Difference between revisions of "Natural convection in 3D irregular domain"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
Line 1: Line 1:
The classical [[De Vahl Davis natural convection test]] can be extended to 3D  
+
The classical [[De Vahl Davis natural convection test]] can be extended to 3D []
 +
 
 +
 
 
All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis
 
All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis
 
functions, augmented with monomials up to order $2$, with the closest $25$
 
functions, augmented with monomials up to order $2$, with the closest $25$
Line 8: Line 10:
  
 
[[File:DVD_3D_irreg.png|400px]][[File:DVD_3D.png|400px]]
 
[[File:DVD_3D_irreg.png|400px]][[File:DVD_3D.png|400px]]
 +
 +
 +
\begin{table}[h]
 +
  \centering
 +
  \caption{Comparison of results computed with RBF-FD on FF nodes and reference
 +
  data. }
 +
  \label{tab:ff-data}
 +
  \renewcommand{\arraystretch}{1.2}
 +
  \scalebox{0.68}{
 +
  \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
 +
    \cline{2-14}
 +
      \multicolumn{1}{c|}{} & \multirow{2}{*}{\textbf{Ra}} &
 +
      \multicolumn{3}{c|}{$v_{max}(x, 0.5)$} & \multicolumn{3}{c|}{$x$}  &
 +
      \multicolumn{3}{c|}{$u_{max}(0.5, y)$} & \multicolumn{3}{c|}{$y$}
 +
    \\ \cline{3-14}
 +
      \multicolumn{1}{c|}{} & \multicolumn{1}{c|}{} & present &
 +
      \multicolumn{1}{c|}{\cite{couturier2000performance}} &
 +
      \multicolumn{1}{c|}{\cite{kosec2008solution}} & present &
 +
      \multicolumn{1}{c|}{\cite{couturier2000performance}} &
 +
      \multicolumn{1}{c|}{\cite{kosec2008solution}} & present &
 +
      \multicolumn{1}{c|}{\cite{couturier2000performance}} &
 +
      \multicolumn{1}{c|}{\cite{kosec2008solution}} & present &
 +
      \multicolumn{1}{c|}{\cite{couturier2000performance}} &
 +
      \multicolumn{1}{c|}{\cite{kosec2008solution}}
 +
    \\ \hline \hline
 +
      \multirow{3}{*}{\textbf{2D}} & $10^6$ & 0.2628    & 0.2604  &
 +
      0.2627  & 0.037  & 0.038 & 0.039 & 0.0781    & 0.0765  & 0.0782  & 0.847
 +
      & 0.851 & 0.861
 +
    \\ \cline{2-14}
 +
      & $10^7$ & 0.2633    & 0.2580  & 0.2579  & 0.022  & 0.023 & 0.021 & 0.0588
 +
      & 0.0547  & 0.0561  & 0.870  & 0.888 & 0.900
 +
    \\ \cline{2-14}
 +
      & $10^8$ & 0.2557    & 0.2587  & 0.2487  & 0.010  & 0.011 & 0.009 & 0.0314
 +
      & 0.0379  & 0.0331  & 0.918  & 0.943 & 0.930
 +
    \\ \hline \hline
 +
      \multicolumn{1}{c|}{} & \multirow{2}{*}{\textbf{Ra}} &
 +
      \multicolumn{3}{c|}{$w_{max}(x, 0.5,0.5)$} & \multicolumn{3}{c|}{$x$}  &
 +
      \multicolumn{3}{c|}{$u_{max}(0.5, 0.5, z)$} & \multicolumn{3}{c|}{$z$}
 +
    \\ \cline{3-14}
 +
      \multicolumn{1}{c|}{} & \multicolumn{1}{c|}{} & present &
 +
      \multicolumn{1}{c|}{\cite{wang2017numerical}}
 +
      & \multicolumn{1}{c|}{\cite{fusegi1991numerical}} & present &
 +
      \multicolumn{1}{c|}{\cite{wang2017numerical}}
 +
      & \multicolumn{1}{c|}{\cite{fusegi1991numerical}} & present &
 +
      \multicolumn{1}{c|}{\cite{wang2017numerical}}
 +
      & \multicolumn{1}{c|}{\cite{fusegi1991numerical}} & present &
 +
      \multicolumn{1}{c|}{\cite{wang2017numerical}} &
 +
      \multicolumn{1}{c|}{\cite{fusegi1991numerical}}
 +
    \\  \hline
 +
      \multirow{3}{*}{\textbf{3D}} & $10^4$ & 0.2295 & 0.2218  & 0.2252  & 0.850 & 0.887 & 0.883
 +
      & 0.2135    & 0.1968  & 0.2013  & 0.168 & 0.179 & 0.183 \\ \cline{2-14}
 +
      & $10^5$ & 0.2545    & 0.2442  & 0.2471  & 0.940  & 0.931 & 0.935 & 0.1564 & 0.1426 & 0.1468
 +
      & 0.144  & 0.149 & 0.145
 +
    \\ \cline{2-14}
 +
      & $10^6$ & 0.2564 & 0.2556 & 0.2588 & 0.961  & 0.965 & 0.966 & 0.0841
 +
      & 0.0816  & 0.0841 & 0.143 & 0.140 & 0.144
 +
    \\ \hline
 +
  \end{tabular}
 +
  }
 +
\end{table}

Revision as of 15:22, 18 May 2019

The classical De Vahl Davis natural convection test can be extended to 3D []


All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis functions, augmented with monomials up to order $2$, with the closest $25$ nodes used as a stencil. For the time discretization time step $\Delta t=10^{-3}$ was used for all cases. Nodal distance $h=0.01$ is used for simulations in 2D and $h=0.25$ for simulations in 3D. Boundaries with Neumann boundary conditions are additionally treated with ghost nodes Ghost nodes (theory).

DVD 3D irreg.pngDVD 3D.png


\begin{table}[h] \centering \caption{Comparison of results computed with RBF-FD on FF nodes and reference data. } \label{tab:ff-data} \renewcommand{\arraystretch}{1.2} \scalebox{0.68}{ \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|} \cline{2-14} \multicolumn{1}{c|}{} & \multirow{2}{*}{\textbf{Ra}} & \multicolumn{3}{c|}{$v_{max}(x, 0.5)'"`UNIQ-MathJax7-QINU`"'x'"`UNIQ-MathJax8-QINU`"'u_{max}(0.5, y)'"`UNIQ-MathJax9-QINU`"'y'"`UNIQ-MathJax10-QINU`"'10^6'"`UNIQ-MathJax11-QINU`"'10^7'"`UNIQ-MathJax12-QINU`"'10^8'"`UNIQ-MathJax13-QINU`"'w_{max}(x, 0.5,0.5)'"`UNIQ-MathJax14-QINU`"'x'"`UNIQ-MathJax15-QINU`"'u_{max}(0.5, 0.5, z)'"`UNIQ-MathJax16-QINU`"'z'"`UNIQ-MathJax17-QINU`"'10^4'"`UNIQ-MathJax18-QINU`"'10^5'"`UNIQ-MathJax19-QINU`"'10^6$ & 0.2564 & 0.2556 & 0.2588 & 0.961 & 0.965 & 0.966 & 0.0841 & 0.0816 & 0.0841 & 0.143 & 0.140 & 0.144 \\ \hline \end{tabular}

 }

\end{table}