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Abstract - The increasing size of the elderly population is 

driving the development of ambient assisted living systems 

and telehealth. The recognition of the user's everyday 

activities and detection of alarming situations are important 

components of such systems. Moreover, the monitoring of 

vital signs, like the ECG, has a key role in telecare and 

telemonitoring systems. Therefore, in this paper we propose 

a system that monitors the user by combining an ECG 

sensor and two accelerometers. Our system recognizes the 

user's activities and detects falls using the accelerometer 

data. The ECG data is analyzed in order to extract relevant 

physiological signals: heart rate, respiration rate, etc. In 

order to improve the reliability and robustness of the 

system, the measured accelerometer signals can be 

combined with the ECG signal in order to detect anomalies 

in the user's behavior and heart-related problems. The 

proposed proof-of-concept system could contribute 

significantly to the quality, unobtrusiveness and robustness 

of the health care and patient safety. 

I. INTRODUCTION 

The world’s population is aging rapidly, threatening to 
overwhelm the society’s capacity to take care of its elderly 
members. The percentage of persons aged 65 or over in 
developed countries is projected to rise from 7.5% in 2009 
to 16% in 2050 [1]. This is driving the development of 
innovative ambient assisted living (AAL) technologies to 
help the elderly live independently for longer and with 
minimal support from the working-age population [2, 3, 
4]. To provide timely and proper assistance, AAL systems 
must understand the user’s situation and context, making 
activity recognition (AR) an essential component [5, 6, 7]. 
Fall detection (FD) is an important component of many 
AAL systems because almost half of the hospitalizations 
of the elderly are caused by falls [8]. Fear of falling is an 
important cause for nursing home admission [9], and “the 
long lie” (not being able to get up and call for help) is an 
important predictor of death within six months [10].  

The introduction of modern information and 
communication technologies (ICT), as support to medical 
activities, can increase the efficacy of the health care 
system and decrease its costs. Numerous studies have 
confirmed the benefit of the development of telecare 
systems [11, 12]. The proposed mobile approaches to 
telecare rely on body sensor networks that collect and 
manage recorded vital data [13]. 

This paper presents a system that combines two sub-
systems that correspond to the type of the sensor-data they 
analyze: (i) electrocardiograph (ECG) sub-system, and (ii) 
accelerometer (ACC) sub-system.  

The ECG sub-system is based on Wireless Bipolar 
Body Electrode (WBBE) [14] that captures and 
preprocesses body surface potential signals [15]. An 
additional feature is the ability to extract hidden 
information from the body surface potential, like the 
respiration rate [16], or combine synchronized data from 
three sensors for reconstruction of the standard 12-lead 
ECG [17, 18].  

The ACC sub-system uses two 3-axial ACCs attached 
on the user's chest and right thigh. By using data analysis 
techniques it recognizes user's activities and detect falls in 
real-time. The architecture of the sub-system is based on: 
(i) rules, which detect falls, recognize postures (static 
activities) and ensure the behavior of the sub-system is 
predictable and robust, and (ii) classifiers trained with 
machine learning (ML) algorithms, to recognize dynamic 
activities, for which the rules are not sufficiently accurate. 
The ACC sub-system was evaluated at the EvAAL-2013 
AR competition [19] and awarded the first place. The 
evaluation was performed in a living lab using several 
criteria: recognition performance, user-acceptance, 
recognition delay, system installation complexity, and 
interoperability with other systems. 

The rest of this paper is organized as follows. First, the 
design of the prototype system is given with a brief 
functional description. Next, the sensors and the methods 
for analysis of the sensor data are described. The operation 
of the system is presented in the Experiments section. 
Finally, the conclusions are summarized and some 
directions for future work are given. 

II. SYSTEM DESCRIPTION 

The current prototype system (see Fig.1) consists of an 
ECG sensor and two wearable ACCs. The ECG sensor is 
placed on an appropriate position on the user's chest. The 
ACCs are attached on the user's chest and the right thigh 
using elastic Velcro straps. The data analysis is performed 
on a laptop using the raw sensors data acquired through 
Bluetooth. However, for the future implementation of the 
system, we are considering a smartphone implementation 
and combining the chest ACC and ECG sensor into a 
single device. Moreover, this device is planned to be 
multifunctional [20, 21], and beside the ECG and ACC 
data, should also measure: body temperature, body 
humidity, skin resistance, light, etc. 
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A. ECG sensor 

The ECG wireless body sensor designed from two 
self-adhesive electrodes positioned 5 cm apart, analog 
front-end, ultra-low-power (ULP) microcontroller and 
ULP Bluetooth V4.0 radio, ceramic chip antenna, and 
lithium coin battery, is shown in Fig.1 [22]. 

The analog front end is designed to suppress radio 
frequency interference. Signal amplification and filtering 
is made with a band-pass filter (0.15 Hz to 250 Hz, -3dB) 
before entering the microcontroller's 10-bit A/D converter 
with sampling frequency of 125 Hz for monitoring, and up 
to 1000 Hz for diagnostic and research cases. The 16-bit 
microcontroller (Texas Instruments, MSP430F2274) has 
32 kB of FLASH, 1 kB of RAM and on-chip temperature 
sensor, all with an average power in active mode of 270 
uA at 1 MHz. The microcontroller has enough peripheral 
lines to support other on-board sensors, like 3-axis 
accelerometer, skin temperature sensor and others. The 
Nordic Semiconductor's chip nRF8001 was used to 
support Bluetooth radio connectivity in peripheral (slave) 
mode. We have chosen lithium coin battery CR2032 as a 
power source for the body sensor. The nominal cell 
capacity is 220 mAh at discharge current of 200 uA, but 
due to pulse operation, a realistic capacity of 180 mAh can 
be expected. 

B. Accelerometer 

An accelerometer (ACC) is a sensor that measures the 
acceleration applied to the sensor and also the constant 
Earth’s gravity. When the ACC is at rest, only Earth’s 
gravity is measured. Using this information, the velocity 
of the sensor and also the sensor orientation can be 
estimated and therefore used for AR and FD. The platform 
used in this study has a 3-axis ACC, uses Bluetooth 
communication, and has 2 GB of storage, which is enough 
to store 3 months of sensor data for offline analysis. 
However, for the needs of this study, only real-time data 
acquisition and analysis was used. A potential, more in-
depth, offline analysis is considered for future work. 

III. METHODS 

A. ECG Data Analysis 

The measurement of ECG with sufficiently high 
amplitude and time resolution can support, besides 
standard heart rate analysis, also heart rate variability 
analysis [23], repolarization variability [24], ST-segment 
denivelation [25], detection of atrial fibrillation [26], 
characterization of arrhythmias, syncopes [27], sleep 
apneas, etc. Further, advanced approaches enable 
obtaining additional information from the recorded sensor 
signals. Two of them are listed below. 

1) Extraction of hidden information from WBBE 

It is known that body surface potentials include a lot of 
information that can be used for the estimation of personal 
medical status. As a successful case, we refer to the 
respiration rate extraction directly from WBBE [16]. We 
confirmed that several DLs on positions near the center of 
the chest provide adequate signals for ECG-derived 
respiration (EDR) algorithms that can reliably extract 
respiration rates from variations in the R-peak amplitudes. 
The EDR techniques, relevant to our work, are based on 
the observation that the positions of WBBEs on the chest 
surface move relative to the heart. Additionally, the 
transthoracic impedance varies as the lungs fill and empty. 
The proposed methodology is accurate enough for most 
practical cases and therefore useful for mobile health 
applications based on body sensors. 

We have shown that a single WBBE is enough for the 
extraction of the respiration rate. However,  if  more 
electrodes  are  available,  they  can  be  applied  to  
improve accuracy and robustness of the  EDR results. 

2) Synchronized WBBEs on strategic positions 

The 12-lead ECG is the gold standard in cardiology 
and lies at the center of the decision pathway for the 
evaluation and management of patients. However, the 
conventional 12-lead ECG is obtained from ten electrodes 
connected with wires to a data collecting device. Its 
application therefore imposes obtrusion and has negative 
effects on patient’s comfort. Moreover, due to the fact that 
the standard positions of the precordial electrodes are 

Bluetooth

Prototype ECG sensor

3-axis accelerometer

 

Figure 1. System design. Combination of the two solutions: ACC and ECG sub-systems. 
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often difficult to locate accurately, particularly in seriously 
damaged patients, the application of the conventional 12-
lead ECG device can be impractical. 

We have shown [17] that a small number of WBBEs − 
as few as three − can reliably reproduce a standard 12-lead 
ECG and are, therefore, suitable for real wireless 
applications. The proposed approach can be personalized 
in the sense that optimal positions of sensors and 
transformation matrices can be calculated for each 
individual [18].  

B. Accelerometer Data Analysis 

The ACC sub-system pipeline is shown in Fig.2. First, 
the sensors transmit the raw acceleration data over 
Bluetooth to the processing unit, i.e., laptop. The data 
from both sensors are then preprocessed: synchronized, 
filtered and segmented. Then the pipeline splits in two. On 
one side, the segmented data are transformed into feature 
vectors for the AR module, which recognizes the user's 
activity. On the other side, the FD module checks the 
acceleration for falls. If a fall pattern is recognized, the 
user's orientation is checked. If the orientation 
corresponds to lying, a fall is detected. Both the AR and 
FD modules are evaluating the user’s situation every 250 
milliseconds using the last 2 seconds of sensor data. For 
instance, if the current system time is denoted with t, the 
FD module evaluates fall events in the [t – 2 s, t – 1 s] 
interval, and the [t – 1 s, t s] interval is used to check if the 
user's orientation corresponds to lying. If the fall event is 
detected and the orientation is correct, the reported 
activity is falling, otherwise the reported activity is 
computed with the AR module in the [t – 2 s, t s] interval. 
The system thus reports the user’s activity and detects 
falls with a two-second delay. 

In the following sections, the AR and FD methods are 
briefly described. More details can be found in our 
previous work, [28, 29, 30] for AR, and [28, 31] for FD. 

1) Activity Recognition 

In the AR module, the activities are recognized by a 
three-level scheme [30]. The AR scheme was developed 
after empirical analysis of the data, which showed that 
some activities (such as cycling) are better recognized by 
a classifier trained only to distinguish that particular 
activity from the others. Therefore, on the first level, the 
feature vector is fed into a classifier trained by the 
Random Forest ML algorithm to distinguish cycling from 
the other activities. If the activity is not classified as 
cycling, the feature vector is passed to the second level, 

where the activities are recognized by rules. On this level, 
only the features that represent the sensor orientation the 
best are used (using component of the acceleration that 
corresponds to the gravity). The following activities are 
recognized at this level: sitting, lying, bending, and 
upright posture. If the recognized activity is the upright 
posture, the third level of AR is used to distinguish 
between standing and walking. The feature vector is fed 
into another Random Forest classifier, which is trained to 
separate these two activities. 

2) Fall Detection 

A typical acceleration pattern during a fall, measured 
by an ACC placed on the abdomen, is a decrease in 
acceleration followed by an increase [30]. This is because 
an ACC, when stationary, registers around 10 m/s

2
 

acceleration (denoted also as 1 g), and during free fall 0 
m/s

2
 acceleration. When a person starts falling, the 

acceleration decreases from 1 g to around 0.5 g (perfect 
free fall is never achieved). Upon the impact with the 
ground, a short strong increase in the acceleration is 
measured. 

To detect fall patterns, we used the length of the 
acceleration vector to ignore the direction of the 
acceleration. The minimum and the maximum 
acceleration within a one-second window were measured. 
If the difference between them exceeded 1 g and the 
maximum came after the minimum, a fall pattern was 
found. We augmented the fall-pattern detection with the 
measurement of the user’s orientation after a potential fall. 
We assumed that the orientation of the user's body after a 
fall couldn’t be upright. Therefore, a fall was detected if a 
fall pattern was detected and the orientation in the next 
second was not upright. 

IV. EXPERIMENTS 

A. ECG sensor performance results 

ECG signals from proximal electrodes have different 
appearance than the signals from standard ECG. An 
example is shown in Fig.3. The baseline is wandering and 
complete disappearance of the P, S and U waves can be 
observed. Note that the R and T waves could have 
opposite polarity, which is rarely seen in standard ECG 
leads. It is evident that the position of the electrodes has a 
significant impact on the measured ECG signal. Detailed 
analyses are possible only after significant preprocessing 
targeted to specific goals, e.g. heart rate determination, 
arrhythmia identification and characterization, ST 
segment denivelation, etc. 

Feature extraction

OrientationFall pattern

Three-level AR
Data 

preprocessing

Fall

Activity

Activity Recognition

Fall Detection

 

Figure 2. The data and recognition flow in the ACC sub-system. 

 
Figure 3. Raw ECG signal from electrodes at a distance of 5 cm. The 

person is walking around. The third heart beat is a ventricular extra 

systole with large amplitude and prolonged timing of the QRST 
complex.  
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For example, to determine the respiration rate, we 
found the best positions for the respiration body sensor 
[16] and proved that a single sensor of body surface 
potentials difference on proximal skin electrodes can be 
used for combined measurements of respiratory and 
cardiac activities (Fig.4). 

B. Activity Recognition & Fall detection 

The evaluation of the ACC sub-system was performed 
in order to check the recognition performance of the 
methods, using a pre-recorded dataset. The evaluation was 
performed on a complex, 90-minute scenario, recorded 
from 10 people. The scenario was designed to capture the 
real-life conditions of a person’s behavior, although it was 
recorded in a laboratory. 

Table I shows the performance of the ACC sub-
system. The performance of the AR is high, achieving 
99.04% F-measure score averaged over all activities. The 
performance of the FD shows that 93.3% of the falls were 
detected (recall value), and 66.7% of all the fall detections 
were actually falls (precision value), giving the final F-
measure of 77.8%. The detailed FD results (Table II) 
show that the first event ‒ tripping (quick uncontrolled 
fall) was detected each time (15 out of all 15 events). The 
next event, fainting, was detected 13 out of 15 times. The 
next two events were the non-fall events that are difficult 
to distinguish from the fast falls because of the high 
acceleration. Because the FD module also checks the 
user's orientation after a potential fall, it was able to 
distinguish quickly sitting on the chair from the falls. 
However, this was not the case for quickly lying in the 
bed (13 detections − which are false because the event is 
non-fall). For correct recognition of this event, additional 
information would be needed, e.g., user's location [31].  

C. Concurrent ECG and Accelerometer Data 

Fig.5 shows activity experiment with concurrent 
measurements from ECG and ACC sensors when the user 
is lying, sitting and walking. 

ACC sensors give clear information for distinguishing 
walking from sitting or lying. One can also notice lower 
beat rates in lying and sitting compared to walking, which 
implies eventual lower energy expenditure. Detailed 
analysis of ECG indicates also that beat rate of lying is 

even lower that the one while sitting, which is 
supplementary information. With longer measurements, 
the long-term changes in the beat rate variability could 
give additional information about the time scale. Eventual 
extra systoles could point out a susceptibility to 
arrhythmia, etc. 

V. CONCLUSIONS 

We showed that the fusion of ECG and ACC sensors 
data can provide supplementary information about the 
status of the monitored user. Based on this, it is possible to 
better understand the context of user's health state and 
activity and therefore better reason about his/her health 
and behavior status. The reasoning may include 
classification of the detected anomaly into several levels: 
(i) low-risk warning, e.g., higher heart-rate detected 
during sedentary activity, (ii) medium-risk warning, e.g., 
gait anomaly detected, (iii) high-risk warning e.g., very 
high heart-rate detected during longer period of time, and 
(iv) alarming situation detected that requires medical 
attention, e.g., the user has fallen and is lying without 
movement.  

We are currently developing and testing a new 
multifunctional sensor node that consists of several 
sensors to obtain synchronized data about vital bio-signs 
and activities of the monitored users. For the final 
implementation of the system we plan three-phase 

 
Figure 4. 53 seconds interval of an ECG (red) measured with a WBBE 

positioned in the chest center and 11 respiration intervals (black) 

measured by a thermistor near the front of the nose. 58 R-peaks (blue 

filled points) are detected and all 12 respiration interval are identified 

(blue circles). 
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TABLE II.  ACC SUB-SYSTEM–AR AND FD RESULTS 

Performance Activity Recognition Fall Detection 

Recall 99.22% 93.33% 

Precision 98.85% 66.67% 

F-measure 99.04% 77.78% 
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Figure 5. Concurrent ECG and ACC data. 
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monitoring and data analysis: (i) short-term behavior and 
health analysis - focusing on the last several minutes of 
data (alarming situations, falls, arrhythmias); (ii) medium-
term behavior analysis - focusing on the past day (gait 
analysis); and (iii) long-term behavior analysis 
(daily/weekly anomalies) related to heart problems, less 
active days, etc. 
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