Parametric domains

From Medusa: Coordinate Free Mehless Method implementation
Revision as of 17:40, 8 August 2019 by Uduh (talk | contribs)

Jump to: navigation, search

Go back to Examples.

Variable node density and dirchlet boundary conditions in 2D

With medusa, we can also solve partial differential equations on parametric domains. Consider the solution of a simple 2D Poisson equation with Dirichlet boundary conditions\[ \begin{align*} \Delta u &= 0.5 &&\text{in } \Omega, \\ u &= 0 &&\text{on } \partial \Omega, \end{align*} \] Let's define $\Omega$ to be the interior of the parametrically given curve $r(t): [- 2 \pi, 0] \to \mathbb{R}^2$\[ \begin{align*} f(t) &= |\cos(-1.5 t)| ^ {\sin(-3t)} \\ r(t) &= (r \cos(-t), r \sin(-t)) \end{align*} \] Using tools such as Wolfram Mathematica, we can find the Jacobian matrix ($\textbf{J}$) of $r$. Now, we can translate the definition of $r$ into code:

 1 auto example_r = [](Vec1d t) {
 2     t(0) = -t(0);
 3     double f = pow(abs(cos(1.5 * t(0))), sin(3 * t(0)));
 4     return Vec2d(f * cos(t(0)), f * sin(t(0)));
 5 };
 6 
 7 auto der_example_r = [](Vec1d t) {
 8     t(0) = -t(0);
 9     double f = pow(abs(cos(1.5 * t(0))), sin(3 * t(0)));
10     double der_f = (-1.5 * pow(abs(cos(1.5 * t(0))),
11             sin(3 * t(0))) * sin(3 * t(0)) * sin(1.5 * t(0))  +  3 * pow(abs(cos(1.5 * t(0))),
12                     sin(3 * t(0))) * cos(3 * t(0)) * cos(1.5 * t(0)) *
13                             log(abs(cos(1.5 * t(0))))) / cos(1.5 * t(0));
14 
15     Eigen::Matrix<double, 2, 1> jm;
16     jm.col(0) << -(der_f * cos(t(0)) - f * sin(t(0))), -(der_f * sin(t(0)) + f * cos(t(0)));
17 
18     return jm;
19 };
20 
21 // Define parametric curve's domain.
22 BoxShape<Vec1d> bs(Vec<double, 1>{- 2 * PI}, Vec<double, 1>{0.0});
23 DomainDiscretization<Vec1d> param_d(bs);

We implemented $r$ and $\textbf{J}$ as lambda expressions and $r$'s domain as an instance of DomainDiscretization class. Now we can fill the target domain with nodes given by $r$ and the density function $h$ by using GeneralSurfaceFill. For the sake of this example, we choose a gradient-like density function gradient_h.

 1 UnknownShape<Vec2d> shape;
 2 DomainDiscretization<Vec2d> domain(shape);
 3 
 4 auto gradient_h = [](Vec2d p){
 5     double h_0 = 0.005;
 6     double h_m = 0.03 - h_0;
 7 
 8     return  (0.5 * h_m * (p(0) + p(1) + 3.0) + h_0) / 5.0;
 9 };
10 
11 GeneralSurfaceFill<Vec2d, Vec1d> gsf;
12 domain.fill(gsf, param_d, example_r, der_example_r, gradient_h);

After that, we can fill the interior of the domain in the usual way and choose the closest 9 nodes of each node as its support.

1 GeneralFill<Vec2d> gf;
2 domain.fill(gf, gradient_h);
3 
4 int N = domain.size();
5 domain.findSupport(FindClosest(9));

Finally, we translate the partial differential equations of our problem into code and solve the problem, as in other examples.

 1 int m = 2;  // basis order
 2 Monomials<Vec2d> mon(m);
 3 RBFFD<Polyharmonic<double, 3>, Vec2d> approx({}, mon);
 4 
 5 // Compute the shapes (we only need the Laplacian).
 6 auto storage = domain.computeShapes<sh::lap>(approx);
 7 
 8 Eigen::SparseMatrix<double, Eigen::RowMajor> M(N, N);
 9 Eigen::VectorXd rhs(N); rhs.setZero();
10 M.reserve(storage.supportSizes());
11 
12 // Construct implicit operators over our storage.
13 auto op = storage.implicitOperators(M, rhs);
14 
15 for (int i : domain.interior()) {
16     op.lap(i) = 0.5; // set the case for nodes in the domain
17 }
18 for (int i : domain.boundary()) {
19     op.value(i) = 0.0; // enforce the boundary conditions
20 }
21 
22 Eigen::BiCGSTAB<decltype(M), Eigen::IncompleteLUT<double>> solver;
23 solver.compute(M);
24 ScalarFieldd u = solver.solve(rhs);

Here is the plot of $u(x, y)$.

Poisson 2D.png

The whole example can be found as parametric_domain_2D.cpp along with the plot script that can be run by Matlab or Octave parametric_domain_2D.m.

See Positioning of computational nodes (TODO) for the theory behind the node placing algorithm.