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Abstract 

The performance of the parallel implementation of the local meshless numerical method in 
solving system of coupled partial differential equations is explored. Presented numerical 
approach makes the computation convenient for parallel implementation using OpenMP based 
parallelization. The numerical experiments are performed on the de Vahl Davis natural 
convection case, with superlinear computational speedup regime identified. The phenomenon is 
further investigated through measurements of the central processing unit cache hit rates. It is 
demonstrated that the accumulation of L3 caches governs the superlinear speedup. Considering 
the presented analyses basic rules for effective computation strategy regarding the multicore 
computations are suggested.  
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1. Introduction 

Numerical analysis and computer modelling are becoming basic tools for technological and 
scientific research. Numerous problems, e.g. fluid flow, various transport phenomena, weather 
dynamic, etc. require adequate discretization techniques to be addressed. In the majority of 
numerical simulations the Finite Volume Method (FVM) [1], the Finite Difference Method 
(FDM) [2], the Boundary Element Method (BEM) [3] or the Finite Element Method (FEM) [4] 
are used. However, in the last few years new class of numerical methods, referred to as the 
meshless methods [5] is becoming popular as an alternative. The treatment of complex 
geometries is within the meshless framework much simplified since no topological relations 
between computational nodes are needed. Several different meshless methods exist [6-8] and this 
work is focused on one of the simplest among them - the point interpolation [9] Local Radial 
Basis Function Collocation Method (LRBFCM) [10]. The main advantage of the local numerical 
method is that the system matrix remains sparse or banded, which simplifies the solution 
procedure. In contrast, a global approach [11] might become instable for increasing number of 
discretization points, demands a lot of computational resources, and complicates the computer 
program implementation. Besides the simpler formulation, the local solution procedure also 
enables higher parallel efficiency. From the computation point of view, the localization reduces 
inter-processor communication, which is often a bottleneck of parallel algorithms [12]. The 
computation time is an important factor in numerical simulations and it is often not addressed 

mailto:gkosec@ijs.si
mailto:matjaz.depolli@ijs.si
mailto:aleksandra.rashovska@ijs.si
mailto:roman.trobec@ijs.si


 
2 
 

adequately. An important part of the numerical approach is thus the effective implementation of 
the solution procedure on modern computer architectures. The developments in the technology 
of the computer architectures are nowadays extremely vivid. The processing power can be 
increased either by increasing the processor’s clock frequency or by increasing the number of 
processing units. The clock frequencies are approaching their physical limits; therefore the 
second option - increased number of processing units - is becoming more attractive.  Parallel 
computers, available today in most desktop computers or computer servers, can compensate for 
the lack of performance of a single computer, but only in cases where an efficient parallelization 
of the computational method is known. Various application programming interfaces (APIs) for 
parallel programming are used to maximize the performance of parallel systems. Nowadays, the 
most widely used APIs for parallel programming are MPI for distributed-memory systems, and 
Ptreads and OpenMP for shared-memory systems [13]. Moreover, using graphical processing 
units (GPUs) for solving parallel problems is widely spreading. APIs that support parallel 
programming on GPUs are becoming more and more popular, like CUDA and OpenCL [14, 15]. 
There are several publications regarding the parallelization of different numerical schemes for 
various applied problems [12, 16-18], mostly based on MPI parallelization, but only a few 
numerical studies tackle the influence of the cache memory effects on the performance of 
parallel computations [19]. 
 
In this paper, we demonstrate the efficiency of an OpenMP [20] based parallel implementation of 
the completely local meshless solution of the classical de Vahl Davis benchmark test case [21] 
on a multicore multiprocessor architecture. The paper contributes two basic messages. First, the 
parallelization of the proposed meshless based numerical scheme is straightforward on shared-
memory systems. A minor amount of effort and expertise are required to apply OpenMP 
parallelization if the sequential code is ready, thus the approach is interesting for engineering 
computations. On the other hand, the method offers several convenient features, like ease of 
implementation, stability, accuracy, and good convergent behaviour [22] that have been already 
successfully proved on several demanding non-linear coupled problems [23-25] .  
 
Second, the efficiency of a parallel implementation can be gravely affected by the memory 
architecture of a computational system. It is demonstrated that extreme superlinear speedup can 
be achieved if appropriate architecture is used for a specific problem size. The effect is explained 
by measurements of the central processing unit (CPU) counters through execution of a 
simulation. It is clearly shown that accumulating L3 caches govern the effect. In other words, it 
is not only the power of CPU that matters in intense simulations; communication speed is 
equally important.  
 
The rest of the paper is organized as follows. In section 2 the test problem is described. Next, the 
meshless solution methodology and LBRFCM are briefly presented, followed by description of 
the parallel program implementation. Section 5 is devoted to the analysis and interpretation of 
the obtained experimental results. Concluding section summarizes the results and provides 
suggestions for the users dealing with complex realistic numerical problems. 
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2. Governing equations 

The most standard free fluid flow benchmark test is the well-known de Vahl Davis natural 
convection test [21]. There are several numerical solutions published in the literature [24, 26, 27] 
that make the tests convenient for benchmarking purposes. The problem domain is a closed air-
filled square-shaped cavity with differentially heated vertical walls with temperature difference 

T and insulated horizontal walls. Non-permeable and no-slip velocity boundaries are assumed. 
The problem dynamics is described by three coupled Partial Differential Equations (PDEs) 
equations: mass (1), momentum (2) and energy conservation (3) equations, where all material 
properties are considered to be constant. The Boussinesq approximation (4) is used for the 
treatment of the body force in the momentum equation. The natural convection is thus described 
by the following system of equations 
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with   ref, , , , , , , , , ,p Tu v P T c T   v g  and b  standing for velocity, pressure, temperature, 
thermal conductivity, specific heat, gravitational acceleration, density, coefficient of thermal 
expansion, reference temperature for Boussinesq approximation, viscosity and body force, 
respectively. The thermo-physical properties are assumed constant in the de Vahl Davis case. 
The case is characterized by two dimensionless values  
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referred as Rayleigh and Prandtl numbers, respectively. ,H W  stands for the domain dimension 
(Figure 1). 
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Figure 1: The geometry and boundary conditions of natural convection benchmark test. 

3. Solution procedure 

In this work, we focus on a local meshless numerical method with a local pressure-velocity 
coupling. The general idea behind the method is the use of local sub clusters of discretization 
nodes termed as local support domains (Figure 2). Within a selected support domain, an arbitrary 
field is approximated as a linear combination of weighted basis functions  
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where  , , and , ,n n x yN p p   p  stand for the approximation function, the number of basis 
functions, the approximation coefficients, the basis functions and the position vector, 
respectively. Such an approximation function is created in each discretization point. Considering 
the analysis from Franke [28], we use Hardy’s Multiquadrics (MQs) for the basis functions. We 
use the collocation approach, i.e. the number of support points is the same as the number of the 
basis functions. After the solution of local systems, i.e. determination of unknown coefficients α   
the arbitrary spatial differential operation L  can be evaluated (7)  
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The computation of the coefficients and the evaluation of the differential operators can be 
combined in a single operation. The differential operator L

χ  vector is introduced as  
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and a differential operation is thus simplified to 
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The structured formulation is convenient for implementation since most of the complex and CPU 
demanding operations are performed in the pre-process phase. The Neumann boundary 
conditions are computed directly by equation (10) while the Dirichlet conditions are explicitly 
set. More details about the presented spatial discretization can be found in [29].  

 

Figure 2: Schematic representation of the meshless numerical principle. 
The temporal discretization is done through a two-level explicit time stepping 
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where the zero-indexed quantities stand for the values at the previous time step, and ,D S  for the 
general diffusion coefficient and the source term, respectively. The time step is denoted with t . 
The pressure-velocity coupling is performed through the correction of the intermediate velocity 
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Equation (12) does not take into account the mass continuity. In order to drive velocity to the 
solenoid field the iteration is introduced. In each iteration, the pressure is corrected as  

 
1ˆ ˆm mP P P   , (13) 

where andm P  stand for the iteration index and the pressure correction, respectively. The 
pressure correction is directly related to the divergence of the intermediate velocity   
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where   stands for the relaxation coefficient. The corrected pressure is then used to recomputed 
equation (12). The iteration is performed until the criterion ˆ· V v  is met in all computational 
points. The approach is similar to the artificial compressibility method (ACM) that has been 
recently under intense research [30] and also to the SOLA approach [31]. More details about the 
pressure-velocity coupling can be found in [32]. 
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4. Implementation 

The most computationally demanding parts of the code are the following four spatial loops: 
computation of the new temperature, new velocity, pressure correction and time advance. All 
four spatial loops are incorporated into the temporal loop and additionally, velocity is coupled 
with pressure correction in pressure-velocity coupling iteration loop. In the first three spatial 
loops, the governing equations are computed, and in the fourth one the data from current time 
step is transferred to the next time step. Each equation comprises different partial differential 
operations that are evaluated as a convolution of the corresponding partial differential vector and 
support domain values of the treated field. For example, a new temperature is computed as  
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The computation takes place in all nodes.  The 
2

χ  and  ,x y 
χ stand for partial differential vectors 

for the Laplace operator and the first spatial partial derivatives, respectively, that are computed in 
a pre-process phase. In the present paper, we use the LRBFCM with five nodded support, i.e. N 
equals 5. The computation of a new temperature field requires approximately 6 N floating point 
operations and has to access 4 N data locations. The computation of velocity field and pressure 
correction follows the same principles. All four spatial loops are parallelized with OpenMP [20]. 
We use #pragma omp parallel for directive with a static scheduling. The implementation 
flowchart is presented in Figure 3.   

In the program implementation, we organised the data in a node centralised class structure. Each 
computational node is represented with a class that comprises all the numerical and thermo-
physical relevant data and is stored in sequential memory locations. The physical fields, i.e. 
temperature, velocity and pressure, are represented as double precision values. The partial 
differential vectors are stored as arrays of N doubles, for each operator. Each node also carries 
predefined information about the support domain stored in an array of pointers to the memory 
locations of support nodes. The access to nodes is completely local in nature and therefore cache-
friendly. Generally, domain nodes are stored in an unstructured manner, which is usual for 
meshless methods, since there is no general topological relation between the computational 
nodes. In case of r-adaptivity, the nodes are dynamically added during the execution and the 
memory is allocated as the nodes are created. However, in our present analysis, we use the static 
nodal distribution. The nodes are positioned systematically in the beginning of the simulation. 
Such an approach introduces partial structured data, since the nodes which are close to each other 
in domain space are likely to be close to each other in the memory, as well. 
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Figure 3: Scheme of OpenMP parallelized solution procedure for the natural convection 
problem. 

All tests are performed on a computer system with four Intel Xeon E4870 processors with 
Nehalem microarchitecture, each with ten cores, system clock of 2.80 GHz, 3200 MHz front side 
bus (FSB), and 64 GB of shared main memory. The system has three levels of cache hierarchy: 
each core has 32 kB of L1 instruction cache and 32 kB of L1 data cache, 256 kB of L2 cache, 
and shares 30 MB of L3 cache with the other cores of the processor. The latencies for accessing 
data are 4 clock cycles for the L1 cache, typical 10 clock cycles for the L2 cache, 40 clock cycles 
for the L3 cache, and an order 120 clock cycles for main memory [33]. The computer 
architecture is schematically presented in Figure 4. 
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Figure 4: Scheme of the computer architecture used for the test case. 

 
The tests are run on Nehalem microarchitecture; however, the results are not limited to a specific 
architecture and thus a similar behaviour is expected on all current and future NUMA multicore 
platforms. 

5. Results 

5.1. Results of numerical integration 

The classical de Vahl Davis benchmark test is defined for the natural convection of the air 
 Pr 0.71  in a square closed cavity. The only free parameter of the test remains the thermal 
Rayleigh number. In the original paper [21], de Vahl Davis tested the problem with the Rayleigh 
number up to 610 . However, in the latest publications, the results of more intense simulations 
were presented with the Rayleigh number up to 810 . Lage and Bejan [34] showed that the 
laminar domain of the closed cavity natural convection problem is roughly below 9Gr<10 . It was 
reported [35] that the natural convection becomes unsteady for 8Ra 2 10  . In this paper, we 
deal with the steady solution and therefore, according to the published data, a case with the 
maximum 8Ra 10  is considered. A detailed comparison of the presented numerical approach 
against previously published data has been already done in [32], where the range of 

3 8Ra 10 ,10     has been analysed. It has been shown that the proposed local approach is in a 
good agreement with the previous work, as well as convergent, conservative and stable [32]. The 
presented solution procedure has been also successfully applied on several other thermo-fluid 
problems, where the latest and also the most complex simulation was solidification of a binary 
alloy [25]. The published tests confirm that the presented meshless numerical solution procedure 
provides good results. In Figure 5 the results for 8Ra 10  case are presented in terms of the 
stream function and temperature contour plot. Note that all results are stated in the standard 
dimensionless form. Additional results are presented in terms of temporal development of the 
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Nusselt number  Nu= / xT p Tu    and for the difference in the Nusselt number  Nu  between 
the hot-cold sides in Figure 6. From Figure 5 the general fluid structures and heat fluxes can be 
identified. The strong velocity field in the boundary layer produces several vortexes in the 
corners of the domain. In steady state, bulk part of the heat transfer is thus governed by 
convection. In Figure 6, characterization of temporal development is presented. In the temporal 
development of the Nusselt number the intense dynamics in the beginning of the process can be 
clearly seen. Note that the simulation begins with all fields set to uniform initial state, even the 
pressure which is in the first time step corrected to the hydrostatic pressure through the internal 
pressure-velocity iteration. The difference between the hot-cold sides in the Nusselt number can 
be understood as a measurement for continuity violation, or in numerical terms, the numerical 
error.  

 

Figure 5: Temperature (solid lines) and streamline (dotted lines) contour plots for de Vahl 
Davis benchmark test. 

 

Figure 6: Temporal development of the Nusselt number (left) and the difference in the Nusselt 
number between the hot-cold sides (right). 
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5.2. Parallel efficiency 

The following analysis is focused on the parallel efficiency of the proposed parallelized 
implementation. The efficiency of a parallel program is evaluated through the speedup defined as  

 

1

C

C
N
C

t
S

t
 , (16) 

where CN
Ct  stands for the computation time on CN  processing units. Besides the computation 

time, we also measure the L2 and L3 cache statistics, including hit rates defined as 

 
2, 3L L

number of hits
H

number of all accesses
  (17) 

where the subscript defines the considered cache level. The hit rate indicates the number of 
data/program items that can be found in the cache. For example, 3 1LH   indicates that all data 
and program items are stored in the L3 cache memory, and consequently no accesses to the 
slowest memory level are needed. The CPU performance counters, recording the cache hit and 
miss events, are accessed with the Intel Performance Counter Monitor (PCM) [36], which is  a 
low level library that enables access to the internal performance registers in the Performance 
Monitoring Unit (PMU). The modern Intel processors (Nehalem and later) in the PMU contain, 
among others, hardware counters for the L2 and L3 cache hits and misses. The PMU statistics 
can be measured at any point of the program and/or during the whole execution. Detailed 
measurements of the cache statistics on individual cores are thus possible.  
 
The tests are performed on different number of CPUs  CPUN , different number of cores   CN  
and different number of discretization points  DN . First, the parallel performance of a single 
CPU  1CPUN   is tested. Results for computation time and L3 cache hit rates are shown in 
Figure 7 as a function of the number of discretization points DN . It is evident from the slopes of 
the curves that the computation time comprises three regimes, and that the L3 cache hit rate 
governs these regimes. As long as the problem is small enough to fit into the L3 cache 
(approximately up to 42 10DN   ), the L3 hit rate remains almost 100% and the computation 
time increases with the lowest slope (first regime). After that point the L3 cache becomes too 
small for all the necessary data, the hit rate starts to decline (second regime), until it stabilizes 
approximately at the value of 0.2 (third regime).  In the first and third regimes, the computational 
time is linearly dependent on the DN  with different slopes, while the second regime stands for 
transition between them. The slope of the third regime is roughly three times steeper than the 
first one, which corresponds to the difference in latencies for accessing the L3 cache or the main 
memory. The computational time becomes considerably longer when the L3 hit rate is low due to 
the increased number of accesses to the main memory. In average, only one of five data or 
program items will reside in the L3 cache. The L3 cache is shared on the CPU level among its 
cores and the hit rate behaviour is hence independent on the number of involved cores. 
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Figure 7: Computation time (left) and L3 cache hit rate (right) with the respect to the number 
of discretization points and the number of cores on a single CPU.  

Next analysis is focused on the impact of the L2 cache on the computation performance on a 
single CPU. The L2 hit rate results are shown in Figure 8. The variations in 2LH  have been 
significantly larger than in the L3 cache as the L2 cache is much smaller and therefore more 
dependent on the cache policies and operating system tasks. Also, the DN  range of the visible L2 
cache impact is much smaller than of the L3.  The 2LH  also depends on the number of cores 
since the L2 caches are private in each core. For better presentation of the main findings, the L2 
measurements are smoothed with a low pass filter. From Figure 8, it is visible that for small ND 
the hit rate of a single core is much higher than the hit rate of multicore computations. Small 
systems fit into the L2 cache, and as long as only a single core is used, there is no 
communication between cores and thus virtually no cache misses. In the case with more cores 
used, each time a core modifies a memory location on its local cache, it invalidates the caches on 
other cores that occupy the same memory location. While this frequently happens on shared data, 
it also happens on private data, because multiple variables might inhabit the same cache block. In 
our test case, such behaviour is frequent since variables written by one core are interleaved with 
variables read by another core. Invalidation of L2 cache blocks introduces L2 cache misses and 
consequently L3 cache accesses. The described invalidation effect is amplified with the number 
of cooperating cores. By increased problem size, HL2 converges approximately to the value of 
0.5. For a single core, the saturation is achieved approximately after ND = 600 discretization 
points, while for higher number of cores this limit increases.  As long as the DN  is small and all 
the data fits into one L2 cache, the invalidation effect is strong; however, when the dataset 
becomes bigger, the accumulating L2 caches improves the computation performance. The 
interplay of those two effects is clearly demonstrated on Figure 8. Nevertheless, for complex 
computations, the memory demands are much bigger than the size of the L2 cache.  
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Figure 8: L2 cache hit rate with the respect to the number of discretization points and the 
number of cores on a single CPU.  

In Figure 9, the parallel performance regarding different number of CPUs is presented, where 
only a single core from each CPU is used. Besides the private L2 cache, each core disposes the 
full L3 cache for its purposes. In the left part of Figure 9 quite similar behaviour as in the case of 
a single CPU can be seen. Three computational regimes, with an important difference that 
computations on more CPUs experience the transitions between computational regimes at higher 
ND , as more L3 caches are available. The HL3 from the right part of Figure 9 confirms that the 
accumulating L3 caches govern the effect. In the overlapping intervals, the computation time 
depends not only on the brute CPU force, but also on the memory architecture. The speedup on 
more CPUs is governed by two effects: an available floating point processor from each CPU and 
more available L3 cache from each CPU. Consequently, the speedup within some specific 
intervals of the described regimes is superlinear (Figure 10). In our present analysis, maximal 
speedup of S=9.6 is achieved on four cores (each on a different CPU). 

 

Figure 9: Computation time (left) and L3 cache hit rate (right) with the respect to the number 
of discretization points and the number of CPUs.  
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Figure 10: Speedup with the respect to the number of discretization points and the number of 
CPUs.  

Finally, the parallel program is run on the whole computer with multiple CPUs and multiple 
cores. We tested four typical problem sizes: ND = 4∙103

, 4∙104, 8∙104
, and 2∙105 , which 

coincidence with the interesting changes encountered in the previous experiments.  The range of 
involved cores is from one to ten per CPU and the number of CPUs is from one to four; hence, 
the total range of cores is from one to forty. Speedup results are shown in Figure 11. Significant 
speedups are obtained by the parallelized version of the test case. Their maximal values depend 
on the number of cores and the number of discretization points ND, and are usually not reached 
with all available cores. With larger ND, the speedup is less dependent on the number of cores. 
For some values of ND (e.g. 8∙104)  we experience superlinear speedup. 
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Figure 11: Speedup for different number of discretization points with respect to the number of 
cores and the number of CPUs.  

6. Discussion  

In the present paper, we analyse the behaviour of parallelized implementation of the strong form 
LRBFCM in solving thermo-fluid problems. In contrast to conventional numerical methods, the 
LBRFCM relays on local meshless technique with several degrees of freedom in the type of 
approximation [23, 37], in the selection of basis and its augmentation [38], conditioning [39] and 
optimized weighting [40] of the approximation, in distribution of discretization nodes [41], in the 
size of the local support domains [37, 42], etc. The advanced usage of meshless methods can be 
applied to treat numerical anomalies or cases where special treatment is required. The method 
can be severely altered by changing only its parameters, which can be done on the fly during the 
simulation. For example, in the case of shockwave propagation, the r-adaptation can be easily 
applied [29] to ease the numerical instabilities without introducing additional numerical 
dissipation. Convective dominated problems can be also treated with the adaptive upwind [43] 
that uses local Péclét number to evaluate the magnitude and the direction of the upwind offset. 
All these features are inherent in meshless and do not require any kind of special treatment of the 
numerical algorithms and the code. On the other hand, the local differential vector formulation 
simplifies the implementation and the understanding of the method to the level of FDM, but still 
conserves all the mentioned advantages.  
 

An evident drawback of the meshless could be the higher complexity because of the additional 
effort needed to maintain the support domain nodes. However, specialized data structures are 
known, e.g. KD tree [12], that enable efficient searching of support nodes in  logD DO N N  time 
and can be also done in a pre-process and/or only when the nodal topology changes. The number 
of support nodes might be also higher than in conventional approaches. For example, central 
FDM scheme requires only five nodes in 2D, while Diffuse Approximate Method based on 
Weighted Least Squares approximation requires 13 support nodes [37]. The LBRFCM method is 
based on collocation and typically requires less support nodes in the support domain. In our 
implementation, we use the smallest possible setup of  5N  , which implies that its 
computational complexity is in the order of  DO N N and is comparable to the one of FDM. The 
memory complexity of LRBFCM is however higher in comparison to the FDM. The LRBFCM 
does not require any kind of topological relations between nodes and consequently the partial 
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differentials are spatial dependent; the memory complexity is therefore  DO N N , while for 
FDM only  O N . 
A further drawback of the LBRFCM method could be the lower accuracy, in particular, in some 
inconvenient distribution of local nodes [44], which could happen for larger DN . However, it has 
been shown in [45] and with extensive experimental results in [12, 22] that the local strong form 
meshless formulation provides results comparable to the weak formulated Meshless Local Petrov 
Galerkin Method (MLPG) and FEM on structured and non-structured discretization nodes. It was 
also confirmed in [46] that the local formulation of LRBFCM outperforms the global approach 
significantly in larger systems, which equates the LBRFCM with conventional strong formulated 
methods. 
The experimental results presented in our paper are used for the analysis and prediction of the 
execution performances in different application regimes. Regarding the execution speedup, 
superlinear regimes are identified, governed by the accumulated L3 caches. Detailed analysis of 
the parallel program execution time reveals that the superlinear regime occurs as a consequence 
of accumulating L3 caches. This conclusion is supported by the evaluation of the CPU 
performance through measured memory cache statistics from PMU. The measurements 
confirmed the theoretical expectations and explain the superlinearity with the maximum of S = 
9.6 on 4 cores.  Based on the presented results, some clear and generally applicable conclusions 
can be drawn.  As long as the size of the problem is small (below 104 in our test case) and all the 
data fits into a single L3 cache, it is beneficial to use multiple cores on a single CPU for 
improved speedup. Using more CPUs in that case would introduce communication between the 
CPUs, which lowers the speedup. In larger problems (between 104 and 105), the accumulated L3 
caches may produce superlinear speedups using more CPUs with only a single core from each. 
The maximal size of the problem, which still provides superlinearity, depends on the memory 
architecture. However, L3 caches are in general relatively big and thus, the effect should be 
detectable on most of the modern computer systems. The largest problems (above 105) that do 
not fit into accumulated L3 caches will be executed in the shortest time if all available CPUs and 
cores are exploited. However, there is a maximal speedup that cannot be exceeded, because it is 
limited by the bandwidth of the main memory.   
 

Our discussion will finally touch a prediction for the expected speedup behaviour in the case of 
other well established solution approaches, in particular, weak formulated Galerkin methods with 
the main representatives FEM and meshless MLPG. It is known from the analysis published in 
[12] that the complexities of the final system construction for these methods are  D qO N n  and 

  2logD q DO N n N Nm , respectively, where qn  is the number of integration points and m  is 
the number of monomial basis functions. It follows that the weak formulated methods are in 
general more complex because of numerical integration of the weak form, which requires 
additional evaluation of the trial function in the integration points. Additionally, MLPG is an 
approximation method that requires at least 11 nodes in the support domain and inherits all 
problems with maintaining the support nodes in a specialized data structure. We can expect an 
increased complexity of the Galerkin methods for a factor of qn , regarding the number of 
floating point operations, and the same memory complexity, because numerical integration will 
not require additional storage. 
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7. Conclusions 

An OpenMP based parallel implementation of a strong formulated local meshless procedure 
LBRFCM for solving fluid flow problems is demonstrated on an off-the-shelf computer server 
with 4 CPUs, each with 10 cores. The standard de Vahl Davis natural convection test is used for 
benchmarking purposes. It is shown that one can efficiently solve non-linear coupled problems, 
like the natural convection fluid flow problem, with LBRFCM, which offers several convenient 
features, such as the ease of implementation, adequate stability, accuracy, and convergence. The 
methodology also offers several degrees of freedom for altering in order to treat anomalies or 
special numerical cases. We confirmed that the parallelization of the LBRFCM is 
straightforward on shared-memory systems. A minor amount of effort and expertise are required 
to parallelize the sequential code, thus the approach is interesting for engineering computations.  
It is demonstrated through extensive experiments that the efficiency of the parallel 
implementation is gravely affected by the memory architecture of the computational system. A 
significant speedup in the execution can be achieved if appropriate architecture is used for a 
specific problem size. The effect is explained by on-line measurements of memory cache 
statistics with the Performance Monitoring Units of the CPUs. It is shown that accumulating L3 
caches govern the effect. In other words, it is not only the computational power of the CPU that 
matters in intense simulations; memory access and communication speed are equally important. 

 

There are still several factors that have not been explored in full details, e.g. motherboard 
architecture, bandwidths of data and program buses, cache policies, etc. They could influence the 
results but do not change the main findings. Future work is focused on more detailed analysis of 
new architecture-dependant factors and application of the proposed methodology in realistic 
technological processes and 3D structures. 
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