Difference between revisions of "1D MLSM and FDM comparison"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
Line 1: Line 1:
A sample Dirichlet or Neumann problem <br><br>
+
Different numerical approaches to solving a Dirichlet or Neumann problem <br><br>
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
Line 9: Line 9:
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
 +
 +
were analysed. Theoretically, [[MLSM]] formulation and [[FDM|https://en.wikipedia.org/wiki/Finite_difference_method]]

Revision as of 10:32, 13 March 2017

Different numerical approaches to solving a Dirichlet or Neumann problem

\( \begin{align*} \text{Dirichlet} && \text{Neumann} \\ f''(x) &= 2x^2+5 \text{ on } (0, 1) & f''(x) &= 2x^2+5 \text{ on } (0, 1) \\ f(0) &= 1 & f'(0) &= 1 \\ f(1) &= 1 & f(1) &= 1 \\ f(x) &= \frac{1}{6} \left(x^4+15 x^2-16 x+6\right) & f(x) &= \frac{1}{6} \left(x^4+15 x^2+6 x-16\right) \end{align*} \)

were analysed. Theoretically, MLSM formulation and https://en.wikipedia.org/wiki/Finite_difference_method