

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Using Hadoop MapReduce in a Multicluster
Environment

I. Tomašić, A. Rashkovska and M. Depolli
Jožef Stefan Institute/Department of Communication Systems, Ljubljana, Slovenia

ivan.tomasic@ijs.si, aleksandra.rashkovska@ijs.si, matjaz.depolli@ijs.si

Abstract - Hadoop MapReduce has become one of the most
popular tools for data processing. Hadoop is normally
installed on a cluster of computers. When the cluster
becomes undersized, it can be scaled by adding new
computers and storage devices, but it can also be extended
by real or virtual resources from another computer cluster.
We present a utilization of the MapReduce paradigm on a
Hadoop installation extended across two clusters connected
over the Internet. We measured execution times of Map and
Reduce tasks in a multicluster environment, and compared
them to the corresponding times obtained while only
computers from a single cluster are used. The results show
that there might be a decrease in MapReduce performance
depending on: the concrete data analyses application, the
ratio of the number of local and remote computers, and
connection bandwidth to remote computers. Additionally,
the investigation suggests an upgrade to the Apache Hadoop
MapReduce, making it more adjusted to the multicluster
environment.

I. INTRODUCTION
Apache Hadoop [1] is a highly popular set of open

source modules for distributed computing. The key
Hadoop components are the Hadoop Distributed File
System (HDFS) and the MapReduce - a data-processing
component. Since 2004, when it was introduced [2], the
MapReduce paradigm has become one of the most
popular tools for batch-processing large datasets, mostly
because it allows users to build complex distributed
programs using a simple model.

Hadoop has proved its ability to store and analyze
huge datasets often referred to as the BigData [3]. It has
been used by Yahoo and Facebook [4]. If a Hadoop
cluster becomes undersized, a commonly used approach is
to scale the cluster by adding new computers and storage
devices. Other possibility is to resort for resources on
another computer cluster. The additional resources can be
virtual or real computers.

In our previous work [5], we presented the steps and
configurations needed for extending a HDFS installation
with computers from another cluster accessed over the
Internet. The presented benchmarks results, for one
additional computer, showed a drop in read and write
operations by approximately one order of magnitude. In
the present study, we investigate the applicability and
efficiency of the Hadoop MapReduce on the same
hardware and network topology (see [5] for details). For

the present study, the Cloudera Apache Hadoop
distribution CDH 4.1.0 has been used [6].

For evaluating the MapReduce performance in a
multicluster environment, we have measured Map and
Reduce tasks execution times, and compared them to the
corresponding times obtained on a single cluster. The
multicluster environment is achieved by connecting an
additional server using a 100Mb/s link (note that the
network bandwidth inside the cluster is 1 Gb/s). We
developed MapReduce jobs for analyzing tabular data
coming from heat transfer simulation in a biomedical
application, in particular, cooling of a human knee after
surgery [7]. Similar data sources can be found also in
other scientific areas related to multi-parametric
simulations [8], environmental data analysis [9], high
energy physics [10], etc., whereas some special problems
may benefit from specific interfaces to the Hadoop [11].

A. MapReduce Paradigm
The MapReduce user specifies two functions called

Map and Reduce, which operate on data arranged in
key/value pairs. The first step is data splitting which is
done by the MapReduce frameworks. The splits are than
processed by Map functions which are commonly applied
on each line of every split. Each Map function invocation
outputs a list of key/value pairs. In the case of a word
count, the Map function would output words as the keys
and numbers of instances of each word in the line as the
values. The MapReduce framework groups together all
intermediate values associated with the same intermediate
key and passes them to the Reduce function, which
aggregates or merges them together to form a new,
possibly smaller, set of values. In the word-count
example, the Reduce function sums and outputs total
number of instances for each word. The executions of the
Map and Reduce functions are referred to as Map and
Reduce tasks, or shortly Mappers and Reducers. A set of
tasks executed for one application are referred to as a
MapReduce job.

B. Apache Hadoop MapReduce Implementation
The Hadoop splits are fixed-size, whereas a separate

Map task is created for each split (Fig. 1). The default split
size is the same as the default size of an HDFS block,
which is 64 MB. The Hadoop performs data locality
optimization by running the Map task on the node where
the input data resides in the HDFS.

The Map tasks write their outputs to their local disks,
and partition their outputs, creating one partition for each The research was funded in part by the European Union, European

Social Fund, Operational Programme for Human Resources,
Development for the Period 2007-2013.

Figure 1. Schematic representation of MapReduce data flow (Combiner functions are not presented).

Reduce task. Each partition may contain various keys and
associated values. All records sharing the same key are
processed by the same Reduce task. This is achieved by
using the so-called Partitioner function. The default
Hadoop MapReduce Partitioner employs a hash function
on the keys from the Maps’ outputs. Modulo function by
the number of reducers is subsequently applied to the hash
values resulting with the Reduce task indexes for each
key. Fig. 1 shows schematically the MapReduce data
flow.

Reduce tasks, unlike Map tasks, cannot convey on data
locality because the input to a single Reduce task is
generally formed from outputs of multiple Map tasks
(Fig.1). On the Reduce task’s node, the sorted map
outputs are merged before being passed to the Reduce
task. The data flow between Map and Reduce tasks is
known as “shuffle”, whereas the merging is logged as a
part of the Reduce task. The number of Reduce tasks is
specified independently for a given job. Each Reduce task
outputs a single file, which is usually stored in the HDFS.

Hadoop allows a user to specify an additional function,
called Combiner, which receives all the data emitted by
the Map tasks on the same node as the input, executes on
that node, and forms an output that becomes an input to a
Reduce function. The Combiner function is used to
achieve data reduction that consequently minimizes data
transfer over the network and reduces the impact of the
limited communication bandwidth on the performances of
a MapReduce job.

C. MapReduce limitations
The main limitation of the MapReduce paradigm is

that each Map and Reduce task must not depend on any
data generated in other Map or Reduce tasks of the current
job, as user cannot control the order in which they
execute. Although applicable to a wide variety of
problems, there are problems to which the MapReduce is
not directly applicable. These are recursive computations,
and algorithms that depend on shared global state. A
classic example of recursive computation is the Fibonacci
series where each value is summation of the previous two
values: ܨሺ݅ሻ = ሺ݅ܨ − 1ሻ + ሺ݅ܨ − 2ሻ . Examples of the
algorithms that require global synchronization are Online
learning and Monte Carlo simulations [12].

II. METHODS

A. System Arhitecture
The utilized system hardware and networking

architecture has been described in our previous study [5],
where we used the original Apache Hadoop distribution
[1]. For the current study, we have used the Cloudera
distribution [6] that was installed on a cluster of six
computing nodes. The nodes are connected with Gigabit
Ethernet, whereas the additional external node is
connected through a 100Mb/s channel.

One of the nodes is designated as the namenode, while
others are the datanodes. The namenode also hosts the
jobtracker. All machines in the cluster run an instance of a
datanode and a tasktracker. For a description of the HDFS
and MapReduce nodes refer to [13], [14]. After joining the
additional node, the obtained Hadop multicluster has been
rebalanced by executing Cloudera’s HDFS balancer [15],
to allow the data blocks to be equally distributed to the
additional node.

B. Test Dataset
A computer simulation of two hours cooling of a

human knee after surgery was performed for 10 different
knee sizes, 10 different initial temperature states before
cooling, and 10 different temperatures of the cooling pad.
This resulted in 1000 simulation cases. The results of
those simulation cases were gathered in 100 files. Each
file contained 71970 rows or approximately 44 MB of
data. Each data row was composed of the following
parameters, i.e. columns: RT, D, IS, CT, T1, T2, … , T85,
where are: RT - relative time in a simulation case, D -
knee size, IS –initial state, CT – cooling temperature,

TABLE I. LIST OF TEST CASES

Case Parameters

1 T1

2 T1-T5

3 T1,T6,T11,T16,T21

4 T1-T21

5 T1,T6,T11,T16,T21,T46,T51,T56,T61

6 T1-T21,T46-T61

7 T1,T6,T11,T16,T21,T26,T31,T36,T41,T46,T51,
T56,T61,T66,T71,T76,T81

8 T1-T85

Figure 2. MapReduce jobs pipeline.

T1-T85 – inner and outer knee temperatures, i.e.,
temperatures at a particular location in the knee center, 8
locations on the knee skin and 8 respective locations under
the cooling pad, all taken in the current and in previous time
steps. In order to assess the periodicities in the knee
simulation results, we assigned the MapReduce to count the
occurrences of the same value arrays for a subset of knee
temperatures T; more precisely, to count the occurrences of
identical rows after having projected only columns of T that
are of interest. We will refer to the number of occurrences of
identical rows as temperatures’ frequencies.

We defined and examined 8 cases with different sets of
T. The cases are given in Table I.

C. MapReduce jobs
The MapReduce jobs pipeline for solving our test cases is

illustrated in Fig. 2. Job 1 counts the occurrences of the same
value arrays for a subset of temperatures, whereas Job2
combines outputs from Job 1 and orders the combined rows
by temperature frequency.

The sizes of the input files are smaller than the HDFS
block size (in our case: 64 MB). Hence, the number of input
Map tasks in Job 1 is equal to the number of input files [16],
i.e., each input file is processed by a different Map task. The
number of Reduce tasks is set to 12 for Job 1, hence the
output of Job 1 now consists of 12 files. Each file contains a
unique combination of temperatures and the number of their
occurrences. Job 2 combines Reduce tasks’ outputs from Job
1 into a single file (in Job 2, the number of Reduce tasks is
set to 1). It also sorts the input columns in the output file by
temperatures’ frequencies. The number of Map tasks in Job 2
depends on the test case (Table I) and varies between 12 for
Case 1 and 36 for Case 8. Job 1 has the same Combiner and
Reduce functions, whereas the Combiner function for the Job
2 is not specified, since there are no multiple rows for the
same key in the Map tasks output data. The implementation
of both Jobs is given in Fig. 3.

In the Map function of Job 1, from each input row, only
the relevant columns (see Table I) are extracted. For
example, in test case 2, only the columns belonging to T1-T5
will be extracted in the SearchString variable. Reduce
functions sum, i.e., count the number of occurrences of each

combination of temperatures (the key) and outputs it as the
new value for the current key. Because all the values for one
key are processed by a single Reduce task, it is evident that
the output of Job 1 consists of unique combinations of
temperatures and the number of their occurrences.

Figure 3. Java code segments of Map and Reduce tasks for Job 1 and Job 2.

//Job 1
public void map(LongWritable key,Text value,
OutputCollector<Text,IntWritable> output, Reporter reporter)
throws IOException{

String line = value.toString();
String[] lineElements = line.split(",");
String SearchString = null
//depending on a case (Table I) concatenate different
lineElements in //SearchString
…
word.set(SearchString);
output.collect(word, new IntWritable(1));

}
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException{

int sum = 0;
while (values.hasNext()){

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}

//Job 2
public void map(LongWritable key, Text value,
OutputCollector<IntWritable,Text> output, Reporter reporter)
throws IOException{

String line = value.toString();
//\t is the default delimiter used by a reducer
String[] lineElements = line.split("\t");
output.collect(new
IntWritable(Integer.parseInt(lineElements[1])),

new Text(lineElements[0]));
}
public void reduce(IntWritable key, Iterator<Text> values,
OutputCollector<IntWritable, Text> output, Reporter reporter)
throws IOException{

//there is only one value
output.collect(key, values.next());

}

TABLE II. MAPREDUCE TASKS EXECUTION TIME DIFFERENCES BETWEEN MULTICLUSTER AND SINGLE CLUSTER CASE.

 Job 1 Job 2
Case: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Total time spent by all maps (s) 96 77 53 43 25 69 71 52 1 0 -4 -1 1 11 6 38
Total time spent by all reduces (s) 5 -12 56 97 131 308 29 2082 0 1 5 83 15 2 0 284
Map tasks avg. time (s) 1 1 0 1 0 1 0 0 0 0 -1 0 0 1 1 1
Worse performing map task (s) 1 1 1 -1 0 -1 3 0 0 0 0 0 0 0 0 4
Shuffle avg. time (s) 0 -1 0 1 1 2 3 14 0 0 0 14 0 13 0 12
Worse performing Shuffle (s) 1 -2 0 0 0 4 6 50 0 0 0 14 0 13 0 12
Reduce tasks avg. time (s) 0 0 4 7 10 22 0 160 0 0 5 69 15 -11 -1 272
Worse performing reduce task (s) 0 0 5 38 14 34 -1 255 0 0 5 69 15 -11 -1 272
CPU time spent (s) -2 -8 -2 -2 0 -8 -6 4 0 1 -3 4 4 -2 1 16
Total duration (s) 0 -1 8 42 16 37 6 264 0 0 2 83 14 7 0 284
No. Map tasks on remote node 4 8 5 3 2 3 9 6 0 0 1 0 1 0 0 2
No. Reduce tasks on remote node 2 2 2 2 2 2 0 2 0 0 1 1 0 0 0 0

The last two rows show the number of Map/Reduce tasks executed on the remote node. A negative value indicates that a particular time value vas smaller for the
multicluster.

In Job 2, the Map function inverts its key/value pairs,
making temperature occurrences the keys, and emits them to
the Reduce function that outputs the received pairs. The
sorting by the occurrence is done by the framework as
explained in Section I.B.

Note that default MapReduce configuration parameters
have been used. For the specification please refer to the
Cloudera documentation [6].

III. RESULTS
Table II shows MapReduce tasks’ execution times for

Job 1 and Job 2, for each test case. The presented time values
are the differences between the execution times for
multicluster and single cluster runs. The table also shows the
total CPU time differences and total jobs’ durations
differences. The last two rows, relevant only for the

multicluster run, indicate the number of Map and Reduce
tasks executed on the remote computer.

Fig. 4 shows total durations of the MapReduce jobs in the
single cluster and in the multicluster run, for each test case.

IV. DISCUSSION
It is evident from Fig. 4 that the introduction of a remote

node may introduce a significant slowdown in MapReduce
performance. The slowdown depends on two parameters.
One is the amount of data coming out from Map tasks,
whereas the other is the number of tasks executed on a
remote node (the last two rows in Table II). The amount of
data coming from Map tasks increases with the test case, as
the number of columns in the data increases (see Table I).
The jobs’ execution times are similar until Case 4, regardless
whether there are tasks’ executions on the remote node or
not.

Figure 4. Jobs’ total execution times for the single cluster (left columns) and for the multicluster (right columns)

The data amount significantly increases in Case 4, which
evidently influences the execution times of the Shuffle and
Reduce tasks (Table II). This result was expected, because in
this case the remote node was allocated for Map and Reduce
tasks, which imposed a heavy data communication between
local and remote nodes (Fig. 1) with significantly slower
communication than in the local cluster.

The same pattern can be observed for all the succeeding
cases. Particularly interesting is Case 7 with a low increase
in execution time for Job 1, and no increase in execution
time for Job 2. Table II reveals that there were no Reduce
tasks for Job 1 on the remote node, which restricted the
necessary communication with the remote node only in one
direction – from the remote node to the local nodes. That
obviously decreased the performance but not as significantly
as if the remote node was also used for Reduce tasks. For Job
2, all processing was local, so there was no decrease in
performance.

For Case 8, the amount of the data is the highest and
consequently is the slowdown. For Job 2, there were no
Reduces on the remote node, but the worst Reduce task’s
execution time is relatively very long compared to the
increase in the Shuffle tasks’ execution times. We suspect
that it is probably because of possible instabilities in the
Reduce tasks’ merging procedures, influenced by the
introduction of the remote node.

A comparison of the MapReduce performance in our
multicluster, to the performances previously investigated for
the HDFS [5], reveals that the MapReduce performance is
not as decreased as the HDFS performance. Even in the Case
8, which is the worst case, it is not decreased by a level of
magnitude as the HDFS performance approximately is. This
result was to be expected, because Hadoop does its best to
run MapReduce jobs locally on the computers where the data
resides. Furthermore, the communication to and from the
distant node is consisted of the data coming out of Map tasks
that can be, depending of a job at hand, significantly smaller
than the source data. Additionally, the amount of data sent to
Reduce tasks may be decreased by using Combiner
functions.

The addition of the remote node in the presented use case
means increase of the cluster storage resources for 20%,
since the initial number of computes is five. The small
number of the computers used, means that the chances for
the remote computer to be allocated for a Map or Reduce
task are higher than in the case when there are more
computers in the cluster. Hence, the MapReduce
performances should be higher as the ratio of the number of
local and remote computers increases.

V. CONCLUSION
Adding remote nodes to a Hadoop cluster is a viable

option for increasing storage resources. The MapReduce
performances may or may not decrease, which depends on
the concrete data analyses application, the ratio of the
number of local and remote computers, and on connection
bandwidth to remote computer or computers.

We have observed that the Reduce tasks execution times
may increase even without obvious justifications in
communication latencies. We suspect this result is due to
possible instabilities in the merging processes on Reduce
nodes. This issue needs to be further explored.

The Apache Hadoop MapReduce implementation may be
upgraded for a multicluster environment with a decision
algorithm that would prefer local computers to the remote.
The algorithm should take into account the amount of data
expected to come from Map or Combiner tasks into, which
depends on the concrete application, and consider the
connection bandwidth to the remote nodes.

ACKNOWLEDGMENT
The authors are grateful to Turboinštitut d.d. and CHS

d.o.o., both from Ljubljana, Slovenia, for granting a full
access to their storage and computational resources.

REFERENCES

[1] "Welcome to Apache™ Hadoop®!," Oct., 2012;

http://hadoop.apache.org/.
[2] J. Dean, and S. Ghemawat, “Mapreduce:

Simplified data processing on large clusters,” in
OSDI'04, 2004.

[3] B. Franks, "What is big data and why does it
matter?," Taming the big data tidal wave: finding
opportunities in huge data streams with advanced
analytics, pp. 3-29, Hoboken, New Jersey: John
Wiley & Sons, Inc., 2010.

[4] D. Borthakur et al., “Apache hadoop goes realtime
at Facebook,” in ACM SIGMOD International
Conference on Management of Data, 2011, pp.
1071-1080.

[5] I. Tomasic, J. Ugovsek, A. Rashkovska, and R.
Trobec, “Multicluster Hadoop Distributed File
System,” in MIPRO, 2012 Proceedings of the 35th
International Convention, 2012, pp. 314-318.

[6] I. Cloudera. "CDH Proven, enterprise-ready
Hadoop distribution – 100% open source," Oct,
2012; http://www.cloudera.com/hadoop/.

[7] R. Trobec, M. Šterk, S. Almawed, and V. M.,
“Computer simulation of topical knee cooling,”
Comput. biol. med, vol. 38, pp. 1076-1083, 2008.

[8] G. Kosec, Šarler, Božidar, “Solution of a low
Prandtl number natural convection benchmark by a
local meshless method.,” International journal of
numerical methods for heat & fluid flow, vol. 23,
pp. 22, 2013.

[9] U. Stepišnik, and G. Kosec, “Modelling of slope
processes on karst,” Acta Carsologica, vol. 40, no.
2, pp. 267-273, 2011.

[10] L. Wang et al., “G-Hadoop: MapReduce across
distributed data centers for data-intensive
computing,” Future Generation Computer Systems,
vol. 29, no. 3, pp. 739-750, 2013.

[11] M. Niemenmaa et al., “Hadoop-BAM: Directly
manipulating next generation sequencing data in

the cloud,” Bioinformatics, vol. 28, no. 6, pp. 876-
877, 2012.

[12] J. Lin, and C. Dyer, "Limitations of MapReduce,"
Data-Intensive Text Processing with MapReduce,
Synthesis Lectures on Human Language
Technologies, pp. 143-145: Morgan & Claypool
Publishers, 2010.

[13] T. White, "MapReduce," Hadoop: The Definitive
Guide, pp. 15-40, Gravenstein Highway North,
Sebastopol: O’Reilly Media, Inc., 2010.

[14] T. White, "The Hadoop Distributed Filesystem,"
Hadoop: The Definitive Guide, pp. 41-73,

Gravenstein Highway North, Sebastopol: O’Reilly
Media, Inc., 2010.

[15] I. Cloudera, "Cloudera Manager Free Edition User
Guide,"
https://ccp.cloudera.com/download/attachments/22
151829/CM-4.1-free-user-
guide.pdf?version=1&modificationDate=1354668
306000, Dec, 2012.

[16] T. White, "MapReduce Types and Formats,"
Hadoop: The Definitive Guide, pp. 189-224,
Gravenstein Highway North, Sebastopol: O’Reilly
Media, Inc., 2010.

