
Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

BigData and MapReduce with Hadoop

Ivan Tomašić
1
, Roman Trobec

1
, Aleksandra Rashkovska

1
, Matjaž

Depolli
1
, Peter Mežnar

2
, Andrej Lipej

2

1
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana

2
TURBOINŠTITUT d.d., Rovšnikova 7, 1210 Ljubljana, Slovenia

ivan.tomasic@ijs.si, roman.trobec@ijs.si, aleksandra.rashkovska@ijs.si,

matjaz.depolli@ijs.si, peter.meznar@turboinstitut.si,

andrej.lipej@turboinstitut.si

The paper describes the application of the MapReduce paradigm for

processing and analyzing large amounts of data, coming from a computer

simulation for a specific scientific problem. The Apache Hadoop open source

distribution was installed on a cluster built of six computing nodes, each with

four cores. The implemented MapReduce job pipeline is described and the

essential Java code segments are presented. The experimental measurements

of the employed MapReduce tasks execution times result in a speedup of 20,

which indicates that a high level of parallelism is achieved.

I. INTRODUCTION

BigData, by its definition, exceeds the abilities of personal commodity

hardware environments. This data is so large that it must be distributed across

multiple, possibly thousands of machines, for it to be processed in a

reasonable time [1]. Some examples of big data include web logs, social

networks data, Internet documents, Internet search indexing, data from

scientific research and measurements, medical records, etc.

Besides new approaches and software needed for efficient and secure BigData

storage, new massively parallel software platforms have emerged that handle

processing and analyzing of such huge amounts of data. Well known and

established example is Apache Hadoop Big Data platform with its

MapReduce implementation [2].

MapReduce was developed within Google [3] as a mechanism for parallel

processing of big data. It is an abstraction that allows performing simple

computations while hiding the details of parallelization, data distribution, load

balancing and fault tolerance. Typical MapReduce computation processes

many terabytes of data on thousands of machines.

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

We will illustrate the MapReduce application on data from a computer

simulation of heat transfer in a biomedical application, in particular, cooling

of a human knee after surgery [4]. The data is considered to be big because we

simulate wide range of cases in order to cover as much as possible variations

in the simulation input parameters, i.e., simulate scenarios with different

initial states of the temperature filed before cooling, different knee

dimensions, and different temperatures of the cooling liquid.

II. MAPREDUCE PARADIGM

MapReduce is a programming model and an associated implementation for

processing and generating large data sets [3]. Some problems that can be

simply solved by MapReduce are: distributed grep, count of URL access

frequency, various representations of the graph structure of web documents,

term-vector per host, inverted index, etc.

The MapReduce user specifies two functions called Map and Reduce. Map

takes an input pair and produces a set of intermediate key/value pairs. The

MapReduce library groups together all intermediate values associated with the

same intermediate key and passes them to the Reduce function, which accepts

the intermediate sets of key/value pairs. It aggregates or merges together these

values in some other way to form a new, possibly smaller, set of values. The

Map and Reduce functions, in the Hadoop MapReduce implementation,

execute in separate Java Virtual Machines (JVMs) [5]. Their executions are

referred to as Map and Reduce tasks.

The main limitation of the MapReduce paradigm is that each Map and Reduce

task has not to be dependent on any data generated in some other Map or

Reduce task of the current job, as user cannot control the order in which the

mappings or reductions execute.

The MapReduce, as a paradigm, may have different implementations. For the

purpose of solving our problem we have used MapReduce implemented in

Apache Hadoop [2] and distributed in Cloudera Hadoop distribution [6].

A. Apache Hadoop MapReduce implementation

Apache Hadoop is an open-source software framework aimed for developing

data-intensive distributed applications that can run on large clusters of

commodity hardware. It is licensed under the Apache v2 license. Hadoop was

originally developed by Yahoo! as a clone of Google's MapReduce and

Google File System (GFS).

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

The Hadoop project is comprised of four modules: Hadoop Common,

Hadoop Distributed File System (HDFS), Hadoop YARN and Hadoop

MapReduce [2].

At the beginning of a MapReduce job, Hadoop divides the input data to be

processed into fixed-size pieces called splits, and creates a separate Map task

for each split. Each Map task runs the Map function for each record in the

split. The splitting is introduced because it is generally shorter to process each

split, compared to the time needed to process the entire input data as an

entirety.

The parallel processing can be better load-balanced if the splits are small.

However, if the splits are too small, then the time needed to manage the splits

and the time for Map task creation may begin to dominate the total job

execution time, resulting in an inefficient run. The default split size is the

same as the default size of an HDFS block, which is 64 MB. Besides splitting,

Hadoop does also the data locality optimization by trying to run the Map task

on a node where the input data resides in the HDFS.

Map tasks write their outputs to their local disks, not to the HDFS. The Map

outputs are therefore not replicated. If an error happens on a node running a

Map task before its output has been consumed by a Reduce task, then Hadoop

resolves the error by re-running the corrupted Map task on another node to

recreate the required output.

The Map tasks partition their outputs, each creating one partition for each

Reduce task. Each partition may contain many different keys and associated

values. Each Map task offers all the records for a given key only to a single

Reduce task. That is accomplished by packing all the records for a specific

key in a single partition. The records are distributed to Reduce tasks and

merged in a way that all records sharing the same key, will be processed by

the same Reduce task.

In Hadoop implementation, all Reduce tasks wait until all Map tasks complete

or fail [7]. Reduce tasks, unlike Map tasks, cannot convey on data locality

because the input to a single Reduce task is generally formed from outputs of

multiple Map tasks. Each Map task’s output is firstly sorted and then

transferred across the network to the node where its corresponding Reduce

task is running. The sorted map outputs are merged on this node, before being

passed to the Reduce task to be executed on this node. The number of Reduce

tasks is specified independently for a given job. Each Reduce task outputs a

single file, which is usually stored in the HDFS.

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

Figure 1 shows schematically the MapReduce data flow. We see that each

Reduce task is fed by multiple Map tasks; therefore the data flow between

Map and Reduce tasks is colloquially known as “shuffle”.

Additionally to the Map and Reduce functions, Hadoop allows the user to

specify a so called Combiner function, which is run on each node that has run

Map tasks. It receives all the data emitted by the Map tasks on a given node as

input, and forms the output that is an input to a Reduce function. The

Combiner function is used to achieve data reduction before sending it over the

network to a Reduce task, in order to minimize data transfer between Map and

Reduce tasks. Such an approach reduces the influence of available bandwidth

on the performances of a MapReduce job.

Figure 1. Schematic representation of MapReduce data flow

III. ANALYZING SIMULATION DATA WITH MAPREDUCE

A. Source of input data

The computer simulation of two hours cooling of a human knee after surgery

is performed for 10 different knee sizes, 10 different initial temperature states

before cooling, and 10 different temperatures of the cooling pad. This results

in 1000 simulation cases. The results are gathered in 100 files, each for one

knee size and one initial state, and for all cooling temperatures. Each file

contains 71 970 rows or approximately 44 MB of data. Each data row is

composed of the following parameters: RT, D, IS, CT, T1, T2, … , T85,

where are: RT - relative time in a simulation case, D - knee size, IS –initial

state, CT – cooling temperature, T1-T85 – inner and outer knee temperatures,

i.e. temperatures at a particular location in the knee center, 8 locations on the

knee skin and 8 respective locations under the cooling pad, all taken in the

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

current and in previous time steps. The parameters are comma separated. In

our test case, the task addressed to MapReduce was to find the number of

occurrences of a certain set of parameters with the same values, i.e., knee

temperatures T from different locations at the current or at several time steps.

We defined and examined 8 cases with different sets of T parameters as a key

in question. The cases are given in Table 1. The ones with odd numbering

take only the current values for the temperatures at: Case 1 – the knee center;

Case 3 – the knee center and 4 locations on the knee skin; Case 5 – the knee

center, 4 locations on the knee skin, and 4 respective locations under the

cooling pad; Case 7 – all current temperatures. Their respective cases with

temperatures taken also in 4 previous time steps are the ones with even

numbering.

Table 1. Тest cases

CASE Parameters

1 T1

2 T1-T5

3 T1,T6,T11,T16,T21

4 T1-T21

5 T1,T6,T11,T16,T21,T46,T51,T56,T61

6 T1-T21,T46-T61

7 T1,T6,T11,T16,T21,T26,T31,T36,T41,T46,T51,T56,T61,T66,T71,T76,T81

8 T1-T85

B. MapReduce jobs

The MapReduce jobs pipeline, used for solving our test cases, is illustrated in

Figure 2. The input data consists of 100 files each approximately being 44

MB in size. The sizes of files are smaller than the HDFS block size, which is

in our case 64 MB, hence the number of input Map tasks in Job 1 is equal to

the number of input files [8], i.e., each input file is processed by a different

Map task. Because the number of Reduce tasks is not explicitly set for Job 1,

it becomes, by default, equal to the number of task tracker nodes, in our case
6, multiplied by the value of the mapred.tasktracker.
.reduce.tasks.maximum configuration property [8], which is in our

case 2. The output of Job 1 is therefore consisted of 12 files. Each file

contains unique combinations of temperatures and the number of their

occurrences. The details of the jobs implementations are given in Figure 3 and

in the text below.

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

Then, Job 2 combines Reduce tasks’ outputs form Job 1 into a single file (in

Job 2, the number of Reduce tasks is explicitly set to 1). It also substitutes the

input columns and sorts them in the output file by the number of occurrences

of each combination of temperatures. The number of Map tasks in Job 2

depends on the test case (The computer simulation of two hours cooling of a

human knee after surgery is performed for 10 different knee sizes, 10 different

initial temperature states before cooling, and 10 different temperatures of the

cooling pad. This results in 1000 simulation cases. The results are gathered in

100 files, each for one knee size and one initial state, and for all cooling

temperatures. Each file contains 71 970 rows or approximately 44 MB of data.

Each data row is composed of the following parameters: RT, D, IS, CT, T1,

T2, … , T85, where are: RT - relative time in a simulation case, D - knee size,

IS –initial state, CT – cooling temperature, T1-T85 – inner and outer knee

temperatures, i.e. temperatures at a particular location in the knee center, 8

locations on the knee skin and 8 respective locations under the cooling pad, all

taken in the current and in previous time steps. The parameters are comma

separated. In our test case, the task addressed to MapReduce was to find the

number of occurrences of a certain set of parameters with the same values,

i.e., knee temperatures T from different locations at the current or at several

time steps. We defined and examined 8 cases with different sets of T

parameters as a key in question. The cases are given in Table 1. The ones with

odd numbering take only the current values for the temperatures at: Case 1 –

the knee center; Case 3 – the knee center and 4 locations on the knee skin;

Case 5 – the knee center, 4 locations on the knee skin, and 4 respective

locations under the cooling pad; Case 7 – all current temperatures. Their

respective cases with temperatures taken also in 4 previous time steps are the

ones with even numbering.

Table 1) and varies between 12 and 36 because the sizes of Job 1 output files

depend on the test case.

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

Figure 2. MapReduce jobs pipeline

In Figure 3. , the Java code segments for Map and Reduce functions are

shown.

//Job 1

public void map(LongWritable key,Text value,OutputCollector<Text,IntWritable> output,

Reporter reporter) throws IOException{

String line = value.toString();

String[] lineElements = line.split(",");

String SearchString = null

//depending on a case (Table 1) concatenate different lineElements in

//SearchString

…

word.set(SearchString);

output.collect(word, new IntWritable(1));

}

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text,

IntWritable> output, Reporter reporter) throws IOException{

int sum = 0;

while (values.hasNext()){

sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

Figure 3. Java code of Map and Reduce tasks for Job 1 and Job 2.

In the Map function of Job 1, from each input comma separated line, only the

relevant columns (see The computer simulation of two hours cooling of a

human knee after surgery is performed for 10 different knee sizes, 10 different

initial temperature states before cooling, and 10 different temperatures of the

cooling pad. This results in 1000 simulation cases. The results are gathered in

100 files, each for one knee size and one initial state, and for all cooling

temperatures. Each file contains 71 970 rows or approximately 44 MB of data.

Each data row is composed of the following parameters: RT, D, IS, CT, T1,

T2, … , T85, where are: RT - relative time in a simulation case, D - knee size,

IS –initial state, CT – cooling temperature, T1-T85 – inner and outer knee

temperatures, i.e. temperatures at a particular location in the knee center, 8

locations on the knee skin and 8 respective locations under the cooling pad, all

taken in the current and in previous time steps. The parameters are comma

separated. In our test case, the task addressed to MapReduce was to find the

number of occurrences of a certain set of parameters with the same values,

i.e., knee temperatures T from different locations at the current or at several

time steps. We defined and examined 8 cases with different sets of T

parameters as a key in question. The cases are given in Table 1. The ones with

odd numbering take only the current values for the temperatures at: Case 1 –

the knee center; Case 3 – the knee center and 4 locations on the knee skin;

Case 5 – the knee center, 4 locations on the knee skin, and 4 respective

locations under the cooling pad; Case 7 – all current temperatures. Their

respective cases with temperatures taken also in 4 previous time steps are the

ones with even numbering.

//Job 2

public void map(LongWritable key, Text value, OutputCollector<IntWritable,Text> output,

Reporter reporter) throws IOException{

String line = value.toString();

//\t is the default delimiter used by a reducer

String[] lineElements = line.split("\t");

output.collect(new IntWritable(Integer.parseInt(lineElements[1])),

new Text(lineElements[0]));

}

public void reduce(IntWritable key, Iterator<Text> values, OutputCollector<IntWritable,

Text> output, Reporter reporter) throws IOException{

//there is only one value

output.collect(key, values.next());

}

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

Table 1) are extracted. For example, in the test case 2 only the columns

belonging to T1 to T5 will be extracted in the SearchString variable. The

Reduce function sums, i.e., counts the number of occurrences of each

combination of temperatures (the key) and outputs it as the new value of the

current key. Because all the values for one key are processed by a single

Reduce task, it is evident that the output from Job 1 consists of unique

combinations of temperatures and the number of their occurrences.

In Job 2, the Map function inverts its key/value pairs, making temperature

occurrences the keys, and emits them to the Reduce function, which outputs

the received pairs. The sorting by the occurrences is done by the framework as

explained in section II.

C. Results

The ten highest numbers of temperature occurrences, for each test case from

Table 1, are given in Table 2.

Table 2. Top 10 temperature combinations occurrences for each case

Case 8 Case 7 Case 6 Case 5 Case 4 Case 3 Case 2 Case 1

294 298 294 298 387 391 8933 11159

224 228 224 228 319 323 8860 11097

211 215 217 227 294 298 8778 10945

181 199 216 221 267 271 8351 10924

168 194 211 220 232 264 7807 10729

165 185 187 215 231 256 7695 10720

161 185 181 215 224 253 7626 10706

159 183 175 199 224 248 7551 10645

158 172 168 199 216 247 7504 10602

154 172 165 195 216 245 7456 10591

We see that the lowest numbers appear in test case 8, which could be expected

because in case 8 the largest number of parameters (T) was analyzed.

Table 3 shows the execution times, for Job 1 and Job 2, respectively,

depending on the test cases. It also shows the total CPU time, spent for each

case, and associated total duration of the analysis.

The total time spent for Maps and Reduces in Job 1 and Job 2 for all test cases

and on all executing nodes is: ts = 9903 + 1264 + 941 + 139 = 12247 s, while

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

the total duration of the complete MapReduce analysis is: tm = 377 + 248 =

625 s. The ratio ts/tm is 19.6, which can assess the level of parallelism

achieved. The analysis is almost 20 times faster if implemented by

MapReduce paradigm.

Table 3. MapReduce tasks execution times

Job1

Case: 1 2 3 4 5 6 7 8 Total

Total time spent by

all maps in (s)
1,122 1,080 1,119 1,187 1,121 1,287 1,162 1,826 9,903

Total time spent by

all reduces (s)
100 80 91 148 108 207 118 413 1,264

Map tasks avg. time

(s)
11 10 11 11 11 12 11 18

The last Map task

finished at (s)* 33 31 32 35 33 35 32 54

Shuffle avg. time (s) 5 3 3 7 5 7 5 14

The last Shuffle task

finished at (s)* 36 33 33 36 35 39 35 57

Reduce tasks avg.

time (s)
2 2 3 5 3 9 4 20

The last Reduce task

finished at(s)* 39 36 37 42 39 49 39 79

CPU time spent (s) 588 618 667 790 686 933 719 1,494 6,494

Total duration (s) 40 37 38 43 49 51 40 79 377

Job2

Case: 1 2 3 4 5 6 7 8 Total

Total time spent by

all maps in (s)
32 31 51 78 59 184 64 443 941

Total time spent by

all reduces (s)
4 4 10 16 12 31 12 50 139

Map tasks avg. time

(s)
2 2 3 6 4 7 5 12

The last Map task

finished at (s)* 7 7 12 14 15 13 12 20

Shuffle avg. time (s) 1 1 6 5 6 7 4 8

The last Shuffle task

finished at (s)* 8 10 15 16 19 22 13 30

Reduce tasks avg.

time (s)
1 1 3 10 5 23 8 40

The last Reduce task

finished at(s)* 10 12 19 26 24 45 21 71

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

CPU time spent (s) 7 9 55 95 70 185 73 330 823

Total duration (s) 13 14 22 28 26 48 24 73 248
*
 relative to the Job launch time

Although the interpretation of the temperature values and their occurrences in

a specified combination are behind the scope of this paper, each execution

case (The computer simulation of two hours cooling of a human knee after

surgery is performed for 10 different knee sizes, 10 different initial

temperature states before cooling, and 10 different temperatures of the cooling

pad. This results in 1000 simulation cases. The results are gathered in 100

files, each for one knee size and one initial state, and for all cooling

temperatures. Each file contains 71 970 rows or approximately 44 MB of data.

Each data row is composed of the following parameters: RT, D, IS, CT, T1,

T2, … , T85, where are: RT - relative time in a simulation case, D - knee size,

IS –initial state, CT – cooling temperature, T1-T85 – inner and outer knee

temperatures, i.e. temperatures at a particular location in the knee center, 8

locations on the knee skin and 8 respective locations under the cooling pad, all

taken in the current and in previous time steps. The parameters are comma

separated. In our test case, the task addressed to MapReduce was to find the

number of occurrences of a certain set of parameters with the same values,

i.e., knee temperatures T from different locations at the current or at several

time steps. We defined and examined 8 cases with different sets of T

parameters as a key in question. The cases are given in Table 1. The ones with

odd numbering take only the current values for the temperatures at: Case 1 –

the knee center; Case 3 – the knee center and 4 locations on the knee skin;

Case 5 – the knee center, 4 locations on the knee skin, and 4 respective

locations under the cooling pad; Case 7 – all current temperatures. Their

respective cases with temperatures taken also in 4 previous time steps are the

ones with even numbering.

Table 1) draws different amounts of data to the Map and Reduce functions in

Job 1 and Job 2, which influences their execution times, as evident from Table

3.

IV. CONCLUSION

We successfully implemented the analysis of a large amount of simulation

results with two MapReduce jobs. The pipelining between jobs can be further

refined if a need occurs. For example, an additional job may be inserted in the

pipeline if some kind of filtering of temperature combinations is required. The

described application is quite general and can be applied in a similar way on

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

other data sets, e.g. the datasets coming from computer simulations of hydro

turbines for the purpose of maximization of their efficiency, which is

performed routinely at Turboinštitut Ljubljana, Slovenia.

The measured execution times show that the speed-up of approximately 20 is

achieved by MapReduce in the solution of our test cases, interestingly, on a

computing cluster with only 6 TaskTracker nodes, however, each with 4

cores.

Although MapReduce concept has proved to be very efficient for solving our

analysis of test cases, further test are needed to assess its efficiency on more

nodes and on larger files. There are indications that parallel relational

database management systems are also up for the challenges that BigData

imposes [9]. We plan to investigate the abilities of some parallel relational

databases and compare their efficiency with the MapReduce paradigm.

ACKNOWLEDGEMENTS

This research was funded in part by the European Union, European Social

Fund, Operational Programme for Human Resources, Development for the

Period 2007-2013.

REFERENCES

[1] B. Franks, "What is big data and why does it matter?," Taming the big

data tidal wave: finding opportunities in huge data streams with

advanced analytics, pp. 3-29, Hoboken, New Jersey: John Wiley &

Sons, Inc., 2010.

[2] "Welcome to Apache™ Hadoop®!," Oct., 2012;

http://hadoop.apache.org/.

[3] J. Dean, and S. Ghemawat, “Mapreduce: Simplified data processing

on large clusters,” Communications of the Acm, vol. 51, no. 1, pp.

107-113, Jan, 2008.

[4] R. Trobec, M. Šterk, S. Almawed et al., “Computer simulation of

topical knee cooling,” Comput. biol. med, vol. 38, pp. 1076-1083,

2008.

[5] T. White, "How MapReduce Works," Hadoop: The Definitive Guide,

pp. 167-188, Gravenstein Highway North, Sebastopol: O’Reilly

Media, Inc., 2010.

Proceedings of the 1th International CLoud Assisted ServiceS, Bled, 25 October 2012

[6] "CDH Proven, enterprise-ready Hadoop distribution – 100% open

source," Oct, 2012; http://www.cloudera.com/hadoop/.

[7] T. White, "MapReduce," Hadoop: The Definitive Guide, pp. 15-40,

Gravenstein Highway North, Sebastopol: O’Reilly Media, Inc., 2010.

[8] T. White, "MapReduce Types and Formats," Hadoop: The Definitive

Guide, pp. 189-224, Gravenstein Highway North, Sebastopol:

O’Reilly Media, Inc., 2010.

[9] A. Pavlo, E. Paulson, A. Rasin et al., “A comparison of approaches to

large-scale data analysis,” in SIGMOD-PODS'09 2009, pp. 165-178.

