Difference between revisions of "De Vahl Davis natural convection test"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
(Code)
(Code)
Line 26: Line 26:
  
 
<syntaxhighlight lang="c++" line>
 
<syntaxhighlight lang="c++" line>
//Navier-Stokes
+
    v2[boundary] = vec_t{0.0, 0.0};
#pragma omp parallel for private(i) schedule(static)
+
    T2[left] = O.T_cold;
for (i=0;i<interior.size();++i) {
+
    T2[right] = O.T_hot;
    int c=interior[i];
+
    //Time stepping
    //Navier-Stokes
+
    for (int step = 0; step <= O.t_steps; ++step) {
    v2[c] = v1[c] + O.dt * ( - 1/O.rho   * op.grad(P1,c)
+
        for (int i_count = 1; i_count < _MAX_ITER_; ++i_count) {
                            + O.mu/O.rho * op.lap(v1, c)
+
            // Navier Stokes
                            -             op.grad(v1,c)*v1[c]
+
            for (auto c : interior) {
                            + O.g*(1 - O.beta*(T1[c] - O.T_ref))
+
                v2[c] = v1[c] + O.dt * (-1 / O.rho * op.grad(P1, c)
    );
+
                                        + O.mu / O.rho * op.lap(v1, c)
    //heat transport
+
                                        - op.grad(v1, c) * v1[c]
    T2[c] = T1[c] + O.lam / O.rho / O.c_p * O.dt * op.lap(T1, c)
+
                                        + O.g * (1 - O.beta * (T1[c] - O.T_ref)));
             -O.dt*O.rho*O.c_p * v1[c].transpose()*op.grad(T1,c) ;
+
            }
}
+
 
//heat Neumann condition
+
            //Speed of sound
#pragma omp parallel for private(i) schedule(static)
+
            Range<scal_t> norm = v2.map([](const vec_t& p) { return p.norm(); });
for (i=0;i<top.size();++i) {
+
            scal_t C = O.dl * std::max(*std::max_element(norm.begin(), norm.end()), O.v_ref);
    int c = top[i];
+
            // Mass continuity
    T2[c] = op.neumann(T2, c, vec_t{0, 1}, 0.0);
+
            Range<scal_t> div_v;
}
+
            for (auto c:all) {
#pragma omp parallel for private(i) schedule(static)
+
                div_v[c] = op.div(v2, c);
for (i=0;i<bottom.size();++i) {
+
                P2[c] = P1[c] - C * C * O.dt * O.rho * div_v[c] +
    int c = bottom[i];
+
                        O.dl2 * C * C * O.dt * O.dt * op.lap(P1, c);
    T2[c] = op.neumann(T2, c, vec_t{0, -1}, 0.0);
+
            }
}
+
            P1.swap(P2);
//Mass continuity
+
        }
#pragma omp parallel for private(c) schedule(static)
+
 
for (i=0; i<domain.size(); ++i) {
+
        //heat transport
     P2[i] = P1[i] - O.dl * O.dt * O.rho * op.div(v2, i) +
+
        for (auto c : interior) {
            O.dl2 * O.dl * O.dt * O.dt * op.lap(P1, i);
+
             T2[c] = T1[c] + O.dt * O.lam / O.rho / O.c_p * op.lap(T1, c) -
}
+
                    O.dt * v1[c].transpose() * op.grad(T1, c);
//time step
+
        }
v1.swap(v2);
+
        for (auto c : top) T2[c] = op.neumann(T2, c, vec_t{0, -1}, 0.0);
P1.swap(P2);
+
        for (auto c : bottom) T2[c] = op.neumann(T2, c, vec_t{0, 1}, 0.0);
T1.swap(T2);
+
     }
 
</syntaxhighlight>
 
</syntaxhighlight>
  
 
=Results=
 
=Results=

Revision as of 13:15, 29 November 2017

Intro

The classical de Vahl Davis benchmark test is defined for the natural convection of the air ($\Pr =0.71$) in the square closed cavity (${{\text{A}}_{\text{R}}}=1$). The only physical free parameter of the test remains the thermal Rayleigh number. In the original paper [1] de Vahl Davis tested the problem up to the Rayleigh number ${{10}^{6}}$, however in the latter publications, the results of more intense simulations were presented with the Rayleigh number up to ${{10}^{8}}$. Lage and Bejan [2] showed that the laminar domain of the closed cavity natural convection problem is roughly below $\text{Gr1}{{\text{0}}^{9}}$. It was reported [3, 4] that the natural convection becomes unsteady for $\text{Ra}=2\cdot {{10}^5}$. Here we present a MLSM solution of the case.

\begin{equation} \text{Ra}\text{=}\,\frac{\left| \mathbf{g} \right|{{\beta }_{T}}\left( {{T}_{H}}-{{T}_{C}} \right){{\Omega }_{H}}^{3}{{\rho }^{2}}{{c}_{p}}}{\lambda \mu } \end{equation} \begin{equation} \text{Pr}=\frac{\mu {{c}_{p}}}{\lambda } \end{equation}

[1] de Vahl Davis G. Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Meth Fl. 1983;3:249-64.

[2] Lage JL, Bejan A. The Ra-Pr domain of laminar natural convection in an enclosure heated from the side. Numer Heat Transfer. 1991;A19:21-41.

[3] Janssen RJA, Henkes RAWM. Accuracy of finite-volume disretizations for the bifurcating natural-convection flow in a square cavity. Numer Heat Transfer. 1993;B24:191-207.

[4] Nobile E. Simulation of time-dependent flow in cavities with the additive-correction multigrid method, part II: Apllications. Numer Heat Transfer. 1996;B30:341-50.

Image.png. Figure 1: Scheme of the de Vahl Davis benchmark test

Code

The snippet of the openMP parallel MLSM code for an explicit ACM method with CBS looks like: (full examples, including implicit versions, can be found under the examples in the code repository Main Page).

 1     v2[boundary] = vec_t{0.0, 0.0};
 2     T2[left] = O.T_cold;
 3     T2[right] = O.T_hot;
 4     //Time stepping
 5     for (int step = 0; step <= O.t_steps; ++step) {
 6         for (int i_count = 1; i_count < _MAX_ITER_; ++i_count) {
 7             // Navier Stokes
 8             for (auto c : interior) {
 9                 v2[c] = v1[c] + O.dt * (-1 / O.rho * op.grad(P1, c)
10                                         + O.mu / O.rho * op.lap(v1, c)
11                                         - op.grad(v1, c) * v1[c]
12                                         + O.g * (1 - O.beta * (T1[c] - O.T_ref)));
13             }
14 
15             //Speed of sound
16             Range<scal_t> norm = v2.map([](const vec_t& p) { return p.norm(); });
17             scal_t C = O.dl * std::max(*std::max_element(norm.begin(), norm.end()), O.v_ref);
18             // Mass continuity
19             Range<scal_t> div_v;
20             for (auto c:all) {
21                 div_v[c] = op.div(v2, c);
22                 P2[c] = P1[c] - C * C * O.dt * O.rho * div_v[c] +
23                         O.dl2 * C * C * O.dt * O.dt * op.lap(P1, c);
24             }
25             P1.swap(P2);
26         }
27 
28         //heat transport
29         for (auto c : interior) {
30             T2[c] = T1[c] + O.dt * O.lam / O.rho / O.c_p * op.lap(T1, c) -
31                     O.dt * v1[c].transpose() * op.grad(T1, c);
32         }
33         for (auto c : top) T2[c] = op.neumann(T2, c, vec_t{0, -1}, 0.0);
34         for (auto c : bottom) T2[c] = op.neumann(T2, c, vec_t{0, 1}, 0.0);
35     }

Results