Difference between revisions of "Parametric domains"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
Line 1: Line 1:
 
Go back to [[Medusa#Examples|Examples]].
 
Go back to [[Medusa#Examples|Examples]].
  
== Variable node density and dirtchlet boundary conditions ==
+
== Variable node density and dirchlet boundary conditions in 2D ==
 +
With medusa, we can also solve partial differential equations on parametric domains. Consider the solution of a simple 2D Poisson equation with Dirichlet boundary conditions:
 +
<math>
 +
\begin{align*}
 +
    \Delta u &= 0.5      &&\text{in } \Omega, \\
 +
      u &= 0          &&\text{on } \partial \Omega,
 +
\end{align*}
 +
</math>
 +
where $u(x,y)$ is the solution to the problem. Let's define $\Omega$ to be the interior of the parametrically given curve $f(t)$:
  
TODO
+
<math>
 +
\begin{align*}
 +
    r(t) &=& |\cos(1.5 t)| ^ {\sin(3t)}
 +
        f(t) &=& (r \cos(t), r \sin(t))
 +
\end{align*}
 +
</math>
  
 
See [[Positioning of computational nodes]] TODO.
 
See [[Positioning of computational nodes]] TODO.

Revision as of 15:24, 8 August 2019

Go back to Examples.

Variable node density and dirchlet boundary conditions in 2D

With medusa, we can also solve partial differential equations on parametric domains. Consider the solution of a simple 2D Poisson equation with Dirichlet boundary conditions\[ \begin{align*} \Delta u &= 0.5 &&\text{in } \Omega, \\ u &= 0 &&\text{on } \partial \Omega, \end{align*} \] where $u(x,y)$ is the solution to the problem. Let's define $\Omega$ to be the interior of the parametrically given curve $f(t)$\[ \begin{align*} r(t) &=& |\cos(1.5 t)| ^ {\sin(3t)} f(t) &=& (r \cos(t), r \sin(t)) \end{align*} \]

See Positioning of computational nodes TODO.