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Abstract— For an expert cardiologist, any abnormality in
the heart rhythm or electrocardiogram (ECG) shape can be
easily detected as a sign of arrhythmia. However, this is a
big challenge for a computer system. The need for automatic
arrhythmia recognition comes from the development of many
portable ECG measuring devices designed to function as a
part of health monitoring platforms. These platforms, because
of their wide availability, generate a lot of data and hence
the need for algorithms to process this data. From the many
methods for automatic heartbeat classification, convolutional
neural networks (CNNs) are increasingly being applied in this
ECG analysis task. The purpose of this paper is to develop
arrhythmia classification model according to the standards
defined by the Association for the Advancement of Medical
Instruments (AAMI), using CNNs, on data from the publicly
available MIT-BIH Arrhythmia database. We experiment with
two types of heartbeat segmentation: static and dynamic. The
ultimate goal is to implement an algorithm for long-term
monitoring of a user’s health, which is why we have focused
on classification models from single-lead ECG, and, even more,
on algorithms specifically designed for one person rather than
general models. Therefore, we evaluate patient-specific CNN
models also on measurements from a novel wireless single-lead
ECG sensor.

I. INTRODUCTION

Electrocardiogram (ECG) is a recording of the electrical
activity of the heart through electrodes usually placed on the
skin. For an expert cardiologist, any irregularity in the cardiac
rhythm or in the form of an ECG can be easily detected
as an indication for arrhythmia. Arrhythmia is any change
from the normal sequence of electrical impulses, which is
accompanied by abnormal heart rhythm and can be a threat
to the human life or require medical therapy to prevent
further problems [1]. However, this is a big challenge for
a computer system. The need for automatic recognition of
arrhythmias comes from the development of many portable
ECG measuring devices, such as various types of wireless
ECG sensors [2], the purpose of which is to function as a
part of health monitoring platforms. These systems, due to
their wide availability, will generate a lot of data that will
need suitable algorithms for processing it.

From the vast research field of ECG analysis, a large por-
tion focuses on ECG arrhythmia classification. The research
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on this topic has involved some standard methods in the
past, such as frequency analysis [3], wavelet transform [4]
and template matching [5], and have started to focus on deep
learning more and more in recent years. Convolutional neural
networks (CNNs), which extract knowledge from the input
using the convolution operation, are one of the most widely
used network architectures in deep learning. The most recent
and advanced work in this area is the study described in [6].
The main advantage of this study is the collection of a new
dataset from a wireless ECG sensor, and this data covers a lot
arrhythmia types. This research shows that a deep residual
network works well on this type of a problem.

Most of the other works use the publicly available arrhyth-
mia database – MIT-BIH. The study in [7] uses a multi-
layer CNN, with includes signal denoising in the algorithm.
The signal is divided into R-peak centered segments and
data augmentation is performed to handle class imbalance.
However, only the intra-patient evaluation paradigm [8] is
used, which is a great drawback because it does not show
how the algorithm would perform in a real-world scenario.
In [9], on the other hand, the evaluation bias is considered
by using the inter-patient paradigm [8] and a new type
of loss function for the neural network is proposed. The
deep learning architecture is similar to the one in [6]. The
authors experiment with including neighbouring heartbeats
in the classification decision, whereas for one heartbeat they
consider R-peak centered, fixed-size window.

For more realistic evaluation of the results, other than
the inter-patient paradigm, some works focus on patient-
specific models [10], [11]. A more recent example of this can
be found in [10]. They perform patient-specific arrhythmia
detection using 1D CNN and include, in addition to the
raw signal, fast Fourier transform (FFT) representation of
the ECG in the network. They build a separate model for
each patient using 5-minute ECG from each patient for
training and a common dataset of hand-picked representative
heartbeats. This makes their method a bit dependent on
the database and on expert knowledge. All of the methods
mentioned, other than the one in [6], which does not segment
separate heartbeats, use some kind of fixed-length window
for separating the heartbeats, i.e., static segmentation.

The final results of an ECG arrhythmia classification
algorithm highly depend on the choice of the evaluation
paradigm, and furthermore, on the choice in dividing the
ECG signal into separate heartbeats, i.e., the type of seg-
mentation. The aim of this study is to investigate which type
of segmentation gives better classification results under the
patient specific evaluation paradigm. We focus on single-lead

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1179-7/21/$31.00 ©2021 IEEE 932

20
21

 4
3r

d 
A

nn
ua

l I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

B
C

) |
 9

78
-1

-7
28

1-
11

79
-7

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

EM
B

C
46

16
4.

20
21

.9
63

03
66

Authorized licensed use limited to: Institute Jozef Stefan. Downloaded on December 14,2021 at 10:18:41 UTC from IEEE Xplore.  Restrictions apply. 



ECG and propose a novel deep learning architecture for the
task of heartbeat classification.

II. MATERIAL AND METHODS

A. Database Description

In this paper, the MIT-BIH Arrhythmia database was used
to evaluate and develop the arrhythmia classification model
[12]. This database is the most commonly used one in
literature when developing ECG signal arrhythmia detection
methods and is publicly available on PhysioNet [13]. It con-
tains 48 excerpts from portable ECG recordings, each with a
duration of 30 minutes. The recordings were digitized at 360
samples per second per channel with 11-bit resolution over a
range of 10 mV. Each record is labeled by two cardiologists
independently, resulting in a reference annotation for each
heartbeat included in the database, approximately 110,000
annotations in total. Each entry in the MIT-BIH database
contains two signals, one of which is always the modified
limb lead II, while the second lead is one of the following:
V1, V2, V4 or V5. Since the goal is to develop a model that
can be applied to a single-lead ECG, this paper only uses
one lead (MLII) from each of the records in the database to
simulate such an environment.

Additionally to the MIT-BIH database, annotated measure-
ments, obtained with a novel single-lead ECG wireless sensor
– Savvy ECG [2], were also investigated. The database con-
tains four 30-minutes long measurements, acquired during
different activities, such as laying, sitting, walking. A mod-
erate sampling rate of 125 Hz with 10 bit analogue/digital
converter is used as an optimum between medical value
and amount of generated data. The sensor was positioned to
measure a single-lead ECG that corresponds to the difference
in potential between the V1 and V2 electrodes from the
standard 12-lead ECG.

B. CNN Architecture

A CNN with residual blocks was used for this clas-
sification problem. Residual networks introduce shortcut
connections, which enable the network to be deeper by
mitigating the problem of vanishing gradient. This type of
neural network architecture was chosen because it has been
shown to work very well on ECG without preprocessing
of the signals. The size and parameters of the network are
obtained by combining similar models for this problem used
in the literature [14] [6] [9].

The network consists of several convolutional layers
grouped into blocks, where each block has 2 layers. Each
layer contains 32∗k filters, where k in the first convolutional
layer has a value of 1 and increases by 1 after every block.
In addition, the size of the input vector is reduced by a factor
of 2 in each block. All blocks, except the first one, introduce
additional shortcut connections and are referred to as residual
blocks. A batch normalization layer, in combination with a
ReLU activation layer, has been added to each convolutional
layer in order to speed up training time. Dropout layers that
drop 10% of the activations have been added between the
convolutional layers to increase the generalization abilities of

Fig. 1: Architecture of the used convolutional neural network

the model. Finally, there is one fully connected layer of 32
neurons, and one softmax fully connected layer that outputs
the probabilities for the input vector to belong to a certain
heartbeat class. The architecture of the network is presented
in Fig. 1.

Adam optimizer was used as the algorithm for the iterative
weight updates, with a learning rate of 0.0001 and batch
size of 128. The training was limited to a maximum of 100
epochs, but to choose the best model, early stopping with
patience of 8 epochs was used.

III. EXPERIMENTAL DESIGN

A. Data preprocessing

The Association for the Advancement of Medical Instru-
mentation (AAMI) provides guidelines for grouping heart-
beats [15] into 5 classes: N (Nonectopic), S (Supraventricular
ectopic beat), V (Ventricular ectopic beat), F (Fusion beat)
and Q (Unknown beat). The annotations in the MIT-BIH
database, in addition to class information, also contain the
R-peak location of each heartbeat. The goal is to have a raw
signal corresponding to one heartbeat as an input in the CNN.
No signal processing is performed, nor additional attributes
for the patient or ECG data are calculated. We experimented
with two techniques for dividing the signal into separate
beats, which are explained in the following subsections. This
is a challenge because all beats are different in length, i.e.
they do not last equally long, while, on the other hand, the
input in the neural network is fixed in length.

1) Static segmentation: After examining the signals in
the database and calculating the mean distance between two
adjacent R-peaks, a width of 200 samples was chosen to
represent a single heartbeat, in which the most important
characteristics of the ECG signal would be included. Namely,
the input to the CNN is a 200-element vector representing
one heartbeat, which includes 100 samples of the original
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Fig. 2: Example of static segmentation of an ECG signal

Fig. 3: Example of dynamic segmentation of an ECG signal

signal before the R-peak and 100 samples thereafter, in the
case of MIT-BIH recordings. For the Savvy measurements,
the same segmentation was applied, modified for the 125
sample rate (0.27 seconds before and after the R-peak) and
the obtained heartbeat vector was resampled to 200 samples.
Fig. 2 shows a few segmented beats of the signal from patient
112, with the red rectangles representing the part of the signal
being considered as one heartbeat.

2) Dynamic segmentation: The second type of segmen-
tation we examined was based on the knowledge that a
heartbeat starts about 200 ms before the R-peak. In the
case of the MIT-BIH database, this corresponds to about 80
samples. According to this, one heartbeat is the part of the
ECG signal that starts 80 samples before the annotated R-
peak and ends 80 samples before the next annotated R-peak.
This way, heartbeats with different duration are obtained,
but since the input to the convolutional network must have a
fixed length, we have brought all heartbeats to 200 samples
by down- or up-sampling. Fig. 3 shows several heartbeats
segmented this way, with the first heartbeat lasting longer
than the following ones, which necessitates re-sampling.

B. Creating a balanced dataset

Although the MIT-BIH Arrhythmia database contains sev-
eral types of arrhythmias, even some that are rarely encoun-
tered, not all classes are equally represented. The difference
in the number of samples from the different classes is not
small at all: normal beats make up almost 90% of the data.
This is a problem for any classification model, as it will
be more difficult to learn to identify the under-represented
arrhythmia classes.

In order to achieve a greater balance of classes so that un-
derrepresented arrhythmias become more prominent, instead
of including all heartbeat samples from the majority class
during training of the classification model, only a fraction of
them are included. Of all the heartbeats belonging to the N
class, 10% are randomly selected, and the others are removed

during training. The rest of the classes are not downsized.
The test set, for which the results are reported, has the
original class distribution.

C. Evaluation schemes

The classification of ECG heartbeats can be considered
from a few different test settings. i.e. evaluation schemes.
From the AAMI-defined evaluation paradigms for ECG anal-
ysis, we focus on the patient-specific one, and also investigate
the performance according to the intra-patient paradigm.

1) Intra-patient scheme: With this scheme, different
heartbeats from the same person can be found in both
the training set and the test set. All segmented heartbeats
from all the patients are viewed as one data set. They are
then shuffled and randomly divided into 10 subsets (each
containing 10% of the total samples and having a similar
distribution of classes as the complete dataset). According
to this division, 10 models are trained so that each of the 10
subsets is a test set only once (and the remaining 90% are
the training set). This technique is called cross-validation.
The intra-patient scheme is only used for comparison with
similar models in the literature, but has no application in
the real world, because the model will almost always need
to successfully classify arrhythmias in people whose data
were not represented in the training process at all (inter-
patient scheme) or be tailored to one person (patient-specific
scheme, addressed in this paper).

2) Patient-specific scheme: The second type of model
evaluation experiments are at the patient level. This means
creating a separate model for each patient, using at most
5 minutes of the patient-specific recording for training and
the remaining 25 minutes for testing [16]. The MIT-BIH
database is divided into two parts, based on whether the
patients have a normal rhythm (records number 100-124) or
arrhythmias of some kind are prevalent (records number 200-
234). The first group (100-124) is used to create a general
set of heartbeats. This set is common, that is, it is included in
training of each patient-specific model from the other group
(200-234). The patient-specific training sets are constructed
from this common dataset together with the first 2.5 minutes
of the particular patient. The next 2.5 minutes (between
minute 2.5 and minute 5) are kept as a validation set and
the parameters for the training of the models are tuned based
on the results obtained on this validation set. As mentioned
above, the remaining 25 minutes are set aside only for testing
of the models. This simulates a real-world application of such
a model: annotated ECG recordings lasting several minutes
from each user of a wireless sensor would be available and
further arrhythmias in the same user would be successfully
classified.

IV. RESULTS AND DISCUSSION

The first task in the experiments was selecting the best
parameters for each evaluation scheme and for the two types
of segmentation.The implementation of these experiments
and models was written in the Python programming language
(version 3.8), using several libraries including: Keras with
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Tensorflow 2 (for neural networks), scikit-learn (for the
performance evaluation) and matplotlib (for visualization of
results).

For each scenario, the following CNN parameters were
chosen:

• intra-patient: (1) static segmentation: 2 blocks, 32 filters
in the first layer, 15 filter length; (2) dynamic segmenta-
tion: 1 block, 32 filters in the first layer, 15 filter length;

• patient-specific: (1) static segmentation: 1 block, 32
filters in the first layer, 15 filter length; (2) dynamic
segmentation: 1 block, 64 filters in the first layer, 15
filter length.

The results show that a generally small network has been
selected. This is due to the relatively small size of the dataset,
for which many layers are not required to encompass all the
data.

For performance evaluation of the classification models,
the most commonly used metrics, proposed also by AAMI,
are reported: accuracy (Acc), sensitivity or true positive rate
(TPR), specificity or true negative rate (TNR), positive
predictive value (PPV ) and F1 score (F1). In addition, these
metrics are calculated separately for the classes S and V,
as these types of arrhythmias are of particular importance
and, according to AAMI, it is recommended that they are
evaluated also separately. We report the metrics obtained both
on the validation and the test sets, generated as described in
Section III-C.

Table I shows the performance metrics for the model
trained using the intra-patient evaluation scheme (over all
10 cross-validation runs), for both types of segmentation. It
can be noted that the dynamic and static segmentation yield
very similar results by all metrics, and therefore none of
these methods can be evaluated as better performing in the
intra-patient scheme. Furthermore, it can be seen that for the
class V, the scores are higher than for the S class, which can
be explained by its greater representation in the database.

The second evaluation scheme consists of training a spe-
cific model for each patient – first for 24 patients from
the MIT-BIH database. In doing so, 25 minutes from each
patient’s recording are left aside for testing. The results
of the classification of the heartbeats from these patient-
specific test sets are summarized in Table II. The obtained
scores are lower than those in the intra-patient scheme, but
as mentioned, this evaluation scheme has the potential to
be applied in a real-world scenario. Just like above, we
can notice that TPR and PPV are weaker than the other
metrics. But it is precisely in them that we can see a positive
improvement with dynamic segmentation on the test set,
that is, for the two most significant classes (S and V) they
are higher than with static ECG segmentation. The largest
difference can be seen in the PPV for the S class. This
means that the number of S-class beats misclassified as N
is much smaller using dynamic segmentation, which is of
great importance in the problem of arrhythmia recognition.
The other measures do not show such a significant difference
for the different segmentation as in the case of PPV , but
there is still an improvement. Therefore, it can be concluded

that dynamic segmentation is better for classification models
of patient-specific arrhythmias.

The results obtained with the proposed CNN, using the
intra-patient and patient-specific paradigms, are also com-
pared with results obtained with the best-preforming state-of-
the-art deep learning architectures for heartbeat classification
on the same MIT-BIH Arrhythmia database, using the same
evaluation schemes. It can be noted that the results are
comparable.

The evaluation results using the patient-specific evaluation
scheme on the Savvy recordings are given in Table III. It
should be noted that these recordings only contain samples
from the N and V classes, which is why they are not directly
comparable to the results obtained on the MIT-BIH database.
Nevertheless, it can be concluded that the performance of the
patient-specific models is generally good, with Acc nearly
0.99. This is a very promising result for future expansion
of the wireless ECG devices in patient-specific arrhythmia
detection.

V. CONCLUSION

In this paper, a model for automatic arrhythmia recognition
was proposed by using convolutional neural networks as a
classification method. We used the standard ECG arrhyth-
mias database – MIT-BIH, but instead of the full data avail-
able, we took only one channel to simulate the use of this
model to data from single-lead ECG. Two types of separation
of the signal into separate heartbeats were investigated. In
doing so, the dynamic segmentation of the ECG signals
proved to be a better solution for the classification model
described in this paper. This is important because so far in
literature, some type of static segmentation is commonly
found. Furthermore, in terms of network architecture, al-
though convolutional networks are most successful when
they have multiple layers and process large amounts of data,
in this case a network of 4 convolutional layers yields the
best results. This can be explained by the relatively small
amount of data, but in the future, with the increased use and
popularity of wireless ECG sensors, larger data volumes will
be collected.

The most important part of this paper is the development
of patient-specific models, using a common dataset com-
plemented by the first 5 minutes of the recording of the
particular patient. This still requires the participation of a
cardiologist when annotating the data for those 5 minutes,
but further long-term arrhythmia detection has the potential
to be automatic, as an accuracy of 0.98 has been achieved
on the MIT-BIH Arrhythmia database, and nearly 0.99 on
measurements acquired with a novel wireless single-lead
ECG body sensor.
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