Execution on Intel® Xeon Phi™ co-processor

From Medusa: Coordinate Free Mehless Method implementation
Revision as of 18:41, 1 March 2017 by Mkolman (talk | contribs) (Speedup by vectorization)

Jump to: navigation, search

Speedup by parallelization

We tested the speedups on the Intel® Xeon Phi™ with the following code:

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4 #include <assert.h>
 5 #include <omp.h>
 6 #include <math.h>
 7 
 8 int main(int argc, char *argv[]) {
 9     int numthreads;
10     int n;
11 
12     assert(argc == 3 && "args: numthreads n");
13     sscanf(argv[1], "%d", &numthreads);
14     sscanf(argv[2], "%d", &n);
15 
16     printf("Init...\n");
17     printf("Start (%d threads)...\n", numthreads);
18     printf("%d test cases\n", n);
19 
20     int m = 1000000;
21     double ttime = omp_get_wtime();
22 
23     int i;
24     double d = 0;
25 #pragma offload target(mic:0)
26     {
27 #pragma omp parallel for private (i) schedule(static) num_threads(numthreads)
28         for(i = 0; i < n; ++i) {
29             for(int j = 0; j < m; ++j) {
30                 d = sin(d) + 0.1 + j;
31                 d = pow(0.2, d)*j;
32             }
33         }
34     }
35     double time = omp_get_wtime() - ttime;
36     fprintf(stderr, "%d %d %.6f\n", n, numthreads, time);
37     printf("time: %.6f s\n", time);
38     printf("Done d = %.6lf.\n", d);
39 
40     return 0;
41 }

The code essentially distributes a problem of size $n\cdot m$ among numthreads cores, We tested the time of execution for $n$ from the set $\{1, 10, 20, 50, 100, 200, 500, 1000\}$ and numthreads from $1$ to $350$. The plots of exectuion times and performance speeups are shown below.

A square of nodes coloured according to the solution(with smaller and larger node density)
Figure 1: A picture of our solution (with smaller and larger node density)


A square of nodes coloured according to the solution(with smaller and larger node density)
Figure 2: A picture of our solution (with smaller and larger node density)



The code was compiled using:
icc -openmp -O3 -qopt-report=2 -qopt-report-phase=vec -o test test.cpp
without warnings or errors. Then, in order to offload to Intel Phi, user must be logged in as root:
sudo su
To run correctly, intel compiler and runtime variables must be sourced:
source /opt/intel/bin/compilervars.sh intel64
Finally, the code was tested using the following command, where test is the name of the compiled executable:
for n in 1 10 20 50 100 200 500 1000; do for nt in {1..350}; echo $nt $n; ./test $nt $n 2>> speedups.txt; done; done


Speedup by vectorization

Intel Xeon Phi has a 512 bit of space for simultaneous computation, which means it can calculate 8 double (or 16 single) operations at the same time. This is called vectorization and greatly improves code execution.

Consider the following code of speedtest.cpp:

 1 #include <cmath>
 2 #include <iostream>
 3 
 4 int main() {
 5     const int N = 104;
 6     double a[N];
 7     for (int i = 0; i < 1e5; i++)
 8         for (int j = 0; j < N; j++)
 9             a[j] = std::sin(std::exp(a[j]-j)*3 * i + i*j);
10     std::cout << a[4] << "\n";
11     return 0;
12 }

Intel's C++ compiler ICPC will successfully vectorize the inner for loop, so that it will run significantly faster than with vectorization disabled.

The code can be compiled with or without vectorization

$ icpc speedtest.cpp -o vectorized_speedtest -O3
$ icpc speedtest.cpp -o unvectorized_speedtest -O3 -no-vec

The below table shows execution times of the code displayed before on different machines with different settings. Two times represent execution time with double and float data type, respectively.

Machine ASUS ZenBook Pro UX501VW Intel® Xeon® CPU E5-2620 v3 Intel® Xeon® CPU E5-2620 v3 Intel® Xeon® CPU E5-2620 v3 Intel® Xeon Phi™ Coprocessor SE10/7120 Intel® Xeon Phi™ Coprocessor SE10/7120
Compiler g++-6.3.1 g++-4.8.5 icpc-16.0.1 icpc-16.0.1 -no-vec icpc-16.0.1 -mmic icpc-16.0.1 -mmic -no-vec
Double time[s] 0.63 - 0.66 0.65 - 0.66 0.155 - 0.160 0.50 - 0.51 0.25 - 0.26 11.1 - 11.2
Float time[s] 0.65 - 0.71 0.53 - 0.55 0.155 - 0.160 0.17 - 0.19 0.37 - 0.38 4.2 - 4.3

We can see massive 44 fold speedup with and without vectorization.

Code incapable of vectorization

On the other hand there is a very similar code that can not be vectorized. Now all iterations of the inner loop access the same variable instead of each its own element in a list. ICPC is now unable to vectorize the code resulting in no difference when using -no-vec compile flag.

 1 #include <cmath>
 2 #include <iostream>
 3 
 4 int main() {
 5     const int N = 104;
 6     double a;
 7     for (int i = 0; i < 1e5; i++)
 8         for (int j = 0; j < N; j++)
 9             a = std::sin(std::exp(a-j)*3 * i + i*j);
10     std::cout << a << "\n";
11     return 0;
12 }
Machine ASUS ZenBook Pro UX501VW Intel® Xeon® CPU E5-2620 v3 Intel® Xeon® CPU E5-2620 v3 Intel® Xeon® CPU E5-2620 v3 Intel® Xeon Phi™ Coprocessor SE10/7120 Intel® Xeon Phi™ Coprocessor SE10/7120
Compiler g++-6.3.1 g++-4.8.5 icpc-16.0.1 icpc-16.0.1 -no-vec icpc-16.0.1 -mmic icpc-16.0.1 -mmic -no-vec
Double time[s] 0.80 - 0.82 0.72 - 0.73 0.58 - 0.59 0.58 - 0.59 10.9 - 11.0 10.9 - 11.0
Float time[s] 0.69 - 0.72 0.66 - 0.67 0.32 - 0.33 0.32 - 0.34 4.1 - 4.2 4.1 - 4.2