#include "gtest/gtest.h"
TEST(Domains, PolygonShapeOrientationTriangle) {
std::vector<Vec2d> points = {{0.0, 0.0}, {3.4, 1.2}, {-1.2, 2.9}};
PolygonShape<Vec2d> poly(points);
EXPECT_EQ(points, poly.points());
std::vector<Vec2d> points2 = {{0.0, 0.0}, {-1.2, 2.9}, {3.4, 1.2}};
PolygonShape<Vec2d> poly2(points2);
EXPECT_NE(points2, poly2.points());
}
TEST(Domains, PolygonShapeOrientation) {
std::vector<Vec2d> pts =
{{0.2400, 0.1538}, {0.0646, 0.3092}, {0.3015, 0.3554}, {0.2015, 0.5692},
{0.3985, 0.5415}, {0.6785, 0.6123}, {0.7938, 0.5692}, {0.7446, 0.4862},
{0.5569, 0.5092}, {0.3969, 0.4477}, {0.4877, 0.4277}, {0.6200, 0.4277},
{0.8062, 0.4446}, {0.8462, 0.5631}, {0.8000, 0.6600}, {0.9215, 0.6477},
{0.9169, 0.5200}, {0.8846, 0.4000}, {0.6877, 0.3662}, {0.4108, 0.3508},
{0.4677, 0.2585}, {0.7277, 0.2969}, {0.8138, 0.3169}, {0.8385, 0.2354},
{0.8015, 0.1908}, {0.8631, 0.1123}, {0.8492, 0.0431}, {0.7538, 0.0369},
{0.7154, 0.1169}, {0.7338, 0.2000}, {0.5723, 0.1692}, {0.6323, 0.0631},
{0.5431, 0.0292}, {0.4831, 0.0738}, {0.5138, 0.1569}, {0.4846, 0.1985},
{0.3908, 0.2446}, {0.2662, 0.2631}, {0.3831, 0.2000}, {0.4169, 0.1000},
{0.3615, 0.0569}, {0.3015, 0.1692}, {0.2015, 0.2831}, {0.1800, 0.2477},
{0.2862, 0.1477}, {0.2492, 0.0338}, {0.0477, 0.0892}, {0.0338, 0.2400},
{0.0985, 0.1400}};
PolygonShape<Vec2d> poly(pts);
EXPECT_NE(pts, poly.points());
std::reverse(pts.begin(), pts.end());
PolygonShape<Vec2d> poly2(pts);
EXPECT_EQ(pts, poly2.points());
}
TEST(Domains, PolygonShapeContainsV) {
PolygonShape<Vec2d> poly({{0.0, 0.0}, {1.0, 2.0}, {0.0, 0.1}, {-1.0, 2.0}});
EXPECT_TRUE(poly.contains({0.0, 0.0}));
EXPECT_TRUE(poly.contains({-1.0, 2.0}));
EXPECT_TRUE(poly.contains({1.0, 2.0}));
EXPECT_TRUE(poly.contains({0.0, 0.1}));
EXPECT_TRUE(poly.contains({0.0, 0.05}));
EXPECT_FALSE(poly.contains({0.0, 0.2}));
EXPECT_FALSE(poly.contains({-0.1, 0.0}));
EXPECT_FALSE(poly.contains({0.1, 0.0}));
EXPECT_FALSE(poly.contains({0.0, 1.0}));
EXPECT_TRUE(poly.contains({0.5, 0.05+1.95*0.5}));
EXPECT_TRUE(poly.contains({-0.5, 0.05+1.95*0.5}));
}
TEST(Domains, PolygonShapeContainsM) {
PolygonShape<Vec2d> poly({{0.0, 0.0}, {4.0, 0.0}, {4.0, 4.0}, {2.0, 2.0}, {0.0, 4.0}});
EXPECT_TRUE(poly.contains({0.0, 0.0}));
EXPECT_TRUE(poly.contains({4.0, 0.0}));
EXPECT_TRUE(poly.contains({4.0, 4.0}));
EXPECT_TRUE(poly.contains({2.0, 2.0}));
EXPECT_TRUE(poly.contains({0.0, 4.0}));
EXPECT_TRUE(poly.contains({1.0, 1.0}));
EXPECT_FALSE(poly.contains({2.0, 3.0}));
EXPECT_FALSE(poly.contains({2.0, -1.0}));
EXPECT_TRUE(poly.contains({3.5, 3.5}));
EXPECT_TRUE(poly.contains({1.5, 1.5}));
}
TEST(Domains, PolygonShapeContainsStar) {
PolygonShape<Vec2d> poly({{0.0, -2.0}, {1.0, -1.0}, {2.0, 0.0}, {1.0, 1.0}, {0.0, 2.0},
{-1.0, 1.0}, {-2.0, 0.0}, {-1.0, -1.0}});
EXPECT_TRUE(poly.contains({0.0, -2.0}));
EXPECT_TRUE(poly.contains({1.0, -1.0}));
EXPECT_TRUE(poly.contains({2.0, 0.0}));
EXPECT_TRUE(poly.contains({0.0, 2.0}));
EXPECT_TRUE(poly.contains({0.0, -1.0}));
EXPECT_TRUE(poly.contains({0.0, 1.0}));
EXPECT_TRUE(poly.contains({-1.0, 0.0}));
EXPECT_TRUE(poly.contains({1.0, 0.0}));
EXPECT_TRUE(poly.contains({0.0, 0.0}));
}
TEST(Domains, PolygonShapeMargin) {
PolygonShape<Vec2d> poly({{0, 0}, {1, 0}, {1, 1}, {0, 1}});
double margin = poly.margin();
EXPECT_TRUE(poly.contains({0.5, 1+margin/2}));
EXPECT_FALSE(poly.contains({0.5, 1+2*margin}));
EXPECT_TRUE(poly.contains({1+margin/2, 0.5}));
EXPECT_FALSE(poly.contains({1+2*margin, 0.5}));
poly.setMargin(-1e-8);
margin = poly.margin();
EXPECT_FALSE(poly.contains({0.5, 1+margin/2}));
EXPECT_TRUE(poly.contains({0.5, 1+2*margin}));
EXPECT_FALSE(poly.contains({1+margin/2, 0.5}));
EXPECT_TRUE(poly.contains({1+2*margin, 0.5}));
}
TEST(Domains, PolygonRandomContains) {
std::vector<Vec2d> pts = {
{0.0985, 0.1400}, {0.0338, 0.2400}, {0.0477, 0.0892}, {0.2492, 0.0338},
{0.2862, 0.1477}, {0.1800, 0.2477}, {0.2015, 0.2831}, {0.3015, 0.1692},
{0.3615, 0.0569}, {0.4169, 0.1000}, {0.3831, 0.2000}, {0.2662, 0.2631},
{0.3908, 0.2446}, {0.4846, 0.1985}, {0.5138, 0.1569}, {0.4831, 0.0738},
{0.5431, 0.0292}, {0.6323, 0.0631}, {0.5723, 0.1692}, {0.7338, 0.2000},
{0.7154, 0.1169}, {0.7538, 0.0369}, {0.8492, 0.0431}, {0.8631, 0.1123},
{0.8015, 0.1908}, {0.8385, 0.2354}, {0.8138, 0.3169}, {0.7277, 0.2969},
{0.4677, 0.2585}, {0.4108, 0.3508}, {0.6877, 0.3662}, {0.8846, 0.4000},
{0.9169, 0.5200}, {0.9215, 0.6477}, {0.8000, 0.6600}, {0.8462, 0.5631},
{0.8062, 0.4446}, {0.6200, 0.4277}, {0.4877, 0.4277}, {0.3969, 0.4477},
{0.5569, 0.5092}, {0.7446, 0.4862}, {0.7938, 0.5692}, {0.6785, 0.6123},
{0.3985, 0.5415}, {0.2015, 0.5692}, {0.3015, 0.3554}, {0.0646, 0.3092},
{0.2400, 0.1538}};
PolygonShape<Vec2d> poly(pts);
EXPECT_EQ(pts, poly.points());
std::string results =
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000001100000000000000000000001110000000000000001000000000000000000"
"00000000000000001111100000000000000000000011111100000000000011111111100000000000"
"00000000000011111111100000000100000000001111111111100000000011111111100000000000"
"00000000111111111111110000000110000000011111111111100000000111111111100000000000"
"00000111111111111111110000001111100000001111111111000000000111111111100000000000"
"00001111111111111111110000001111110000001111111110000000001111111111100000000000"
"00001111111111111111110000011111110000001111111110000000001111111111110000000000"
"00001111111111111111111000011111100000000111111100000000001111111111100000000000"
"00001111111111111111111000111111100000000111111100000000001111111111000000000000"
"00001111000000000111111001111111100000000111111000000000001111111110000000000000"
"00001110000000000001110001111111000000000111111000000000000111111100000000000000"
"00001110000000000011100011111111000000000111111110000000000111111100000000000000"
"00001100000000000111000111111110000000001111111111111100000111111000000000000000"
"00011000000000001110001111111110000000011111111111111111111111111000000000000000"
"00011000000000111100001111111000000001111111111111111111111111111100000000000000"
"00010000000001111000011111100000000111111111111111111111111111111110000000000000"
"00000000000011110000111111000000011111111111111111111111111111111111000000000000"
"00000000000111100001111100000111111111111111111111111111111111111110000000000000"
"00000000001111110011111111111111111111001111111111111111111111111110000000000000"
"00000000011111110111111111111111111110000000000111111111111111111110000000000000"
"00000000111111111111111111111111111100000000000000000011111111111100000000000000"
"00000011111111111111111111111111111100000000000000000000000011111100000000000000"
"00000001111111111111111111111111111000000000000000000000000000001100000000000000"
"00000000000011111111111111111111111000000000000000000000000000000000000000000000"
"00000000000000000111111111111111110000000000000000000000000000000000000000000000"
"00000000000000000000001111111111100000000000000000000000000000000000000000000000"
"00000000000000000000000011111111111111111111111111000000000000000000000000000000"
"00000000000000000000000011111111111111111111111111111111111100000000000000000000"
"00000000000000000000000111111111111111111111111111111111111111111000000000000000"
"00000000000000000000000111111111111111111111111111111111111111111111111000000000"
"00000000000000000000001111111111111111111111111111111111111111111111111100000000"
"00000000000000000000001111111111111111111111111111111111111111111111111100000000"
"00000000000000000000001111111111111100000000000000000000000111111111111100000000"
"00000000000000000000011111111111100000000000000000000000000000000111111100000000"
"00000000000000000000011111111111111000000000000000000000000000000111111110000000"
"00000000000000000000111111111111111111000000000000000000000000000011111110000000"
"00000000000000000000111111111111111111111000000000000000000100000011111110000000"
"00000000000000000001111111111111111111111110000000011111111110000011111110000000"
"00000000000000000001111111111111111111111111111111111111111110000001111111000000"
"00000000000000000011111111111111111111111111111111111111111111000001111111000000"
"00000000000000000011111111111111111111111111111111111111111111100000111111000000"
"00000000000000000111111111110000000111111111111111111111111111100000111111000000"
"00000000000000000111000000000000000000011111111111111111111111110000111111000000"
"00000000000000000000000000000000000000000001111111111111111111100000111111000000"
"00000000000000000000000000000000000000000000000111111111111100000001111111000000"
"00000000000000000000000000000000000000000000000000011111100000000001111111000000"
"00000000000000000000000000000000000000000000000000000000000000000011111111000000"
"00000000000000000000000000000000000000000000000000000000000000000011111111000000"
"00000000000000000000000000000000000000000000000000000000000000000111111111000000"
"00000000000000000000000000000000000000000000000000000000000000000111111100000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000"
"00000000000000000000000000000000000000000000000000000000000000000000000000000000";
int N = 80;
int c = 0;
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
double x = static_cast<double>(j)/N;
double y = static_cast<double>(i)/N;
bool inside = poly.contains({x, y});
EXPECT_EQ(inside, results[c] == '1') << "Failed at #" << c << ": " << x << ", " << y;
c++;
}
}
}
TEST(Domains, PolygonDiscretizeBoundaryWithDensity) {
PolygonShape<Vec2d> domain2d({{0.0, -2.0}, {1.3, -1.0}, {2.0, 0.0}, {1.0, 2.7}, {0.0, 3.0},
{-1.0, 0.5}, {-2.0, 0.0}, {-1.6, -1.0}});
double dx1 = 0.1;
double dx2 = 0.02;
double tol = 0.05;
double s1 = 0;
double c1 = 0;
double s2 = 0;
double c2 = 0;
auto fill = [=](
const Vec2d& p) {
return (p[0] < 0.0) ? dx1 : dx2; };
auto discretization2d = domain2d.discretizeBoundaryWithDensity(fill);
EXPECT_EQ(discretization2d.size(), 408);
KDTree<Vec2d> tree(discretization2d.positions());
for (int i = 0; i < discretization2d.size(); ++i) {
if (discretization2d.pos(i, 0) < 0.0 - tol) {
Range<double> distances2 = std::get<1>(tree.query(discretization2d.pos(i), 2));
s1 += std::sqrt(distances2[1]);
c1 += 1;
} else if (discretization2d.pos(i, 0) > 0.0 + tol) {
Range<double> distances2 = std::get<1>(tree.query(discretization2d.pos(i), 2));
s2 += std::sqrt(distances2[1]);
c2 += 1;
}
}
EXPECT_NEAR(dx1, s1/c1, dx1*tol);
EXPECT_NEAR(dx2, s2/c2, dx2*tol);
}
TEST(Domains, PolygonDiscretizeBoundaryWithStep) {
PolygonShape<Vec2d> domain2d({{0.0, -2.0}, {1.3, -1.0}, {2.0, 0.0}, {1.0, 2.7}, {0.0, 3.0},
{-1.0, 0.5}, {-2.0, 0.0}, {-1.6, -1.0}});
double dx = 0.05;
double tol = 0.05;
double s = 0;
double c = 0;
auto discretization2d = domain2d.discretizeBoundaryWithStep(dx);
EXPECT_EQ(discretization2d.size(), 274);
KDTree<Vec2d> tree(discretization2d.positions());
for (int i = 0; i < discretization2d.size(); ++i) {
Range<double> distances2 = std::get<1>(tree.query(discretization2d.pos(i), 2));
s += std::sqrt(distances2[1]);
c += 1;
}
EXPECT_NEAR(dx, s/c, dx*tol);
}
TEST(Domains, PolygonShapeUsageExample) {
PolygonShape<Vec2d> poly({{0.0, -2.0}, {1.0, -1.0}, {2.0, 0.0}, {1.0, 1.0}, {0.0, 2.0},
{-1.0, 1.0}, {-2.0, 0.0}, {-1.0, -1.0}});
if (poly.contains({2.3, 4.5})) {
}
std::cout << poly << std::endl;
auto d = poly.discretizeBoundaryWithStep(0.1);
(void) d;
}
}