Difference between revisions of "Natural convection in 3D irregular domain"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
Line 3: Line 3:
 
for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e.\
 
for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e.\
 
peak positions and values of cross section velocities, with data available in
 
peak positions and values of cross section velocities, with data available in
literature~\cite{couturier2000performance, kosec2008solution,
+
literature~\cite{fusegi1991numerical}. We analyze six different cases,
wang2017numerical, fusegi1991numerical}. We analyze six different cases,
 
 
namely $\textup{Ra} = 10^6,10^7,10^8$ in 2D, and $\textup{Ra} = 10^4,10^5,10^6$ in 3D.
 
namely $\textup{Ra} = 10^6,10^7,10^8$ in 2D, and $\textup{Ra} = 10^4,10^5,10^6$ in 3D.
 
The comparison in presented in~\cref{tab:ff-data}.
 
The comparison in presented in~\cref{tab:ff-data}.
 
  
 
All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis
 
All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis
Line 16: Line 14:
 
boundary conditions are additionally treated with ghost nodes [[Ghost nodes (theory)]].
 
boundary conditions are additionally treated with ghost nodes [[Ghost nodes (theory)]].
  
[[File:DVD_3D_irreg.png|400px]][[File:DVD_3D.png|400px]]
+
[[File:DVD_3D.png|400px]]
 
+
[[File:DVD_3D_irreg.png|400px]]
 
 
\begin{table}[h]
 
  \centering
 
  \caption{Comparison of results computed with RBF-FD on FF nodes and reference
 
  data. }
 
  \label{tab:ff-data}
 
  \renewcommand{\arraystretch}{1.2}
 
  \scalebox{0.68}{
 
  \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
 
    \cline{2-14}
 
      \multicolumn{1}{c|}{} & \multirow{2}{*}{\textbf{Ra}} &
 
      \multicolumn{3}{c|}{$v_{max}(x, 0.5)$} & \multicolumn{3}{c|}{$x$}  &
 
      \multicolumn{3}{c|}{$u_{max}(0.5, y)$} & \multicolumn{3}{c|}{$y$}
 
    \\ \cline{3-14}
 
      \multicolumn{1}{c|}{} & \multicolumn{1}{c|}{} & present &
 
      \multicolumn{1}{c|}{\cite{couturier2000performance}} &
 
      \multicolumn{1}{c|}{\cite{kosec2008solution}} & present &
 
      \multicolumn{1}{c|}{\cite{couturier2000performance}} &
 
      \multicolumn{1}{c|}{\cite{kosec2008solution}} & present &
 
      \multicolumn{1}{c|}{\cite{couturier2000performance}} &
 
      \multicolumn{1}{c|}{\cite{kosec2008solution}} & present &
 
      \multicolumn{1}{c|}{\cite{couturier2000performance}} &
 
      \multicolumn{1}{c|}{\cite{kosec2008solution}}
 
    \\ \hline \hline
 
      \multirow{3}{*}{\textbf{2D}} & $10^6$ & 0.2628    & 0.2604  &
 
      0.2627  & 0.037  & 0.038 & 0.039 & 0.0781    & 0.0765  & 0.0782  & 0.847
 
      & 0.851 & 0.861
 
    \\ \cline{2-14}
 
      & $10^7$ & 0.2633    & 0.2580  & 0.2579  & 0.022  & 0.023 & 0.021 & 0.0588
 
      & 0.0547  & 0.0561  & 0.870  & 0.888 & 0.900
 
    \\ \cline{2-14}
 
      & $10^8$ & 0.2557    & 0.2587  & 0.2487  & 0.010  & 0.011 & 0.009 & 0.0314
 
      & 0.0379  & 0.0331  & 0.918  & 0.943 & 0.930
 
    \\ \hline \hline
 
      \multicolumn{1}{c|}{} & \multirow{2}{*}{\textbf{Ra}} &
 
      \multicolumn{3}{c|}{$w_{max}(x, 0.5,0.5)$} & \multicolumn{3}{c|}{$x$}  &
 
      \multicolumn{3}{c|}{$u_{max}(0.5, 0.5, z)$} & \multicolumn{3}{c|}{$z$}
 
    \\ \cline{3-14}
 
      \multicolumn{1}{c|}{} & \multicolumn{1}{c|}{} & present &
 
      \multicolumn{1}{c|}{\cite{wang2017numerical}}
 
      & \multicolumn{1}{c|}{\cite{fusegi1991numerical}} & present &
 
      \multicolumn{1}{c|}{\cite{wang2017numerical}}
 
      & \multicolumn{1}{c|}{\cite{fusegi1991numerical}} & present &
 
      \multicolumn{1}{c|}{\cite{wang2017numerical}}
 
      & \multicolumn{1}{c|}{\cite{fusegi1991numerical}} & present &
 
      \multicolumn{1}{c|}{\cite{wang2017numerical}} &
 
      \multicolumn{1}{c|}{\cite{fusegi1991numerical}}
 
    \\  \hline
 
      \multirow{3}{*}{\textbf{3D}} & $10^4$ & 0.2295 & 0.2218  & 0.2252  & 0.850 & 0.887 & 0.883
 
      & 0.2135    & 0.1968  & 0.2013  & 0.168 & 0.179 & 0.183 \\ \cline{2-14}
 
      & $10^5$ & 0.2545    & 0.2442  & 0.2471  & 0.940  & 0.931 & 0.935 & 0.1564 & 0.1426 & 0.1468
 
      & 0.144  & 0.149 & 0.145
 
    \\ \cline{2-14}
 
      & $10^6$ & 0.2564 & 0.2556 & 0.2588 & 0.961  & 0.965 & 0.966 & 0.0841
 
      & 0.0816  & 0.0841 & 0.143 & 0.140 & 0.144
 
    \\ \hline
 
  \end{tabular}
 
  }
 
\end{table}
 

Revision as of 16:27, 18 May 2019

The classical De Vahl Davis natural convection test can be extended to 3D. In below figures steady state temperature contour and velocity quiver plots for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e.\ peak positions and values of cross section velocities, with data available in literature~\cite{fusegi1991numerical}. We analyze six different cases, namely $\textup{Ra} = 10^6,10^7,10^8$ in 2D, and $\textup{Ra} = 10^4,10^5,10^6$ in 3D. The comparison in presented in~\cref{tab:ff-data}.

All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis functions, augmented with monomials up to order $2$, with the closest $25$ nodes used as a stencil. For the time discretization time step $\Delta t=10^{-3}$ was used for all cases. Nodal distance $h=0.01$ is used for simulations in 2D and $h=0.25$ for simulations in 3D. Boundaries with Neumann boundary conditions are additionally treated with ghost nodes Ghost nodes (theory).

DVD 3D.png DVD 3D irreg.png