Difference between revisions of "Customization"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
(Biharmonic equation)
(Biharmonic equation)
Line 13: Line 13:
 
   \nabla^4 u &= f      &&\text{in } \Omega, \\
 
   \nabla^4 u &= f      &&\text{in } \Omega, \\
 
   u &= 0          &&\text{on } \partial \Omega,\\
 
   u &= 0          &&\text{on } \partial \Omega,\\
   \dpar{u}{\vec n} &= 0          &&\text{on } \partial \Omega,  
+
   \frac{\partial u}{\partial \vec n} &= 0          &&\text{on } \partial \Omega,  
 
\end{align*}
 
\end{align*}
 
</math>
 
</math>
  
 
TODO: JureMB
 
TODO: JureMB

Revision as of 15:02, 19 July 2019

Medusa library support users defining custom basis types, weights, operators and more, as long as they conform to the prescribed interfaces, given in the Concepts page. Here we show this on an example of the biharmonic equation.

Biharmonic equation

We solve the problem

$\begin{align} a=b \end{align}$

\( \begin{align*} \nabla^4 u &= f &&\text{in } \Omega, \\ u &= 0 &&\text{on } \partial \Omega,\\ \frac{\partial u}{\partial \vec n} &= 0 &&\text{on } \partial \Omega, \end{align*} \)

TODO: JureMB