Difference between revisions of "Solving sparse systems"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
Line 13: Line 13:
 
* iterative: bicgstab, cg
 
* iterative: bicgstab, cg
  
Solving a simple sparse system $A x = b$ with $A = \begin{bmatrix}  1 & 1 & \\ 1 & \ddots & \ddots \\ & \ddots & \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ with dimension $n$
+
Solving a simple sparse system $A x = b$ with $A = \begin{bmatrix}  1 & -2 & \\ 1 & \ddots & \ddots \\ & \ddots & \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ with dimension $n$
has the following timings:
+
has the following timings in seconds:
  
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
 +
! $n = 10^6$
 
! Matlab
 
! Matlab
 
! Mathematica
 
! Mathematica
 
! Eigen
 
! Eigen
 
|-
 
|-
! Row header 1
+
! Banded
| row 1, cell 2
+
|
| row 1, cell 3
+
| 2.86
 +
| /
 
|-
 
|-
! Row header 2
+
!  
| row 2, cell 2
+
| /
| row 2, cell 3
+
| 1.73
 +
| 0.78
 +
|-
 +
! Bicgstab / Krylov
 +
| 19.32
 +
| 3.92
 +
|
 
|}
 
|}

Revision as of 18:55, 15 March 2017

There are many methods available for solving sparse systems. We compare some of them here.

Mathematica has the following methods available (https://reference.wolfram.com/language/ref/LinearSolve.html#DetailsAndOptions)

  • direct: banded, cholesky, multifrontal (direct sparse LU)
  • iterative: Krylov

Matlab has the following methods:

Eigen has the following methods: (https://eigen.tuxfamily.org/dox-devel/group__TopicSparseSystems.html)

  • direct: sparse LU
  • iterative: bicgstab, cg

Solving a simple sparse system $A x = b$ with $A = \begin{bmatrix} 1 & -2 & \\ 1 & \ddots & \ddots \\ & \ddots & \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ with dimension $n$ has the following timings in seconds:

$n = 10^6$ Matlab Mathematica Eigen
Banded 2.86 /
/ 1.73 0.78
Bicgstab / Krylov 19.32 3.92