

1

Super linear speedup in a local parallel
meshless solution of thermo-fluid problems

G. Kosec, M. Depolli, A. Rashkovska, R. Trobec
Jožef Stefan Institute, Department of Communication Systems, Jamova 39 1000 Ljubljana, Slovenia

gkosec@ijs.si, matjaz.depolli@ijs.si, aleksandra.rashovska@ijs.si, roman.trobec@ijs.si

Abstract

The performance of the parallel implementation of the local meshless numerical method in
solving system of coupled partial differential equations is explored. Presented numerical
approach makes the computation convenient for parallel implementation using OpenMP based
parallelization. The numerical experiments are performed on the de Vahl Davis natural
convection case, with superlinear computational speedup regime identified. The phenomenon is
further investigated through measurements of the central processing unit cache hit rates. It is
demonstrated that the accumulation of L3 caches governs the superlinear speedup. Considering
the presented analyses basic rules for effective computation strategy regarding the multicore
computations are suggested.

Keywords:

multicore; cache; OpenMP; superlinear speedup; Meshless; natural convection

1. Introduction

Numerical analysis and computer modelling are becoming basic tools for technological and
scientific research. Numerous problems, e.g. fluid flow, various transport phenomena, weather
dynamic, etc. require adequate discretization techniques to be addressed. In the majority of
numerical simulations the Finite Volume Method (FVM) [1], the Finite Difference Method
(FDM) [2], the Boundary Element Method (BEM) [3] or the Finite Element Method (FEM) [4]
are used. However, in the last few years new class of numerical methods, referred to as the
meshless methods [5] is becoming popular as an alternative. The treatment of complex
geometries is within the meshless framework much simplified since no topological relations
between computational nodes are needed. Several different meshless methods exist [6-8] and this
work is focused on one of the simplest among them - the point interpolation [9] Local Radial
Basis Function Collocation Method (LRBFCM) [10]. The main advantage of the local numerical
method is that the system matrix remains sparse or banded, which simplifies the solution
procedure. In contrast, a global approach [11] might become instable for increasing number of
discretization points, demands a lot of computational resources, and complicates the computer
program implementation. Besides the simpler formulation, the local solution procedure also
enables higher parallel efficiency. From the computation point of view, the localization reduces
inter-processor communication, which is often a bottleneck of parallel algorithms [12]. The
computation time is an important factor in numerical simulations and it is often not addressed

mailto:gkosec@ijs.si
mailto:matjaz.depolli@ijs.si
mailto:aleksandra.rashovska@ijs.si
mailto:roman.trobec@ijs.si

2

adequately. An important part of the numerical approach is thus the effective implementation of
the solution procedure on modern computer architectures. The developments in the technology
of the computer architectures are nowadays extremely vivid. The processing power can be
increased either by increasing the processor’s clock frequency or by increasing the number of
processing units. The clock frequencies are approaching their physical limits; therefore the
second option - increased number of processing units - is becoming more attractive. Parallel
computers, available today in most desktop computers or computer servers, can compensate for
the lack of performance of a single computer, but only in cases where an efficient parallelization
of the computational method is known. Various application programming interfaces (APIs) for
parallel programming are used to maximize the performance of parallel systems. Nowadays, the
most widely used APIs for parallel programming are MPI for distributed-memory systems, and
Ptreads and OpenMP for shared-memory systems [13]. Moreover, using graphical processing
units (GPUs) for solving parallel problems is widely spreading. APIs that support parallel
programming on GPUs are becoming more and more popular, like CUDA and OpenCL [14, 15].
There are several publications regarding the parallelization of different numerical schemes for
various applied problems [12, 16-18], mostly based on MPI parallelization, but only a few
numerical studies tackle the influence of the cache memory effects on the performance of
parallel computations [19].

In this paper, we demonstrate the efficiency of an OpenMP [20] based parallel implementation of
the completely local meshless solution of the classical de Vahl Davis benchmark test case [21]
on a multicore multiprocessor architecture. The paper contributes two basic messages. First, the
parallelization of the proposed meshless based numerical scheme is straightforward on shared-
memory systems. A minor amount of effort and expertise are required to apply OpenMP
parallelization if the sequential code is ready, thus the approach is interesting for engineering
computations. On the other hand, the method offers several convenient features, like ease of
implementation, stability, accuracy, and good convergent behaviour [22] that have been already
successfully proved on several demanding non-linear coupled problems [23-25] .

Second, the efficiency of a parallel implementation can be gravely affected by the memory
architecture of a computational system. It is demonstrated that extreme superlinear speedup can
be achieved if appropriate architecture is used for a specific problem size. The effect is explained
by measurements of the central processing unit (CPU) counters through execution of a
simulation. It is clearly shown that accumulating L3 caches govern the effect. In other words, it
is not only the power of CPU that matters in intense simulations; communication speed is
equally important.

The rest of the paper is organized as follows. In section 2 the test problem is described. Next, the
meshless solution methodology and LBRFCM are briefly presented, followed by description of
the parallel program implementation. Section 5 is devoted to the analysis and interpretation of
the obtained experimental results. Concluding section summarizes the results and provides
suggestions for the users dealing with complex realistic numerical problems.

3

2. Governing equations

The most standard free fluid flow benchmark test is the well-known de Vahl Davis natural
convection test [21]. There are several numerical solutions published in the literature [24, 26, 27]
that make the tests convenient for benchmarking purposes. The problem domain is a closed air-
filled square-shaped cavity with differentially heated vertical walls with temperature difference

T and insulated horizontal walls. Non-permeable and no-slip velocity boundaries are assumed.
The problem dynamics is described by three coupled Partial Differential Equations (PDEs)
equations: mass (1), momentum (2) and energy conservation (3) equations, where all material
properties are considered to be constant. The Boussinesq approximation (4) is used for the
treatment of the body force in the momentum equation. The natural convection is thus described
by the following system of equations

 0 v , (1)

  () P
t

  


      


v
vv v b , (2)

 
 ()

p

p

c T
c T T

t
  


    


v
, (3)

  ref1 ()T T T   b g , (4)

with   ref, , , , , , , , , ,p Tu v P T c T   v g and b standing for velocity, pressure, temperature,
thermal conductivity, specific heat, gravitational acceleration, density, coefficient of thermal
expansion, reference temperature for Boussinesq approximation, viscosity and body force,
respectively. The thermo-physical properties are assumed constant in the de Vahl Davis case.
The case is characterized by two dimensionless values

3 2

Ra= T H pT c 



 g
, (5)

 Pr pc


 , (6)

referred as Rayleigh and Prandtl numbers, respectively. ,H W stands for the domain dimension
(Figure 1).

4

Figure 1: The geometry and boundary conditions of natural convection benchmark test.

3. Solution procedure

In this work, we focus on a local meshless numerical method with a local pressure-velocity
coupling. The general idea behind the method is the use of local sub clusters of discretization
nodes termed as local support domains (Figure 2). Within a selected support domain, an arbitrary
field is approximated as a linear combination of weighted basis functions

1

() ()
N

n n
n

 


 p p , (7)

where  , , and , ,n n x yN p p   p stand for the approximation function, the number of basis
functions, the approximation coefficients, the basis functions and the position vector,
respectively. Such an approximation function is created in each discretization point. Considering
the analysis from Franke [28], we use Hardy’s Multiquadrics (MQs) for the basis functions. We
use the collocation approach, i.e. the number of support points is the same as the number of the
basis functions. After the solution of local systems, i.e. determination of unknown coefficients α
the arbitrary spatial differential operation L can be evaluated (7)

  
1

()
N

n n
n

L L 


 p p . (8)

The computation of the coefficients and the evaluation of the differential operators can be
combined in a single operation. The differential operator L

χ vector is introduced as

  1

1

() ()
N

L
m nm n

n

L 



  p p (9)

and a differential operation is thus simplified to

    
1

()
N

L
m n

n

L  


p p p . (10)

5

The structured formulation is convenient for implementation since most of the complex and CPU
demanding operations are performed in the pre-process phase. The Neumann boundary
conditions are computed directly by equation (10) while the Dirichlet conditions are explicitly
set. More details about the presented spatial discretization can be found in [29].

Figure 2: Schematic representation of the meshless numerical principle.
The temporal discretization is done through a two-level explicit time stepping

    0
0 0 0 0 0 0 0D S

t

 
   


   


v , (11)

where the zero-indexed quantities stand for the values at the previous time step, and ,D S for the
general diffusion coefficient and the source term, respectively. The time step is denoted with t .
The pressure-velocity coupling is performed through the correction of the intermediate velocity

   0 0 0 0 0 0ˆ ()
t

P  



      v v v b v v . (12)

Equation (12) does not take into account the mass continuity. In order to drive velocity to the
solenoid field the iteration is introduced. In each iteration, the pressure is corrected as

1ˆ ˆm mP P P   , (13)

where andm P stand for the iteration index and the pressure correction, respectively. The
pressure correction is directly related to the divergence of the intermediate velocity

ˆ mP

t


 


v , (14)

where  stands for the relaxation coefficient. The corrected pressure is then used to recomputed
equation (12). The iteration is performed until the criterion ˆ· V v is met in all computational
points. The approach is similar to the artificial compressibility method (ACM) that has been
recently under intense research [30] and also to the SOLA approach [31]. More details about the
pressure-velocity coupling can be found in [32].

6

4. Implementation

The most computationally demanding parts of the code are the following four spatial loops:
computation of the new temperature, new velocity, pressure correction and time advance. All
four spatial loops are incorporated into the temporal loop and additionally, velocity is coupled
with pressure correction in pressure-velocity coupling iteration loop. In the first three spatial
loops, the governing equations are computed, and in the fourth one the data from current time
step is transferred to the next time step. Each equation comprises different partial differential
operations that are evaluated as a convolution of the corresponding partial differential vector and
support domain values of the treated field. For example, a new temperature is computed as

             

 

2

2

0 0 0 0
1 1 1

N N N
x y

n n m m m m x n m m y n
m m mp

current temperature

advection Tdiffusion T

T T T T v T v
c


  



  

  



    
       

    
  

v

p p p p p p p . (15)

The computation takes place in all nodes. The
2

χ and ,x y 
χ stand for partial differential vectors

for the Laplace operator and the first spatial partial derivatives, respectively, that are computed in
a pre-process phase. In the present paper, we use the LRBFCM with five nodded support, i.e. N
equals 5. The computation of a new temperature field requires approximately 6 N floating point
operations and has to access 4 N data locations. The computation of velocity field and pressure
correction follows the same principles. All four spatial loops are parallelized with OpenMP [20].
We use #pragma omp parallel for directive with a static scheduling. The implementation
flowchart is presented in Figure 3.

In the program implementation, we organised the data in a node centralised class structure. Each
computational node is represented with a class that comprises all the numerical and thermo-
physical relevant data and is stored in sequential memory locations. The physical fields, i.e.
temperature, velocity and pressure, are represented as double precision values. The partial
differential vectors are stored as arrays of N doubles, for each operator. Each node also carries
predefined information about the support domain stored in an array of pointers to the memory
locations of support nodes. The access to nodes is completely local in nature and therefore cache-
friendly. Generally, domain nodes are stored in an unstructured manner, which is usual for
meshless methods, since there is no general topological relation between the computational
nodes. In case of r-adaptivity, the nodes are dynamically added during the execution and the
memory is allocated as the nodes are created. However, in our present analysis, we use the static
nodal distribution. The nodes are positioned systematically in the beginning of the simulation.
Such an approach introduces partial structured data, since the nodes which are close to each other
in domain space are likely to be close to each other in the memory, as well.

7

Initialization

Find support
domains

Create operator
vectors

N
u

m
erical p

re-p
ro

cess
p

h
ase

Main simulation
start

P
re

-p
ro

ce
ss

End of time
stepping

All nodes
processed

end

P
re

ss
u

re
-v

e
lo

ci
ty

 it
e

ra
ti

o
n

 lo
o

p

Time advance

Find support
domains

Create
approximation All nodes

processed

no

yes

Compute new
temperature

no yes

Spatial loop - parallel

All nodes
processed

Compute new
velocity

no yes
All nodes
processed

Apply pressure
correction

no yes

Met the
divergence

criterion

yes

yes

no

no

Te
m

p
o

ra
l l

o
o

p

Spatial loop - parallel Spatial loop - parallel

Figure 3: Scheme of OpenMP parallelized solution procedure for the natural convection
problem.

All tests are performed on a computer system with four Intel Xeon E4870 processors with
Nehalem microarchitecture, each with ten cores, system clock of 2.80 GHz, 3200 MHz front side
bus (FSB), and 64 GB of shared main memory. The system has three levels of cache hierarchy:
each core has 32 kB of L1 instruction cache and 32 kB of L1 data cache, 256 kB of L2 cache,
and shares 30 MB of L3 cache with the other cores of the processor. The latencies for accessing
data are 4 clock cycles for the L1 cache, typical 10 clock cycles for the L2 cache, 40 clock cycles
for the L3 cache, and an order 120 clock cycles for main memory [33]. The computer
architecture is schematically presented in Figure 4.

8

Figure 4: Scheme of the computer architecture used for the test case.

The tests are run on Nehalem microarchitecture; however, the results are not limited to a specific
architecture and thus a similar behaviour is expected on all current and future NUMA multicore
platforms.

5. Results

5.1. Results of numerical integration

The classical de Vahl Davis benchmark test is defined for the natural convection of the air
 Pr 0.71 in a square closed cavity. The only free parameter of the test remains the thermal
Rayleigh number. In the original paper [21], de Vahl Davis tested the problem with the Rayleigh
number up to 610 . However, in the latest publications, the results of more intense simulations
were presented with the Rayleigh number up to 810 . Lage and Bejan [34] showed that the
laminar domain of the closed cavity natural convection problem is roughly below 9Gr<10 . It was
reported [35] that the natural convection becomes unsteady for 8Ra 2 10  . In this paper, we
deal with the steady solution and therefore, according to the published data, a case with the
maximum 8Ra 10 is considered. A detailed comparison of the presented numerical approach
against previously published data has been already done in [32], where the range of

3 8Ra 10 ,10    has been analysed. It has been shown that the proposed local approach is in a
good agreement with the previous work, as well as convergent, conservative and stable [32]. The
presented solution procedure has been also successfully applied on several other thermo-fluid
problems, where the latest and also the most complex simulation was solidification of a binary
alloy [25]. The published tests confirm that the presented meshless numerical solution procedure
provides good results. In Figure 5 the results for 8Ra 10 case are presented in terms of the
stream function and temperature contour plot. Note that all results are stated in the standard
dimensionless form. Additional results are presented in terms of temporal development of the

9

Nusselt number  Nu= / xT p Tu   and for the difference in the Nusselt number  Nu between
the hot-cold sides in Figure 6. From Figure 5 the general fluid structures and heat fluxes can be
identified. The strong velocity field in the boundary layer produces several vortexes in the
corners of the domain. In steady state, bulk part of the heat transfer is thus governed by
convection. In Figure 6, characterization of temporal development is presented. In the temporal
development of the Nusselt number the intense dynamics in the beginning of the process can be
clearly seen. Note that the simulation begins with all fields set to uniform initial state, even the
pressure which is in the first time step corrected to the hydrostatic pressure through the internal
pressure-velocity iteration. The difference between the hot-cold sides in the Nusselt number can
be understood as a measurement for continuity violation, or in numerical terms, the numerical
error.

Figure 5: Temperature (solid lines) and streamline (dotted lines) contour plots for de Vahl
Davis benchmark test.

Figure 6: Temporal development of the Nusselt number (left) and the difference in the Nusselt
number between the hot-cold sides (right).

10

5.2. Parallel efficiency

The following analysis is focused on the parallel efficiency of the proposed parallelized
implementation. The efficiency of a parallel program is evaluated through the speedup defined as

1

C

C
N
C

t
S

t
 , (16)

where CN
Ct stands for the computation time on CN processing units. Besides the computation

time, we also measure the L2 and L3 cache statistics, including hit rates defined as

2, 3L L

number of hits
H

number of all accesses
 (17)

where the subscript defines the considered cache level. The hit rate indicates the number of
data/program items that can be found in the cache. For example, 3 1LH  indicates that all data
and program items are stored in the L3 cache memory, and consequently no accesses to the
slowest memory level are needed. The CPU performance counters, recording the cache hit and
miss events, are accessed with the Intel Performance Counter Monitor (PCM) [36], which is a
low level library that enables access to the internal performance registers in the Performance
Monitoring Unit (PMU). The modern Intel processors (Nehalem and later) in the PMU contain,
among others, hardware counters for the L2 and L3 cache hits and misses. The PMU statistics
can be measured at any point of the program and/or during the whole execution. Detailed
measurements of the cache statistics on individual cores are thus possible.

The tests are performed on different number of CPUs  CPUN , different number of cores  CN
and different number of discretization points  DN . First, the parallel performance of a single
CPU  1CPUN  is tested. Results for computation time and L3 cache hit rates are shown in
Figure 7 as a function of the number of discretization points DN . It is evident from the slopes of
the curves that the computation time comprises three regimes, and that the L3 cache hit rate
governs these regimes. As long as the problem is small enough to fit into the L3 cache
(approximately up to 42 10DN  ), the L3 hit rate remains almost 100% and the computation
time increases with the lowest slope (first regime). After that point the L3 cache becomes too
small for all the necessary data, the hit rate starts to decline (second regime), until it stabilizes
approximately at the value of 0.2 (third regime). In the first and third regimes, the computational
time is linearly dependent on the DN with different slopes, while the second regime stands for
transition between them. The slope of the third regime is roughly three times steeper than the
first one, which corresponds to the difference in latencies for accessing the L3 cache or the main
memory. The computational time becomes considerably longer when the L3 hit rate is low due to
the increased number of accesses to the main memory. In average, only one of five data or
program items will reside in the L3 cache. The L3 cache is shared on the CPU level among its
cores and the hit rate behaviour is hence independent on the number of involved cores.

11

Figure 7: Computation time (left) and L3 cache hit rate (right) with the respect to the number
of discretization points and the number of cores on a single CPU.

Next analysis is focused on the impact of the L2 cache on the computation performance on a
single CPU. The L2 hit rate results are shown in Figure 8. The variations in 2LH have been
significantly larger than in the L3 cache as the L2 cache is much smaller and therefore more
dependent on the cache policies and operating system tasks. Also, the DN range of the visible L2
cache impact is much smaller than of the L3. The 2LH also depends on the number of cores
since the L2 caches are private in each core. For better presentation of the main findings, the L2
measurements are smoothed with a low pass filter. From Figure 8, it is visible that for small ND
the hit rate of a single core is much higher than the hit rate of multicore computations. Small
systems fit into the L2 cache, and as long as only a single core is used, there is no
communication between cores and thus virtually no cache misses. In the case with more cores
used, each time a core modifies a memory location on its local cache, it invalidates the caches on
other cores that occupy the same memory location. While this frequently happens on shared data,
it also happens on private data, because multiple variables might inhabit the same cache block. In
our test case, such behaviour is frequent since variables written by one core are interleaved with
variables read by another core. Invalidation of L2 cache blocks introduces L2 cache misses and
consequently L3 cache accesses. The described invalidation effect is amplified with the number
of cooperating cores. By increased problem size, HL2 converges approximately to the value of
0.5. For a single core, the saturation is achieved approximately after ND = 600 discretization
points, while for higher number of cores this limit increases. As long as the DN is small and all
the data fits into one L2 cache, the invalidation effect is strong; however, when the dataset
becomes bigger, the accumulating L2 caches improves the computation performance. The
interplay of those two effects is clearly demonstrated on Figure 8. Nevertheless, for complex
computations, the memory demands are much bigger than the size of the L2 cache.

12

Figure 8: L2 cache hit rate with the respect to the number of discretization points and the
number of cores on a single CPU.

In Figure 9, the parallel performance regarding different number of CPUs is presented, where
only a single core from each CPU is used. Besides the private L2 cache, each core disposes the
full L3 cache for its purposes. In the left part of Figure 9 quite similar behaviour as in the case of
a single CPU can be seen. Three computational regimes, with an important difference that
computations on more CPUs experience the transitions between computational regimes at higher
ND , as more L3 caches are available. The HL3 from the right part of Figure 9 confirms that the
accumulating L3 caches govern the effect. In the overlapping intervals, the computation time
depends not only on the brute CPU force, but also on the memory architecture. The speedup on
more CPUs is governed by two effects: an available floating point processor from each CPU and
more available L3 cache from each CPU. Consequently, the speedup within some specific
intervals of the described regimes is superlinear (Figure 10). In our present analysis, maximal
speedup of S=9.6 is achieved on four cores (each on a different CPU).

Figure 9: Computation time (left) and L3 cache hit rate (right) with the respect to the number
of discretization points and the number of CPUs.

13

Figure 10: Speedup with the respect to the number of discretization points and the number of
CPUs.

Finally, the parallel program is run on the whole computer with multiple CPUs and multiple
cores. We tested four typical problem sizes: ND = 4∙103

, 4∙104, 8∙104
, and 2∙105 , which

coincidence with the interesting changes encountered in the previous experiments. The range of
involved cores is from one to ten per CPU and the number of CPUs is from one to four; hence,
the total range of cores is from one to forty. Speedup results are shown in Figure 11. Significant
speedups are obtained by the parallelized version of the test case. Their maximal values depend
on the number of cores and the number of discretization points ND, and are usually not reached
with all available cores. With larger ND, the speedup is less dependent on the number of cores.
For some values of ND (e.g. 8∙104) we experience superlinear speedup.

14

Figure 11: Speedup for different number of discretization points with respect to the number of
cores and the number of CPUs.

6. Discussion

In the present paper, we analyse the behaviour of parallelized implementation of the strong form
LRBFCM in solving thermo-fluid problems. In contrast to conventional numerical methods, the
LBRFCM relays on local meshless technique with several degrees of freedom in the type of
approximation [23, 37], in the selection of basis and its augmentation [38], conditioning [39] and
optimized weighting [40] of the approximation, in distribution of discretization nodes [41], in the
size of the local support domains [37, 42], etc. The advanced usage of meshless methods can be
applied to treat numerical anomalies or cases where special treatment is required. The method
can be severely altered by changing only its parameters, which can be done on the fly during the
simulation. For example, in the case of shockwave propagation, the r-adaptation can be easily
applied [29] to ease the numerical instabilities without introducing additional numerical
dissipation. Convective dominated problems can be also treated with the adaptive upwind [43]
that uses local Péclét number to evaluate the magnitude and the direction of the upwind offset.
All these features are inherent in meshless and do not require any kind of special treatment of the
numerical algorithms and the code. On the other hand, the local differential vector formulation
simplifies the implementation and the understanding of the method to the level of FDM, but still
conserves all the mentioned advantages.

An evident drawback of the meshless could be the higher complexity because of the additional
effort needed to maintain the support domain nodes. However, specialized data structures are
known, e.g. KD tree [12], that enable efficient searching of support nodes in  logD DO N N time
and can be also done in a pre-process and/or only when the nodal topology changes. The number
of support nodes might be also higher than in conventional approaches. For example, central
FDM scheme requires only five nodes in 2D, while Diffuse Approximate Method based on
Weighted Least Squares approximation requires 13 support nodes [37]. The LBRFCM method is
based on collocation and typically requires less support nodes in the support domain. In our
implementation, we use the smallest possible setup of 5N  , which implies that its
computational complexity is in the order of  DO N N and is comparable to the one of FDM. The
memory complexity of LRBFCM is however higher in comparison to the FDM. The LRBFCM
does not require any kind of topological relations between nodes and consequently the partial

15

differentials are spatial dependent; the memory complexity is therefore  DO N N , while for
FDM only  O N .
A further drawback of the LBRFCM method could be the lower accuracy, in particular, in some
inconvenient distribution of local nodes [44], which could happen for larger DN . However, it has
been shown in [45] and with extensive experimental results in [12, 22] that the local strong form
meshless formulation provides results comparable to the weak formulated Meshless Local Petrov
Galerkin Method (MLPG) and FEM on structured and non-structured discretization nodes. It was
also confirmed in [46] that the local formulation of LRBFCM outperforms the global approach
significantly in larger systems, which equates the LBRFCM with conventional strong formulated
methods.
The experimental results presented in our paper are used for the analysis and prediction of the
execution performances in different application regimes. Regarding the execution speedup,
superlinear regimes are identified, governed by the accumulated L3 caches. Detailed analysis of
the parallel program execution time reveals that the superlinear regime occurs as a consequence
of accumulating L3 caches. This conclusion is supported by the evaluation of the CPU
performance through measured memory cache statistics from PMU. The measurements
confirmed the theoretical expectations and explain the superlinearity with the maximum of S =
9.6 on 4 cores. Based on the presented results, some clear and generally applicable conclusions
can be drawn. As long as the size of the problem is small (below 104 in our test case) and all the
data fits into a single L3 cache, it is beneficial to use multiple cores on a single CPU for
improved speedup. Using more CPUs in that case would introduce communication between the
CPUs, which lowers the speedup. In larger problems (between 104 and 105), the accumulated L3
caches may produce superlinear speedups using more CPUs with only a single core from each.
The maximal size of the problem, which still provides superlinearity, depends on the memory
architecture. However, L3 caches are in general relatively big and thus, the effect should be
detectable on most of the modern computer systems. The largest problems (above 105) that do
not fit into accumulated L3 caches will be executed in the shortest time if all available CPUs and
cores are exploited. However, there is a maximal speedup that cannot be exceeded, because it is
limited by the bandwidth of the main memory.

Our discussion will finally touch a prediction for the expected speedup behaviour in the case of
other well established solution approaches, in particular, weak formulated Galerkin methods with
the main representatives FEM and meshless MLPG. It is known from the analysis published in
[12] that the complexities of the final system construction for these methods are  D qO N n and

  2logD q DO N n N Nm , respectively, where qn is the number of integration points and m is
the number of monomial basis functions. It follows that the weak formulated methods are in
general more complex because of numerical integration of the weak form, which requires
additional evaluation of the trial function in the integration points. Additionally, MLPG is an
approximation method that requires at least 11 nodes in the support domain and inherits all
problems with maintaining the support nodes in a specialized data structure. We can expect an
increased complexity of the Galerkin methods for a factor of qn , regarding the number of
floating point operations, and the same memory complexity, because numerical integration will
not require additional storage.

16

7. Conclusions

An OpenMP based parallel implementation of a strong formulated local meshless procedure
LBRFCM for solving fluid flow problems is demonstrated on an off-the-shelf computer server
with 4 CPUs, each with 10 cores. The standard de Vahl Davis natural convection test is used for
benchmarking purposes. It is shown that one can efficiently solve non-linear coupled problems,
like the natural convection fluid flow problem, with LBRFCM, which offers several convenient
features, such as the ease of implementation, adequate stability, accuracy, and convergence. The
methodology also offers several degrees of freedom for altering in order to treat anomalies or
special numerical cases. We confirmed that the parallelization of the LBRFCM is
straightforward on shared-memory systems. A minor amount of effort and expertise are required
to parallelize the sequential code, thus the approach is interesting for engineering computations.
It is demonstrated through extensive experiments that the efficiency of the parallel
implementation is gravely affected by the memory architecture of the computational system. A
significant speedup in the execution can be achieved if appropriate architecture is used for a
specific problem size. The effect is explained by on-line measurements of memory cache
statistics with the Performance Monitoring Units of the CPUs. It is shown that accumulating L3
caches govern the effect. In other words, it is not only the computational power of the CPU that
matters in intense simulations; memory access and communication speed are equally important.

There are still several factors that have not been explored in full details, e.g. motherboard
architecture, bandwidths of data and program buses, cache policies, etc. They could influence the
results but do not change the main findings. Future work is focused on more detailed analysis of
new architecture-dependant factors and application of the proposed methodology in realistic
technological processes and 3D structures.

Acknowledgment

We acknowledge the financial support from the state budget by the Slovenian Research Agency
under the grants P2-0095, PR-03266 and J2-4120.

8. References

[1] Ferziger JH, Perić M. Computational Methods for Fluid Dynamics. Berlin: Springer; 2002.
[2] Őzisik MN. Finite Difference Methods in Heat Transfer. Boca Raton: CRC Press; 2000.
[3] Wrobel LC. The Boundary Element Method: Applications in Thermo-Fluids and Acoustics.
West Sussex: John Wiley & Sons; 2002.
[4] Rappaz M, Bellet M, Deville M. Numerical Modelling in Materials Science and Engineering.
Berlin: Springer-Verlag; 2003.
[5] Atluri SN, Shen S. The Meshless Method. Encino: Tech Science Press; 2002.
[6] Liu GR, Gu YT. An Introduction to Meshfree Methods and Their Programming. Dordrecht:
Springer; 2005.
[7] Nguyen VP, Rabczuk T, Bordas S, Duflot M. Meshless methods: A review and computer
implementation aspects. Mathematics and Computers in Simulation. 2008;79:763-813.
[8] Mirzaei D, Schaback R. Direct Meshless Local Petrov-Galerkin (DMLPG) method: A
generalized MLS approximation. Appl Numer Math. 2013;68:73-82.

17

[9] Wang JG, Liu GR. A point interpolation meshless method based on radial basis functions. Int
J Numer Meth Eng. 2002;54:1623-48.
[10] Šarler B, Perko J, Chen CS. Radial basis function collocation method solution of natural
convection in porous Media. Int J Numer Method H. 2004;14:187-212.
[11] Kansa EJ. Multiquadrics - a scattered data approximation scheme with application to
computational fluid dynamics, part I. Comput Math Appl. 1990;19:127-45.
[12] Trobec R, Šterk M, Robič B. Computational complexity and parallelization of the meshless

local Petrov-Galerkin method. Comput Struct. 2009;87:81-90.
[13] Pacheco PS. An Introduction to Parallel Programming. Burlington: Morgan Kaufmann
Publishers; 2011.
[14] Kirk DB, Hwu WW. Programming Massively Parallel Processors. Burlington: Morgan
Kaufmann Publishers; 2010.
[15] Domínguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD, Gómez-Gesteira M. New
multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters.
Comput Phys Commun. 2013.
[16] Singh V. Parallel implementation of the EFG Method for heat transfer and fluid flow
problems. Comput Mech. 2004;34:453–63.
[17] Zhang L, Wagner GJ, Liu WK. A parallelized meshfree method with boundary enrichment
for large-scale CFD. J Comput Phys. 2002;176:483–506.
[18] Rabczuk T, Bordas S, Askes H. Meshfree Methods for Dynamic Fracture. Computational
Technology Reviews. 2010;1:157-85.
[19] Venkatesh TN, Sarasamma VR, Rajalakshmy, Kirti Chandra Sahu S, Govindarajan R.
Super-linear speed-up of a parallel multigrid navier-stokes solver on flosolver. Ecol Ec Env.
2005;88:589-93.
[20] Chandra R, Dagum L, Kohr D, Maydan D, McDonald J, Menon R. Parallel Programming in
OpenMP. San Diego: Academic Press; 2001.
[21] de Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical
solution. Int J Numer Meth Fl. 1983;3:249-64.
[22] Trobec R, Kosec G, Šterk M, Šarler B. Comparison of local weak and strong form meshless

methods for 2-D diffusion equation. Eng Anal Bound Elem. 2012;36:310-21.
[23] Vertnik R, Šarler B. Meshless local radial basis function collocation method for convective-
diffusive solid-liquid phase change problems. Int J Numer Method H. 2006;16:617-40.
[24] Divo E, Kassab AJ. Localized meshless modeling of natural-convective viscous flows.
Numer Heat Transfer. 2007;B129:486-509.
[25] Kosec G, Založnik M, Šarler B, Combeau H. A Meshless Approach Towards Solution of

Macrosegregation Phenomena. CMC-Comput Mater Con. 2011;580:1-27.
[26] Prax C, Sadat H, Salagnac P. Diffuse approximation method for solving natural convection
in porous Media. Theor App T. 1996;22:215-23.
[27] Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-
driven cavity by discrete singular convolution. Numer Heat Transfer. 2001;B40:199-228.
[28] Franke J. Scattered data interpolation: tests of some methods. Math Comput. 1982;48:181-
200.
[29] Kosec G, Šarler B. H-adaptive local radial basis function collocation meshless method.
CMC-Comput Mater Con. 2011;26:227-53.

18

[30] Malan AG, Lewis RW. An artificial compressibility CBS method for modelling heat

transfer and fluid flow in heterogeneous porous materials. Int J Numer Meth Eng. 2011;87:412-
23.
[31] Hong CP. Computer Modelling of Heat and Fluid Flow Materials Processing. Bristol:
Institute of Physics Publishing; 2004.
[32] Kosec G, Šarler B. Solution of thermo-fluid problems by collocation with local pressure
correction. Int J Numer Method H. 2008;18:868-82.
[33] INTEL. 64 and IA-32 Architectures Optimization Reference Manual.
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-
optimization-manual.html.
[34] Lage JL, Bejan A. The Ra-Pr domain of laminar natural convection in an enclosure heated
from the side. Numer Heat Transfer. 1991;A19:21-41.
[35] Nobile E. Simulation of time-dependent flow in cavities with the additive-correction
multigrid method, part II: Apllications. Numer Heat Transfer. 1996;B30:341-50.
[36] INTEL. Performance Counter Monitor. http://software.intel.com/en-us/articles/intel-
performance-counter-monitor.
[37] Prax C, Sadat H, Dabboura E. Evaluation of high order versions of the diffuse approximate
meshless method. Appl Math Comput. 2007;186:1040–53.
[38] Zhang Y, Sim T, Tan CL, Sung E. Anatomy-based face reconstruction for animation using
multi-layer deformation. J Visual Lang Comput. 2006;17:126-60.
[39] Lee CK, Liu X, Fan SC. Local muliquadric approximation for solving boundary value
problems. Comput Mech. 2003;30:395-409.
[40] Perko J, Šarler B. Weigh function shape parameter optimization in meshless methods for

non-uniform grids. CMES-Comp Model Eng. 2007;19:55-68.
[41] Kovačević I, Šarler B. Solution of a phase-field model for dissolution of primary particles in
binary aluminum alloys by an r-adaptive mesh-free method. Mater Sci Eng. 2005;A413-414:423-
8.
[42] Šarler B, Vertnik R. Meshfree explicit local radial basis function collocation method for

diffusion problems. Comput Math Appl. 2006;51:1269-82.
[43] Lin H, Atluri SN. Meshless local Petrov Galerkin method (MLPG) for convection-diffusion
problems. CMES-Comp Model Eng. 2000;1:45-60.
[44] Šterk M, Trobec R. Meshless solution of a diffusion equation with parameter optimization

and error analysis. Eng Anal Bound Elem. 2008;32:567-77.
[45] Wang CA, Sadat H, Prax C. A new meshless approach for three dimensional fluid flow and
related heat transfer problems. Computers and Fluids. 2012;69:136-46.
[46] Yao G, Šarler B. Assessment of global and local meshless methods based on collocation

with radial basis functions for parabolic partial differential equations in three dimensions. Eng
Anal Bound Elem. 2012;36:1640-8.

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://software.intel.com/en-us/articles/intel-performance-counter-monitor

