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Abstract - Hadoop MapReduce has become one of the most 
popular tools for data processing. Hadoop is normally 
installed on a cluster of computers. When the cluster 
becomes undersized, it can be scaled by adding new 
computers and storage devices, but it can also be extended 
by real or virtual resources from another computer cluster. 
We present a utilization of the MapReduce paradigm on a 
Hadoop installation extended across two clusters connected 
over the Internet. We measured execution times of Map and 
Reduce tasks in a multicluster environment, and compared 
them to the corresponding times obtained while only 
computers from a single cluster are used. The results show 
that there might be a decrease in MapReduce performance 
depending on: the concrete data analyses application, the 
ratio of the number of local and remote computers, and 
connection bandwidth to remote computers. Additionally, 
the investigation suggests an upgrade to the Apache Hadoop 
MapReduce, making it more adjusted to the multicluster 
environment. 

I. INTRODUCTION 
Apache Hadoop [1] is a highly popular set of open 

source modules for distributed computing. The key 
Hadoop components are the Hadoop Distributed File 
System (HDFS) and the MapReduce - a data-processing 
component. Since 2004, when it was introduced [2], the 
MapReduce paradigm has become one of the most 
popular tools for batch-processing large datasets, mostly 
because it allows users to build complex distributed 
programs using a simple model. 

Hadoop has proved its ability to store and analyze 
huge datasets often referred to as the BigData [3]. It has 
been used by Yahoo and Facebook [4]. If a Hadoop 
cluster becomes undersized, a commonly used approach is 
to scale the cluster by adding new computers and storage 
devices. Other possibility is to resort for resources on 
another computer cluster. The additional resources can be 
virtual or real computers. 

In our previous work [5], we presented the steps and 
configurations needed for extending a HDFS installation 
with computers from another cluster accessed over the 
Internet. The presented benchmarks results, for one 
additional computer, showed a drop in read and write 
operations by approximately one order of magnitude. In 
the present study, we investigate the applicability and 
efficiency of the Hadoop MapReduce on the same 
hardware and network topology (see [5] for details). For 

the present study, the Cloudera Apache Hadoop 
distribution CDH 4.1.0 has been used [6].  

For evaluating the MapReduce performance in a 
multicluster environment, we have measured Map and 
Reduce tasks execution times, and compared them to the 
corresponding times obtained on a single cluster. The 
multicluster environment is achieved by connecting an 
additional server using a 100Mb/s link (note that the 
network bandwidth inside the cluster is 1 Gb/s). We 
developed MapReduce jobs for analyzing tabular data 
coming from heat transfer simulation in a biomedical 
application, in particular, cooling of a human knee after 
surgery [7]. Similar data sources can be found also in 
other scientific areas related to multi-parametric 
simulations [8], environmental data analysis [9], high 
energy physics [10], etc., whereas some special problems 
may benefit from specific interfaces to the Hadoop [11]. 

A. MapReduce Paradigm 
The MapReduce user specifies two functions called 

Map and Reduce, which operate on data arranged in 
key/value pairs. The first step is data splitting which is 
done by the MapReduce frameworks. The splits are than 
processed by Map functions which are commonly applied 
on each line of every split. Each Map function invocation 
outputs a list of key/value pairs. In the case of a word 
count, the Map function would output words as the keys 
and numbers of instances of each word in the line as the 
values. The MapReduce framework groups together all 
intermediate values associated with the same intermediate 
key and passes them to the Reduce function, which 
aggregates or merges them together to form a new, 
possibly smaller, set of values. In the word-count 
example, the Reduce function sums and outputs total 
number of instances for each word. The executions of the 
Map and Reduce functions are referred to as Map and 
Reduce tasks, or shortly Mappers and Reducers. A set of 
tasks executed for one application are referred to as a 
MapReduce job. 

B. Apache Hadoop MapReduce Implementation 
The Hadoop splits are fixed-size, whereas a separate 

Map task is created for each split (Fig. 1). The default split 
size is the same as the default size of an HDFS block, 
which is 64 MB. The Hadoop performs data locality 
optimization by running the Map task on the node where 
the input data resides in the HDFS. 

The Map tasks write their outputs to their local disks, 
and partition their outputs, creating one partition for each  The research was funded in part by the European Union, European 
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Figure 1. Schematic representation of MapReduce data flow (Combiner functions are not presented). 

Reduce task. Each partition may contain various keys and 
associated values. All records sharing the same key are 
processed by the same Reduce task. This is achieved by 
using the so-called Partitioner function. The default 
Hadoop MapReduce Partitioner employs a hash function 
on the keys from the Maps’ outputs. Modulo function by 
the number of reducers is subsequently applied to the hash 
values resulting with the Reduce task indexes for each 
key. Fig. 1 shows schematically the MapReduce data 
flow. 

Reduce tasks, unlike Map tasks, cannot convey on data 
locality because the input to a single Reduce task is 
generally formed from outputs of multiple Map tasks 
(Fig.1). On the Reduce task’s node, the sorted map 
outputs are merged before being passed to the Reduce 
task. The data flow between Map and Reduce tasks is 
known as “shuffle”, whereas the merging is logged as a 
part of the Reduce task. The number of Reduce tasks is 
specified independently for a given job. Each Reduce task 
outputs a single file, which is usually stored in the HDFS. 

Hadoop allows a user to specify an additional function, 
called Combiner, which receives all the data emitted by 
the Map tasks on the same node as the input, executes on 
that node, and forms an output that becomes an input to a 
Reduce function. The Combiner function is used to 
achieve data reduction that consequently minimizes data 
transfer over the network and reduces the impact of the 
limited communication bandwidth on the performances of 
a MapReduce job. 

C. MapReduce limitations 
The main limitation of the MapReduce paradigm is 

that each Map and Reduce task must not depend on any 
data generated in other Map or Reduce tasks of the current 
job, as user cannot control the order in which they 
execute. Although applicable to a wide variety of 
problems, there are problems to which the MapReduce is 
not directly applicable. These are recursive computations, 
and algorithms that depend on shared global state. A 
classic example of recursive computation is the Fibonacci 
series where each value is summation of the previous two 
values: ܨሺ݅ሻ = ሺ݅ܨ − 1ሻ + ሺ݅ܨ − 2ሻ . Examples of the 
algorithms that require global synchronization are Online 
learning and Monte Carlo simulations [12]. 

II. METHODS 

A. System Arhitecture 
The utilized system hardware and networking 

architecture has been described in our previous study [5], 
where we used the original Apache Hadoop distribution 
[1]. For the current study, we have used the Cloudera 
distribution [6] that was installed on a cluster of six 
computing nodes. The nodes are connected with Gigabit 
Ethernet, whereas the additional external node is 
connected through a 100Mb/s channel. 

One of the nodes is designated as the namenode, while 
others are the datanodes. The namenode also hosts the 
jobtracker. All machines in the cluster run an instance of a 
datanode and a tasktracker. For a description of the HDFS 
and MapReduce nodes refer to [13], [14]. After joining the 
additional node, the obtained Hadop multicluster has been 
rebalanced by executing Cloudera’s HDFS balancer [15], 
to allow the data blocks to be equally distributed to the 
additional node. 

B. Test Dataset 
A computer simulation of two hours cooling of a 

human knee after surgery was performed for 10 different 
knee sizes, 10 different initial temperature states before 
cooling, and 10 different temperatures of the cooling pad. 
This resulted in 1000 simulation cases. The results of 
those simulation cases were gathered in 100 files. Each 
file contained 71970 rows or approximately 44 MB of 
data. Each data row was composed of the following 
parameters, i.e. columns: RT, D, IS, CT, T1, T2, … , T85, 
where are: RT - relative time in a simulation case, D - 
knee size, IS –initial state, CT – cooling temperature, 

TABLE I.   LIST OF TEST CASES 

Case Parameters 

1 T1 

2 T1-T5 

3 T1,T6,T11,T16,T21 

4 T1-T21 

5 T1,T6,T11,T16,T21,T46,T51,T56,T61 

6 T1-T21,T46-T61 

7 T1,T6,T11,T16,T21,T26,T31,T36,T41,T46,T51, 
T56,T61,T66,T71,T76,T81 

8 T1-T85 



 
Figure 2. MapReduce jobs pipeline. 

T1-T85 – inner and outer knee temperatures, i.e., 
temperatures at a particular location in the knee center, 8 
locations on the knee skin and 8 respective locations under 
the cooling pad, all taken in the current and in previous time 
steps. In order to assess the periodicities in the knee 
simulation results, we assigned the MapReduce to count the 
occurrences of the same value arrays for a subset of knee 
temperatures T; more precisely, to count the occurrences of 
identical rows after having projected only columns of T that 
are of interest. We will refer to the number of occurrences of 
identical rows as temperatures’ frequencies.  

We defined and examined 8 cases with different sets of 
T. The cases are given in Table I.  

C. MapReduce jobs 
The MapReduce jobs pipeline for solving our test cases is 

illustrated in Fig. 2. Job 1 counts the occurrences of the same 
value arrays for a subset of temperatures, whereas Job2 
combines outputs from Job 1 and orders the combined rows 
by temperature frequency. 

The sizes of the input files are smaller than the HDFS 
block size (in our case: 64 MB). Hence, the number of input 
Map tasks in Job 1 is equal to the number of input files [16], 
i.e., each input file is processed by a different Map task. The 
number of Reduce tasks is set to 12 for Job 1, hence the 
output of Job 1 now consists of 12 files. Each file contains a 
unique combination of temperatures and the number of their 
occurrences. Job 2 combines Reduce tasks’ outputs from Job 
1 into a single file (in Job 2, the number of Reduce tasks is 
set to 1). It also sorts the input columns in the output file by 
temperatures’ frequencies. The number of Map tasks in Job 2 
depends on the test case (Table I) and varies between 12 for 
Case 1 and 36 for Case 8. Job 1 has the same Combiner and 
Reduce functions, whereas the Combiner function for the Job 
2 is not specified, since there are no multiple rows for the 
same key in the Map tasks output data. The implementation 
of both Jobs is given in Fig. 3. 

In the Map function of Job 1, from each input row, only 
the relevant columns (see Table I) are extracted. For 
example, in test case 2, only the columns belonging to T1-T5 
will be extracted in the SearchString variable. Reduce 
functions sum, i.e., count the number of occurrences of each 

combination of temperatures (the key) and outputs it as the 
new value for the current key. Because all the values for one 
key are processed by a single Reduce task, it is evident that 
the output of Job 1 consists of unique combinations of 
temperatures and the number of their occurrences. 

 

 
Figure 3. Java code segments of Map and Reduce tasks for Job 1 and Job 2. 

//Job 1 
public void map(LongWritable key,Text value, 
OutputCollector<Text,IntWritable> output, Reporter reporter)  
throws IOException{ 

String line = value.toString(); 
String[] lineElements  = line.split(","); 
String SearchString = null 
//depending on a case (Table I) concatenate different 
lineElements in //SearchString 
… 
word.set(SearchString); 
output.collect(word, new IntWritable(1)); 

} 
public void reduce(Text key, Iterator<IntWritable> values, 
OutputCollector<Text, IntWritable> output, Reporter reporter)  
throws IOException{ 

int sum = 0; 
while (values.hasNext()){ 

sum += values.next().get(); 
} 
output.collect(key, new IntWritable(sum)); 

} 

//Job 2 
public void map(LongWritable key, Text value, 
OutputCollector<IntWritable,Text> output, Reporter reporter) 
throws IOException{ 

String line = value.toString(); 
//\t is the default delimiter used by a reducer 
String[] lineElements  = line.split("\t");  
output.collect(new 
IntWritable(Integer.parseInt(lineElements[1])),  

new Text(lineElements[0])); 
} 
public void reduce(IntWritable key, Iterator<Text> values, 
OutputCollector<IntWritable, Text> output, Reporter reporter) 
throws IOException{ 

//there is only one value 
output.collect(key, values.next()); 

} 



TABLE II.  MAPREDUCE TASKS EXECUTION TIME DIFFERENCES BETWEEN MULTICLUSTER AND SINGLE CLUSTER CASE. 

 Job 1 Job 2 
Case: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
Total time spent by all maps (s) 96 77 53 43 25 69 71 52 1 0 -4 -1 1 11 6 38 
Total time spent by all reduces (s) 5 -12 56 97 131 308 29 2082 0 1 5 83 15 2 0 284 
Map tasks avg. time (s) 1 1 0 1 0 1 0 0 0 0 -1 0 0 1 1 1 
Worse performing map task (s) 1 1 1 -1 0 -1 3 0 0 0 0 0 0 0 0 4 
Shuffle avg. time (s) 0 -1 0 1 1 2 3 14 0 0 0 14 0 13 0 12 
Worse performing Shuffle (s) 1 -2 0 0 0 4 6 50 0 0 0 14 0 13 0 12 
Reduce tasks avg. time (s) 0 0 4 7 10 22 0 160 0 0 5 69 15 -11 -1 272 
Worse performing reduce task (s) 0 0 5 38 14 34 -1 255 0 0 5 69 15 -11 -1 272 
CPU time spent (s) -2 -8 -2 -2 0 -8 -6 4 0 1 -3 4 4 -2 1 16 
Total duration (s) 0 -1 8 42 16 37 6 264 0 0 2 83 14 7 0 284 
No. Map tasks on remote node 4 8 5 3 2 3 9 6 0 0 1 0 1 0 0 2 
No. Reduce tasks on remote node 2 2 2 2 2 2 0 2 0 0 1 1 0 0 0 0 

The last two rows show the number of Map/Reduce tasks executed on the remote node. A negative value indicates that a particular time value vas smaller for the 
multicluster. 

In Job 2, the Map function inverts its key/value pairs, 
making temperature occurrences the keys, and emits them to 
the Reduce function that outputs the received pairs. The 
sorting by the occurrence is done by the framework as 
explained in Section I.B. 

Note that default MapReduce configuration parameters 
have been used. For the specification please refer to the 
Cloudera documentation [6].  

III. RESULTS 
Table II shows MapReduce tasks’ execution times for 

Job 1 and Job 2, for each test case. The presented time values 
are the differences between the execution times for 
multicluster and single cluster runs. The table also shows the 
total CPU time differences and total jobs’ durations 
differences. The last two rows, relevant only for the 

multicluster run, indicate the number of Map and Reduce 
tasks executed on the remote computer.  

Fig. 4 shows total durations of the MapReduce jobs in the 
single cluster and in the multicluster run, for each test case. 

IV. DISCUSSION 
It is evident from Fig. 4 that the introduction of a remote 

node may introduce a significant slowdown in MapReduce 
performance. The slowdown depends on two parameters. 
One is the amount of data coming out from Map tasks, 
whereas the other is the number of tasks executed on a 
remote node (the last two rows in Table II). The amount of 
data coming from Map tasks increases with the test case, as 
the number of columns in the data increases (see Table I). 
The jobs’ execution times are similar until Case 4, regardless 
whether there are tasks’ executions on the remote node or 
not.  

 
Figure 4. Jobs’ total execution times for the single cluster (left columns) and for the multicluster (right columns)  



The data amount significantly increases in Case 4, which 
evidently influences the execution times of the Shuffle and 
Reduce tasks (Table II). This result was expected, because in 
this case the remote node was allocated for Map and Reduce 
tasks, which imposed a heavy data communication between 
local and remote nodes (Fig. 1) with significantly slower 
communication than in the local cluster. 

The same pattern can be observed for all the succeeding 
cases. Particularly interesting is Case 7 with a low increase 
in execution time for Job 1, and no increase in execution 
time for Job 2. Table II reveals that there were no Reduce 
tasks for Job 1 on the remote node, which restricted the 
necessary communication with the remote node only in one 
direction – from the remote node to the local nodes. That 
obviously decreased the performance but not as significantly 
as if the remote node was also used for Reduce tasks. For Job 
2, all processing was local, so there was no decrease in 
performance. 

For Case 8, the amount of the data is the highest and 
consequently is the slowdown. For Job 2, there were no 
Reduces on the remote node, but the worst Reduce task’s 
execution time is relatively very long compared to the 
increase in the Shuffle tasks’ execution times. We suspect 
that it is probably because of possible instabilities in the 
Reduce tasks’ merging procedures, influenced by the 
introduction of the remote node. 

A comparison of the MapReduce performance in our 
multicluster, to the performances previously investigated for 
the HDFS [5], reveals that the MapReduce performance is 
not as decreased as the HDFS performance. Even in the Case 
8, which is the worst case, it is not decreased by a level of 
magnitude as the HDFS performance approximately is. This 
result was to be expected, because Hadoop does its best to 
run MapReduce jobs locally on the computers where the data 
resides. Furthermore, the communication to and from the 
distant node is consisted of the data coming out of Map tasks 
that can be, depending of a job at hand, significantly smaller 
than the source data. Additionally, the amount of data sent to 
Reduce tasks may be decreased by using Combiner 
functions.  

The addition of the remote node in the presented use case 
means increase of the cluster storage resources for 20%, 
since the initial number of computes is five. The small 
number of the computers used, means that the chances for 
the remote computer to be allocated for a Map or Reduce 
task are higher than in the case when there are more 
computers in the cluster. Hence, the MapReduce 
performances should be higher as the ratio of the number of 
local and remote computers increases. 

V. CONCLUSION 
Adding remote nodes to a Hadoop cluster is a viable 

option for increasing storage resources. The MapReduce 
performances may or may not decrease, which depends on 
the concrete data analyses application, the ratio of the 
number of local and remote computers, and on connection 
bandwidth to remote computer or computers. 

We have observed that the Reduce tasks execution times 
may increase even without obvious justifications in 
communication latencies. We suspect this result is due to 
possible instabilities in the merging processes on Reduce 
nodes. This issue needs to be further explored. 

The Apache Hadoop MapReduce implementation may be 
upgraded for a multicluster environment with a decision 
algorithm that would prefer local computers to the remote. 
The algorithm should take into account the amount of data 
expected to come from Map or Combiner tasks into, which 
depends on the concrete application, and consider the 
connection bandwidth to the remote nodes. 

ACKNOWLEDGMENT  
The authors are grateful to Turboinštitut d.d. and CHS 

d.o.o., both from Ljubljana, Slovenia, for granting a full 
access to their storage and computational resources.  

REFERENCES 
 
[1] "Welcome to Apache™ Hadoop®!," Oct., 2012; 

http://hadoop.apache.org/. 
[2] J. Dean, and S. Ghemawat, “Mapreduce: 

Simplified data processing on large clusters,” in 
OSDI'04, 2004. 

[3] B. Franks, "What is big data and why does it 
matter?," Taming the big data tidal wave: finding 
opportunities in huge data streams with advanced 
analytics, pp. 3-29, Hoboken, New Jersey: John 
Wiley & Sons, Inc., 2010. 

[4] D. Borthakur et al., “Apache hadoop goes realtime 
at Facebook,” in ACM SIGMOD International 
Conference on Management of Data, 2011, pp. 
1071-1080. 

[5] I. Tomasic, J. Ugovsek, A. Rashkovska, and R. 
Trobec, “Multicluster Hadoop Distributed File 
System,” in MIPRO, 2012 Proceedings of the 35th 
International Convention, 2012, pp. 314-318. 

[6] I. Cloudera. "CDH Proven, enterprise-ready 
Hadoop distribution – 100% open source," Oct, 
2012; http://www.cloudera.com/hadoop/. 

[7] R. Trobec, M. Šterk, S. Almawed, and V. M., 
“Computer simulation of topical knee cooling,” 
Comput. biol. med, vol. 38, pp. 1076-1083, 2008. 

[8] G. Kosec, Šarler, Božidar, “Solution of a low 
Prandtl number natural convection benchmark by a 
local meshless method.,” International journal of 
numerical methods for heat & fluid flow, vol. 23, 
pp. 22, 2013. 

[9] U. Stepišnik, and G. Kosec, “Modelling of slope 
processes on karst,” Acta Carsologica, vol. 40, no. 
2, pp. 267-273, 2011. 

[10] L. Wang et al., “G-Hadoop: MapReduce across 
distributed data centers for data-intensive 
computing,” Future Generation Computer Systems, 
vol. 29, no. 3, pp. 739-750, 2013. 

[11] M. Niemenmaa et al., “Hadoop-BAM: Directly 
manipulating next generation sequencing data in 



the cloud,” Bioinformatics, vol. 28, no. 6, pp. 876-
877, 2012. 

[12] J. Lin, and C. Dyer, "Limitations of MapReduce," 
Data-Intensive Text Processing with MapReduce, 
Synthesis Lectures on Human Language 
Technologies, pp. 143-145: Morgan & Claypool 
Publishers, 2010. 

[13] T. White, "MapReduce," Hadoop: The Definitive 
Guide, pp. 15-40, Gravenstein Highway North, 
Sebastopol: O’Reilly Media, Inc., 2010. 

[14] T. White, "The Hadoop Distributed Filesystem," 
Hadoop: The Definitive Guide, pp. 41-73, 

Gravenstein Highway North, Sebastopol: O’Reilly 
Media, Inc., 2010. 

[15] I. Cloudera, "Cloudera Manager Free Edition User 
Guide," 
https://ccp.cloudera.com/download/attachments/22
151829/CM-4.1-free-user-
guide.pdf?version=1&modificationDate=1354668
306000, Dec, 2012. 

[16] T. White, "MapReduce Types and Formats," 
Hadoop: The Definitive Guide, pp. 189-224, 
Gravenstein Highway North, Sebastopol: O’Reilly 
Media, Inc., 2010. 

 
 


