

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Multicluster Hadoop Distributed File System

I. Tomašić, J. Ugovšek, A. Rashkovska and R. Trobec
Jožef Stefan Institute/Department of Communication Systems, Ljubljana, Slovenia

Ivan.Tomasic@ijs.si, janez@ugovsek.info, Aleksandra.Rashkovska@ijs.si, Roman.Trobec@ijs.si

Abstract - The Hadoop Distributed File System (HDFS) is
one of the important subprojects of the Apache Hadoop
project that allows the distributed processing and fast access
to large data sets on distributed storage platforms. The
HDFS is normally installed on a cluster of computers. When
the cluster becomes undersized, one commonly used
possibility is to scale the cluster by adding new computers
and storage devices. Another possibility, not exploited so
far, is to resort for resources on another computer cluster.
In this paper we present a multicluster HDFS installation
extended across two clusters, with different operating
systems, connected over the Internet. The specific
networking parameters and HDFS configuration
parameters, needed for a multicluster installation, are
presented. We have benchmarked a single and dual cluster
installation with the same networking and configuration
parameters. The benchmark results indicate that
multicluster HDFS provide increased storage area, however,
the data manipulation speed is limited by the bandwidth of
communication channel that connects both clusters.

I. INTRODUCTION
The big data applications on distributed storage

systems gain importance in different fields of applications
[1-3]. The Apache Hadoop [4] is an open source software
project sponsored by the Apache Software Foundation
(http://www.apache.org). The Apache Hadoop software
library allows the distributed processing of large data sets
across clusters of computers using a simple programming
model. It is designed to scale up from a single server to
thousands of machines, each offering local computation
and storage [5]. Rather than rely just on hardware to
deliver high-availability, the HDFS library is designed to
detect and handle failures at the application layer. As a
result, the HDFS is a highly-available service that can be
installed on commercially available clusters of computers,
which have not been built with any special care for
minimizing the failure rate.

Hadoop encompasses multiple subprojects:

• Hadoop Common: The common utilities that support
the other Hadoop subprojects,

• Hadoop Distributed File System (HDFS): A
distributed file system that provides high-throughput
access to application data, and

• Hadoop MapReduce: A software framework for
distributed processing of large data sets on compute
clusters.

The HDFS is a file system designed for storing very
large files with streaming data access patterns, running on

clusters of commodity hardware. There are Hadoop
clusters running today that store petabytes of data [6].

Since the Hadoop is designed to run on commodity
hardware, when a Hadoop cluster becomes undersized,
one commonly used possibility is to scale the cluster by
adding new computers and storage devices. Another
possibility, not exploited so far, is to resort for resources
on another computer cluster. The latter paradigm is
sometimes called “scaling out”.

The Hadoop cluster nodes are organized in a master-
worker pattern. There is one namenode that has the master
role and there is a number of datanodes, which are the
slaves. The namenode manages the file system
namespace. It maintains the file system tree and the
metadata for all the files and directories in the tree. All
this information is stored on a disk in the form of two
files: the namespace image and the edit log. The
namenode is configured to know the addresses of the
datanodes that store the blocks for a given file.

A Hadoop client accesses the HDFS file system by
communicating with the namenode and datanodes. The
user code does not need to know about the namenode and
datanode functionality because of the POSIX-like [7] file
system interface between the Hadoop client and the
system.

The datanodes store or retrieve blocks when a request
comes from the Headoop client or the namenode. The
datanodes also report periodically to the namenode and
send it lists of blocks that they are storing. Without the
namenode, the file system cannot be used. In a case of an
error on the machine running the namenode, all the files
on the file system could be lost because there is no
alternative way to reconstruct the files from the blocks on
the datanodes. For this reason, it is important to make the
namenode resilient to failures.

To evaluate the feasibility and effectiveness of HDFS,
we have made a test HDFS installation. The installation
consists of a single namenode and five datanodes inside a
cluster residing at Jožef Stefan Institute (JSI), and one
additional datanode on a cluster accessible over the
Internet and located at Turboinštitut d.d. (TI). Hence, the
installed system spreads over two clusters and is therefore
called multicluster HDFS installation. It is to be
distinguished from the notion of a hybrid cloud, which
represents a collaboration of a private and a public cloud.

In the rest of the paper the architecture of the HDFS
multicluster is described together with the description of
HDFS configuration parameters. For the purpose of

testing and a
constructed a
Section III.
commented
summary of
future work.

A. System ar
The expe

configuration

• Master n
the head

o
o

• each of
subnode

o
o

The namenod
machine, as i
on clusters w

Each nod
disk with the
node is equip
cluster is 1
bandwidth is
RAM and Int
with four cor

The TI cl
@ 2.27GHz
of RAM. Th
disk.

On each o
allocated for
are formatted

This work w
ServiceS (KC C
Science and Tec
Development.

analyzing the
a set of benc
The benchm

in Section IV
achieved resu

II.

rhitecture
erimental HDF
n:

node, the mu
dnode of the JS

namenode
jobtracker,
subnodes 1 t

e at the TI clus
datanode
tasktrecker.

de and the job
it is usually ac

with up to 10 n

de on the JSI c
e rotation spe
pped with the
Gb/s, while t
 100 Mb/s. Ea
tel(R) Xeon(R
res.

luster node ha
processors, ea

he TI cluster n

of the availab
r the utilizatio
d with the ext4

was done under th
CLASS), founded
chnology, and the

HDFS perfo
chmark progr

mark results a
V. Our paper
ults and some

METHODS

FS installation

ulticluster’s he
SI cluster, is ru

till 5 at the J
ster are runnin

btracker are ru
cceptable for

nodes [8].

cluster has a s
ed of 7200 rp
RAID. The lo

the external in
ach JSI cluster
R) E5520 @ 2

as two Intel(R
ach with four
node has a si

le disks a part
on by the HD
4 file system.

he competence ce
by the Slovenian

e European Fund

rmances, we
rams, describe
are presented

concludes w
e directions fo

n has the follo

eadnode, whi
unning:

JSI cluster and
ng:

unning on the
small clusters

single 500 GB
pm. Only the
ocal network i
nternet conne
r node has 6 G
.27 GHz proc

R) Xeon(R) L
cores, and 24

ingle 260 GB

tition of 200 G
DFS. The parti

enter CLoud Assi
n Ministry of Edu
for Regional

Figure 1. Mult

have
ed in

d and
with a
or the

owing

ch is

d the

same
s, i.e.,

B data
head

in the
ection
GB of
essor

L5520
4 GB
 data

GB is
itions

T
oper
SUS
syste

B. H
S

wide
pass
mac
gene
acro

T
of a
Had
Had
conf
Had
its
adm
acro
rudim
usin

T
file
mac
run.
the I
the V
the
these
mac

T
env.s
impl
env.
beca
vers

T
site.x
insta

isted
ucation

ticluster storage s

The JSI clus
rating system,
SE Linux oper
em architectur

HDFS Configu
Since Hadoop
e operations,
sword-less lo
hines in the m
erating one R
oss the multiclu

The software
an environme

doop daemons,
doop configur
figuration file

doop distributi
own set of

ministrator to e
oss the who
mentary facil

ng rsync [10].

The list of all
containing IP
hines where
In our multic

IP address of
Virtual Private
VPN address
e are the on
hine.

The paramete
sh configurati
lementation to
sh on all the m

ause it ensures
ion of Java.

The paramete
xml configura
allation) set t

ystem arhitecture

ster nodes ru
, while the T
rating system.
re is shown in

uration
p scripts rely o
 SSH needs

ogin for the
multicluster sy
RSA [9] publ
uster.

configuration
ent configurat
, and their par
ration parame
es located in
on. Each Had
configuration

ensure that th
le system. T
lity for synch

datanodes is
 addresses (on
the datanode

cluster archite
the TI node, w
e Network (V
s of machines
nly addresses

er JAVA_HO
ion file specif
o be used. Se
machines in th
s that the who

er fs.default.n
ation file, is
to the IP add

e

un under Ub
TI cluster nod

The describe
n Fig. 1.

on SSH to per
s to be setu

Hadoop us
ystem. This is
lic/private key

of Hadoop cl
tion for the
rameters confi
eters are store

the conf dire
doop node in t
n files. It i
hey are kept
The Hadoop
hronizing con

in the slaves
n the local ne

es and tasktra
ecture the list
which can be

VPN). It is obl
s in another

visible to th

OME located
fies the locatio
etting the valu
he multicluster
ole cluster is u

name, located
normally (in
dress or the

buntu Server
de runs under
d multicluster

rform cluster-
up to allow
ser from all
s achieved by
y pair shared

luster consists
execution of

iguration. The
ed in various
ectory of the
the cluster has
s up to the
synchronized

p provides a
nfiguration by

configuration
etwork) of the
ackers should
also contains
accessed over
igatory to use
cluster, since
he namenode

d in hadoop-
on of the Java
ue in hadoop-
r is preferable

using the same

in the core-
plain cluster
name of the

r
r
r

-
w
l
y
d

s
f
e
s
e
s
e
d
a
y

n
e
d
s
r
e
e
e

-
a
-
e
e

-
r
e

namenode machine. It is an HDFS file system URI that
defines the hostname and the port that the namenode’s
RPC server runs on. The default port is 8020. However, in
the multicluster installation, the machine (or machines)
located outside the namenode’s cluster do not “see” the
namenodes’s IP on the local network. Therefore, it is
necessary to use the namenodes VPN address, which is
seen by all machines in the multicluster. Note that when a
property is marked as final it is protected from being
overridden by job configurations.

The parameters dfs.name.dir in the hdfs-site.xml
configuration file specifies a list of directories where the
namenode stores persistent files system metadata, while
dfs.data.dir parameter in the same file specifies a list of
directories where the datanode stores its blocks. In the
multicluster installation, the nodes in the main cluster may
need different dfs.data.dir parameter value than the nodes
on the remote cluster. Because the remote cluster may be
using different operating system and may be controlled by
different administrator, the directory configured for the
main cluster does not have to exist on the remote cluster.
Therefore, in our case, two versions of the hdfs-site.xml
configuration file are maintained: one for the nodes on the
main JSI cluster and other for the node on the remote TI
cluster. All the other parameters are left default. Note that
the default replication factor is three.

The same holds for parameters mapred.local.dir and
mapred.system.dir from the mapred-site.xml configuration
file, which specify the location of local temporary storage
for intermediate data and working files that are produced
during a MapReduce job [11], and a directory where the
shared files for the MapReduce tasks files can be stored.
Hence, for our multicluster, two versions of the mapred-
site.xml configuration file are maintained.

III. PROGRAMS FOR TESTING
We have developed scripts for benchmarking of the

Hadoop deployment.

File 1. hadoop.sh

The file hadoop.sh (File 1.) is a script that does the file
operations. The first parameter of the script is
therequested file operation: deletion, listing, copying to
HDFS, or copying from HDFS. The second parameter is
the file name.

The script hadoop_testing.sh does the actual
benchmarking (File 2). It is accessing files of different
sizes, copying them to or from the HDFS, and measuring
the time needed for the operation. It uses the script
hadoop.sh for the actual operations with files. Each copy
operation is repeated 5 times to obtain an average
operation time.

File 2. hadoop_testing.sh

#!/bin/bash

writing

for i in 1 10 100 1000 10000 100000 1000000
2000000 3000000; do

#fill the cache

dd if=benchmark/$i.file of=/dev/null
 &>>/dev/null

echo -n "$i, "

for ((j=0; j<5; j++));

do

#writing time

time=$(/usr/bin/time -f %e ./hadoop.sh up
 benchmark/$i.file 2>&1)

echo -n "`echo $time | awk '{print $1}'`, "

if [["$j" != "4"]]; then

 ./hadoop.sh rm $i.file &>>/dev/null

fi

done

done

reading

for i in 1 10 100 1000 10000 100000 1000000
2000000 3000000; do

echo -n "$i, "

for ((j=0; j<5; j++));

do

#reading time

time=$(/usr/bin/time -f %e ./hadoop.sh down
 $i.file 2>&1)

echo -n "`echo $time | awk '{print $1}'`, "

rm $i.file

done

done

exit 0

#!/bin/bash

if [["$1" == "rm"]]; then

/usr/local/hadoop-0.20.203.0/bin/hadoop dfs -fs
 hdfs://ninestein/ -rm /user/guest/$2

elif [["$1" == "ls"]]; then

/usr/local/hadoop-0.20.203.0/bin/hadoop dfs -fs
 hdfs://ninestein/ -ls

elif [["$1" == "up"]]; then

/usr/local/hadoop-0.20.203.0/bin/hadoop dfs -fs
 hdfs://ninestein/ -copyFromLocal $2 /user/guest

elif [["$1" == "down"]]; then

rm $2 &>>/dev/null

/usr/local/hadoop-0.20.203.0/bin/hadoop dfs -fs
 hdfs://ninestein/ -copyToLocal /user/guest/$2 .

fi

IV. BENC

Figure 2. R

Figure 4. R

Figure 6. Read

Figure 8. Read

CHMARK RESUL

Read bandwidth a

Read bandwidth as

d bandwidth as a
(JS

d bandwidth as a
(mu

LTS

as a function of fi

s a function of fil

function of file si
SI cluster)

function of file si
ulticluster)

ile size (JSI cluste

le size (multiclust

ize in logarithmic

ize in logarithmic

er) Fi

ter) Fig

c scale Fig

c scale Figu

igure 3. Write b

gure 5. Write ba

gure 7. Write ba

ure 9. Writing b

bandwidth as a fu

andwidth as a fun

andwidth as a fun
scale (JSI c

bandwidth as a fu
scale (multic

unction of file size

nction of file size

nction of file size
cluster)

unction of file size
cluster)

e (JSI cluster)

 (multicluster)

in logarithmic

e in logarithmic

The read and write operations have been conducted
from the headnode, located on the JSI cluster, and from a
JSI cluster’s subnode.

The read and write bandwidths were tested for file
sizes form 1 kB up to 3 ∙ 10 kB. Any experiment has
been repeated five times for each file size. The whiskers
on the graphs (Figures 2 - 9) represent value ranges (max-
min) for the five cases, while the mark represents the
average value of each set of experiments.

Fig. 2 and 3 show the read and write performances
obtained on the JSI cluster only (the TI node was not a
part of the test system). Fig. 4 and Fig. 5 depict the read
and write performances obtained on the interconnected JSI
and TI clusters (multicluster). Figures 6 – 9 show the same
results but in the logarithmic scale on the y axis to provide
better inside into the performances for smaller files.

We see from Fig. 2 and Fig. 3, obtained from the JSI
cluster, that the read and write bandwidths are almost the
same regardless of the node from which the operations are
conducted. The maximal write bandwidth is approxi-
mately 35 % lower than the maximal read bandwidth.

In the multicluster case (Fig. 4 and Fig. 5), the read
bandwidth is significantly higher for the headnode. This
behavior can be expected because, if the read operations
are performed form a subnode, there is a possibility for a
delay due to the communication with the headnode. The
maximal write bandwidth is almost equal for the headnode
and the subnode. However, for file sizes of 10 kB the
write bandwidth is higher if write operations are
performed from the subnode. We could explain such a
behavior with eventually available storage data buffers.

The logarithmic scale of y-axis in Fig. 6 to Fig. 9.
discovers that the bandwidths grow linearly up to file sizes
of 10 kB. We can observe that the manipulation with the
smaller files is constantly 10 times slower on the
multicluster system. For files larger than 10 kB the
bandwidths reach their maximal values and remain quite
stable. Again, there is approximately tenfold difference in
the bandwidth in favor of the system with IJS cluster only.
This can be expected because the data from the TI cluster
are accessed through the 100 Mb/s Internet connection,
which is approximately ten times slower than the JSI
cluster network (see Fig 1.).

V. CONLUSION
We have presented the steps and configurations

needed for deploying the Hadoop on a multicluster. We
further tested the installation with a series of benchmarks,
developed for this purpose. The multicluster paradigm
enables a HDFS cluster to be scaled out to physical
machines that are accessible over the internet. Such an
approach may decrease the investments if an existing
storage system becomes occasionally undersized.

We have performed a series of benchmarks on the JSI
Hadoop cluster and on the multicluster constituted by
joining a storage node from the TI cluster. Benchmark
results indicate that the read and write bandwidths drop
significantly with joining the TI node. One obvious reason
for such a behavior is slow communication line between
the clusters, but this drawback can be easily improved by

introducing a faster interconnection channel. Further
investigation is needed to identify the Hadoop implement-
tation properties that influence the fall of performance.
We suspect that a smarter organization of data items on a
higher abstraction level, e.g., user location aware
approach, could, in most cases, alleviate this problem.

However, the drop in read and write bandwidths does
not necessary imply the same drop in performances of
MapReduce jobs, because Hadoop does its best to run the
Map tasks on nodes where input data reside in the HDFS,
because of build-in “data locality optimization” principle.
The Reduce tasks, usually, don’t possess the advantage of
data locality as the input to a single reduce task is most
often the output from all mappers. Further tests with
MapReduce jobs are therefore needed to investigate the
influence of the multicluster architecture on the Hadoop
MapReduce performances.

The multicluster storage, presented in this paper, was
built from computing nodes of two clusters on different
geographical positions, with different hardware platforms
and different operating systems, which confirms that a
multicluster Hadoop on heterogeneous clusters is a viable
option. The read and write performances of HDFS, if
critical for a multicluster application, have to be
improved, e.g., by increasing the communication speed of
the inter-cluster connection.

ACKNOWLEDGMENT
The authors are grateful to Turboinštitut d.d. for

granting a full access to their storage and computational
resources at Ljubljana Supercomputing Center - LSC
ADRIA.

REFERENCES
[1] Thilina Gunarathne, Tak-Lon Wu, Judy Qiu, and Geoffrey Fox,

"Cloud Computing Paradigms for Pleasingly Parallel Biomedical
Applications," Concurrency and Computation: Practice and
Experience, vol. 23, no. 17, pp. 2338–2354, 2011.

[2] Yunhong Gu and Robert L. Grossman, "Sector and sphere: The
design and of a high-performance data cloud," Philosophical
Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 367, no. 1897, pp. 2429-2445 , 2009.

[3] E. Afgan et al., "Harnessing cloud computing with Galaxy Cloud,"
Nature Biotechnology, vol. 29, no. 11, pp. 972-974, 2011.

[4] Welcome to Apache Hadoop. [Online]. http://hadoop.apache.org/

[5] S. Yu, X. Gui, R. Huang, and W. Zhuang, "Improving the storage
efficiency of small files in cloud storage," Hsi-An Chiao Tung Ta
Hsueh/Journal of Xi'an Jiaotong University, vol. 45, no. 6, 2011.

[6] Yahoo. [Online]. (2008, September)
http://developer.yahoo.com/blogs/hadoop/posts/2008/09/scaling_had
oop_to_4000_nodes_a/

[7] IEEE Standard Association. [Online].
http://standards.ieee.org/findstds/standard/1003.1-2008.html

[8] Tom White, "The Hadoop Distributed Filesystem," in Hadoop: The
Definitive Guide. Sebastopol,: O’Reilly Media, Inc., 2011, ch. 3.

[9] Wikipedia. [Online].
http://en.wikipedia.org/wiki/RSA_%28algorithm%29

[10] Wikipedia. [Online] http://en.wikipedia.org/wiki/Rsync

[11] S.N. Srirama, P. Jakovits, and E. Vainikko, "Adapting scientific
computing problems to clouds using MapReduce," Future
Generation Computer Systems, vol. 28, no. 1, pp. 184-192, 2012.

