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Abstract - The Hadoop Distributed File System (HDFS) is 
one of the important subprojects of the Apache Hadoop 
project that allows the distributed processing and fast access 
to large data sets on distributed storage platforms. The 
HDFS is normally installed on a cluster of computers. When 
the cluster becomes undersized, one commonly used 
possibility is to scale the cluster by adding new computers 
and storage devices. Another possibility, not exploited so 
far, is to resort for resources on another computer cluster. 
In this paper we present a multicluster HDFS installation 
extended across two clusters, with different operating 
systems, connected over the Internet. The specific 
networking parameters and HDFS configuration 
parameters, needed for a multicluster installation, are 
presented. We have benchmarked a single and dual cluster 
installation with the same networking and configuration 
parameters. The benchmark results indicate that 
multicluster HDFS provide increased storage area, however, 
the data manipulation speed is limited by the bandwidth of 
communication channel that connects both clusters.  

I. INTRODUCTION 
The big data applications on distributed storage 

systems gain importance in different fields of applications 
[1-3]. The Apache Hadoop [4] is an open source software 
project sponsored by the Apache Software Foundation 
(http://www.apache.org). The Apache Hadoop software 
library allows the distributed processing of large data sets 
across clusters of computers using a simple programming 
model. It is designed to scale up from a single server to 
thousands of machines, each offering local computation 
and storage [5]. Rather than rely just on hardware to 
deliver high-availability, the HDFS library is designed to 
detect and handle failures at the application layer. As a 
result, the HDFS is a highly-available service that can be 
installed on commercially available clusters of computers, 
which have not been built with any special care for 
minimizing the failure rate. 

Hadoop encompasses multiple subprojects: 

• Hadoop Common: The common utilities that support 
the other Hadoop subprojects, 

• Hadoop Distributed File System (HDFS): A 
distributed file system that provides high-throughput 
access to application data, and 

• Hadoop MapReduce: A software framework for 
distributed processing of large data sets on compute 
clusters. 

The HDFS is a file system designed for storing very 
large files with streaming data access patterns, running on 

clusters of commodity hardware. There are Hadoop 
clusters running today that store petabytes of data [6]. 

Since the Hadoop is designed to run on commodity 
hardware, when a Hadoop cluster becomes undersized, 
one commonly used possibility is to scale the cluster by 
adding new computers and storage devices. Another 
possibility, not exploited so far, is to resort for resources 
on another computer cluster. The latter paradigm is 
sometimes called “scaling out”. 

The Hadoop cluster nodes are organized in a master-
worker pattern. There is one namenode that has the master 
role and there is a number of datanodes, which are the 
slaves. The namenode manages the file system 
namespace. It maintains the file system tree and the 
metadata for all the files and directories in the tree. All 
this information is stored on a disk in the form of two 
files: the namespace image and the edit log. The 
namenode is configured to know the addresses of the 
datanodes that store the blocks for a given file. 

A Hadoop client accesses the HDFS file system by 
communicating with the namenode and datanodes. The 
user code does not need to know about the namenode and 
datanode functionality because of the POSIX-like [7] file 
system interface between the Hadoop client and the 
system. 

The datanodes store or retrieve blocks when a request 
comes from the Headoop client or the namenode. The 
datanodes also report periodically to the namenode and 
send it lists of blocks that they are storing. Without the 
namenode, the file system cannot be used. In a case of an 
error on the machine running the namenode, all the files 
on the file system could be lost because there is no 
alternative way to reconstruct the files from the blocks on 
the datanodes. For this reason, it is important to make the 
namenode resilient to failures. 

To evaluate the feasibility and effectiveness of HDFS, 
we have made a test HDFS installation. The installation 
consists of a single namenode and five datanodes inside a 
cluster residing at Jožef Stefan Institute (JSI), and one 
additional datanode on a cluster accessible over the 
Internet and located at Turboinštitut d.d. (TI). Hence, the 
installed system spreads over two clusters and is therefore 
called multicluster HDFS installation. It is to be 
distinguished from the notion of a hybrid cloud, which 
represents a collaboration of a private and a public cloud. 

In the rest of the paper the architecture of the HDFS 
multicluster is described together with the description of 
HDFS configuration parameters. For the purpose of 
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namenode machine. It is an HDFS file system URI that 
defines the hostname and the port that the namenode’s 
RPC server runs on. The default port is 8020. However, in 
the multicluster installation, the machine (or machines) 
located outside the namenode’s cluster do not “see” the 
namenodes’s IP on the local network. Therefore, it is 
necessary to use the namenodes VPN address, which is 
seen by all machines in the multicluster. Note that when a 
property is marked as final it is protected from being 
overridden by job configurations. 

The parameters dfs.name.dir in the hdfs-site.xml 
configuration file specifies a list of directories where the 
namenode stores persistent files system metadata, while 
dfs.data.dir parameter in the same file specifies a list of 
directories where the datanode stores its blocks. In the 
multicluster installation, the nodes in the main cluster may 
need different dfs.data.dir parameter value than the nodes 
on the remote cluster. Because the remote cluster may be 
using different operating system and may be controlled by 
different administrator, the directory configured for the 
main cluster does not have to exist on the remote cluster. 
Therefore, in our case, two versions of the hdfs-site.xml 
configuration file are maintained: one for the nodes on the 
main JSI cluster and other for the node on the remote TI 
cluster. All the other parameters are left default. Note that 
the default replication factor is three. 

The same holds for parameters mapred.local.dir and 
mapred.system.dir from the mapred-site.xml configuration 
file, which specify the location of local temporary storage 
for intermediate data and working files that are produced 
during a MapReduce job [11], and a directory where the 
shared files for the MapReduce tasks files can be stored. 
Hence, for our multicluster, two versions of the mapred-
site.xml configuration file are maintained.  

III. PROGRAMS FOR TESTING 
We have developed scripts for benchmarking of the 

Hadoop deployment.  

 
File 1. hadoop.sh 

The file hadoop.sh (File 1.) is a script that does the file 
operations. The first parameter of the script is 
therequested file operation: deletion, listing, copying to 
HDFS, or copying from HDFS. The second parameter is 
the file name. 

The script hadoop_testing.sh does the actual 
benchmarking (File 2). It is accessing files of different 
sizes, copying them to or from the HDFS, and measuring 
the time needed for the operation. It uses the script 
hadoop.sh for the actual operations with files. Each copy 
operation is repeated 5 times to obtain an average 
operation time. 

 
File 2. hadoop_testing.sh 

#!/bin/bash

# writing 

for i in 1 10 100 1000 10000 100000 1000000 
2000000 3000000; do 

#fill the cache 

dd if=benchmark/$i.file of=/dev/null 
      &>>/dev/null 

echo -n "$i, " 

for ((j=0; j<5; j++)); 

do 

#writing time 

time=$(/usr/bin/time -f %e ./hadoop.sh up  
           benchmark/$i.file 2>&1) 

echo -n "`echo $time | awk '{print $1}'`, " 

if [[ "$j" != "4" ]]; then 

    ./hadoop.sh rm $i.file &>>/dev/null 

fi 

done 

done 

# reading 

for i in 1 10 100 1000 10000 100000 1000000 
2000000 3000000; do 

echo -n "$i, " 

for ((j=0; j<5; j++)); 

do 

#reading time 

time=$(/usr/bin/time -f %e ./hadoop.sh down  
           $i.file 2>&1) 

echo -n "`echo $time | awk '{print $1}'`, " 

rm $i.file 

done 

done 

exit 0 

#!/bin/bash 

if [[ "$1" == "rm" ]]; then 

/usr/local/hadoop-0.20.203.0/bin/hadoop dfs -fs  
      hdfs://ninestein/ -rm /user/guest/$2 

elif [[ "$1" == "ls" ]]; then 

/usr/local/hadoop-0.20.203.0/bin/hadoop dfs -fs  
      hdfs://ninestein/ -ls 

elif [[ "$1" == "up" ]]; then 

/usr/local/hadoop-0.20.203.0/bin/hadoop dfs -fs  
      hdfs://ninestein/ -copyFromLocal $2  /user/guest 

elif [[ "$1" == "down" ]]; then 

rm $2 &>>/dev/null 

/usr/local/hadoop-0.20.203.0/bin/hadoop dfs -fs  
      hdfs://ninestein/ -copyToLocal /user/guest/$2 . 

fi 
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The read and write operations have been conducted 
from the headnode, located on the JSI cluster, and from a 
JSI cluster’s subnode. 

The read and write bandwidths were tested for file 
sizes form 1 kB up to 3 ∙ 10  kB. Any experiment has 
been repeated five times for each file size. The whiskers 
on the graphs (Figures 2 - 9) represent value ranges (max-
min) for the five cases, while the mark represents the 
average value of each set of experiments. 

Fig. 2 and 3 show the read and write performances 
obtained on the JSI cluster only (the TI node was not a 
part of the test system). Fig. 4 and Fig. 5 depict the read 
and write performances obtained on the interconnected JSI 
and TI clusters (multicluster). Figures 6 – 9 show the same 
results but in the logarithmic scale on the y axis to provide 
better inside into the performances for smaller files. 

We see from Fig. 2 and Fig. 3, obtained from the JSI 
cluster, that the read and write bandwidths are almost the 
same regardless of the node from which the operations are 
conducted. The maximal write bandwidth is approxi-
mately 35 % lower than the maximal read bandwidth.  

In the multicluster case (Fig. 4 and Fig. 5), the read 
bandwidth is significantly higher for the headnode. This 
behavior can be expected because, if the read operations 
are performed form a subnode, there is a possibility for a 
delay due to the communication with the headnode. The 
maximal write bandwidth is almost equal for the headnode 
and the subnode. However, for file sizes of 10  kB the 
write bandwidth is higher if write operations are 
performed from the subnode. We could explain such a 
behavior with eventually available storage data buffers. 

The logarithmic scale of y-axis in Fig. 6 to Fig. 9. 
discovers that the bandwidths grow linearly up to file sizes 
of 10  kB. We can observe that the manipulation with the 
smaller files is constantly 10 times slower on the 
multicluster system. For files larger than 10  kB the 
bandwidths reach their maximal values and remain quite 
stable. Again, there is approximately tenfold difference in 
the bandwidth in favor of the system with IJS cluster only. 
This can be expected because the data from the TI cluster 
are accessed through the 100 Mb/s Internet connection, 
which is approximately ten times slower than the JSI 
cluster network (see Fig 1.). 

V. CONLUSION 
We have presented the steps and configurations 

needed for deploying the Hadoop on a multicluster. We 
further tested the installation with a series of benchmarks, 
developed for this purpose. The multicluster paradigm 
enables a HDFS cluster to be scaled out to physical 
machines that are accessible over the internet. Such an 
approach may decrease the investments if an existing 
storage system becomes occasionally undersized. 

We have performed a series of benchmarks on the JSI 
Hadoop cluster and on the multicluster constituted by 
joining a storage node from the TI cluster. Benchmark 
results indicate that the read and write bandwidths drop 
significantly with joining the TI node. One obvious reason 
for such a behavior is slow communication line between 
the clusters, but this drawback can be easily improved by 

introducing a faster interconnection channel. Further 
investigation is needed to identify the Hadoop implement-
tation properties that influence the fall of performance. 
We suspect that a smarter organization of data items on a 
higher abstraction level, e.g., user location aware 
approach, could, in most cases, alleviate this problem.  

However, the drop in read and write bandwidths does 
not necessary imply the same drop in performances of 
MapReduce jobs, because Hadoop does its best to run the 
Map tasks on  nodes where input data reside in the HDFS, 
because of build-in “data locality optimization” principle. 
The Reduce tasks, usually, don’t possess the advantage of 
data locality as the input to a single reduce task is most 
often the output from all mappers. Further tests with 
MapReduce jobs are therefore needed to investigate the 
influence of the multicluster architecture on the Hadoop 
MapReduce performances. 

The multicluster storage, presented in this paper, was 
built from computing nodes of two clusters on different 
geographical positions, with different hardware platforms 
and different operating systems, which confirms that a 
multicluster Hadoop on heterogeneous clusters is a viable 
option. The read and write performances of HDFS, if 
critical for a multicluster application, have to be  
improved, e.g., by increasing the communication speed of 
the inter-cluster connection. 
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