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The paper describes the application of the MapReduce paradigm for 

processing and analyzing large amounts of data, coming from a computer 

simulation for a specific scientific problem. The Apache Hadoop open source 

distribution was installed on a cluster built of six computing nodes, each with 

four cores. The implemented MapReduce job pipeline is described and the 

essential Java code segments are presented. The experimental measurements 

of the employed MapReduce tasks execution times result in a speedup of 20, 

which indicates that a high level of parallelism is achieved. 

I. INTRODUCTION 

BigData, by its definition, exceeds the abilities of personal commodity 

hardware environments. This data is so large that it must be distributed across 

multiple, possibly thousands of machines, for it to be processed in a 

reasonable time [1]. Some examples of big data include web logs, social 

networks data, Internet documents, Internet search indexing, data from 

scientific research and measurements, medical records, etc. 

Besides new approaches and software needed for efficient and secure BigData 

storage, new massively parallel software platforms have emerged that handle 

processing and analyzing of such huge amounts of data. Well known and 

established example is Apache Hadoop Big Data platform with its 

MapReduce implementation [2]. 

MapReduce was developed within Google [3] as a mechanism for parallel 

processing of big data. It is an abstraction that allows performing simple 

computations while hiding the details of parallelization, data distribution, load 

balancing and fault tolerance. Typical MapReduce computation processes 

many terabytes of data on thousands of machines. 



Proceedings of the 1th  International CLoud Assisted ServiceS, Bled, 25 October 2012 

 

We will illustrate the MapReduce application on data from a computer 

simulation of heat transfer in a biomedical application, in particular, cooling 

of a human knee after surgery [4]. The data is considered to be big because we 

simulate wide range of cases in order to cover as much as possible variations 

in the simulation input parameters, i.e., simulate scenarios with different 

initial states of the temperature filed before cooling, different knee 

dimensions, and different temperatures of the cooling liquid. 

II. MAPREDUCE PARADIGM 

MapReduce is a programming model and an associated implementation for 

processing and generating large data sets [3]. Some problems that can be 

simply solved by MapReduce are: distributed grep, count of URL access 

frequency, various representations of the graph structure of web documents, 

term-vector per host, inverted index, etc. 

The MapReduce user specifies two functions called Map and Reduce. Map 

takes an input pair and produces a set of intermediate key/value pairs. The 

MapReduce library groups together all intermediate values associated with the 

same intermediate key and passes them to the Reduce function, which accepts 

the intermediate sets of key/value pairs. It aggregates or merges together these 

values in some other way to form a new, possibly smaller, set of values. The 

Map and Reduce functions, in the Hadoop MapReduce implementation, 

execute in separate Java Virtual Machines (JVMs) [5]. Their executions are 

referred to as Map and Reduce tasks.  

The main limitation of the MapReduce paradigm is that each Map and Reduce 

task has not to be dependent on any data generated in some other Map or 

Reduce task of the current job, as user cannot control the order in which the 

mappings or reductions execute. 

The MapReduce, as a paradigm, may have different implementations. For the 

purpose of solving our problem we have used MapReduce implemented in 

Apache Hadoop [2] and distributed in Cloudera Hadoop distribution [6]. 

A. Apache Hadoop MapReduce implementation 

Apache Hadoop is an open-source software framework aimed for developing 

data-intensive distributed applications that can run on large clusters of 

commodity hardware. It is licensed under the Apache v2 license. Hadoop was 

originally developed by Yahoo! as a clone of Google's MapReduce and 

Google File System (GFS). 
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The Hadoop project is  comprised of four modules: Hadoop Common, 

Hadoop Distributed File System (HDFS), Hadoop YARN and Hadoop 

MapReduce [2]. 

At the beginning of a MapReduce job, Hadoop divides the input data to be 

processed into fixed-size pieces called splits, and creates a separate Map task 

for each split. Each Map task runs the Map function for each record in the 

split. The splitting is introduced because it is generally shorter to process each 

split, compared to the time needed to process the entire input data as an 

entirety. 

The parallel processing can be better load-balanced if the splits are small. 

However, if the splits are too small, then the time needed to manage the splits 

and the time for Map task creation may begin to dominate the total job 

execution time, resulting in an inefficient run. The default split size is the 

same as the default size of an HDFS block, which is 64 MB. Besides splitting, 

Hadoop does also the data locality optimization by trying to run the Map task 

on a node where the input data resides in the HDFS. 

Map tasks write their outputs to their local disks, not to the HDFS. The Map 

outputs are therefore not replicated. If an error happens on a node running a 

Map task before its output has been consumed by a Reduce task, then Hadoop 

resolves the error by re-running the corrupted Map task on another node to 

recreate the required output. 

The Map tasks partition their outputs, each creating one partition for each 

Reduce task. Each partition may contain many different keys and associated 

values. Each Map task offers all the records for a given key only to a single 

Reduce task. That is accomplished by packing all the records for a specific 

key in a single partition. The records are distributed to Reduce tasks and 

merged in a way that all records sharing the same key, will be processed by 

the same Reduce task. 

In Hadoop implementation, all Reduce tasks wait until all Map tasks complete 

or fail [7]. Reduce tasks, unlike Map tasks, cannot convey on data locality 

because the input to a single Reduce task is generally formed from outputs of 

multiple Map tasks. Each Map task’s output is firstly sorted and then 

transferred across the network to the node where its corresponding Reduce 

task is running. The sorted map outputs are merged on this node, before being 

passed to the Reduce task to be executed on this node. The number of Reduce 

tasks is specified independently for a given job. Each Reduce task outputs a 

single file, which is usually stored in the HDFS. 
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Figure 1 shows schematically the MapReduce data flow. We see that each 

Reduce task is fed by multiple Map tasks; therefore the data flow between 

Map and Reduce tasks is colloquially known as “shuffle”. 

Additionally to the Map and Reduce functions, Hadoop allows the user to 

specify a so called Combiner function, which is run on each node that has run 

Map tasks. It receives all the data emitted by the Map tasks on a given node as 

input, and forms the output that is an input to a Reduce function. The 

Combiner function is used to achieve data reduction before sending it over the 

network to a Reduce task, in order to minimize data transfer between Map and 

Reduce tasks. Such an approach reduces the influence of available bandwidth 

on the performances of a MapReduce job. 

 

Figure 1. Schematic representation of MapReduce data flow 

 

III. ANALYZING SIMULATION DATA WITH MAPREDUCE 

A. Source of input data  

The computer simulation of two hours cooling of a human knee after surgery 

is performed for 10 different knee sizes, 10 different initial temperature states 

before cooling, and 10 different temperatures of the cooling pad. This results 

in 1000 simulation cases. The results are gathered in 100 files, each for one 

knee size and one initial state, and for all cooling temperatures. Each file 

contains 71 970 rows or approximately 44 MB of data. Each data row is 

composed of the following parameters: RT, D, IS, CT, T1, T2, … , T85, 

where are: RT - relative time in a simulation case, D - knee size, IS –initial 

state, CT – cooling temperature, T1-T85 – inner and outer knee temperatures, 

i.e. temperatures at a particular location in the knee center, 8 locations on the 

knee skin and 8 respective locations under the cooling pad, all taken in the 
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current and in previous time steps. The parameters are comma separated. In 

our test case, the task addressed to MapReduce was to find the number of 

occurrences of a certain set of parameters with the same values, i.e., knee 

temperatures T from different locations at the current or at several time steps. 

We defined and examined 8 cases with different sets of T parameters as a key 

in question. The cases are given in Table 1. The ones with odd numbering 

take only the current values for the temperatures at: Case 1 – the knee center; 

Case 3 – the knee center and 4 locations on the knee skin; Case 5 – the knee 

center, 4 locations on the knee skin, and 4 respective locations under the 

cooling pad; Case 7 – all current temperatures. Their respective cases with 

temperatures taken also in 4 previous time steps are the ones with even 

numbering. 

Table 1. Тest cases 

CASE   Parameters 

1 T1 

2 T1-T5 

3 T1,T6,T11,T16,T21 

4 T1-T21 

5 T1,T6,T11,T16,T21,T46,T51,T56,T61 

6 T1-T21,T46-T61 

7 T1,T6,T11,T16,T21,T26,T31,T36,T41,T46,T51,T56,T61,T66,T71,T76,T81 

8 T1-T85 

 

B. MapReduce jobs 

The MapReduce jobs pipeline, used for solving our test cases, is illustrated in 

Figure 2. The input data consists of 100 files each approximately being 44 

MB in size. The sizes of files are smaller than the HDFS block size, which is 

in our case 64 MB, hence the number of input Map tasks in Job 1 is equal to 

the number of input files [8], i.e., each input file is processed by a different 

Map task. Because the number of Reduce tasks is not explicitly set for Job 1, 

it becomes, by default, equal to the number of task tracker nodes, in our case 
6, multiplied by the value of the mapred.tasktracker. 
.reduce.tasks.maximum configuration property [8], which is in our 

case 2. The output of Job 1 is therefore consisted of 12 files. Each file 

contains unique combinations of temperatures and the number of their 

occurrences. The details of the jobs implementations are given in Figure 3 and 

in the text below. 
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Then, Job 2 combines Reduce tasks’ outputs form Job 1 into a single file (in 

Job 2, the number of Reduce tasks is explicitly set to 1). It also substitutes the 

input columns and sorts them in the output file by the number of occurrences 

of each combination of temperatures. The number of Map tasks in Job 2 

depends on the test case (The computer simulation of two hours cooling of a 

human knee after surgery is performed for 10 different knee sizes, 10 different 

initial temperature states before cooling, and 10 different temperatures of the 

cooling pad. This results in 1000 simulation cases. The results are gathered in 

100 files, each for one knee size and one initial state, and for all cooling 

temperatures. Each file contains 71 970 rows or approximately 44 MB of data. 

Each data row is composed of the following parameters: RT, D, IS, CT, T1, 

T2, … , T85, where are: RT - relative time in a simulation case, D - knee size, 

IS –initial state, CT – cooling temperature, T1-T85 – inner and outer knee 

temperatures, i.e. temperatures at a particular location in the knee center, 8 

locations on the knee skin and 8 respective locations under the cooling pad, all 

taken in the current and in previous time steps. The parameters are comma 

separated. In our test case, the task addressed to MapReduce was to find the 

number of occurrences of a certain set of parameters with the same values, 

i.e., knee temperatures T from different locations at the current or at several 

time steps. We defined and examined 8 cases with different sets of T 

parameters as a key in question. The cases are given in Table 1. The ones with 

odd numbering take only the current values for the temperatures at: Case 1 – 

the knee center; Case 3 – the knee center and 4 locations on the knee skin; 

Case 5 – the knee center, 4 locations on the knee skin, and 4 respective 

locations under the cooling pad; Case 7 – all current temperatures. Their 

respective cases with temperatures taken also in 4 previous time steps are the 

ones with even numbering. 

Table 1) and varies between 12 and 36 because the sizes of Job 1 output files 

depend on the test case. 



Proceedings of the 1th  International CLoud Assisted ServiceS, Bled, 25 October 2012 

 

 

Figure 2. MapReduce jobs pipeline 

In Figure 3. , the Java code segments for Map and Reduce functions are 

shown. 

 

//Job 1 

public void map(LongWritable key,Text value,OutputCollector<Text,IntWritable> output, 

Reporter reporter) throws IOException{ 

String line = value.toString(); 

String[] lineElements  = line.split(","); 

String SearchString = null 

//depending on a case (Table 1) concatenate different lineElements in 

//SearchString 

… 

word.set(SearchString); 

output.collect(word, new IntWritable(1)); 

} 

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, 

IntWritable> output, Reporter reporter) throws IOException{ 

int sum = 0; 

while (values.hasNext()){ 

sum += values.next().get(); 

} 

output.collect(key, new IntWritable(sum)); 

} 
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Figure 3. Java code of Map and Reduce tasks for Job 1 and Job 2. 

In the Map function of Job 1, from each input comma separated line, only the 

relevant columns (see The computer simulation of two hours cooling of a 

human knee after surgery is performed for 10 different knee sizes, 10 different 

initial temperature states before cooling, and 10 different temperatures of the 

cooling pad. This results in 1000 simulation cases. The results are gathered in 

100 files, each for one knee size and one initial state, and for all cooling 

temperatures. Each file contains 71 970 rows or approximately 44 MB of data. 

Each data row is composed of the following parameters: RT, D, IS, CT, T1, 

T2, … , T85, where are: RT - relative time in a simulation case, D - knee size, 

IS –initial state, CT – cooling temperature, T1-T85 – inner and outer knee 

temperatures, i.e. temperatures at a particular location in the knee center, 8 

locations on the knee skin and 8 respective locations under the cooling pad, all 

taken in the current and in previous time steps. The parameters are comma 

separated. In our test case, the task addressed to MapReduce was to find the 

number of occurrences of a certain set of parameters with the same values, 

i.e., knee temperatures T from different locations at the current or at several 

time steps. We defined and examined 8 cases with different sets of T 

parameters as a key in question. The cases are given in Table 1. The ones with 

odd numbering take only the current values for the temperatures at: Case 1 – 

the knee center; Case 3 – the knee center and 4 locations on the knee skin; 

Case 5 – the knee center, 4 locations on the knee skin, and 4 respective 

locations under the cooling pad; Case 7 – all current temperatures. Their 

respective cases with temperatures taken also in 4 previous time steps are the 

ones with even numbering. 

//Job 2 

public void map(LongWritable key, Text value, OutputCollector<IntWritable,Text> output, 

Reporter reporter) throws IOException{ 

String line = value.toString(); 

//\t is the default delimiter used by a reducer 

String[] lineElements  = line.split("\t");  

output.collect(new IntWritable(Integer.parseInt(lineElements[1])),  

new Text(lineElements[0])); 

} 

public void reduce(IntWritable key, Iterator<Text> values, OutputCollector<IntWritable, 

Text> output, Reporter reporter) throws IOException{ 

//there is only one value 

output.collect(key, values.next()); 

} 
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Table 1) are extracted. For example, in the test case 2 only the columns 

belonging to T1 to T5 will be extracted in the SearchString variable. The 

Reduce function sums, i.e., counts the number of occurrences of each 

combination of temperatures (the key) and outputs it as the new value of the 

current key. Because all the values for one key are processed by a single 

Reduce task, it is evident that the output from Job 1 consists of unique 

combinations of temperatures and the number of their occurrences. 

In Job 2, the Map function inverts its key/value pairs, making temperature 

occurrences the keys, and emits them to the Reduce function, which outputs 

the received pairs. The sorting by the occurrences is done by the framework as 

explained in section II. 

C. Results 

The ten highest numbers of temperature occurrences, for each test case from 

Table 1, are given in Table 2. 

Table 2. Top 10 temperature combinations occurrences for each case 

Case 8 Case 7 Case 6 Case 5 Case 4 Case 3 Case 2 Case 1 

294 298 294 298 387 391 8933 11159 

224 228 224 228 319 323 8860 11097 

211 215 217 227 294 298 8778 10945 

181 199 216 221 267 271 8351 10924 

168 194 211 220 232 264 7807 10729 

165 185 187 215 231 256 7695 10720 

161 185 181 215 224 253 7626 10706 

159 183 175 199 224 248 7551 10645 

158 172 168 199 216 247 7504 10602 

154 172 165 195 216 245 7456 10591 

 

We see that the lowest numbers appear in test case 8, which could be expected 

because in case 8 the largest number of parameters (T) was analyzed. 

Table 3 shows the execution times, for Job 1 and Job 2, respectively, 

depending on the test cases. It also shows the total CPU time, spent for each 

case, and associated total duration of the analysis. 

The total time spent for Maps and Reduces in Job 1 and Job 2 for all test cases 

and on all executing nodes is: ts = 9903 + 1264 + 941 + 139 = 12247 s, while 
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the total duration of the complete MapReduce analysis is: tm = 377 + 248 = 

625 s. The ratio ts/tm is 19.6, which can assess the level of parallelism 

achieved. The analysis is almost 20 times faster if implemented by 

MapReduce paradigm. 

Table 3. MapReduce tasks execution times 

Job1 

Case: 1 2 3 4 5 6 7 8 Total 

Total time spent by 

all maps in (s) 
1,122 1,080 1,119 1,187 1,121 1,287 1,162 1,826 9,903 

Total time spent by 

all reduces (s) 
100 80 91 148 108 207 118 413 1,264 

Map tasks avg. time 

(s) 
11 10 11 11 11 12 11 18 

 

The last Map task 

finished at  (s)* 33 31 32 35 33 35 32 54 
 

Shuffle avg. time (s) 5 3 3 7 5 7 5 14 
 

The last Shuffle task  

finished at (s)* 36 33 33 36 35 39 35 57 
 

Reduce tasks avg. 

time (s) 
2 2 3 5 3 9 4 20 

 

The last Reduce task 

finished at(s)* 39 36 37 42 39 49 39 79 
 

CPU time spent (s) 588 618 667 790 686 933 719 1,494 6,494 

Total duration (s) 40 37 38 43 49 51 40 79 377 

 

Job2 

Case: 1 2 3 4 5 6 7 8 Total 

Total time spent by 

all maps in (s) 
32 31 51 78 59 184 64 443 941 

Total time spent by 

all reduces (s) 
4 4 10 16 12 31 12 50 139 

Map tasks avg. time 

(s) 
2 2 3 6 4 7 5 12 

 

The last Map task 

finished at  (s)* 7 7 12 14 15 13 12 20 
 

Shuffle avg. time (s) 1 1 6 5 6 7 4 8 
 

The last Shuffle task  

finished at (s)* 8 10 15 16 19 22 13 30 
 

Reduce tasks avg. 

time (s) 
1 1 3 10 5 23 8 40 

 

The last Reduce task 

finished at(s)* 10 12 19 26 24 45 21 71 
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CPU time spent (s) 7 9 55 95 70 185 73 330 823 

Total duration (s) 13 14 22 28 26 48 24 73 248 
*
 relative to the Job launch time 

Although the interpretation of the temperature values and their occurrences in 

a specified combination are behind the scope of this paper, each execution 

case (The computer simulation of two hours cooling of a human knee after 

surgery is performed for 10 different knee sizes, 10 different initial 

temperature states before cooling, and 10 different temperatures of the cooling 

pad. This results in 1000 simulation cases. The results are gathered in 100 

files, each for one knee size and one initial state, and for all cooling 

temperatures. Each file contains 71 970 rows or approximately 44 MB of data. 

Each data row is composed of the following parameters: RT, D, IS, CT, T1, 

T2, … , T85, where are: RT - relative time in a simulation case, D - knee size, 

IS –initial state, CT – cooling temperature, T1-T85 – inner and outer knee 

temperatures, i.e. temperatures at a particular location in the knee center, 8 

locations on the knee skin and 8 respective locations under the cooling pad, all 

taken in the current and in previous time steps. The parameters are comma 

separated. In our test case, the task addressed to MapReduce was to find the 

number of occurrences of a certain set of parameters with the same values, 

i.e., knee temperatures T from different locations at the current or at several 

time steps. We defined and examined 8 cases with different sets of T 

parameters as a key in question. The cases are given in Table 1. The ones with 

odd numbering take only the current values for the temperatures at: Case 1 – 

the knee center; Case 3 – the knee center and 4 locations on the knee skin; 

Case 5 – the knee center, 4 locations on the knee skin, and 4 respective 

locations under the cooling pad; Case 7 – all current temperatures. Their 

respective cases with temperatures taken also in 4 previous time steps are the 

ones with even numbering. 

Table 1) draws different amounts of data to the Map and Reduce functions in 

Job 1 and Job 2, which influences their execution times, as evident from Table 

3. 

IV. CONCLUSION 

We successfully implemented the analysis of a large amount of simulation 

results with two MapReduce jobs. The pipelining between jobs can be further 

refined if a need occurs. For example, an additional job may be inserted in the 

pipeline if some kind of filtering of temperature combinations is required. The 

described application is quite general and can be applied in a similar way on 
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other data sets, e.g. the datasets coming from computer simulations of hydro 

turbines for the purpose of maximization of their efficiency, which is 

performed routinely at Turboinštitut Ljubljana, Slovenia. 

The measured execution times show that the speed-up of approximately 20 is 

achieved by MapReduce in the solution of our test cases, interestingly, on a 

computing cluster with only 6 TaskTracker nodes, however, each with 4 

cores.  

Although MapReduce concept has proved to be very efficient for solving our 

analysis of test cases, further test are needed to assess its efficiency on more 

nodes and on larger files. There are indications that parallel relational 

database management systems are also up for the challenges that BigData 

imposes [9]. We plan to investigate the abilities of some parallel relational 

databases and compare their efficiency with the MapReduce paradigm. 
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