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A B S T R A C T   

Radial Basis Function-generated Finite Differences (RBF-FD) is a popular variant of local strong-form meshless 
methods that do not require a predefined connection between the nodes, making it easier to adapt node- 
distribution to the problem under consideration. This paper investigates an RBF-FD solution of time-domain 
acoustic wave propagation in the context of seismic modeling in the Earth’s subsurface. Through a number of 
numerical tests, ranging from homogeneous to highly-heterogeneous velocity models including non-smooth 
irregular topography, we demonstrate that the present approach can be further generalized to solve large- 
scale seismic modeling and full waveform inversion problems in arbitrarily complex models enabling more 
robust interpretations of geophysical observations.   

1. Introduction 

Numerical modeling is a widely used approach for computational 
simulation of geological processes. Numerical approximation of acoustic 
wave equation in complex velocity media is vital to a wide range of 
investigations in geophysics seismic modeling, reverse-time migration, 
seismic inversion, etc. To simulate the acoustic waves in a complex 
representation of the Earth’s subsurface, time-domain wave equation is 
often solved approximately, using mesh or grids to discretize the domain 
of interest. Over the years, a wide range of numerical methods have been 
proposed and applied for acoustic wave simulations in geoscience, 
including Finite Difference Method (Alford et al., (1974); Kelly et al., 
(1976); Tarantola (1984); Dablain (1986); Williamson and Pratt (1995); 
Jo et al., (1996); Carcione et al., (2002); Geiger and Daley (2003); Du 
and Bancroft (2004); Liu and Sen (2011); Virieux et al., (2012); Wang 
et al., (2016, 2018, 2019); Cai et al., (2018)), Finite Element Method 
(Marfurt (1984); Emmerich and Korn (1987); De Basabe and Sen (2007); 
Ham and Bathe (2012)), Spectral Element Method (Seriani and Priolo 
(1994); Seriani and Oliveira (2007); Shukla et al., (2019); Malovichko 
et al., (2018)). Finite difference method (FDM) has been frequently 
preferred over other methods, due to its excellent compromise between 
accuracy, stability, and computational efficiency. Nevertheless, FDM 
has its shortcomings. Given the complexity of the Earth model, it is often 

desirable to use spatially variable discretization, which could potentially 
also be adaptive to the velocity variations Jastram and Behle (1992); 
Hayashi et al., (2001); Kang and Baag (2004); Kristek et al., (2010); Chu 
and Stoffa (2012). FDM does not offer such flexibility, at least not 
without special treatment. 

However, the Radial Basis Function Generated Finite Differences 
(RBF-FD) method Fornberg (1988), a generalization of FDM, do not 
require a predefined grid, and therefore offers great flexibility regarding 
the geometry and of the domain as well as the distribution of nodes. The 
conceptual difference between FDM and RBF-FD is in the way the nodes 
are treated. FDM uses a priori knowledge about the nodes and their 
connectivity with neighbours, as the nodes are organized in a grid that is 
known in advance. In RBF-FD no a priori knowledge about the nodal 
topology is required and the support domains are defined in the solution 
procedure, but at a larger cost to memory, since generally each node has 
a different local neighbourhood. A direct consequence of higher flexi
bility regarding the nodal positioning is that RBF-FD is, in contrast to 
FDM, able to locally modify node configurations by simply placing more 
points in areas where needed and removing them from areas that are 
already overpopulated Slak and Kosec (2019a). The RBF-FD method is a 
popular variant out of many strong-form local meshless methods. It uses 
finite difference-like collocation weights on an unstructured set of nodes 
Tolstykh and Shirobokov (2003). The method has been successfully used 
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in several problems and is still actively researched Fornberg and Flyer 
(2015); Bayona et al., (2017); Slak and Kosec (2019b); Mishra et al., 
(2019); Slak and Kosec (2019c). 

Previous works for modeling acoustic wave equations using weak- 
form meshfree methods include Jia et al., (2005); Hahn and Negrut 
(2009); Zhang et al., (2016) and using strong-form meshfree methods 
include (Takekawa et al., 2015; Takekawa and Mikada, 2016; Liu et al., 
2017; Mishra et al., 2017; Takekawa and Mikada, 2018). The 
strong-form meshfree investigations, mentioned above, implement 
meshfree computations only in the space-domain (frequency-domain 
approximation of the acoustic wave equation). Recently, Li et al., (2017) 
presented a first investigation of application of a mesh-free FD method, 
based on least squares optimization, for time-domain simulation of 
acoustic wave equation. Motivated by the success and robustness of 
RBF-FD Fornberg and Flyer (2015); Fornberg (1988); Slak and Kosec 
(2019b,c), it is intriguing to test them on an extended spectra of prob
lems. In this paper, we present an investigation of RBF-FD method for 
modeling 2D time-domain acoustic wave propagation in heterogeneous 
Earth’s subsurface. In order to suppress the artificial reflections arising 
from the truncation of the computational domain while mimicking the 
infinitely large-domain, we couple absorbing boundary conditions with 
the RBF-FD formulation. 

The rest of the paper is structured as follows. In section 2, we discuss 
the general RBF-FD formulation for solving PDEs and different aspects of 
its successful implementation. In section 3, we explain the governing 
equations of the time-domain acoustic wave propagation and the 
absorbing boundary conditions. In section 4, a series of numerical tests 
for modeling the wave propagation in (1) homogeneous (2) layered, and 
(3) highly-heterogeneous Marmousi velocity model of the subsurface 
have been performed. Standard FD results are provided in first two cases 
for a heuristic comparison. All examples were computed using the in- 
house Slak and Kosec (2019d) library. This is followed by the conclu
sions and some potential future works. 

2. RBF-FD formulation 

RBF-FD, as the name suggests, is a generalization of the Finite Dif
ference Method (FDM). Both methods use computational nodes, or 
points, at which the solution is approximated. Both are also local, 
meaning only nodes ‘close’ to the selected node can affect the selected 
node’s next value. This neighbourhood of close nodes is commonly 
referred to as a stencil or the support domain. 

Classical FDM approximates differential operators with a weighted 
combination of neighbouring nodal values, for example 

u′′(xi)≈
1
h2 u(xi− 1) −

2
h2 u(xi) +

1
h2 u(xi+1) =

[
1
h2 −

2
h2

1
h2

]
⎡

⎣
u(xi− 1)

u(xi)

u(xi+1)

⎤

⎦ (1)  

for second derivatives in 1D. We can compute and use [1/ h2, − 2/ h2, 1/
h2] as an approximation for the second derivative, evaluated at a center 
point irrespective of the actual function values. RBF-FD uses the same 
methodology in a more general setting, were such weights cannot be 
precomputed, and their computation is considered a part of the solution 
procedure. 

For a general partial differential operator L at a point xi, we seek the 
approximation in the form 

(L u)(x)≈
∑

xj∈S(x)

wj(x)u
(
xj
)
=w(x)Tu, (2)  

where S(x) represents the neighbouring nodes (also called stencil or 
support) of x. Denote the number of neighbours with n = |S(x)|. 

To compute the weights, we write n linear equation, obtained from 
enforcing exactness of (2) for a class of functions. In RBF-FD method, 
these are radial basis functions, centred in stencil nodes. Many different 
choices for RBFs exists; we sill use the Gaussians, defined as 

Φxj (x)=φ
(
‖ x − xj

⃒
⃒
)
, φ(r) = exp

(
− r2 / σ2

B

)
, (3)  

where σB is a positive real shape parameter. Substituting Φxk for all xk ∈

S in place of u in 2 gives rise to a system of n linear equations 
⎡

⎣
Φx1 (x1) ⋯ Φx1 (xn)

⋮ ⋱ ⋮
Φxn (x1) ⋯ Φxn (xn)

⎤

⎦

⎡

⎣
w1
⋮
wn

⎤

⎦=

⎡

⎣
(L Φx1 )(x)
⋮
(L Φxn )(x)

⎤

⎦, (4)  

which can be compactly written as Aφw(x) = ℓ and solved to obtain 
w(x). The matrix Aφ is symmetric and when Gaussian basis functions are 
used, it is also positive definite Fornberg and Flyer (2015). This guar
anties non-singularity as long as all support domain nodes are distinct. 

To obtain the solution of a PDE, we first discretize the domain Ω and 
its boundary ∂Ω with N nodes. For each computational node xi we 
compute the stencil S(xi), consisting of its n closest neighbours. Then, we 
compute and store the weights w(xi) for all nodes xi and all operators L 

in the equation, including possible differential operators used to define 
boundary conditions, such as normal derivatives. Since the nodes do not 
change during the simulation, computed values can be stored and used 
to effectively obtain approximations of field derivatives in O(n) time by 
using a simple dot product, as posed in (2). 

In all numerical examples we will use collocation with m = 7 
Gaussian functions on supports of n = 7 closest nodes. A Poisson Disk 
Sampling-based node generation algorithm Slak and Kosec (2019c) will 
be used to position the nodes. The algorithm strives to position nodes as 
regular as possible in an arbitrary domain with a supplied spatially 
dependent target distance between nodes, effectively enabling the 
ability to refine the numerical solution Slak and Kosec (2019b). The 
weights wi for the Laplacian operator L = ∂2

∂x2 +
∂2

∂z2 are computed in 
advance for all interior nodes xi, using (4) and stored, to approximate the 
spatial part of the equation as 

∂2u
∂x2 (xi, zi, t) +

∂2u
∂z2 (xi, zi, t) ≈

∑

j∈S(xi)

(wi)juj(t) =: wT
i ⋅uS(xi), (5)  

where values uj represent the function values in the computational 
nodes xj and uS(xi) represent the subset of uj that correspond to the 
neighbours of xi. 

Explicit time stepping is used for time discretization 

d2u
dt2 ≈

u(n− 2) − 2u(n− 1) + u(n)

Δt2 , (6)  

where u(n− 2) and u(n− 1) stand for previous two time steps and u(n) for the 
current time step. Initially all fields are set to zero. 

3. Model of acoustic wave propagation in the earth 

The standard 2D constant-density approximation of the time-domain 
acoustic wave equation is given as 

1
vp(x, z)2

∂2u(x, z, t)
∂t2 =

∂2u(x, z, t)
∂x2 +

∂2u(x, z, t)
∂z2 + δ(x − xs, z − zs)s(t), (7)  

where u is the pressure amplitude or pressure wavefield and vp(x, z) is 
primary wave (P-wave) velocity, which represents the material prop
erties of the subsurface. 

In general, the domain of interest is the entire subsurface of the 
Earth, which can from local point of view be seen as 

Ω = {(x, z, t)| − ∞ < x < +∞, − ∞ < z < +∞, t ≥ 0 } (8) 

However, practical computational limitations enforce a constraint on 
the size of the domain. Therefore the actual computational domain is 
represented as 

Ω = {(x, z, t)|xmin < x < xmax, 0 < z < zmax, t ≥ 0 }, (9) 
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with Dirichlet boundary conditions on all sides. Since infinite space is 
represented through finite computational domain, the reflections from 
the boundaries are undesired and called as spurious reflections. There 
are a number of approaches to suppress such spurious reflections from 
the numerical solution, out of which, we choose one of the most simple 
formulation termed as “Absorbing boundary conditions (ABC)” pro
posed by Cerjan et al., (1985). The idea behind ABC is to introduce a 
spatially variable damping factor, which starts at a given distance from 
the boundary and increases its weight as it approaches the boundary 
being maximum at the boundary. The damping factor is given by 

G(i)= exp
(
− [0.015(imax − i)]2

)
, (10)  

where imax is the thickness of the absorbing layer in terms of nodes, that 
is, the number of nodes along the thickness of the absorbing layer. This 
damping factor is multiplied to the wavefield, which, practically, re
duces its amplitude to zero at the boundary suppressing any undesired 
reflections from that boundary. 

When using RBF-FD the nodes can be scattered and slight modifi
cation need to be made to the ABCs. Due to the irregular node layout, a 
continuous form of (10) is needed, given as 

G(d)= exp
(
− [0.015(imax − d/h)]2

)
, (11)  

where d represents the distance from the current node to the boundary 
and h is the current average nodal spacing. 

The remaining boundary condition is the top boundary at z = 0, 
which represents the Earth’s surface. The reflections from this boundary 
are of physical origin, there is no need for the absorbing layer and or
dinary Dirichlet conditions suffice. 

The wave source is given as Ricker’s Wavelet, shown in Fig. 1. It is 
formally given by 

s(t)=
2s0
̅̅̅̅̅̅̅̅
3σR

√
π1/4

(

1 −
(

t
σR

)2)

e
− t2

2σ2
R , (12)  

where σR is the shape parameter and s0 is the amplitude. The wave 
source also includes a δ-function, which is implemented as 

δ(x, z) ≃
1
π

ε
x2 + z2 + ε2. (13)  

where ε is a small constant, larger than the nodal spacing h, so that the 

Fig. 1. Domain of interest with absorbing boundary layers (left) and Ricker’s wavelet; σR = 7.5 (right).  

Fig. 2. Snapshots of the solution obtained by RBF-FD and FDM method.  
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source can be adequately represented regardless of the current dis
cretization. We will use the value ε = 4.0 m in our paper. 

4. Numerical examples 

4.1. Uniform velocity field (Homogeneous medium) 

We first present a basic example of simulation of wave propagation 
in a homogeneous medium to verify RBF-FD and FDM implementations. 
Since RBF-FD can mimic FDM when the same grid layout is used, we can 
compare the solution obtained with RBF-FD and FDM, to analyse both 
methods and also compare the effect of ABCs. 

We define the problem on a square domain with dimensions (500 m,

500 m). The wave velocity is set to v = 3000 m/s and is kept constant, 
implying a constant nodal spacing of h = 1.1 m which gives N = 248572 
nodes. The source of the Ricker’s wavelet is defined to be (xs, zs) =

(150 m,150 m), and the shape parameter used was σR = 0.00147 s− 1. 

A grid with a comparable number of nodes NFDM = 250000 (with 
nodal spacing of hFDM = 1 m) was used in FDM simulation. 

Stencils for RBF-FD were computed as n = 7 closest nodes (including 
the node itself). and shape parameter for Gaussians is σB = 70 m. 

We used a small enough time step of dt = 0.000098 s to obtain a 
stable solution. The time step was the same in both methods. 

To compare the solutions, they were re-interpolated to the same grid 
using linear interpolation. The pressure fields and pressure differences 
shown are in units of N/m2. 

Fig. 2 shows the wavefield at two different times. The initial shock 
propagates in a circular shape until it makes contact with the boundary 
of the domain, after which is completely reflected at the top, but 
partially absorbed on the left. The lower two plots illustrate the state 
after the reflections, where the effect of absorbing boundary conditions 
can be observed. 

In general, RBF-FD and FDM solution agree well in scope of error 
presented in Fig. 3. However, in first three plots of Fig. 3 one can observe 
periodic difference between both solutions on the wave circle. To 

Fig. 3. Absolute difference between RBF-FD and 5 point FDM at time four points in time.  

Fig. 4. Symmetry of the RBF-FD and FDM solutions.  
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analyse this phenomenon a plot of the wave field on the circle centred at 
the origin of the source is presented in Fig. 4. It would be expected that 
the displacement fields are constant on this circumference, as the wave 
is propagating symmetrically. However, as can be observed in the right 
plot in Fig. 4, FDM method displays significant discrepancies from the 
expected symmetry. While RBF-FD also doesn’t provide perfect rota
tional symmetry, the discrepancies are noticeably smaller. This differ
ence between methods might be explained by the larger number of 
support nodes and more symmetric placement employed by RBF-FD 

method in comparison to FDM. 
The peak value at time t = 70 ms with respect to the number of nodes 

is for both methods presented in Fig. 5, where it can be seen that both 
methods converge to the same value. 

In geophysics there is special significance to the values of the 
wavefield at the top boundary - at Earth surface, which is represented 
with seismogram, i.e. the time evolution of the wavefield values at the 
top boundary. In Fig. 6 the x axis corresponds to the horizontal spatial 
dimension, while y axis represents the temporal dimension. 

In summary, as expected, in this simple case both method produce 
comparable and convergent solutions. 

4.2. Two-layer velocity model 

In next step we consider a two-layer velocity model. The difference in 
velocities between layers suggest different distance between nodes as 
change of velocity causes the wavelength to change. To evade numerical 
artifacts it is important that an sufficient amount of nodes (10–20) is 
present per wavelength Geiger and Daley (2003); Alford et al., (1974). 
Using the RBF-FD meshless method, there aren’t any restrictions on 
node placement, which gives it an advantage over conventional 
methods. Consequently variable node density in relationship to the ve
locity field is easily implemented. 

In Fig. 7 the z cross-section velocity profile and corresponding RBF- 
FD nodes are presented. The jump in velocity happens at depth of 80 m. 
It can be observed that the jump in inter-nodal distances doesn’t directly 
follow the jump in velocity. The jump happens at depth of 150 m. The 
inter-nodal distance function h(z) is made continuous by application of a 
moving average over the step function 

h(z)=moving ​ average(0.737843 m+H(z − 150 m)0.737847 m), (14)  

where H is the Heaviside step function. The displacement of the jump in 
node density is a necessary compromise which will be discussed in more 
detail with the presentation of the results. Dimensions of the domain are 
(500 m,500 m). For RBF-FD method time step is set to dt = 0.000058 s 
and for FDM method it is set to dt = 0.000167 s. The source is located at 
(xs,zs) = (250 m,200 m), and parameter σR = 0.00106 s− 1 was used for 
the Ricker’s wavelet. As stated previously parameter ε = 4 m was used. 

Snapshots of the wavefield are presented at 4 different times in 
Fig. 8. Again we observe the reduced reflections from the boundary. A 
new phenomenon present in this case is the partial reflection at y =

250 m. This is most clearly visible at time t = 0.03 s, where this is the 
only reflection resent in addition to the original wave propagating from 
the source. Decreasing of wavelength can be observed as well. 

The results from RBF-FD are compared to those from FDM in Fig. 9. 
Both methods are tested on discretization with approximately 250000 

Fig. 5. Peak value at t = 0.03 s with respect to the number of nodes.  

Fig. 6. Seismogram obtained with the RBF-FD.  

Fig. 7. z cross-section velocity profile (left), z cross-section inter-nodal distance function (center) and snapshot of node placement (right).  
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nodes, however RBF-FD method distributes nodes as described at the 
beginning of this subsection in contrast to homogeneous grid used by 
FDM. 

In Fig. 9 artificial ripples are present on snapshot of FDM solution, 
which do not develop when the RBF-FD solution is employed. 

Such errors are caused by insufficient node density. Using RBF-FD 
this problem was avoided, by increasing the density in upper region 
while simultaneously decreasing the density in lower region, which does 
not reduce the accuracy as much since the wavelength in the lower re
gion is larger. 

Fig. 8. RBF-FD solution snapshots.  

Fig. 9. Snapshot at time 0.13 s.  
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As stated before, the step in velocity and the decrease in node density 
do not align exactly. This necessitated by the fact that sudden jumps in 
nodal density cause new numerical errors and the fact that nodal density 
must be sufficiently high everywhere on the domain. If just a moving 
average of the velocity field would be used as the basis for target inter- 
node distance function, the second condition would not be met in nar
row region on top of the point of velocity step. For best results it proved 
necessary to delay the jump in node density in comparison to point of 
jump in velocity field. 

In addition to slightly increasing the amount of nodes necessary, 
another downside is introduced. If the node density used with RBF-FD 
directly followed the velocity field, the solution would actually be 
more stable than one provided by FDM. This can be understood by 
looking at the stability criterion for FDM: 

dt∝
dx
v
. (15) 

When using FDM the only change in comparison to case with con
stant velocity is the increase of the velocity in the lower half of the 
domain. Flowing the criterion, this results in smaller required time-step 
for all of the simulation. When RBF-FD is used depending on nodal 
distribution two cases are possible:  

• If the nodal density follows the velocity field directly, meaning dx∝ v 
, the velocity dependance of the criterion cancels out. This means 
that areas of high velocity do not dictate the use of shorter time steps 
in simulation.  

• In case where the density field does not follow the velocity field 
directly, we lose the stability advantage. In the narrow area below 
the point of velocity step, the node density is unchanged while the 
velocity increases, this results in same necessity for decrease in time 
step. The time step actually needs to be even smaller than one 
required by FDM, as dx in the dense region is smaller than one used 

by FDM, which reduces time step further as dt∝dx follows from 
stability criterion. 

All of the discussed assumes the stability criterion for FDM is at least 
to a factor also valid for RBF-FD. The need for a lower time-step might be 
a cause for concern, however if one would want similar performance to 
one achieved using RBF-FD, FDM with grid of higher density would be 
necessary. Not only would this drastically increase the number of 
computational nodes, the time-step would also have to match the 
smaller one used by RBF-FD, as the dx in criterion would now be the 
same for both methods. 

While the difference was already very clear in Fig. 9, cross-section 
view provides even more detailed picture. We look at the cross-section 
at x = 250 m in Fig. 10. Snapshot is provided at time t = 67 ms. 

The RBF-FD solution displayed here always provided at least 11 
nodes per characteristic distance of the wave. For reference Another 
RBF-FD solution is added, where the density is higher, namely at least 15 
nodes per characteristic distance. 

To conclude the analysis of this numerical example, seismograms are 
provided for both methods in Fig. 11. Again, we can make similar ob
servations about improved accuracy of RBF-FD method in this case. 

4.3. Marmousi velocity model 

For the last numerical test we look at a more complicated example of 
Marmousi velocity model Versteeg (1994), displayed in the left of 
Fig. 12. Similarly as in section on Numerical test 2, the node density can 
be related linearly to the velocity field, however in this case without 
displacing and smoothing, as we will ensure enough nodes in 
high-velocity area for stable simulation. Since the data points of the 
velocity model do not generally align with the positions of computa
tional nodes, Sheppard’s scattered data interpolation is used to deter
mine the density at the required positions. 

On the right side of Fig. 12 a zoomed view of the node placement is 
displayed. This section is marked with red rectangle on the velocity 
model. In this test the size of the domain is (10400 m,3306 m), the time 
step is set to dt = 0.00087 s and the source is positioned at 
(5200 m,330.6 m) The wavefield snap-shot at different time-intervals 
have been shown in Fig. 13. 

We can observe the distortion of the primary wave and its reflections 
caused by the velocity field. The solution is also free of any obvious 
numerical artifacts. 

We provide the seismogram for this example in Fig. 14. We can again 
observe the secondary waves caused by subsurface reflations. 

In conjunction with results from previous two cases we can conclude 
RBF-FD is a viable alternative to conventional methods, such as FDM. It 
can be applied to cases with arbitrarily complex velocity fields and can 
reduce numerical artifacts without drastically increasing computational 
intensity. 

Fig. 10. Cross-section.  

Fig. 11. Seismogram two-layer model.  
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4.4. Irregular domain shape: Canadian Foothill 

To demonstrate performance of presented RBF-FD based solution 
procedure on irregular domains, the Canadian Foothill model is 
addressed Gray and Marfurt (1995). The domain is enclosed inside a 
rectangle of dimensions 25000 m times 10000 m as presented on 
Fig. 15. Sea level is at the 2000 m mark. The original velocity profile of 

the model has resolution of 1668 times 1000 with data points spaced at 
15 m horizontally and 10 m vertically (see Fig. 16). 

The case was set up with a point like source at locations (12500 m, 
2500 m). RBF-FD method was used with time step dt = 0.001 s on 

Fig. 12. Velocity profile (left) and node placement (right).  

Fig. 13. RBF-FD solution snapshots for the Marmousi velocity model.  

Fig. 14. Marmousi seismogram.  
Fig. 15. Velocity profile for Canadian Foothill case. Shape of the domain is 
marked with red line. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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205964 scattered nodes positioned with Slak and Kosec (2019c) (16) 
(see Fig. 17). 

First, we solved a simplified model with constant velocity profile v =

4500 m that is presented in Fig. 18. In next step, we included also Ca
nadian Foothill velocity profile, results are presented in Fig. 18. 

5. Conclusions 

We have investigated a local strong-form meshless method RBF-FD 
for numerical solution of 2D time-domain acoustic wave equation in 

heterogeneous media. The numerical tests performed here have twofold 
importance: (a) It is one more-step towards the robustness of the current 
understanding of the RBF-FD by exploring the acoustic wave propaga
tion problem, and (b) the RBF-FD has the potential of being used in 
large-scale seismic modeling and inversion applications. Followings are 
some conclusions we draw from the present study:  

1. RBF-FD has the advantage of working with node-distribution, which 
are adaptive to the given velocity-variations. This is a clear advan
tage over conventional finite difference method. Moreover, RBF-FD 
save the effort through bypassing the steps of mesh-generation and 
preserving its shape trough out the time-iteration, which is an 
advantage over finite-element type methods.  

2. Since the stability-criterion in the RBF-FD method can also be 
adaptive to the velocity model, unlike in standard FD method, RBF- 
FD need not to use the maximum velocity and consequently over- 
sampled nodes in some parts of the domain. This lowers the total 
number of required nodes for highly-complicated velocity models.  

3. Although RBF-FD can theoretically deal with highly-non uniform 
node-distributions, the non-uniformity introduces numerical 
dispersion. However, since this error is mostly near the source, its 
contribution to the final observation is not as noticeable as the cor
responding undersampled FD method.  

4. This manuscript provides the first high-performance (C++) open- 
source repository for meshfree seismic modeling. We believe the 
source-codes of the present paper will help readers to have a better 
understanding of state-of-the art implementation of RBF-FD and 

Fig. 16. Distribution of nodes, for better visibility only an upper left of the 
domain is displayed. 

Fig. 17. RBF-FD solution snapshot for constant velocity profile v = 4500 m
s .  

Fig. 18. RBF-FD solution snapshot for Canadian Foothill velocity profile.  
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promote further improvement in the field with minimal development 
efforts. 
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