

User manual

JOŽEF STEFAN INSTITUTE

E6 – Department of Communications systems

1

2

Contents
What is DTRi 4

Physical model 4

Model parameters 6

DTRi implementation 10

Backend 10

Middle end 18

Frontend 18

Installation 20

Prerequisites 20

Python virtual environments 20

Django 20

Nginx 20

C++ 21

Standalone execution 22

Main dashboard 22

Editing properties 25

SUMO connect 26

Basic concept 26

SUMO interface 26

Appendix 28

Protocol buffer message definition 28

3

4

 What is DTRi
In February 2014 a severe icing storm hit Slovenia, and caused damage in order of 8.5 million € only

on the power transmission network. Based on feasibility study performed by Jožef Stefan Institute

(JSI), Milan Vidmar Electric Power Research Institute (EIMV), Slovenian Environment Agency

(SEA), and ELES, which confirmed that using Joule heating could prevent icing JSI further

developed an operative software termed DTRi (Dynamic Thermal Rating - icing). The core of the

DTRi is a physical model for the simulation of heat transfer within the transmission power line under

realistic weather conditions related to the icing, i.e., ambient temperatures between -5 oC and 5 oC

with super cooled rain present. The DTRi comprises the Joule heating, convection, solar heating,

evaporation, radiation and impinging super cooled precipitation. Basically, the DTRi solves the heat

transport equation (second order partial differential equation) with non-linear boundary conditions

describing different heat terms due to the weather conditions. The results obtained with DTRi have

been compared against available published data as well as measurements provided by EIMV, with

promising results.

DTRi can run in two modes, i.e. as standalone software and as an embedded system within the

SUMO framework, which is a heterogeneous collection of subsystem from different vendors that

was developed to increase safety and security as well as the capacity of the existing transmission

network. Its core is the integration platform, SUMO BUS, which is an enterprise integration bus,

used for orchestrating the subsystems and facilitating data exchange between them. The

communication between SUMO BUS and the subsystems is based on web services. More precisely

subsystems communicate with the bus via SOAP/HTTP interfaces. This technology enables

different subsystem vendors to quickly and efficiently connect their subsystems using standardized

and open means of communication and exchanging data. For example, SUMO allows different

Dynamic Thermal Rating (DTR) vendors to be incorporated into the system, each serving a different

part of the grid. Currently there are 17 services implemented. They are providing approximately 115

methods to the clients (subsystems). System’s internal state is held in a relational SQL database.

Physical model
The backbone of the DTRi is a physical model that in general solves energy transport through the

conductor as

1

i p

T
r T q T c

r r r t

0

0
r

T

r

,

2

j

jr r

T

r
q

 , , 0 aT r t T , , 0 aT r t T ,

where , , , , andi pr T q c stand for thermal conductivity, radii, temperature, heat source term,

density and specific heat capacity, respectively, jq describe different heat terms due to the weather

conditions and aT stands for ambient temperature. The heat terms are modelled as follows:

5

Joule

heating 2

2 3

4 W
,

m
jq I T r

D
R

with temperature dependent

conductivity and D standing for

line diameter.

solar

heating 2

W
,

m

s T
s

I
q

where TI stands for measured

solar intensity and s for

absorptivity

radiation
 4 4

2

W

m
r B s s aq T T

where , andB s sT stand for

Stefan-Boltzmann constant,

emissivity, and power line skin

temperature, respectively.

convection

2

W
()

m
c s aq h T T

with h standing for Nusselt

number

impinging

2

0.71 W

m

I
im w s a

d
q c T T

dt

with wc standing for specific

heat of water

rain mass

flux
2

3
2

5 0.84

2

10 kg
6.710

3600 m s

I
w

d
P u P

dt

with u standing for wind

velocity, P rain rate and W

water density

evaporation

2

(1)1 W

2 m

e s
e

p

kL r e
q h

c p

with eL standing for evaporation

latent heat, pc for specific heat

of air, p for air pressure, k =

0.62 is the ratio of molecular

weights of water vapor and dry

air

saturation

pressure 0

1 1

0

e

v

L

R T T

s se T e e

with es0 = 6.1 hPa and Rv=461

J/KgK, where the maximal

evaporation rate is limited by

rain mass flux.

6

Figure 1: Scheme of DTRi physical model

Model parameters
Model parameters are supplied via web interface or the configuration file. Options are divided into

several categories. Most of the parameters are required, but the ones marked with * are optional.

Line properties

This category describes options regarding the overhead line, made out of two materials, the inner and

outer material.

Parameter name Parameter description Unit
line_altitude Altitude (height above sea level) of the part of the line for which the simulation is

run.

m

line_angle Line angle with respect to the ground measured from a fixed line from 0° to 360°. deg

thermal_conductivity Thermal conductivity of the line (outer material). W / m K

num_outer_strands Number of outer strands in the line. 1

single_strand_radius Radius of a single strand. m

radius_correction Correction of line radius due to strand packing 1

wetted_factor Ratio of wetted area of conductor (used for evaporation). 1

impinging_factor Ratio of impinging water that reaches the skin temp. 0.7 [Zsolt]. 1

recovery_factor Recovery factor (= 0.79) (used for friction heating). 1

skin_effect Skin effect factor (used to determine roughness). 1

emissivity Emissivity of the line (outer material). 1

absorptivity Absorptivity of the line (outer material). 1

nusselt_mode How to calculate the convection coefficient -- depends on line type. It can be

either AL240FE40 or AL490FE65.

/

For inner and outer material the following properties have to be specified:

Parameter name Parameter description Unit

density Density of the material. kg / m3

specific_heat Isobaric specific heat capacity. J / kg K

specific_heat_alpha Specific heat linear temperature coefficient. 1 / K

area Cross section area of the material. m2

resistivity_alpha Resistivity temperature coefficient. 1 / K

electric_conductivity Specific electric conductivity. 1 / m Ω

0ST

criterion

D1

D

 2 W

m
J I RQ T

Joule heating

Heat source

.i p

T
T q c

t

Heat transfer within the conductor

0

0
r

T

r

Symmetry

Heat exchange with surrounding

W

m
S s TQ I D

4 4 W
()

m
R B s s aQ D T T

W
()

m
C s aQ Dh T T

W

m

e s a
E

p

wL e e
Q h

c p

A

W

m

I
IM w S I

d
Q CEDc T T

dt

convection

Radiation

Solar heating

impinging

evaporation

7

Weather data

Weather measurements at one or more time points must be provided. Each weather point contains a

time of measurement and the values of measured quantities:

Parameter name Parameter description Unit
time Time when data was measured (time relative to a chosen starting point). s
ambient_temperature Ambient air temperature. °C
droplet_temperature* Droplet temperature. If not specified, defaults to ambient temperature. °C
droplet_MDV Median of the droplet diameter. m
wind_velocity Wind velocity. m / s
wind_angle Wind angle relative to the ground using the same coordinate system as above. deg
pressure Air pressure. Pa
rain_rate Rain rate. mm / h
humidity Humidity of the surrounding air. %
solar_irradiance Solar irradiance. W / m2

Constants of nature

Certain constants of nature are also required by the model. Although these are constants, for the sake

of generality, the DTRi considers them as an input.

Parameter name Parameter description Unit
stefan_constant Stephan constant W / m2 K4
molar_mass_ratio Ratio of molar masses of water vapor and dry air
gas_constant Gas constant J / K mol
kelvin_celsius_diff Difference between Celsius and kelvin unit (positive number) °C

w
at

er

density Water density kg / m3
latent_heat_fusion Latent heat of fusion (freezing) J / kg
latent_heat_evaporation Latent heat of evaporation J / kg
latent_heat_sublimation Latent heat of sublimation J / kg
specific_heat_ice Specific heat of ice (cp) J / kg K
specific_heat_water Specific heat of water J / kg K

ai
r

specific_heat Specific heat of air. J / kg K
density* Density of air – if not present, computed during simulation. kg / m3
viscosity* Kinematic viscosity of air – if not present, computed during simulation. m2 / s
thermal_conductivity* Thermal conductivity of air – if not present, computed during

simulation
W / m K

Numerical setup

These options control the numerical aspect of calculations.

Parameter name Parameter description Unit
num_nodes Number of nodes in discretization. 1
time_step Time step of the implicit Euler. s
steady_state_crit Finish when temperature changes less than this (negative value disables it). When in

bisection mode this parameter is set to a positive number equal to 0.1 × bisection
precision.

°C

start_time* Start simulation at this time, not the first one in the data. When running in bisection
mode, find current only for weather data points later than this time.

s

end_time* End simulation at this time, not the last one in the data. When running in bisection
mode, find current only for weather data points earlier than this time.

s

radial_distribution Do we use radial distribution of lambda or not. It can be either true or false. /
use_effective_radius Do we use effective radius due strand packing. It can be either true or false. /
output_rate Write data every output_rate time steps, if 0, don't write at all. 1
debug_level How verbose do you want the output to be from 0 – 9. 1

Run setup

The first choice of the run setup is the run mode. The model can either simulate the temperature,

given the current, or find the current which produces the wanted temperature. These modes are

called SIMULATION and BISECTION, respectfully.

Parameter name Parameter description Unit
run_mode Specifies in which mode the model should be run. It can be either “SIMULATION”

or “BISECTION”.
/

If the simulation mode was chosen, the simulation parameters must be specified.

8

Parameter name Parameter description Unit

electrical_current A value of the current flowing through the line for every time, at which the weather

was specified.

A

Likewise, if the bisection mode was chosen, the bisection parameters must be specified.

Parameter name Parameter description Unit

target_temperature Target skin temperature. °C

min_current Bisection min current. A

max_current Bisection max current. A

precision How precisely to determine the temperature. A

max_iterations Maximal number of iterations of bisection, this implies the precision of the current,

as it is equal to 0.5max_iterations.

1

9

10

 DTRi implementation
The whole DTRi system comprises the back end computing the physical model, middle end handling

outputs from backend and communicating with SUMO, and finally web front end providing users

appealing control over the standalone executions. The implementation is schematically presented

in Figure 2.

Figure 2: Scheme of DTRi

Backend
The backend is written in C++14. All involved matrix operations are performed with Eigen

numerical library1 . Communication with the server is implemented using Protocol Buffers and

spdlog library is used for logging.

Console execution

The backend binary can be run directly from the console. First, make sure the binary is compiled.

Got to cpp/ folder and run

mkdir –p build/

cd build/

1 http://eigen.tuxfamily.org/

DTRi back end C++14
SUMO BUS

DTRi front end web app

NGINX SQL

Plotly

Rivets HTML 5

Protocol Buffer

Spdlog Eigen

Middle end
python

Bootstrap

Django

operaters

Analyses
Model setup
Case studies

Checks for icing alarms
Supply minimal current

11

make dtri

To execute go to cpp/ folder and run ./bin/dtri.

The dtri executable takes one positional argument that specifies the mode. It can be either “run” or

“test”. The “run” mode is used for execution by the server. It accepts the serialized protocol buffer

containing input data to the standard input and prints serialized protocol buffer with results to the

standard output. The “test” mode is useful for manual execution. It takes another positional

argument specifying the configuration file and prints results in human readable form to stdout, with

additional logs to stderr.

Example run:

user@computer ~/dtri/cpp $./bin/dtri test data/test_case_1.conf
[2016-04-25 15:16:23.598] [console] [notice] Started.

[2016-04-25 15:16:23.598] [console] [notice] Parsed successfully!

[2016-04-25 15:16:23.598] [console] [notice] Setting defaults...

[2016-04-25 15:16:23.598] [console] [notice] Defaults set!

[2016-04-25 15:16:23.598] [console] [notice] Checking validity...

[2016-04-25 15:16:23.598] [console] [notice] Message valid!

[2016-04-25 15:16:23.598] [console] [notice] Initializing...

[2016-04-25 15:16:23.598] [console] [notice] Bisection mode chosen.

[2016-04-25 15:16:23.604] [console] [notice] temperature at low current of 0 A is -0.352063 deg C

[2016-04-25 15:16:23.604] [console] [notice] temperature at high current of 4000 A is 743.673 deg C

[2016-04-25 15:16:23.664] [console] [notice] Found current: 149.109 A at time 0 s

[2016-04-25 15:16:23.669] [console] [notice] temperature at low current of 0 A is -2.2156 deg C

[2016-04-25 15:16:23.669] [console] [notice] temperature at high current of 4000 A is 742.678 deg C

[2016-04-25 15:16:23.727] [console] [notice] Found current: 371.104 A at time 100 s

[2016-04-25 15:16:23.727] [console] [notice] Sending response...

time: 0

time: 100

electrical_current: 149.109

electrical_current: 371.104

core_temperature: 0.11580593639820913

core_temperature: 0.71872955547329687

skin_temperature: -2.3780966901822732e-06

skin_temperature: 3.12489564365419e-06

heat_flux_radiation: -0.016517339392556674

heat_flux_radiation: -0.32692405169670463

heat_flux_convection: -0.45616735335532721

heat_flux_convection: -9.1235782893736221

heat_flux_solar: 0.47422139828232979

heat_flux_solar: 0.47422139828232979

heat_flux_friction: 0.016136452806899747

heat_flux_friction: 0.016136452806899747

heat_flux_impinging: -0.02571839858034099

heat_flux_impinging: -0.51250772648009268

heat_flux_evaporation: -2.2906344862048704

heat_flux_evaporation: -4.7868499190929557

heat_flux_joule_heating: 2.4087248839692652

heat_flux_joule_heating: 14.944556836615945

num_iterations: 22

[2016-04-25 15:16:23.727] [console] [notice] Response sent.

[2016-04-25 15:16:23.727] [console] [notice] All done, exiting.

user@computer ~/dtri/cpp $

Code structure

Code is separated in four source files:

 dtri.cpp

 dtri.hpp

 dtri_main.cpp

 dtri_test.cpp

12

The dtri_test.cpp file contains tests as described in section Unit tests. The dtri_main.cpp

contains the main function, which takes care of argument handling and communication. It reads and

writes configurations from files or serialized and deserializes data from standard input. It also detects

run_mode and appropriately runs bisection of simulation.

The declarations and documentation of the classes and functions used to implement simulation and

bisection modes are located in dtri.hpp file in the dtri namespace. The corresponding

implementations are in the dtri.cpp file.

Main class for simulation is called DTRi. It takes all parameters in the constructor and runs the

simulation when the simulate method is called. The results are stored in the response attribute,

which can then be directly printed as a result. The intermediate results are also accessible and are

stored in the SimulationData class.

Main class for bisection is called BisectionRunner. Similarly to DTRi, it takes all parameters as input

and performs bisection to find the current at each time point given. The intermediate results are

stored in the BisectionData class. The bisection can be run using run_bisection method. The

method also takes the log level of the simulation and the log level of bisection which specify the

verbosity of logging during the run. The results are stored in the response attribute, which can be

returned directly serialized to the server.

For more precise technical documentation see the doxygen generated docs. It can be built by going

to build/ folder and running make docs. This will populate the docs/ folder with html and latex

documentations.

13

Figure 3: Example source documentation screenshot

14

Logging

Spdlog header only library2 is used for logging. The library is optimized for speed and offers several

convenient features such as formatting, severity levels and file logging; refer to the supplied link for

more details. In DTRi code logging is structured as follows:

Level # Purpose

emergency 1 Currently unused.

alert 2 Currently unused.

critical 3 For extreme situations when the program cannot continue, i.e. “cannot parse input”, “time step negative”.

error 4 Used for semantical error regarding the input, i.e. computation ended in a NaN.

warning 5 Used for strange computations which do not terminate the computation, i.e. air pressure is extremely high,

temperature is extremely low of over the model limit, external and Joule heat flux are not approximately equal

in steady state.

notice 6 This level logs the general execution stages of the model with messages such as “Simulation started”, “Sending

response…”

info 7 This level logs more detailed execution stages as well as some basic intermediate results. Useful to inspect the

behavior of simulation or bisection iterations.

debug 8 Outputs most intermediate results, useful when debugging wrong computation results. One can easily trace the

origin of the error by backtracking over the path of wrong results.

trace 9 Extremely detailed output: for every calculated quantity, the quantities it was calculated from are printed

above. It is extremely useful for tracking numerical errors but the output gets very large when a lot of

iterations are performed.

off 0 There is no output.

A usual log line features log location, date and time, level and the message. An example is shown

below:

[2016-04-25 15:16:23.604] [console] [notice] temperature at low current of 0 A is -0.352063 deg C

Unit tests

Unit tests are written in Google test framework3, a unit testing library for the C++ programming

language, based on the xUnit architecture. The library is released under the BSD 3-clause license and

it can be compiled for a variety of POSIX and Windows platforms, allowing unit-testing of 'C'

sources as well as C++ with minimal source modification. The tests themselves could be run one at a

time, or even be called to run all at once. This simplifies the debugging process and caters to the need

of many programmers and coders alike. It also safeguard against regressions in the new version of

the model, as it can be easily tested that the new functionality did not cause any errors in the already

existing features.

Following tests are performed every time before a new version of DTRi is deployed:

 test for tridiagonal solver

 test for correct matrix of implicit scheme

 test of a single iteration of simulation

 test of two iterations of a simulation

2 https://github.com/gabime/spdlog/

3 https://github.com/google/googletest

15

 complete simulation with rough numerical parameters

 complete simulation with fine numerical parameters

 complete simulation without steady state criterion

 complete simulation without effective radius

 complete simulation without radial distribution of heat

 test for one iteration for bisection

 test for bisection with rough numerical approximation and single weather point

 test for bisection with fine numerical approximation and multiple weather points

The unit tests are implemented in dtri_test.cpp file and can be compiled by running make

test_dtri in the build folder. The test can be run by running ./bin/test_dtri. The desired

output is below:

user@computer ~/dtri/cpp $./bin/test_dtri

Running main() from gtest_main.cc

[==========] Running 12 tests from 3 test cases.

[----------] Global test environment set-up.

[----------] 1 test from TridiagonalSolver

[RUN] TridiagonalSolver.Solve

[OK] TridiagonalSolver.Solve (0 ms)

[----------] 1 test from TridiagonalSolver (0 ms total)

[----------] 8 tests from Simulation

[RUN] Simulation.BuildsCorrectMatrix

[OK] Simulation.BuildsCorrectMatrix (5 ms)

[RUN] Simulation.OneIteration

[2016-05-23 12:48:10.393] [console] [warning] Qj more than 0.1 different than Qi. Qj = 19.85 W/m, Qi = -14.6051 W/m

[OK] Simulation.OneIteration (0 ms)

[RUN] Simulation.TwoIterations

[OK] Simulation.TwoIterations (0 ms)

[RUN] Simulation.RoughNumeric

[OK] Simulation.RoughNumeric (1 ms)

[RUN] Simulation.FineNumeric

[OK] Simulation.FineNumeric (14 ms)

[RUN] Simulation.NoSteadyState

[OK] Simulation.NoSteadyState (32 ms)

[RUN] Simulation.NoEffectiveRaduis

[OK] Simulation.NoEffectiveRaduis (8 ms)

[RUN] Simulation.NoRadialDistribution

[OK] Simulation.NoRadialDistribution (0 ms)

[----------] 8 tests from Simulation (60 ms total)

[----------] 3 tests from Bisection

[RUN] Bisection.OneIteration

[2016-05-23 12:48:10.462] [console] [warning] Bisection could not achieve selected precision after 1 iterations. Last precision:

12.8892 deg C

[OK] Bisection.OneIteration (14 ms)

[RUN] Bisection.Small

[OK] Bisection.Small (7 ms)

[RUN] Bisection.Long

[OK] Bisection.Long (361 ms)

[----------] 3 tests from Bisection (382 ms total)

[----------] Global test environment tear-down

[==========] 12 tests from 3 test cases ran. (442 ms total)

[PASSED] 12 tests.

user@computer ~/dtri/cpp $

Errors and error codes
Error code name code Error description

INVALID_MODE 1 The program did not recognize the test mode specified. It must

be either “run” or “test”.

16

MISSING_SIMULATION_PARAMETERS 2 The specified run mode was “simulation” but the simulation

parameters were either missing or incomplete.

WEATHER_AND_CURRENT_DATA_MISMATCH 3 The weather and current data were not of the same length. There

must always be an electrical current entry for every weather point

specified.

MISSING_BISECTION_PARAMETERS 4 The specified run mode was “bisection” but the bisection

parameters were either missing or incomplete.

NUMBER_OF_NODES_TOO_SMALL 5 The number of nodes in the discretization of the line radius was

too small to perform a reliable simulation. This does not imply

that all simulations above this limit are reliable!

NEGATIVE_OR_ZERO_TIME_STEP 6 The time step was negative or zero, so it was impossible to run

the simulation.

MISSING_WEATHER_DATA 7 Weather data is missing or is incomplete.

NON_INCREASING_TIME_STAMPS 8 Time stamps in weather data were not strictly increasing. Check

if the data is sorted correctly, and remove any possible

duplicates.

START_TIME_TOO_SMALL 9 The specified start time was before the first weather entry, so

there is no way to deduce the weather before first entry, and the

simulation could not be run.

END_TIME_BEFORE_START_TIME 10 The end time of the simulation is before the start time, so there

is no simulation to be done. Note that is they are the same, a

simulation is run at only that time.

BISECTION_PRECISION_TOO_SMALL 11 Precision to which the temperature should be determined is too

small: it is either negative or below 1e-9.

BISECTION_LOW_NOT_SMALLER_THAN_BISECTION_HIGH 12 The highest possible current allowed in bisection is lower than

the lowest allowed current. It is impossible to run the bisection.

TARGET_TEMPERATURE_NOT_ACHIEVABLE 13 Even if the highest current were used, the desired temperature

could not be achieved. Try rising the high limit if it makes sense;

otherwise that temperature is simply not achievable. The

reversed case, when even if no current is flowing the

temperature of the line is higher than specified only results in a

warning.

TARGET_TEMPERATURE_OUT_OF_MODELLING_RANGE 14 The requested target temperature is out of modelling range – it is

probably too high and does not fit in the icing conditions.

MAX_NUMBER_OF_BISECTION_ITERATIONS_TOO_SMALL 15 The maximal number of iterations that bisection is allowed to

perform must be at least 1.

ERROR_DURING_EXECUTION 16 Used for other errors during execution, that did not cause fatal

termination, i.e. values of quantities were nan. Usually additional

explanations from other errors accompany and help explain this

error.

NO_WEATHER_DATA_IN_TIME_RANGE 17 This error occurs only in bisection mode. The time range you

specified does not include any weather data point and the

calculation could not be performed.

LOADING_JSON_FROM_POST_FAILED 29 The model parameters data could not be transferred from the

frontend to the server. Either the connection was reset of there

is something wrong in the application. You can try running

again, but if the problem persists also when using different data,

contact the developers.

FAILED_POPULATING_MODEL_PARAMETERS 30 There was invalid data when creating basic container for model

parameters.

FAILED_POPULATING_CONSTANTS_OF_NATURE 31 There was invalid data in the constants of nature section and the

17

message could not be created.

FAILED_POPULATING_WATER_CONSTANTS 32 There was invalid data in the water constants section and the

message could not be created.

FAILED_POPULATING_AIR_CONSTANTS 33 There was invalid data in the air constants section and the

message could not be created.

FAILED_POPULATING_LINE_PROPERTIES 34 There was invalid data in the line properties section and the

message could not be created.

FAILED_POPULATING_INNER_MATERIAL_PROPERTIES 35 There was invalid data in the inner material properties section

and the message could not be created.

FAILED_POPULATING_OUTER_MATERIAL_PROPERTIES 36 There was invalid data in the outer material properties section

and the message could not be created.

FAILED_POPULATING_NUMERICAL_SETUP 37 There was invalid data in the numerical setup section and the

message could not be created.

FAILED_POPULATING_BISECTION_PARAMETERS 38 There was invalid data in the bisection parameters section and

the message could not be created.

FAILED_POPULATING_SIMULATION_PARAMETERS 39 There was invalid data in the simulation parameters section and

the message could not be created.

FAILED_POPULATING_WEATHER_DATA 40 There was invalid data in the water data section and the message

could not be created.

WEATHER_DATA_EMPTY 41 There was no weather data specified.

FAILED_POPULATING_WEATHER_POINT 42 There was invalid data in one of the weather points and the

message could not be created

EXECUTABLE_NOT_FOUND 43 The model executable was not found. This error should not

occur and it means something is wrong with the setup of the

application. Possible causes for this error are that the lookup

path for the executable is wrong or it has not been compiled yet.

UNPARSABLE_DTRI_RESPONSE 44 The response from the executable was unparsable. This error

should not occur and it indicates that something is wrong with

the executable itself. You can try recompiling, inspecting the logs

to detect unusual output or run manually.

EXECUTABLE_FAILED_TO_FINISH_ON_TIME 45 The run of the model took more that the specified time limit

(currently one minute) and was cancelled. Try running with a

different setup (less nodes, greater time step).

COULD_NOT_SERIALIZE 46 The created message could not be serialized. This error should

not occur normally and it indicated there is probably something

wrong with this part of the server.

TOO_MANY_SUBPROCESSES_AT_THE_SAME_TIME 47 The server detected too many executables running at the same

time and disallowed the run. Try waiting for 30 seconds to let

other ruins finish and try again.

UNKNOWN_ERROR 96 The error was not of the above errors and was not predicted to

happen. We ask you to submit the error to the developers by

email, as well as the steps to reproduce it, the configuration used

and the rest of the run details (logs, user details, etc.).

Warnings are also issued then temperature exceeds modelling range in simulation, input data is valid

but strange (high pressure, extreme humidity, low temperatures). Another case for warning is when

the specified target temperature could not be achieved, because even if not current is flowing the

temperature of the line would be higher.

18

Middle end
The middle communicates with the DTRi simulation executable, SUMO and front end. The core of

middle end is written in Python. Django web framework is used to run the application. It is fast,

secure and scalable. The backend currently uses SQLite database. The application is secured with a

login using salted and hashed password storage and cross site forgery tokens. The middle end limits

the number of dtri instances running to a fixed number. For seamless communication with

frontend AJAX and RESTful APIs are used.

Protocol buffers

The data transfer between back-end, middle-end and frontend is implemented with Protocol Buffers4

that are Google's language-neutral, platform-neutral, extensible mechanism for serializing structured

data – think XML, but smaller, faster, and simpler. You define how you want your data to be

structured once, and then you can use special generated source code to easily write and read your

structured data to and from a variety of data streams and using a variety of languages, in present case

C++, Python and JS.

For the message definition refer to appendix section.

Frontend

Technical description

Front end is prepared in HTML5/CSS3 with Bootstrap, Plotly and Rivets additional libraries.

Template design is taken from w3layouts and uses Bootstrap for responsive and visually appealing

design. Rivets two-way binging library is used to swiftly update different parts of the application on

interaction for the user or upon receiving new data from the backend. For plotting, the Plotly library

is used, which provides a rich set of plot types and features as well as speed and stability. The font

face used is Lato from Google Fonts and icons are taken from Font Awesome and Linearicons.

Usage overview

The dashboard’s main menu is located on the left side of the screen and can be toggled using the

round red hamburger button.

Dashboard: this is the default view of the application. It is divided into two parts vertically. Above,

there is the setup for the run, where user inputs the data either by choosing a preset instance,

uploading it from file or loading it from SUMO by clicking the link icon. For the meaning of the

setup options refer to Model parameters section. After the wanted setup was chosen, click the run

button to execute it. This send the selected data through the middle end to the model in the backend

and returns the results on a successful run of errors on failure. The status code below the button is 0

for successful runs and nonzero otherwise. For nonzero exit codes consult the Errors and error

codes section. The logs from the model are shown in the resizable log box. To the right, potential

error or warning boxes are shown as well as a box with small statistical report on running time. On a

successful run, results are displayed below on two plots and in the table. The plots support change of

quantities on both axis and the table can be downloaded as a csv file for further analysis. This

process is more precisely illustrated in the Standalone execution section.

4 https://developers.google.com/protocol-buffers/

19

Sumo connect: this tab controls the application’s interaction with SUMO system. A small status

report is shown and some settings of interactions are offered. A way to trigger the communication

manually is offered.

Edit models: this tab provides basic editing capabilities for saved models. You can view, edit and

save the line and weather data. Any changes made are permanent.

Manual: this tab links to the pdf version of this manual located on the server.

Profile: this tab displays and allows you to control some basic settings of your profile, such as your

email, name or password. The changes are reflected immediately after pushing the submit button.

Admin: this tab links to Django administration that allows one to edit the database including models,

saved lines and weather data, run counts, users and groups. It should be used with care as the effects

are irreversible.

Icon glossary

Link icon:

Hamburger button:

20

 Installation
Although the DTRi implementation is platform independent, in this manual a Debian-based system

with aptitude package manager is assumed.

Prerequisites
Make sure you have git, the correct version of python, pip and virtualenv installed on the system.

 sudo apt-get install git python3.4 python3.4-dev python3-pip

 git clone git@bitbucket.org:GregorKosec/dtri.git

Python virtual environments
At its core, the main purpose of Python virtual environments is to create an isolated environment for

Python projects. This means that each project can have its own dependencies, regardless of what

dependencies every other project has. To add Python virtual environment make sure it is installed

 sudo pip3 install virtualenv

and then execute

 virtualenv -p python3.4 venv

 source venv/bin/activate

 pip install -r requirements.txt

Django
Django is a high-level Python Web framework that encourages rapid development and clean,

pragmatic design. Built by experienced developers, it takes care of much of the hassle of Web

development, so you can focus on writing your app without needing to reinvent the wheel. It’s free

and open source.

 Create a secrets file web/dtri_web/dtri_web/SECRETS.py and populate it with debug

value and a secret key.

 DEBUG = True

 SECRET_KEY = '[choose your secret key]'

Initialize a database while in a virtual environment

 cd web/dtri_web

 python manage.py migrate

 Create an admin superuser: python manage.py createsuperuser

While in virtual environment run

 python manage.py runserver

Nginx
Engine x – Nginx is an HTTP and reverse proxy server, a mail proxy server, and a generic

TCP/UDP proxy server. To set up Nginx follow:

21

 http://uwsgi-docs.readthedocs.org/en/latest/tutorials/Django_and_nginx.html

 sudo apt-get install nginx

 sudo pip3 install uwsgi

C++
To compile and generate docs, usual build tools are needed. That includes cmake, make, g++ and

doxygen for documentation generation. Protobuf packages are needed for compilation and

development.

 sudo apt-get install cmake make g++ doxygen protobuf libprotobuf-dev

All other libraries are header only and therefore installation is not required.

http://uwsgi-docs.readthedocs.org/en/latest/tutorials/Django_and_nginx.html

22

 Standalone execution
Main dashboard
Standalone execution of a DTRi model is invoked through a web interface that gives user full control

over all parameters and at the same time offers appealing presentation of results. Front end is

optimized for Chrome browser; however other browsers might also support it.

User can execute DTRi in two main modes, namely simulation mode and bisection mode. In the

simulation mode user provides the weather data and data about current, and DTRi computes skin

and core temperatures. In the bisection mode user again provide weather data, but this time instead

of current, a desired target skin temperature of the power line is required. According to the supplied

parameters DTRi computes minimal required currents to maintain target temperature.

Besides physical properties user also controls all numerical parameters. All these controls can be

found at the main dashboard (Figure 4) that is divided on two main parts; first for the parameter

setup and second for analysis of computed results. The parameters are divided into the following

subgroups (Figure 5)

Line properties Describe physical properties of selected overhead line -

Numerical setup Defines all parameters for implicit Finite Differences Solution

Constants Define all constants like Stefan constant, Gas constant, etc.

bisection

parameters

Define target temperature and bisection limits

Weather data Define all required weather data, e.g. rain rate, humidity, etc.

For detailed explanation of parameters please refer to the Feasibility study Analiza
preprečevanja nastajanja žleda z obratovalnimi ukrepi. For instant help on specified
parameter hover over help icon next to the parameter name. All paraemeters are summarized in
summary section as user changes them.

Each collection of parameters can be stored in a preset. Presets

can be made and edit only by administrators. However, User

can download a full preset in a local file that can be later uploaded, this can be considered as a save

as/open operations.

23

Figure 4: Main dashboard

24

Figure 5: Parameter editable tables

The computation is executed with a RUN button that invokes the back. Immediate

after the execution the report is rendered in the resizable log window (Figure 6).

Note that the level of logging details can be adjusted in numerical parameters section under the

debug level (5 means all reports, 0 no logging). Also note that using debug level 5 might results in a

slow front end response due to large number of log entries. Besides log also warning window might

appear, reporting about potential inconstancies occurred during computation, typically resulting from

a bad parameter selection.

Figure 6: Log and warning windows

The graphical representation of results (Figure 7) follows log and warning windows. Two figures,

each with two different axes offer possibility to review four different quantities simultaneity.

Under each figure there are two dropdown menus, where user can choose which quantities he would

like to review. Figures enable scaling, panning, removing/adding series, exporting to bitmap

files, comparing data on hover and inspecting data. If user cannot analyze

everything on prepared figures, he can always download pure data in a csv format

and use more sophisticated software for further processing. Besides graphical representation also

tabular data is presented below figures (Figure 8). Note, that DTRi might reduce the resolution of

data for the web GUI, however, downloaded data will remain of original size.

Figure 7: Graphical representation of results.

25

Figure 8: Tabular form of results.

Editing properties
User can access and edit most of the preset data, however, he cannot add new and delete data

elements that is possible only with administration access. Example of line material properties

is presented in Figure 9. By pressing an edit icon user starts editing the selected data Figure

10.

Figure 9: List of material properties in edit mode

Figure 10: Example of editing data form

26

 SUMO connect
Basic concept
The aim of the SUMO system is to improve reliability and safety of operating of the transmission

system, e.g. in cases of sudden increases of power flows, and to better utilize the existing

transmission system infrastructure, e.g. when new transfer capacities, such as new power lines are

introduced. The SUMO system combines different subsystems into a meaningful and helpful power

grid operation support tool. It comprises the following functions (Figure 11):

 Measurements: currents from SCADA, measured data from weather stations, gridded

weather data applied to micro locations using weather model and terrain data (OIAP),

 Reliability analyses: N-1 analyses, Line Outage Distribution Factors – LODF (power flow

calculations).

 Forecasts: short term load flow forecasts (NOV), short term weather forecasts for corridors

of power lines (OIAP).

 Dynamic thermal ratings (DTR) – calculations based on: current weather and forecasted

weather (t0 ... t0+3h).

 Exceptional weather events.

 Visualization: ODIN.

 Integration platform and data exchange: SUMO BUS

Data such as line loading, physical properties of the conductors, corridor geography, weather data

needed by DTRi are available on the SUMO BUS for classical DTR and OIAP module (alarming on

exceptional weather data). All information can be accessed through implementation of the

standardized web services (WS).

On the web interface user can select load from SUMO BUS button to access data on the

SUMO BUS.

SUMO interface
Interaction with SUMO system is available via the SUMO interface tab. The SUMO BUS url and

alarm checking frequency are displayed. This can be changed in the files sumo/automatic.py and in

sumo/cron.py. The connection can be tested by clicking the Test now button.

Alarm checking

Our system periodically checks the SUMO system for alarms. Only alarms for glaze are filtered out

and save in our database. The alarm check can also be performed manually from the top bar of every

page. In the SUMO connect page, a history of all alarm checks and a list of past and currently active

alarms can be seen.

The automatic alarms checks also automatically run the model for the line in consideration and find

the minimal possible current that prevents glazing. For alarms that were found manually, the

calculation can be started by hand by clicking the calculate button. If the calculation is already

running it will not start again. The automatic runs and checks are performed by a user called system

and this username is reserved.

27

Figure 11: SUMO concept

Weather

assesment and

forecast

SUMO BUS

ONAP

SUMO BUS data

structures keep

measured and

calculated data from

different SUMO

subsystems

SUMO

DB

ZM
ZMDTR

subsystems

LF

NOV

LODF DTR

Forecast of Loads in

Network Nodes

Load Flow

Calculations Load Flow for

N-1 topology

SCADA

ODIN

server

Physical Conductor

Data and Power

Line Spatial (GIS)

Data, System

Configuration Data

Commercialy

available DTR

subsystems OIAP

Exceptional

Weather Data

Notification

ODIN VIS –

Visualization

Platform

DTRi

Dynamic

Thermal

Rating

Deicing module

ARSO

ARSO icing

alarms

28

 Appendix
Protocol buffer message definition
package message;

// Parameters for the DTRi model.

message ModelParameters {

 required LineProperties line_properties = 1; // properties of the overhead line

 required WeatherData weather_data = 2; // weather data array

 required ConstantsOfNature constants_of_nature = 3; // physical constants

 required NumericalSetup numerical_setup = 4; // all numerical parameters

 // Which mode to run in.

 enum RunMode {

 SIMULATION = 0; // either numerical simulation of temperature with given current

 BISECTION = 1; // or finding current to achieve given temperature

 }

 required RunMode run_mode = 5; // which mode to run in

 optional SimulationParameters simulation_parameters = 7; // exactly one of these should be set

 optional BisectionParameters bisection_parameters = 6; // otherwise data is considered invalid

}

// Message representing properties of the overhead line and the materials is built from.

message LineProperties {

 required MaterialProperties inner_material = 1; // properties of the inner material

 required MaterialProperties outer_material = 2; // properties of the outer material

 required double line_altitude = 3; // altitude (height above sea level) of the part of the line for which the

simulation is run

 required double line_angle = 4; // line angle with respect to oriented map NW = 90, SE = 0 [deg]

 required double thermal_conductivity = 5; // thermal conductivity of the line (outer material) [W / m K]

 required double num_outer_strands = 6; // number of outer strands

 required double single_strand_radius = 7; // radius of a single strand [m]

 required double radius_correction = 8; // correction of line radius due to strand packing

 required double wetted_factor = 9; // ratio of wetted area of conductor (used for evaporation)

 required double impinging_factor = 10; // ratio of impinging water that reaches the skin temp. 0.7 [Zsolt]

 required double recovery_factor = 11; // recovery factor (= 0.79) (friction heating)

 required double skin_effect = 12; // skin effect factor

 required double emissivity = 13; // emissivity of the line (outer material)

 required double absorptivity = 14; // absorptivity of the line (outer material)

 // Different lines have different ways of calculating Nusselt number.

 enum NusseltType {

 AL240FE40 = 0;

 AL490FE65 = 1;

 }

 required NusseltType nusselt_mode = 15; // how to calculate the convection coefficient -- depends on line type

}

// Representing physical properties of a material.

message MaterialProperties {

 required double density = 1; // density of the material [kg / m^3]

 required double specific_heat = 2; // isobaric specific heat capacity [J / kg K]

 required double specific_heat_alpha = 3; // specific heat linear temperature coefficient [1 / K]

 required double area = 5; // cross section area of the material [m^2]

 required double resistivity_alpha = 6; // resistivity temperature coefficient [1 / K]

 required double electric_conductivity = 7; // specific electric conductivity [1 / m ohm]

}

// A level of nesting for nicer gui generation and extensibility.

message WeatherData {

29

 repeated WeatherPoint weather_points = 1; // list of weather measurements

}

// A single weather measurement.

message WeatherPoint {

 required double time = 1; // time when data was measured (timestamp from epoch) [s]

 required double ambient_temperature = 2; // ambient air temperature [deg C]

 optional double droplet_temperature = 3; // droplet temperature [deg C]

 required double droplet_MDV = 4; // median of the droplet diameter [m]

 required double wind_velocity = 5; // wind velocity [m / s]

 required double wind_angle = 6; // wind angle relative to absolute map NW = 90, SE = 0 [deg]

 required double pressure = 7; // air pressure [Pa]

 required double rain_rate = 8; // rain rate [mm / h]

 required double humidity = 9; // humidity [%]

 required double solar_irradiance = 10; // solar irradiance [W / m^2]

}

// Class representing physical constants.

message ConstantsOfNature {

 required WaterConstants water = 1; // water constants

 required AirConstants air = 2; // air constants

 required double stefan_constant = 3; // Stephan constant [W / m^2 K^4]

 required double molar_mass_ratio = 4; // ratio of molar masses of water vapor and dry air

 required double gas_constant = 5; // gas constant [J / K mol]

 required double kelvin_celsius_diff = 6; // difference between Celsius and kelvin unit (positive number) [deg C]

}

// Class representing physical constants of water.

message WaterConstants {

 required double density = 1; // water density [kg / m^3]

 required double latent_heat_fusion = 2; // latent heat of fusion (freezing) [J / kg]

 required double latent_heat_evaporation = 3; // latent heat of evaporation [J / kg]

 required double latent_heat_sublimation = 4; // latent heat of sublimation [J / kg]

 required double specific_heat_ice = 5; // specific heat of ice (cp) [J / kg K]

 required double specific_heat_water = 6; // specific heat of water [J / kg K]

}

// Class representing physical constants of air.

message AirConstants {

 required double specific_heat = 1; // specific heat of air [J / kg K]

 optional double density = 2; // density of air -- if not present, computed during simulation [kg / m^3]

 optional double viscosity = 3; // kinematic viscosity of air -- as above [m^2 / s]

 optional double thermal_conductivity = 4; // thermal conductivity of air -- as above [W / m K]

}

// Class containg data about the numerical setup.

message NumericalSetup {

 required int32 num_nodes = 1; // number of nodes in discretization

 required double time_step = 2; // time step of the implicit Euler [s]

 required double steady_state_crit = 3; // finish when temperature changes less than this (negative value disables it)

 optional double start_time = 4; // start simulation at this time, not the first one in the data

 optional double end_time = 5; // end simulation at this time, not the last one in the data

 required bool radial_distribution = 6; // do we use radial distribution of lambda or not

 required bool use_effective_radius = 7; // do we use effective radius due strand packing

 required int32 output_rate = 8; // write data every `output_rate` time steps, if 0, don't write at all

 required int32 debug_level = 9; // how verbose do you want the output to be (0 = no output, 2 = error, 5 = info, 7 =

full trace)

}

// If bisection mode was chosen, this parameters must be specified.

message BisectionParameters {

 required double target_temperature = 1; // target skin temperature [deg C]

 required double min_current = 2; // bisection min current [A]

 required double max_current = 3; // bisection max current [A]

 required double precision = 4; // how precisely to determine the current [A]

}

30

// If simulation mode was chosen, electrical current data must be provided.

message SimulationParameters {

 repeated double electrical_current = 1; // current at each time point

}

// Results of a bisection run.

message BisectionResponse {

 repeated double time = 1; // time of this data entry

 repeated double electrical_current = 2; // current to use at each time to achieve desired temperature

 repeated double core_temperature = 3; // calculated temperature of the line core

 repeated double skin_temperature = 4; // calculated temperature of the line surface

 repeated double heat_flux_radiation = 5; // heat fluxes out of line due to radiation per meter length [W / m]

 repeated double heat_flux_convection = 6; // heat fluxes out of line due to convection per meter length [W / m]

 repeated double heat_flux_solar = 7; // heat fluxes out of line due to solar irradiation per meter length [W / m]

 repeated double heat_flux_friction = 8; // heat fluxes out of line due to friction per meter length [W / m]

 repeated double heat_flux_impinging = 9; // heat fluxes out of line due to impinging per meter length [W / m]

 repeated double heat_flux_evaporation = 10; // heat fluxes out of line due to evaporation per meter length [W / m]

 repeated double heat_flux_joule_heating = 11; // heat flux from electrical current due to joule heating per meter length [W /

m]

 optional int32 num_iterations = 12; // number of iterations of bisection at each time step

}

// Results of a simulation run.

message SimulationResponse {

 repeated double time = 1; // time of this data entry

 repeated double core_temperature = 2; // calculated temperature of the line core

 repeated double skin_temperature = 3; // calculated temperature of the line surface

 repeated double heat_flux_radiation = 4; // heat fluxes out of line due to radiation per meter length [W / m]

 repeated double heat_flux_convection = 5; // heat fluxes out of line due to convection per meter length [W / m]

 repeated double heat_flux_solar = 6; // heat fluxes out of line due to solar irradiation per meter length [W / m]

 repeated double heat_flux_friction = 7; // heat fluxes out of line due to friction per meter length [W / m]

 repeated double heat_flux_impinging = 8; // heat fluxes out of line due to impinging per meter length [W / m]

 repeated double heat_flux_evaporation = 9; // heat fluxes out of line due to evaporation per meter length [W / m]

 repeated double heat_flux_joule_heating = 10; // heat flux from electrical current due to joule heating per meter length [W /

m]

}

// List of errors and respective error codes for cpp. The codes returned have

// the same value but are negative.

enum Error {

 INVALID_MODE = 1;

 MISSING_SIMULATION_PARAMETERS = 2;

 WEATHER_AND_CURRENT_DATA_MISMATCH = 3;

 MISSING_BISECTION_PARAMETERS = 4;

 NUMBER_OF_NODES_TOO_SMALL = 5;

 NEGATIVE_OR_ZERO_TIME_STEP = 6;

 MISSING_WEATHER_DATA = 7;

 NON_INCREASING_TIME_STAMPS = 8;

 START_TIME_TOO_SMALL = 9;

 END_TIME_BEFORE_OR_EQUAL_START_TIME = 10;

 BISECTION_PRECISION_TOO_SMALL = 12;

 BISECTION_LOW_NOT_SMALLER_THAN_BISECTION_HIGH = 13;

 TARGET_TEMPERATURE_NOT_ACHIEVABLE = 14;

 TARGET_TEMPERATURE_OUT_OF_MODELLING_RANGE = 15;

};

