Difference between revisions of "1D MLSM and FDM comparison"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
(Created page with "A sample Dirichlet or Neumann problem <math> \begin{align*} f''(x) &= 2x^2+5 \text{ on } (0, 1)\\ f(0) &= 0 \\ f(1) &= 1 \end{align*} </math>")
 
Line 1: Line 1:
A sample Dirichlet or Neumann problem  
+
A sample Dirichlet or Neumann problem <br>
 
<math>
 
<math>
 
\begin{align*}
 
\begin{align*}
   f''(x) &= 2x^2+5 \text{ on } (0, 1)\\
+
   f''(x) &= 2x^2+5 \text{ on } (0, 1) &  f''(x) &= 2x^2+5 \text{ on } (0, 1)  \\
   f(0) &= 0 \\
+
   f(0) &= 1 & f'(0) &= 1 \\
   f(1) &= 1
+
   f(1) &= 1 & f(1) &= 1 \\
 +
  f(x) &= \frac{1}{6} \left(x^4+15 x^2-16 x+6\right) & f(x) &= \frac{1}{6} \left(x^4+15 x^2+6 x-16\right)
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>

Revision as of 10:29, 13 March 2017

A sample Dirichlet or Neumann problem
\( \begin{align*} f''(x) &= 2x^2+5 \text{ on } (0, 1) & f''(x) &= 2x^2+5 \text{ on } (0, 1) \\ f(0) &= 1 & f'(0) &= 1 \\ f(1) &= 1 & f(1) &= 1 \\ f(x) &= \frac{1}{6} \left(x^4+15 x^2-16 x+6\right) & f(x) &= \frac{1}{6} \left(x^4+15 x^2+6 x-16\right) \end{align*} \)