of the
prototype along with the implementation issues that are crucial for
building a system for Big Data management and analysis.

2. BACKGROUND
Nowadays, dealing with a big volume of data is very challenging

because traditional technologies, like RDBMS or classical object
oriented programming, are not well suited for the typical size and
scalability requirements of Big Data. In order to meet these re-
quirements, column oriented databases have been proposed. In our
project, we exploited a HBase storage system.

HBase is an open source, non-relational, distributed database
modeled as Google BigTable and developed in Java. More in de-



tail, it is an Apache project and runs on top of HDFS, provid-
ing BigTable-like capabilities for Hadoop, i.e., it provides a fault-
tolerant way of storing large quantities of sparse data. HBase main
features are:

• good compression performances;

• in-memory operation execution;

• bloom filters on a per-column basis as in a BigTable specifi-
cation.

Tables in HBase are used to perform Input and Output for MapRe-
duce jobs running on Hadoop, and may be accessed through the
Java API, but also through REST, Avro or Thrift gateway APIs.
It is worth noting that HBase is not a column-oriented database
in the typical RDBMS sense, but utilizes an on-disk column stor-
age format. Rows are composed of columns, and those, in turn,
are grouped into column families in order to build semantical or
topical boundaries between the data, as shown in Figure 1. Fur-
thermore, the latter data organization makes it possible to improve
compression or specific in-memory operation.

Figure 1: HBase storage organization

Columns are referenced as family having a qualifier represented
as an array of bytes. Each column value (or cell) is either implic-
itly timestamped by the system or can be set explicitly by the user.
Rows in the tables are sorted by a row key and this key provides
access to information contained in the row. On the other side,
columns are grouped into column families and can be updated at
runtime (by specifying the column family through a prefix). In-
deed, this model turns to be efficient and scalable, thus well suited
for Big Data management. On the contrary, a row based approach
is inefficient, and simple column based approaches are efficient but
not scalable. Figure 2 summarizes the features and the difference
among the approaches.

Figure 2: Features of several storage models

At the physical level, all columns in a column family are stored
together in the same low level storage file, called an HFile. In ad-
dition to the notion of the column, table and row, HBase uses the
so called ”region”. In fact, the HBase tables are automatically par-
titioned horizontally into regions that are distributed in a cluster.
Each region consists of a subset of rows of a table and in this way a

table that is too large to be contained in a server can be distributed
on different servers in the cluster.

The HBase data model is ”sparse, distributed, persistent, multi-
dimensional sorted map”. More in detail, data are sparse as they
do not explicitly represent null values. HBase distributed and per-
sistent features are guaranteed by automatically storing data in a
redundant way through exploiting a specialized distributed file sys-
tem as HDFS, that spreads data across different machines usually
representing different nodes of a given cluster. Moreover, data are
stored in a multi-dimensional map for fast indexing by row key, col-
umn and version. Finally, data are lexicographically sorted by row
key. Row-key and column-qualifier can be of arbitrary type (i.e.
raw bytes) while column family qualifier must be composed only
of standard characters. Version identifier is a long integer, usually
representing the time stamp of value insertion in the map.

However, this data model lacks some useful operations available
for classical RDBMS solutions, like joins, foreign keys, referential
integrity and transaction support. If the application being imple-
mented requires these features, they need to be implemented ad-
hoc. As for transaction support, although the CAP theorem holds,
that is, it is not possible to guarantee both consistency and avail-
ability while partitioning data in a distributed system, HBase is
partition-tolerant and consistent (CP).

3. RENEWABLE ENERGY CASE STUDY
The Vi-POC project aims at designing and implementing a proto-

type able to manage renewable energy production plants distributed
over national territory. Vi-POC implements an innovative system
for real-time prediction of the energy production. It exploits Big
Data techniques in order to deal with the heterogeneity of data
coming from different sources such as photovoltaic (PV), wind,
geothermal, Sterling engine, and water running. Vi-POC is in-
tended to predict real-time energy production with higher precision
as it exploit historical information about production and weather
conditions. The high accuracy and efficiency will allow energy
market operators to implement a more effective purchasing strat-
egy.

We exploited a HBase storage system designed for storing weather
information and plant sensor data. The data is exploited by clients
running data mining algorithms to predict output power of plants.
Every plant sends periodically all the data collected by installed
sensors. The time granularity is set based on the type and the di-
mension of the plant. Data coming from plants usually consists of
different measures, gathered from several sensors at a given time-
stamp. Indeed, the number and the type of sensors may differ
among plants. Forecast data instead, consists of various predicted
weather parameters forecasted for a given time and location.

Our architecture stores the data on a HBase system consisting
of three tables: one for storing plants information, one for storing
measurements from plants and one for storing weather forecast in-
formation. To store data regarding a location, we use Geohash1. It
is a standard way to represent latitude/longitude information as a
string of characters having very useful properties. As an example,
sites close to each another share the same prefix in the string.

HBase performances heavily decrease when more than three col-
umn families are used. This is exhibited because flushing and com-
paction are performed on a per-region basis, thus, if a column fam-
ily is carrying the bulk of the data being flushed, the adjacent fam-
ilies will also be flushed even though the amount of data they carry
is small. As a consequence, when many column families are ex-
ploited, the flushing and compaction interaction can heavily de-

1www.geohash.org



Figure 3: System Architecture

crease system performances. In this respect, we designed column
family schemes having at most two column families.

3.1 System Architecture
As depicted in Figure 3, we can see the interactions between the

different subsystems in our architecture. As stated before, there are
many renewable energy plants that send data periodically to the sys-
tem. Separation between the plants and the computation cluster is
a key concept. The plants, in fact, do not send their measurements
directly to the computation cluster, but to a separated storage level
made of several file servers. Different fault tolerance strategies are
applied among these levels in order to avoid blockage of the entire
system due to the failure of one of the components. Data is then
taken by computation cluster’s Extract, Transform and Load (ETL)
tool and stored in a non-relational distributed database.

Figure 4 shows the software architecture implemented on a clus-
ter of computing nodes. It is composed of several levels. As stated
before, we use HDFS as distributed file system. Data is stored on
different commodity machines in the computation cluster. We plan
to simplify the software setup of the computation cluster through
the use of software containers (in particular Dockers 2), thus pro-
viding platform as a service (PaaS) style deployment.

On top of HDFS we run HBase, which provides BigTable-like
capabilities for Hadoop. The large quantities of data, coming from
renewable energy plants, are stored in a fault-tolerant way across
the nodes of the cluster. The tables in HBase serve as the in-
put and output for MapReduce jobs. We use Apache ZooKeeper
that provides services like distributed configuration, synchroniza-
tion and naming registry. Cloudera Distribution including Apache
Hadoop 3(CDH) offers a quick way to deploy all of the above com-
ponents.

We wrote a custom ETL tool which manages the interaction be-
tween the storage level and the computation cluster. The tool peri-
odically downloads the new data from the storage servers. This data
is in csv format and needs to be transformed in order to be stored,
according to the schema discussed in Section 3.2. The ETL tool
provides this transformation and the subsequent upload to HBase
tables. The definition of queries on data and the visualization of
results are made by another custom tool that stands on top of our
architecture.

3.2 Table schemas
Based on the above considerations, we designed tables described

below (we do not report the actual name of each attribute as they are
coded by the plant owner and they are not easily understandable).

Table Plants:

• RowKey: concatenation of the type of the plant (solar, wind,
hydroelectric) and a plant identifier;

2https://www.docker.com/
3http://www.cloudera.com/content/cloudera/en/home.html
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Figure 4: Architecture layers

• Column family 1: contains as many attributes as the cardinal-
ity of data. Every attribute represents raw information about
the configuration parameters or the coordinates of the plant;

• Column family 2: stores log information about maintenance
operations for the specific plant.

Table Measure:

• RowKey: concatenation of the identifier of the plant, the re-
verse time-stamp and the measurement type;

• Column family: stores all collected measurements. The num-
ber of attributes is equal to the cardinality of counters being
collected.

Table Predicted Measure:

• RowKey: the same structure as the table Measure;

• Column family: stores the values predicted by mining algo-
rithms. The number of attributes is equal to the cardinality
of predicted data.

Table Weather Data:

• RowKey: concatenation of Geohash, reverse time-stamp, mea-
surement type and server identifier (used to trace which server
sent the prediction);

• Column Family 1: stores collected weather data.

• Column Family 2: stores predicted weather data (weather
forecasts).

Figure 5 shows the implemented Hbase schema definition for
representing the information described above.

3.3 Long-term forecast of PV energy produc-
tion

During the last years, the forecast of PV energy production has
received significant attention since photovoltaics are becoming a
major source of renewable energy for the world [12]. Forecasting
methods depend on the tools and information available, the fore-
cast horizon, the number of plants considered and the size of the
geographic area they cover [18]. Diverse resources are used to gen-
erate solar and PV forecasts, ranging from measured weather and



Figure 5: HBase table schemas

PV system data, satellite and sky imagery cloud observations, to
Numerical Weather Prediction (NWP) models [14]. The short-term
forecasts typically use measured weather and PV system data, and
satellite and sky imagery observations of clouds, while the long-
term forecasts use numerical weather prediction (NWP) models.
The best approaches make use of both measured data and NWP
models.

In the literature, several data mining approaches have been pro-
posed for renewable energy power forecasting. We typically dis-
tinguish between physical and statistical approaches. Physical ap-
proaches deal with refining NWP forecast with physical considera-
tions, while statistical approaches deal with building models that
establish a relationship between historical values and forecasted
variables. Methodologically, there are approaches based on time-
series [11] and approaches that learn adaptive models [4][20].

It has been noted that physical (e.g. wind speed and solar irradia-
tion) property behavior exhibits a trail called concept drift, i.e., they
change characteristics over time [7]. In this respect, adaptive mod-
els are generally considered to produce more reliable predictions
regarding concept drift, but require a continuous training phase.
For example, in [16], the estimation of the model parameters is
based on an exponential weighted adaptive recursive least squares
controlled by a forgetting factor. A different solution is proposed
in [19], where a recursive method for the estimation of the local
model coefficients of a linear regression function is proposed. In
this case, the time dependence of the cost function is ensured by
exponential forgetting of past observations.

In [13], the author uses a stochastic gradient for online train-
ing of neural networks in wind power forecasting. Another work
which uses neural networks is [6], where the authors train local re-
current neural networks of online learning algorithms based on the
recursive prediction error. Bacher et al. [4] propose to forecast the
average output power of rooftop PV systems by considering past
measurements of the average power and NWP forecasts as inputs
to an autoregressive model with exogenous input (ARX).

Sharma et al. [20] consider the impact of the weather conditions
explicitly and used an SVM classifier in conjunction with a RBF
kernel to predict solar irradiation. Bofinger et al. [8] propose an
algorithm where the forecasts of an European weather prediction
center were refined by local statistical models to obtain a fine tuned
forecast. Other works on temporal modeling with applications to
sustainability focus on motif mining. For example, Patnaik et al.
[17] proposed a novel approach to convert multivariate time-series
data into a stream of symbols and mine frequent episodes in the

Figure 6: Our learning scheme

stream to characterize sustainable regions of operation in a data
center. Finally, Chakraborty et al. [11] propose a Bayesian ensem-
ble which involves three diverse predictors, that is, naı̈ve Bayes,
K-NN and sequence prediction.

In this case study, we propose an adaptive method for long-term
forecast (one-day ahead) of PV energy production based on ANNs.
The proposed approach exploits NWP to benefit from uncontrol-
lable factors (such as weather conditions). We investigate the pre-
dictive performance of structured (all hours of the forecasted day
are outputs from a single model) and non-structured output predic-
tion models (each hour of the forecasted day is output from one
model).

3.3.1 Method
The machine learning task is to predict the PV power generation

using the following input attributes:

• the geographic coordinates of the plant: latitude and longi-
tude,

• the sun positions at the location of the plant: altitude and
azimuth, queried by SunPosition 4,

• the properties of the plant: site ID, brand ID, model ID, age
in months,

• weather data: ambient temperature, irradiance, pressure, wind
speed, wind bearing, humidity, dew point, cloud cover, and
descriptive weather summary.

Additionally, in the case of structured output prediction, also the
day is passed as feature, while in the case of non-structured output
prediction, besides the day, also the hour. In the training phase,
we use historical weather information collected by sensors, while
for prediction purposes, we use weather forecast data provided by
NWP systems. The output is the prediction of the power produc-
tion (KWh) for the next day at one hour intervals. The prediction
models are updated on a daily basis as depicted in Figure 6.

3.3.2 Data preprocessing
Since the aim is to predict the energy production at a hourly gran-

ularity, the data was aggregated so that each row represents an hour.
Additional, we addressed also the issue of missing data, irregular-
ities and outliers, and performed normalization of the data before
the learning process.

4http://www.susdesign.com/sunposition/index.php



In order to fix completely missing hourly data points, we adopt
the following approach. Missing production values in kWh are re-
placed by the average value observed by sensors in the same month
at the same hour. Missing temperature values are replaced by his-
torical data. Moreover, we also observed that sometimes the irradi-
ance assumes a zero value while the plant is in a productive state.
To correct irregularities of that type, we consider the average irra-
diance value in the same month of the same year at the same hour
to replace the zero value. In any other case in which the irradiance
is zero, we check if the average irradiance value in the same month
of the same year at the same hour is zero too: if not, the resulting
average value replaces the missing value.

After replacing missing values, we check the presence of out-
liers in the irradiance and temperature data. For example, if the
irradiance (irr) observed by sensors is out of the range defined by
[avg(irr) - 4* stddev(irr), avg(irr) + 4* stddev(irr)], this value is re-
placed by the average of the irradiance observed in the same month
of the same year at the same hour. The same approach applies also
fro handling outliers in the temperature data. Furthermore, we ob-
served that irradiance measured locally by sensors has often lower
values compared to irradiance extracted by NWP models, possibly
because sensors located on plants can be covered by obstacles or
dirt. Training a model by means of sensors data and using it to ex-
tract predictions with NWP data can lead to inaccurate predictions.
To overcome this issue, we calculate the percentage of change be-
tween monthly NWP irradiance (extracted by PVGIS) and irradi-
ance detected by sensors on historical data (same month at the same
hour), and we normalize the latter.

In order to train the neural network, data was normalized in the
range between 0 and 1. Hence, we applied a min-max normal-
ization for each feature, considering the min and max of observed
values. Actually, we considered the max increased by 30 percent,
to handle future situations in which observed values of each feature
might exceed the current maximum.

3.3.3 Experiments
In our empirical evaluation, we consider a real dataset collected

at regular intervals of 15 minutes (measurements start at 2:00 AM
and stop at 8:00 PM every day) by sensors located on 18 plants in
Italy. The time period spans from January 1st, 2012 to May 4th,
2014. The weather data is queried from Forecast.io 5, while the
irradiance is queried from PVGIS 6. As anticipated before, in order
to resolve measurement errors, the raw data are preprocessed and
normalized before using them for learning.

In this paper, we use the encog implementation of the Resilient
Propagation (RPROP+) algorithm for training neural networks.
RPROP+ is one of the best general-purpose neural network train-
ing methods implementing the back-propagation technique. We use
RPROP+ since it has been proven effective for renewable energy
prediction [7]. For the evaluation, the dataset is randomly split into
training days (85%) and testing days (15%). Experiments are run
three times and average results are collected. For each run, the
network is trained incrementally on the training dataset until a test-
ing day is found. Then, it is repeatedly first tested on the testing
day and after that it is re-trained with the tested sample added to
the training set, together with all the training days before the next
testing day. At the end, the average performance over all the test
samples is reported as a result.

We distinguish between hourly (non-structured) and daily (struc-
tured output) settings. In the hourly setting, we investigate non-

5http://forecast.io/
6http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php

Table 1: Performance results for one-day ahead PV power fore-
cast for hourly (non-structured) and daily (structured output)
settings. No spatial (Lat Lon) indicate results without (with)
geographic coordinates of the plant.

RMSE MAE Impr. [%]
No Spatial Hourly 0,120 0,079 17,410
No Spatial Daily 0,109 0,068 24,810
Lat Lon Hourly 0,120 0,078 17,443
Lat Lon Daily 0,111 0,069 23,915
Persistence model 0,146 0,085

structured models with single output - the production of the plant
at a specified day and specified hour. In the daily setting, we inves-
tigate structured models with 19 outputs - the productions of the
plant for the hours from 2:00 AM to 8:00 PM on a specified day.
Furthermore, we consider scenarios with and without the latitude
and the longitude of the plant taken as descriptive variables. The
later will investigate whether the geographic coordinates play an
important role for the prediction performance.

3.3.4 Results and discussion
The results for the investigated hourly and daily scenarios are

reported in Table 1. We consider three indicators of the predictive
performance, namely the Root Mean Squared Error (RMSE), the
Mean Absolute Error (MAE), and the improvement over the per-
sistence model (i.e., the model that forecasts the same production
observed 24 hours before).

The results clearly show improvement of the predictive perfor-
mance over the persistence model, with the structured-output pre-
diction model clearly outperforming the non-structured one. From
Table 1, we can also notice that geographic coordinates improve
the prediction effectiveness, suggesting that data are subject to the
spatial autocorrelation phenomena. [21].

The predictive performance of the model can also be graphically
inspected from Figure 7, where the predicted vs. measured power
production are presented for three consecutive typical cold (in Jan-
uary) and warm (in May) days. In both cases, we report predictions
for partially cloudy days. The predictions are obtained using the
best performing model, i.e. structured output considering the lati-
tude and longitude as input attributes.

4. CONCLUSIONS AND FUTURE WORK
Big Data analysis is a challenging task as we need to take into

account the velocity, variety and volume of information to be ana-
lyzed. In this respect, we have proposed a design option to imple-
ment a prototype for accurate prediction of renewable energy pro-
duction plant output. In this paper, we have presented the project
Vi-POC – a distributed system for storing, querying and analyzing
data collected from renewable energy production plants. In par-
ticular, we have described its data model and its forecasting ca-
pabilities. As for this last aspects, we have empirically shown its
predictive capabilities and compared cases with structured output
prediction and non-structured output prediction. Results confirm
that predictive capabilities are better in case of structured output
prediction, probably because of the implicit consideration of the
dependence of the predictions at consecutive hours.

As future work, we plan to further explore prediction techniques
based on clustering, along with the integration of additional data
sources in our system in order to achieve more accurate results.
More in detail, we plan to test our system in different regions hav-
ing different weather condition w.r.t. south of Italy in order to gen-
eralize our technique for a widespread commercial use.



(a) January 4th, 5th, 6th.

(b) May 4th, 5th, 6th.

Figure 7: Predictions (green) and measurements (red) of the
productions for three consecutive days of a single plant. The
three consecutive days are taken from January and May. Re-
sults are obtained with the daily (structured) setting. We re-
call that the time intervals considered are 2:00 AM - 8:00 PM.
Results are obtained including also geographic coordinates as
attributes.
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