Difference between revisions of "Natural convection in 3D irregular domain"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The classical [[De Vahl Davis natural convection test]] can be extended to 3D.
 
The classical [[De Vahl Davis natural convection test]] can be extended to 3D.
 
In below figures steady state temperature contour and velocity quiver plots
 
In below figures steady state temperature contour and velocity quiver plots
for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e.\
+
for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e.
 
peak positions and values of cross section velocities, with data available in literature. We analyze six different cases,
 
peak positions and values of cross section velocities, with data available in literature. We analyze six different cases,
 
namely Ra$=10^6,10^7,10^8$ in 2D, and Ra$=10^4,10^5,10^6$ in 3D.
 
namely Ra$=10^6,10^7,10^8$ in 2D, and Ra$=10^4,10^5,10^6$ in 3D.
Line 11: Line 11:
 
$\Delta t=10^{-3}$ was used for all cases. Domain is discretized with our [[Positioning of computational nodes|fill algoritm]] with
 
$\Delta t=10^{-3}$ was used for all cases. Domain is discretized with our [[Positioning of computational nodes|fill algoritm]] with
 
Nodal distance $h=0.025$. Boundaries with Neumann
 
Nodal distance $h=0.025$. Boundaries with Neumann
boundary conditions are additionally treated with ghost nodes [[Ghost nodes (theory)]].
+
boundary conditions are additionally treated with [[Ghost nodes (theory)]].
  
 
[[File:DVD_3D.png|400px]]
 
[[File:DVD_3D.png|400px]]
Line 138: Line 138:
 
|}
 
|}
  
[ref a for 2D]  
+
[ref a for 2D] Couturier, H. & Sadat, S. Performance and accuracy of a meshless method for laminar natural convection Numerical Heat Transfer: Part B: Fundamentals, Taylor & Francis, 2000 , 37 , 455-467
  author    = {Couturier, H. and Sadat, S.},
+
 
  title    = {Performance and accuracy of a meshless method for laminar natural convection},
+
[ref b for 2D] Kosec, G. & Šarler, B. Solution of thermo-fluid problems by collocation with local pressure correction International Journal of Numerical Methods for Heat & Fluid Flow, Emerald Group Publishing Limited, 2008 , 18 , 868-882
  journal  = {Numerical Heat Transfer: Part B: Fundamentals},
+
 
  year      = {2000},
+
[ref a for 3D] Wang, P.; Zhang, Y. & Guo, Z. Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers Int. J. Heat Mass Transfer, Elsevier, 2017 , 113 , 217-228
  volume    = {37},
+
 
  number    = {4},
+
[ref b for 3D] Fusegi, T.; Hyun, J. M.; Kuwahara, K. & Farouk, B. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure Int. J. Heat Mass Transfer, Elsevier, 1991 , 34 , 1543-1557
  pages    = {455--467},
 
  doi      = {10.1080/10407790050051146},
 
  publisher = {Taylor \& Francis},
 
[ref b for 2D]
 
  author    = {Kosec, Gregor and {\v{S}}arler, Bo{\v{z}}idar},
 
  title    = {Solution of thermo-fluid problems by collocation with local pressure correction},
 
  journal  = {International Journal of Numerical Methods for Heat \& Fluid Flow},
 
  year      = {2008},
 
  volume    = {18},
 
  number    = {7/8},
 
  pages    = {868--882},
 
  doi      = {10.1108/09615530810898999},
 
  publisher = {Emerald Group Publishing Limited},
 
[ref a for 3D]
 
  author    = {Wang, Peng and Zhang, Yonghao and Guo, Zhaoli},
 
  title    = {Numerical study of three-dimensional natural convection in a cubical cavity at high {R}ayleigh numbers},
 
  journal  = {Int. J. Heat Mass Transfer},
 
  year      = {2017},
 
  volume    = {113},
 
  pages    = {217--228},
 
  doi      = {10.1016/j.ijheatmasstransfer.2017.05.057},
 
  publisher = {Elsevier},
 
[ref b for 3D]
 
  author    = {Fusegi, T. and Hyun, Jae Min and Kuwahara, K. and Farouk, B.},
 
  title    = {A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure},
 
  journal  = {Int. J. Heat Mass Transfer},
 
  year      = {1991},
 
  volume    = {34},
 
  number    = {6},
 
  pages    = {1543--1557},
 
  doi      = {10.1016/0017-9310(91)90295-p},
 
  publisher = {Elsevier},
 

Latest revision as of 17:03, 18 May 2019

The classical De Vahl Davis natural convection test can be extended to 3D. In below figures steady state temperature contour and velocity quiver plots for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e. peak positions and values of cross section velocities, with data available in literature. We analyze six different cases, namely Ra$=10^6,10^7,10^8$ in 2D, and Ra$=10^4,10^5,10^6$ in 3D. The comparison in presented in below table.

All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis functions, augmented with monomials up to order $2$, with the closest $25$ nodes used as a stencil. For the time discretization time step $\Delta t=10^{-3}$ was used for all cases. Domain is discretized with our fill algoritm with Nodal distance $h=0.025$. Boundaries with Neumann boundary conditions are additionally treated with Ghost nodes (theory).

DVD 3D.png DVD 3D irreg.png

Ra $v_{max}$ $x$ $u_{max}$ $y$
present ref a ref b present ref a ref b present ref a ref b present ref a ref b
2D $10^6$ 0.2628 0.2604 0.2627 0.0378 0.0380 0.0390 0.0781 0.0765 0.0782 0.8476 0.8510 0.0390
$10^7$ 0.2633 0.2580 0.2579 0.0226 0.0230 0.0210 0.0588 0.0547 0.0561 0.8705 0.8880 0.0210
$10^8$ 0.2557 0.2587 0.2487 0.0149 0.0110 0.0090 0.0314 0.0379 0.0331 0.9189 0.9430 0.0090
3D $10^4$ 0.2495 0.2218 0.2252 0.8500 0.8873 0.8833 0.2435 0.1968 0.2013 0.1611 0.1799 0.1833
$10^5$ 0.2545 0.2442 0.2471 0.9402 0.9317 0.9353 0.1564 0.1426 0.1468 0.1447 0.1493 0.1453
$10^6$ 0.2564 0.2556 0.2588 0.9614 0.9653 0.9669 0.0841 0.0816 0.0841 0.1435 0.1403 0.1443

[ref a for 2D] Couturier, H. & Sadat, S. Performance and accuracy of a meshless method for laminar natural convection Numerical Heat Transfer: Part B: Fundamentals, Taylor & Francis, 2000 , 37 , 455-467

[ref b for 2D] Kosec, G. & Šarler, B. Solution of thermo-fluid problems by collocation with local pressure correction International Journal of Numerical Methods for Heat & Fluid Flow, Emerald Group Publishing Limited, 2008 , 18 , 868-882

[ref a for 3D] Wang, P.; Zhang, Y. & Guo, Z. Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers Int. J. Heat Mass Transfer, Elsevier, 2017 , 113 , 217-228

[ref b for 3D] Fusegi, T.; Hyun, J. M.; Kuwahara, K. & Farouk, B. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure Int. J. Heat Mass Transfer, Elsevier, 1991 , 34 , 1543-1557