Parametric domains
From Medusa: Coordinate Free Mehless Method implementation
Go back to Examples.
Variable node density and dirchlet boundary conditions in 2D
With medusa, we can also solve partial differential equations on parametric domains. Consider the solution of a simple 2D Poisson equation with Dirichlet boundary conditions\[ \begin{align*} \Delta u &= 0.5 &&\text{in } \Omega, \\ u &= 0 &&\text{on } \partial \Omega, \end{align*} \] where $u(x,y)$ is the solution to the problem. Let's define $\Omega$ to be the interior of the parametrically given curve $f(t)$\[ \begin{align*} r(t) &=& |\cos(1.5 t)| ^ {\sin(3t)} f(t) &=& (r \cos(t), r \sin(t)) \end{align*} \]
See Positioning of computational nodes TODO.