Difference between revisions of "Natural convection in 3D irregular domain"

From Medusa: Coordinate Free Mehless Method implementation
Jump to: navigation, search
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
The classical [[De Vahl Davis natural convection test]] can be extended to 3D.
 
The classical [[De Vahl Davis natural convection test]] can be extended to 3D.
 
In below figures steady state temperature contour and velocity quiver plots
 
In below figures steady state temperature contour and velocity quiver plots
for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e.\
+
for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e.
peak positions and values of cross section velocities, with data available in
+
peak positions and values of cross section velocities, with data available in literature. We analyze six different cases,
literature~\cite{fusegi1991numerical}. We analyze six different cases,
+
namely Ra$=10^6,10^7,10^8$ in 2D, and Ra$=10^4,10^5,10^6$ in 3D.
namely $\textup{Ra} = 10^6,10^7,10^8$ in 2D, and $\textup{Ra} = 10^4,10^5,10^6$ in 3D.
+
The comparison in presented in below table.
The comparison in presented in~\cref{tab:ff-data}.
 
  
 
All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis
 
All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis
 
functions, augmented with monomials up to order $2$, with the closest $25$
 
functions, augmented with monomials up to order $2$, with the closest $25$
 
nodes used as a stencil. For the time discretization time step
 
nodes used as a stencil. For the time discretization time step
$\Delta t=10^{-3}$ was used for all cases. Nodal distance $h=0.01$ is used for
+
$\Delta t=10^{-3}$ was used for all cases. Domain is discretized with our [[Positioning of computational nodes|fill algoritm]] with
simulations in 2D and $h=0.25$ for simulations in 3D. Boundaries with Neumann
+
Nodal distance $h=0.025$. Boundaries with Neumann
boundary conditions are additionally treated with ghost nodes [[Ghost nodes (theory)]].
+
boundary conditions are additionally treated with [[Ghost nodes (theory)]].
  
 
[[File:DVD_3D.png|400px]]
 
[[File:DVD_3D.png|400px]]
Line 138: Line 137:
 
| 0.1443
 
| 0.1443
 
|}
 
|}
 +
 +
[ref a for 2D] Couturier, H. & Sadat, S. Performance and accuracy of a meshless method for laminar natural convection Numerical Heat Transfer: Part B: Fundamentals, Taylor & Francis, 2000 , 37 , 455-467
 +
 +
[ref b for 2D] Kosec, G. & Šarler, B. Solution of thermo-fluid problems by collocation with local pressure correction International Journal of Numerical Methods for Heat & Fluid Flow, Emerald Group Publishing Limited, 2008 , 18 , 868-882
 +
 +
[ref a for 3D] Wang, P.; Zhang, Y. & Guo, Z. Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers Int. J. Heat Mass Transfer, Elsevier, 2017 , 113 , 217-228
 +
 +
[ref b for 3D] Fusegi, T.; Hyun, J. M.; Kuwahara, K. & Farouk, B. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure  Int. J. Heat Mass Transfer, Elsevier, 1991 , 34 , 1543-1557

Latest revision as of 17:03, 18 May 2019

The classical De Vahl Davis natural convection test can be extended to 3D. In below figures steady state temperature contour and velocity quiver plots for Ra$=10^6$ case in 3D are presented. A more quantitative analysis is done by comparing characteristic values, i.e. peak positions and values of cross section velocities, with data available in literature. We analyze six different cases, namely Ra$=10^6,10^7,10^8$ in 2D, and Ra$=10^4,10^5,10^6$ in 3D. The comparison in presented in below table.

All spatial operators are discretized using RBF-FD with $r^3$ PHS radial basis functions, augmented with monomials up to order $2$, with the closest $25$ nodes used as a stencil. For the time discretization time step $\Delta t=10^{-3}$ was used for all cases. Domain is discretized with our fill algoritm with Nodal distance $h=0.025$. Boundaries with Neumann boundary conditions are additionally treated with Ghost nodes (theory).

DVD 3D.png DVD 3D irreg.png

Ra $v_{max}$ $x$ $u_{max}$ $y$
present ref a ref b present ref a ref b present ref a ref b present ref a ref b
2D $10^6$ 0.2628 0.2604 0.2627 0.0378 0.0380 0.0390 0.0781 0.0765 0.0782 0.8476 0.8510 0.0390
$10^7$ 0.2633 0.2580 0.2579 0.0226 0.0230 0.0210 0.0588 0.0547 0.0561 0.8705 0.8880 0.0210
$10^8$ 0.2557 0.2587 0.2487 0.0149 0.0110 0.0090 0.0314 0.0379 0.0331 0.9189 0.9430 0.0090
3D $10^4$ 0.2495 0.2218 0.2252 0.8500 0.8873 0.8833 0.2435 0.1968 0.2013 0.1611 0.1799 0.1833
$10^5$ 0.2545 0.2442 0.2471 0.9402 0.9317 0.9353 0.1564 0.1426 0.1468 0.1447 0.1493 0.1453
$10^6$ 0.2564 0.2556 0.2588 0.9614 0.9653 0.9669 0.0841 0.0816 0.0841 0.1435 0.1403 0.1443

[ref a for 2D] Couturier, H. & Sadat, S. Performance and accuracy of a meshless method for laminar natural convection Numerical Heat Transfer: Part B: Fundamentals, Taylor & Francis, 2000 , 37 , 455-467

[ref b for 2D] Kosec, G. & Šarler, B. Solution of thermo-fluid problems by collocation with local pressure correction International Journal of Numerical Methods for Heat & Fluid Flow, Emerald Group Publishing Limited, 2008 , 18 , 868-882

[ref a for 3D] Wang, P.; Zhang, Y. & Guo, Z. Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers Int. J. Heat Mass Transfer, Elsevier, 2017 , 113 , 217-228

[ref b for 3D] Fusegi, T.; Hyun, J. M.; Kuwahara, K. & Farouk, B. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure Int. J. Heat Mass Transfer, Elsevier, 1991 , 34 , 1543-1557