Difference between revisions of "1D MLSM and FDM comparison"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
Line 2: Line 2:
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
   \text{Dirichlet} & \text{Neumann} \\
+
   \text{Dirichlet} && \text{Neumann} \\
 
   f''(x) &= 2x^2+5 \text{ on } (0, 1) &  f''(x) &= 2x^2+5 \text{ on } (0, 1)  \\
 
   f''(x) &= 2x^2+5 \text{ on } (0, 1) &  f''(x) &= 2x^2+5 \text{ on } (0, 1)  \\
 
   f(0) &= 1 & f'(0) &= 1 \\
 
   f(0) &= 1 & f'(0) &= 1 \\

Revision as of 10:30, 13 March 2017

A sample Dirichlet or Neumann problem

\( \begin{align*} \text{Dirichlet} && \text{Neumann} \\ f''(x) &= 2x^2+5 \text{ on } (0, 1) & f''(x) &= 2x^2+5 \text{ on } (0, 1) \\ f(0) &= 1 & f'(0) &= 1 \\ f(1) &= 1 & f(1) &= 1 \\ f(x) &= \frac{1}{6} \left(x^4+15 x^2-16 x+6\right) & f(x) &= \frac{1}{6} \left(x^4+15 x^2+6 x-16\right) \end{align*} \)