Natural convection in 3D irregular domain

From Medusa: Coordinate Free Mehless Method implementation
Revision as of 15:25, 18 May 2019 by Gkosec (talk | contribs)

Jump to: navigation, search

The classical De Vahl Davis natural convection test can be extended to 3D. In below figures steady state temperature contour and velocity quiver plots for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e.\ peak positions and values of cross section velocities, with data available in literature~\cite{couturier2000performance, kosec2008solution, wang2017numerical, fusegi1991numerical}. We analyze six different cases, namely $\textup{Ra} = 10^6,10^7,10^8$ in 2D, and $\textup{Ra} = 10^4,10^5,10^6$ in 3D. The comparison in presented in~\cref{tab:ff-data}.


All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis functions, augmented with monomials up to order $2$, with the closest $25$ nodes used as a stencil. For the time discretization time step $\Delta t=10^{-3}$ was used for all cases. Nodal distance $h=0.01$ is used for simulations in 2D and $h=0.25$ for simulations in 3D. Boundaries with Neumann boundary conditions are additionally treated with ghost nodes Ghost nodes (theory).

DVD 3D irreg.pngDVD 3D.png


\begin{table}[h] \centering \caption{Comparison of results computed with RBF-FD on FF nodes and reference data. } \label{tab:ff-data} \renewcommand{\arraystretch}{1.2} \scalebox{0.68}{ \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \cline{2-14} \multicolumn{1}{c|}{} & \multirow{2}{*}{\textbf{Ra}} & \multicolumn{3}{c|}{$v_{max}(x, 0.5)'"`UNIQ-MathJax11-QINU`"'x'"`UNIQ-MathJax12-QINU`"'u_{max}(0.5, y)'"`UNIQ-MathJax13-QINU`"'y'"`UNIQ-MathJax14-QINU`"'10^6'"`UNIQ-MathJax15-QINU`"'10^7'"`UNIQ-MathJax16-QINU`"'10^8'"`UNIQ-MathJax17-QINU`"'w_{max}(x, 0.5,0.5)'"`UNIQ-MathJax18-QINU`"'x'"`UNIQ-MathJax19-QINU`"'u_{max}(0.5, 0.5, z)'"`UNIQ-MathJax20-QINU`"'z'"`UNIQ-MathJax21-QINU`"'10^4'"`UNIQ-MathJax22-QINU`"'10^5'"`UNIQ-MathJax23-QINU`"'10^6$ & 0.2564 & 0.2556 & 0.2588 & 0.961 & 0.965 & 0.966 & 0.0841 & 0.0816 & 0.0841 & 0.143 & 0.140 & 0.144 \\ \hline \end{tabular}

 }

\end{table}