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Abstract

The application of the local meshless numerical method (LRBFCM) in solving partial
di�erential equations (PDE) is explored with the respect to a parallel implementation on
multicore computers. The numerical approach is tested on the natural convection prob-
lem governed by the �uid �ow and energy transport. To solve such kind of problems a
pressure-velocity coupling is required, which in general pose a global problem and there-
fore introduces global communication and consequently smaller e�ciency of the parallel
implementation. The coupling is performed iteratively, with a local pressure correction,
predicted from the violation of the mass continuity. The analysis of OpenMP based paral-
lelization of the proposed numerical approach is presented. The meshless local approach is
evaluated through various tests, which are gradually complicated from the simplest inde-
pendent calculations to the solution of a coupled system of PDEs describing the unsteady
natural convection problem. The results show superlinear speedup for larger problem do-
mains and smaller number of cores with gradually decreasing e�ciency for larger number
of cores.

1 Introduction

Meshless methods, sometimes named also meshfree or mesh reduction methods, represent a
class of numerical methods with spatial discretization based on an arbitrarily distributed set
of nodes without any topological relations between them. Several meshless methods have
been proposed such as the Element Free Galerkin method (EFG) [1], the Meshless Petrov-
Galerkin method (MPG) [2], the Point Interpolation Method (PIM) [3], the Smoothed Particle
Hydrodynamics method (SPH) [4], the Reproducing Kernel Particle Method (RKPM) [5], the
Kansa Method (KM) [6], etc. However, this work is focused on one of the simplest class
of meshless methods in development today, the point interpolation Radial Basis Function
Collocation Method (RBFCM) [3].

The main drawback of the global approaches is in the necessity of solving a �nal linear
system represented by dense matrices. The conditioning of such systems is generally sensitive
to the distribution of the computation nodes as well as to the parameters of the numerical
methods itself. The problem becomes important even with a relatively small number of nodes,
e.g., 1000. From the computational point of view, the global approach is unwanted as it in-
troduces the global communication between computing nodes and therefore complicates the
parallelization. The mitigation of the related problem has been attempted by domain decom-
position, multi-grid approach, and compactly supported basis functions, which all represent a
substantial complication of the original simple method.

It was demonstrated [7] that the local formulation does not substantially degrade the
accuracy with respect to the global one. The local formulation is much less sensitive and
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e�ective regarding the computational time. The local variant of RBFCM (LRBFCM) has
been used for the �rst time in a convective-di�usive problems [8] and since then successfully
applied in several other problems. In this paper the simplest local meshless (LRBFCM)
technique is combined with the simplest parallelization standard (OpenMP) in order to solve,
in parallel, a system of partial di�erential equations (PDE) for the thermo-�uid problem of
natural convection.

Computational time is an important factor in numerical methods and it is often not ad-
dressed adequately. Parallel computers can compensate for the lack of single computer perfor-
mance, but only in cases if an e�cient parallelization method is known. Many such algorithms
are known for solving PDEs and have been implemented on parallel computers for di�erent
applications [9, 10, 11, 12].

The parallelization of a direct solver within the EFGmethod has been published in [13] with
measured speedup and e�ciency, which were 7.1 and 0.89, respectively, for four dual processors
and systems with up to 2000 equations. Large sparse linear systems obtained by Free Mesh
Method, which is a virtually meshless method based on FEM [14], have been parallelized on
up to 64 processors [15]. Construction of the linear system was ideally parallelizable, while
the parallel e�ciency for solving the system was 0.6 on all available processors. Parallel
RKPM in 3-D was implemented with e�ciency of 0.6 on 64 processors [16]. The system
of equations arising from 3-D meshless methods for crack propagations have been solved
in parallel on 16 processors [17, 18]. The listed examples indicate that several demanding
numerical applications need parallel implementations of meshless methods.

The parallel e�ciency of the global methods degrade signi�cantly if the problem is to be
solved on a greater number of processors, because a dense global linear system must be solved.
If the system was previously factorized, the solution implies the computational complexity of
order O(N2

D), ND being the number of spatial discretization nodes. The global approach re-
quires complex parallelization code and a signi�cant amount of interprocessor communication.
We have shown by theoretical and experimental results that the local MPG has a potential
for parallelization similar to those of FDM and FEM [19].

The rest of the paper is organized as follows. In the next section a short background is
given on the LRBFCM solution method. In Section 3, the OpenMP is described in short
followed by the description of the multicore test computer architecture. The classical De
Vahl Davis benchmark problem [20] with the proposed local solution procedure is described
in Section 4. Section 5 is devoted to the presentation of the obtained results. The paper
concludes with the summary and directions for future work.

2 Local Radial Basis Function Collocation Method (LRBFCM)

The general idea behind the local meshless numerical approach � in the present case the
LRBFCM � is the use of a local in�uence domain for the approximation of a discretized �eld
u, to evaluate the di�erential operators (L) needed to solve a PDE. In this paper, �ve node
in�uence domains are used, i.e., the a�ected node where the current computations take place
and its four closest neighboring nodes. Each node uses its own in�uence domain for the
evaluation of the spatial di�erential operations, consequently the domain is discretized with
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overlapping in�uence domains. The described principle is depicted in Figure 1.

Figure 1: Local meshless principle.

The approximation function is introduced as

û(p) =
N∑

n=1

αnΨn(p), (1)

where û, N , αn, p(px, py) and Ψn stand for the approximation function, the number of basis
functions, the approximation coe�cients, position vector and the basis functions, respectively.
The basis could be selected arbitrarily, however in this paper only Hardy's Multiquadrics

(MQs) Ψn (p) =
√

(p− pn) · (p− pn) /σ2C + 1 are used, where σC stands for the free shape
parameter and pn denotes n-th in�uence domain node. Taking into account all in�uence
domain nodes and Equation (1) the approximation system is constructed. The number of
basis functions is taken the same as the number of in�uence domain nodes N = 5. The local
approximation simpli�es to collocation, which results in a linear systems of N equations in
each computational node. The matrix formulation of the collocation is thus

Ψα = u (2)

The coe�cients α are obtained by solving Equation (2). The system (2) has to be solved only
when the topology of in�uence domain changes; accordingly, the computation can be optimized
by computing Ψ−1 in a pre-process phase. With the constructed collocation function an L
can be applied on (1)

Lû (p) =

N∑
n=1

αnLΨn(p), (3)

which provides a numerical evaluation of Lu(p).

3 Multicore parallelization

3.1 OpenMp

The OpenMP (Open Multi-Processing) is an Application Programming Interface (API) that
supports multi-platform shared-memory multiprocessing programming in C, C++, and For-
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tran, on most processor architectures and operating systems, including Unix, Mac OS, Mi-
crosoft Windows and others. The OpenMP consists of a set of compiler directives, library
routines, and environment variables that in�uence run-time behavior.

The OpenMP uses a portable, scalable model and a simple and �exible interface for the
development of parallel applications on di�erent platforms ranging from desktop computers
to supercomputers. A combination of the shared-memory and message passing interprocess
communication is also possible either by using both the OpenMP and the Message Passing
Interface (MPI), or through the use of an OpenMP extension for cluster systems.

The OpenMP implements multithreading where the master thread forks o� a speci�ed
number of slave threads and divides the task among them. The threads run then concur-
rently, also on the shared data, with the runtime environment allocating threads to di�erent
processors. Each section of the code that must run in parallel is marked with a preprocessor
directive. After the execution of the parallelized code, the slave threads join back into the
master thread, which continues toward the end of the program.

The OpenMP can implement the task parallelism and the data parallelism at the same
time. It runs particularly e�ective on multicore computer architectures based on the multilevel
memory hierarchy and fast shared-memory caches. For the purpose of the present analysis we
use #pragma omp parallel for directive with static scheduling.

3.2 Architecture of the test computer

All tests have been performed on a computer system with four Intel Xeon E7450 processors,
each with six cores, system clock of 2.40 GHz, 1066 MHz front side bus (FSB), 64 GB of
shared main memory and without hyperthreading technology. The system has three levels of
cache hierarchy:

• Each core has L1 execution cache (32 KB) to store micro-operations (shortest decode
time on cache hits) and data cache (32 KB) to improve data tracing. Typical L1 latency
is 2 clock cycles.

• Each pair of cores shares 3 MB of L2 cache, for a total of 9 MB of shared L2 cache per
processor Typical L2 latency in the case of L2 cache hit is 6 clock cycles.

• Each processors has 12 MB of shared L3 cache. Typical L3 latency in the case of L3
cache hit is 60 cycles or 120 clock cycles in the case of L3 cache miss and main memory
hit. The 6-core modules communicate through PCIe bus, which implements 64 GB of
shared main memory. The architecture of the whole system is shown in Figure 2.

The computational performance is analyzed through the speedup (S) de�ned as:

S =
t1
tNC

, (4)

where t1 and tNC
stand for computation time on a fastest single core system and on an NC-

core system, respectively. Because of the hierarchical shared cache/memory architecture we
can expect a signi�cant impact of the problem size (ND) and the number of cores (NC) on
the speedup (S) of parallel applications.
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Figure 2: Block diagram of the test computer based on four Intel Xeon E7450 processors
connected through PCIe bus.

.

4 Test problems

4.1 Synthetic test case

For the better insight into the performance of the OpenMP parallelization a synthetic test is
designed with a single spatial loop in a temporal loop. To control the amount of calculation
complexity NF �oating point operations (FP) can be requested in each spatial iteration.
Additionally, a single �oat variable is rewritten in the system memory NF times in each
spatial iteration. This simple test case is referred to in the following as SL.

4.2 Fluid �ow test case

The classical De Vahl Davis [20] 2-D natural convection problem (NC) is considered for bench-
marking purposes. The problem domain is a closed air-�lled square-shaped cavity with di�er-
entially heated vertical walls with temperature di�erence ∆T and insulated horizontal walls.
There are several numerical solutions published in the literature [21, 22, 23] that make the
test convenient for benchmarking purposes. The NC problem is described by three coupled
PDE equations: mass (5), momentum (6) and energy conservation (7) equations, where all
material properties are considered to be constant. The Boussinesq approximation de�ned in
Equation (8) is used for the treatment of body force in the momentum equation. The natural
convection is thus described by the following system of equations

∇ · v = 0, (5)

ρ
∂v

∂t
+ ρ∇ · (vv) = −∇P +∇ · (µ∇v) + b, (6)

ρ
∂ (cpT )

∂t
+ ρ∇ · (cpTv) = ∇ · (λ∇T ) , (7)
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b = ρ [1− βT (T − Tref)] g, (8)

where λ, v(u, v), t, cp, ρ, P , µ, b, T , βT , Tref and g stand for thermal conductivity, velocity,
time, speci�c heat, density, pressure, viscosity, body force, temperature, thermal expansion
coe�cient, reference temperature and gravitational acceleration, respectively. Problem is fully
characterized by two dimensionless numbers, the Prandtl number (Pr = µcp/λ) and the
Rayleigh number (Ra= |g|βT (∆T ) Ω3ρ2cp/λµ). The present test is performed for Pr = 0.71
and Ra = 108. More details on the subject can be found in [24].

4.3 Solution procedure

The problem is solved numerically with the LRBFCM for spatial discretization on ND regu-
larly distributed nodes and explicit time stepping employed for temporal discretization. An
important part of the solution procedure is the treatment of the mass and momentum equa-
tions, which are not explicitly coupled. The most widely known remedy for this problem
is Semi-Implicit Method for Pressure Linked Equations (SIMPLE) [25] where the problem
is translated to the pressure correction Poisson equation. Such an approach poses a global
problem.

To maintain the locality of computations, an alternative approach is used [24], similar to
the arti�cial compressibility method [26]. Equations (5) and (6) are solved iteratively through
the pressure correction based on the local mass continuity (5) violation. In each time step an
additional internal iteration takes place, where the pressure is corrected with the divergence
of the intermediate velocity.

The basic elements of the complete solution procedure in each time step are as follows:

• In the �rst step the energy transport (7) is considered. The new temperature is computed
as

T1 = T0 +
∆t

ρcp
[∇ · (λ∇T0)−∇ · (ρcpT0v0)] , (9)

where index 0 denotes values at current time t and index 1 denotes values at time t+∆t.
The ∆t stands for the time-step length.

• In the second step, the new velocity is estimated from the discretized transient form of
Equation (6)

v̂1 = v0 +
∆t

ρ
[−∇P0 +∇ · (µ∇v0) + f0 −∇ · (ρv0v0)] . (10)

• In the third step the pressure-velocity coupling is performed. The calculated velocity
v̂1 does not satisfy the mass continuity Equation (5) in general. The internal iteration
algorithm is used to couple Equations (5) and (6). In the �rst internal iteration, the
pressure and the velocity are set to the values from the previous time step. In the next
internal iteration, Pm+1 and vm+1

1 (m stands for internal iteration index) are estimated
from the mass continuity violation as follows

P̄ = Ωref
2 ρ

∆t
∇ · vm, (11)
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Pm+1 = Pm + γP̄ , (12)

vm+1
1 = vm

1 − γ
∆t

ρ
∇P̄ . (13)

γ stands for the relaxation parameter and Ωref for the characteristic length. The internal
iteration stops when the convergence criteria (∇ ·vm+1 < ε) is met in all computational
nodes.

• With known new temperature, pressure and velocity the simulation proceed to the next
time step.

The �owchart of the above solution procedure is shown in Figure 3.

Figure 3: Scheme of the �uid �ow test case solution procedure.

5 Results

The results of the NC solution are presented in terms of cavity stream function and tem-
perature contours in Figure 4 (left), and temporal development of Nusselt number (Nu =
−∂T/∂px + Tv) in Figure 4 (right). The detailed comparison of results computed with the
proposed solution procedure against the data from previous publications can be found in [24].

The speedup analysis for the SL test case with NF = 1 is shown in Figure 5 (left).
It demonstrates a super linear behavior on larger systems and limited speedups on smaller
systems. The super linear speedup originates from L1 cache exploitation. For the smaller
systems all data can be stored in a single L1 cache. Memory demands become higher as the
system size ND increases and hence only a single L1 cache is not enough to store all the
application data. The application has to access data from higher level of memory hierarchy.
Increasing NC provides more L1 caches, which results in super linear speedups for greater
systems (ND > 17424).
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Figure 4: Cavity streamlines (solid line) and temperature contour plot (dotted line) (left) and
Nusselt temporal development (right).
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Figure 5: Speedup of the SL case for NF = 1 as a function of number of cores (NC) for
di�erent problem sizes (ND) (left), and speedup for the SL case for di�erent computational
complexities (NF ) with ND = 37249 (right).
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In Figure 5 (right) the speedup on the largest system (ND = 37249) is tested for di�erent
NF . For the lowest computational cost (NF = 1) the speedup is strongly super linear as the
data manipulation presents the bulk proportion of the execution time. With the increasing
NF the super linearity of speedup diminishes, because the �oating point calculation prevails.
On the other hand, the cases with higher NF can be solved faster only with higher NC .

The computation time of the SL for NF as a function of the domain size is shown in Figure
6 (left). If the computation is carried out on a single core, the computation time tC increases
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Figure 6: Computation time for the SL case as a function of problem size (ND) for di�erent
number of cores (NC) (left), and speedup for the NC case as a function of NC for di�erent
ND (right).

proportional to ND up to roughly ND = 2 · 104. From that point on the slope of tC increases
and destabilizes since higher level memories have to be accessed. The behavior for NC = 2 is
similar, however the slope destabilizes at the greater system (ND = 3.5 · 104), because two L1
caches are available. For higher NC the accumulated caches provide enough memory for all
tested cases.

Finally, the speedup of a real application (NC) is shown in Figure 6 (right). The speedup is
still super linear for larger systems but it converges to linearity because the NC computational
complexity is relatively large regarding the time needed for the problem data access.

6 Conclusions

We demonstrate the application of the local meshless numerical technique in solving the nat-
ural convection problem. To treat a �uid �ow problem one needs to solve pressure-correction,
which is a global problem as it is governed by an elliptic equation. Instead of solving the
global problem we approach the subject with a simple iterative correction algorithm, similar
to the arti�cial compressibility method. Such a localized approach makes the parallelization
of the code straightforward and appropriate for the OpenMP parallelization.
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Two di�erent test cases are analysed. First, the pure synthetic case, where the number of
FPs can be controlled and second, the natural convection case which requires a PDE system
solution. The results are presented in terms of speedups and computational times for di�erent
scenarios. We show that as a result of accumulating L1 cache, multiple cores might produce
super linear speedup, which is reduced as the complexity of the spatial iteration is increased.

It is demonstrated that the system of parabolic and elliptic PDEs can be e�ectively solved
with a local solution procedure. The local behavior of the presented solution procedure shows
convenient advantages like an ease of implementation, straightforward parallelization, simple
consideration of complex physical models and processors' e�ectiveness. Nevertheless, the
proposed methodology can be directly applied in solving more complex problems like an
unsteady �uid �ow dynamics [27] or even more complex macrosegregation problem [28].

In future work the presented analysis will be implemented for computing clusters with much
more interconnected multicore processors. The current implementation will be upgraded by
MPI communication.
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