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A new exact parallel maximum clique algorithm MaxCliquePara, which finds the maximum 

clique (the fully connected subgraph) in undirected general and protein graphs, is presented. 

First, a new branch and bound algorithm for finding a maximum clique on a single computer 

core, which builds on ideas presented in two published state of the art sequential algorithms is 

implemented. The new sequential MaxCliqueSeq algorithm is faster than the reference 

algorithms on both DIMACS benchmark graphs as well as on protein-derived product graphs 

used for protein structural comparisons. Next, the MaxCliqueSeq algorithm is parallelized by 

splitting the branch-and-bound search tree to multiple cores, resulting in MaxCliquePara 

algorithm. Ability to exploit all cores efficiently makes the new parallel MaxCliquePara 

algorithm markedly superior to other tested algorithms. On a 12-core computer the 

parallelization provides up to two orders of magnitude faster execution on the large DIMACS 

benchmark graphs and up to an order of magnitude faster execution on protein product graphs. 

The algorithms are freely accessible on http://commsys.ijs.si/~matjaz/maxclique. 
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Introduction 

The maximum clique problem, one of the most challenging NP-complete problems
1
 in 

computer science addresses important questions in bioinformatics
2, 3 

and molecular 

modeling.
4-7

 Molecules can be described as graphs with vertices representing atoms or group 

of atoms and with edges representing bonds. Detection of similarities between molecules, 

which implies finding an optimal alignment between their atoms or groups of atoms, can be 

expressed as a problem of finding a maximum clique in product graphs derived from the 

molecules that are being compared. Specifically, the maximum clique algorithm allows 

detection of protein structural similarities that are useful in protein classification or protein 

function prediction,
8
 and searching large databases of chemical compounds, such as ZINC,

9
 

for structural similarities in small compounds,
4
 which is a key to development of new drugs. 

RASCAL is an efficient clique-based algorithm for graph similarity calculation that has been 

applied to comparison of chemical graphs.
10-12

 Using chemical heuristics, the algorithm is 

fine-tuned for comparison of small molecules. 

A recent review,
13

 identified several exact maximum clique algorithms, that were developed 

between 1990 and 2012.
14-19

 However, all of these run on a single computer core and only two 

exact parallel maximum clique algorithms that could exploit computers with multiple cores 

exist.
20, 21

 The algorithm of Pardalos et al.
20

 is a master-slave type algorithm, in which a 

master process running on a dedicated core distributes jobs to slave processes running on the 

remaining cores that solve the maximum clique problem. The second algorithm, by McCreesh 

and Prosser,
21

 is an algorithm adapted for use on large computer networks composed of up to 

100 computers. Using Net File System for communication between processes, the algorithm 

reveals a significant overhead on the start-up, which makes it profitably applicable only to 

large and hard-to-solve instances of graphs, where that overhead can be compensated. The 

parallelization of maximum clique algorithms to exploit modern computer architecture with 

multiple cores is a severely under-explored field in computer science, although it has a high 

potential impact on molecular modeling. 

Little is known regarding the efficiency of referred parallel maximum clique algorithms. A 

study of Pardalos' algorithm indicates that speedups between 1.8 and 2.6 can be achieved 

using a computer with four cores on two tested instances of DIMACS
a
 graphs and on random 

graphs with up to 1000 vertices.
20

 Another study of McCreesh and Prosser algorithm indicates 

that speedups of 10 and more can be obtained routinely on 25 or more desktop machines over 

large benchmark graphs that can require minutes or days to be solved on a single machine.
21

 

The literature however, appears to contain little, if any information on the effects of the 

parallelization on the speedup of maximum clique algorithms on modern computers with 

multiple cores. Likewise, little is known on the performance and on the comparison of such 

algorithms on a set of DIMACS graphs and protein-derived product graphs derived from real 

protein comparison applications, e.g., performed by the ProBiS web server.
8, 22

 

In this work we first develop a new exact sequential maximum clique algorithm 

MaxCliqueSeq, i.e., one that is only able to exploit a single processor core. This algorithm 

runs faster on a single core than two currently leading maximum clique algorithms.
16, 23 

Next, 

with our improved sequential algorithm taken as a starting point for the parallelization, we 

develop a new exact parallel maximum clique algorithm, MaxCliquePara, which balances its 

work and uses all the cores efficiently, by traversing multiple search tree branches at the same 

time. The new parallel algorithm is evaluated on DIMACS graphs and on a set of protein 

                                                 

a
 A publicly available collection of benchmark graphs for solving various graph-related 

problems, including the maximum clique problem, available from http://dimacs.rutgers.edu. 



 

3 

product graphs, which are target graphs for the newly developed algorithm. Our experimental 

results show that the MaxCliquePara algorithm is fast and effective on large protein graphs 

whose density, i.e., the probability that an edge exists between two vertices, is very high, and 

that on average, it outperforms all state of the art maximum clique algorithms known to 

authors.
 

Methods 

Graph Notation 

An undirected graph G = (V, E) consists of a set of vertices V = {v1, v2, ..., vn} and a set of 

edges E ⊆ V × V made up of pairs (u, v) of distinct vertices (Figure 1). Two vertices (u, v) are 

described as adjacent if (u, v)  E. The neighborhood Γ(v) of a vertex v is defined as Γ(v) = {u 

 V | u is adjacent to v}. The degree of a vertex v, denoted by |Γ(v)|, is the number of edges 

connected to v. A graph is complete if all its vertices are adjacent. A graph H = (VH, EH), is a 

subgraph of G, if VH ⊆ V and EH ⊆ E. A clique C is a complete subgraph of an undirected 

graph; the size of a clique C, denoted by |C|, is the number of its vertices. A maximum clique 

is the largest clique in a given graph. Coloring of a graph is a mapping that assigns one color 

to each vertex in such a way that no two adjacent vertices have the same color. The smallest 

possible number of colors with which a graph G can be colored is the chromatic number of G. 

If a graph G contains a maximum clique of size k, then at least k different colors are needed to 

color the vertices of this maximum clique. From this it follows that the size of the maximum 

clique that can be found in G is smaller or equal to the chromatic number of G. 

 

 
Figure 1. A general graph example. Vertices are circles, edges are lines. Maximum clique – 

set of vertices {a, b, c, d}, is highlighted in bold.  

 

Protein Graphs 

Proteins can be represented as protein graphs, as is schematically shown in Figure 2. In 

protein graphs, vertices have spatial coordinates, and vertices are placed at geometric centers 

of functional groups of protein surface amino acids. Vertices are labeled with five distinct 

colors corresponding to the five physicochemical properties, i.e., acceptor, donor, pi-pi 

stacking, aliphatic, and acceptor-donor, of the protein's surface amino acids at the resolution 

of functional groups. Two vertices ui and uj of a protein graph G are adjacent, that is, an edge 

(ui,uj) E(G) exists between them, if the distance(ui, uj) <15 Å. To generate protein graphs, 

we followed the procedure
24

 introduced by Konc and Janezic with an extension that we 

considered the entire protein surfaces as protein graphs, rather than only protein surface 

patches. 
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Protein Product Graphs 

A pair of protein graphs can be compared by finding a maximum clique in their product 

graph, maximum clique being the superimposition that aligns the most vertices of the 

compared protein graphs (Figure 2). The protein product graph of two protein graphs G1 and 

G2 is defined on the vertex set V(G1, G2) = V(G1) × V(G2).
24

 Each protein product graph 

vertex (ui, vi) is composed of two component vertices: a vertex from the first protein graph (ui 

∈ G1), and a vertex from the second protein graph (vi ∈ G2). In general, a protein product 

graph has x × y vertices if the respective protein graphs have x and y vertices; however, we 

reduce its size by considering only vertices with identical component vertex colors 

(physicochemical properties). Additionally, component vertices must have similar 

neighborhoods in their corresponding protein graphs. The latter is determined as follows: the 

neighborhood of each protein graph vertex is defined as a sphere with diameter of 6 Å. Spatial 

dimensions are discretized into 24 intervals each with the length of 0.25 Å. A distance matrix 

representing discretized distances between all pairs of vertices in the neighborhood is 

calculated. The similarity of neighborhoods of the two component vertices p and r, which 

form a vertex of the protein product graph, is calculated using their corresponding distance 

matrices Mp and Mr as Similarity = ∑1...m,1...n(Mp
ij
 + Mr

ij
) / ∑1...m,1...n|Mp

ij
 – Mr

ij
| where indexes i 

and j run over all m rows and n columns of each matrix (for more details see Ref. 24). The 

neighborhoods are considered similar if Similarity > 1.9.
24 

Finally, two protein product graph 

vertices (ui,vi) and (uj,vj) are adjacent (an edge is inserted between them) if (ui,uj) E(G1) and 

(vi,vj) E(G2) and |distance(ui, uj) – distance(vi, vj)| < 0.5 Å, which means that the distances 

between respective first and second component vertices need to be almost the same in both 

protein graphs.  
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Figure 2. Protein structural comparison using MaxCliquePara maximum clique algorithm. 

Proteins are first converted to protein graphs (top) - for clarity, only a section of each protein 

graph is shown. Vertices are colored according to their physicochemical properties, i.e., 

acceptor (red), donor (green), pi-pi stacking (pink), and aliphatic (yellow). A protein product 

graph is constructed from both protein graphs (center). A maximum clique of four vertices 

connected with red edges indicates the similarity between proteins. Finally, the two compared 

proteins are superimposed (bottom) according to the best alignment of vertices represented by 

the maximum clique. 

Accordingly, we constructed ten benchmark protein product graphs, each from a pair of 

protein structures from the Protein Data Bank (PDB).
25

 The name of each protein product 

graph, e.g., 1allA-3dbjC reflects the PDB and Chain IDs of the compared proteins. To 

measure the effect of protein size, i.e., number of amino acids, on the performance of the 

maximum clique search, we constructed product graphs from proteins with ~50 to ~2000 

amino acids. In addition, we considered protein pairs that share ~10-95 % sequence identity. 

The resulting protein product graphs serve as a sample of typical inputs for the proposed 

algorithm, and we envision their use as standard future tests for newly developed maximum 

clique algorithms. 

 

 Generic Maximum Clique Algorithm  

A generic sequential maximum clique algorithm employing a branch-and-bound approach is 

shown in Figure 3.  
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1. procedure Generic (U, C)  
2. while (U not empty) 
3.   <v, n> = <vertex, number> from U where number is maximal 
4.   U = U \ {<v, n>} 
5.   if (|C| + n > |Cmax|) 

6.    C = C {v} 

7.    U1 = Color (U ∩ (v)) 
8.    if (U1 not empty) 
9.     Generic (U1, C) 
10.    else if (|C| > |Cmax|) 
11.     Cmax = C 
12.    end if 
13.    C = C \ {v} 
14.   end if  
15. end while 

Figure 3. Generic maximum clique algorithm. Backslash in X \ Y is the relative complement 

(also the set difference) between sets X and Y. Input: U, a set of pairs <vertex, number>, 

where vertex is a graph vertex, and number is its degree; empty sets C and Cmax, which will 

hold vertices of the current and maximum clique, respectively. Execution: on each step, a 

vertex with maximum number is taken from U; if bounding condition is true, the vertex is 

added to current clique in C; coloring replaces numbers in U with colors (see below) in U1, 

followed by a recursive call to function Generic; after recursion, if  |C| > |Cmax|, the 

current clique becomes the maximum clique. Output: Cmax holds vertices of the maximum 

clique. 

 

Approximate Graph Coloring Algorithm 

A coloring algorithm assigns colors (or numbers) to vertices of a graph, so that no two 

adjacent vertices have the same colors (or numbers). The number of colors assigned by a 

coloring algorithm is used in the maximum clique algorithm as the bounding condition (see 

section Graph Notation). Although vertex coloring is an NP-complete problem,
1
 fast 

approximate algorithms
26

 exist that solve it based on the “greedy strategy”, with a complexity 

of O(n
2
) with respect to the number of vertices n to be colored. An example of approximate 

coloring of a graph from Figure 1 is shown in Figure 4.  

At the first step of this algorithm, the set of graph vertices Vcopy is empty, therefore Vcopy = 

V. In the next step, vertex a is selected as the vertex with the highest degree from Vcopy; it is 

colored using the first available color, i.e., color no. 1 - red (colors are represented as natural 

numbers), and added to the set of colored vertices U. The neighborhood vertices of vertex a, 

marked with thick edges in the graph and gray color in Vcopy (all vertices), are then removed 

from Vcopy, and vertex a is removed from V. Since Vcopy becomes empty, it is refilled from V, 

and the current color is changed to 2 - green (color number is increased by one). Next, vertex 

b is selected from Vcopy, colored green, and added to the set U. The neighborhood vertices of 

vertex b, marked with gray color in Vcopy (vertices c, d, and e), are removed from Vcopy, and 

vertex b is removed from V. The procedure repeats itself until V is empty, when the graph is 

colored and the algorithm stops. 

The number of colors used to color the graph, i.e., in this example four colors were used, 

presents the upper bound to the size of the maximum clique that can be found in this graph, 

and the maximum clique algorithm uses this value to prune the branches of the search tree.
27
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Figure 4. Approximate coloring algorithm trace. Input: leftmost panel graph (same as in 

Figure 1). Execution: the algorithm proceeds from left to right and in each consecutive panel it 

colors one vertex of a graph. Output: graph colored with 4 colors, and a working set of 

colored vertices U, ordered by their colors (or numbers) (rightmost panel).  

In the MaxCliqueDyn algorithm,
16

 an approximate coloring algorithm was introduced that 

was later adopted by the MCS algorithm
15

 and enhanced by addition of bit-strings in the 

BBMC algorithm.
23

 All three algorithms follow the same realization that color-based vertex 

ordering is only needed above a threshold, which is calculated as kmin = |Cmax| - |C| + 1, where 

|Cmax| is the size of the current maximum clique and |C| is the size of the clique found on the 

current branch of the search tree. Vertices with colors below kmin can remain in their original 

order, as they will never be used in further recursions as a root of a sub-branch. In this way, 

the algorithm keeps most of the vertices in the working set U in a non-increasing degree 

ordering. This results in graphs colored with fewer colors and, consequently, more tightly 

bound to the size of the maximum clique. In comparison to previous coloring algorithms
28

 our 

approximate coloring algorithm
16

 consistently reduces the number of steps needed to find a 

maximum clique and consequently lessens the time required to find a maximum clique. 

 

Initial Vertex Ordering 

Initial order in which vertices are presented to the approximate coloring algorithm 

significantly affects the performance of the maximum clique algorithm.
29

 The coloring is 

tighter, i.e., fewer colors are needed, if the vertices presented to the approximate coloring 

procedure are ordered by non-increasing degree,
16

 so that, if |Γ(u)| ≥ |Γ(v)|, then u is 

placed before v. However, some freedom remains in the ordering of vertices having the same 

degrees. Tomita et al.
15

 described an efficient initial ordering of vertices of the same degree 

with the introduction of ex-degree, defined for a given vertex as the sum of degrees of all its 

adjacent vertices. In preprocessing, ex-degree is calculated, followed by the initial sorting by 

non-increasing degree and non-increasing ex-degree for vertices of equal degrees. After the 

vertices are sorted, they are renumbered, so that the vertex with the highest degree has index 

one, the one with second highest degree has index two, and so on. The adjacency matrix,
30

 

i.e., an n × n matrix for a graph with n vertices in which element aij is non-zero if edge exists 

between vertices i and j, is then reconstructed with the renumbered vertices. The consequence 

of renumbering is a better localization of memory access and therefore more efficient use of 

the cache memory.  Additionally, an adjunct vertex set (set V in Figures 4 and 5) that 

maintains the initial order of vertices throughout the execution of the maximum clique 

algorithm is introduced. 
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Use of Bit-strings 

Recently, Segundo et al. introduced a maximum clique algorithm
23

 that uses the so called 

bit-strings (also called bit-boards) to encode adjacency matrix and adjunct vertex set V. Bit-

strings offer extremely fast set operations such as “union”, “intersection”, and “complement”, 

but are slower than lists in counting the number of elements, or in extracting the elements 

with the lowest or the highest number. These deficiencies however are alleviated by modern 

processors encompassing fast instructions for bit manipulation. In addition, bit-strings are 

more cache-efficient for storing sets than the traditionally used arrays, because they store up to 

eight elements per byte in contrast to arrays that store at most one element per byte. On the 

other hand, the order of elements in a bit-string is predefined and cannot be changed, as in 

adjacency matrix and adjunct vertex set. Ordered sequences of vertices, such as the vertex 

sequence U, the output of coloring algorithm and used for branching, are stored in arrays. 

 

MaxCliqueSeq Maximum Clique Algorithm 

We develop a new maximum clique algorithm, MaxCliqueSeq (Figure 5), by combining the 

existing algorithmic building blocks. The algorithm is composed of approximate coloring 

algorithm,
16

 initial vertex ordering algorithm,
15

 and uses bit-strings
23

 to encode the adjunct set 

V and the adjacency matrix; adjacency matrix is not shown in Figure 5, since it is used 

internally in function  to determine the neighborhood of a vertex. These algorithms and 

concepts were described in the previous sections. This combination of existing algorithms,
15, 

16, 23
 building blocks of different maximum clique algorithms, has proven the fastest on most 

DIMACS and protein product graphs out of different combinations tested. For example, an 

experimental algorithm that used a more advanced coloring algorithm,
15

 performed worse in 

our test.  

In the implementation, we avoid copying of variables by value; we also keep the code 

compliant with cache. Consequently, C, Cmax , and the adjacency matrix, are global variables. 

Instead of performing the complement of the neighborhood (v) at each step in the coloring 

function (see line 47 in Figure 5), a complemented copy of the adjacency matrix is prepared in 

the preprocessing step. The coloring function then uses the complemented adjacency matrix 

instead of the original adjacency matrix, decreasing the number of operations required. The 

source code, written in C++ standard 2011, can be compiled with GCC 4.6 and should be 

portable to any other modern compiler, since it employs only standard C++ functions and the 

standard template library. 

The trace of this algorithm on an example graph from Figure 1 is shown in Figure 6. The 

algorithm traverses the search tree from left to right, following the numbered arrows. It starts 

by adding vertex a to the current clique C (step 1). Since vertex b is connected with vertex a, 

the clique C is then extended by vertex b (step 2); at the same time, vertex f, which is not 

connected to vertex b, is removed from U, and can never be considered again within this 

branch (steps 3 to 5). 
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1. procedure MaximumCliqueSeq 
2.  Cmax = {}   // global variable 
3.  C = {} 
4.  U = Order (V) 
5. renumber vertices in U, V and adjacency matrix 
6.  Expand (V, U, C) 
7.   renumber vertices in C back to their original numbering 
8.  
9. procedure Expand (V, U, C) 
10.   while (|U| > 0) 
11.    <v, n> = first element of U 
12.    V = V \ {v} 
13.    if (|C| + n > |Cmax|) 

14.     if (|V ∩ (v)| > 0) 

15.      Expand (V ∩ (v), Color (V, |Cmax| - |C|), C {v}) 
16.     else if (|C| ≥ |Cmax|) 

17.      Cmax = C {v} 
18.     end if 

19.    end if 
20.   end while 
21.  
22. function Order (V) 
23.  R = V 
24.   U = {} 
25.    // define Rmin as a subset of vertices with minimum degree in R 
26.   while (|Rmin| ≠ |R|) 
27.   select p as a vertex with minimal ex-degree in Rmin 
28.   R = R \ {p} 

29.    U[|R|].vertex = p  

30.   degree (q) = degree (q) – 1, where (q ∈ R) & (q ∈ (p)) 
31.  end while 
32.  N = Color (Rmin, 0) 
33.  U[0..|N|-1] = N  

34.  Dmax = maximum degree (v), where v ∈ V 
35.  for (i = |N| to |U|-1) 
36.    U[i].number = min (U[i-1]+1, Dmax+1) 
37.  end for 
38.  
39. function Color (V, kMin) 
40.  U = {} 
41.  k = 1 
42.  while (|V| > 0) 
43.   Vcopy = V 
44.   while (|Vcopy| > 0) 
45.    v = first element of Vcopy 
46.    V = V \ {v} 

47.    Vcopy = Vcopy \ (v)   

48.    if (k > kmin) 
49.     add pair <v, k> to U 
50.    end if 
51.   end while 

52.   k = k + 1 
53.  end while 
54.  return U 

Figure 5. The MaxCliqueSeq algorithm. Overscore in X  is complement of a set X and 

backslash in X \ Y is the relative complement (also the set difference) between sets X and Y. 

Input: V, a set of graph vertices; U, an ordered sequence of pairs <vertex, number>; 

adjacency matrix; C and Cmax, current and maximum clique, respectively (empty at start). 

Output: Cmax holds vertices of the maximum clique. 
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Figure 6. MaxCliqueSeq maximum clique algorithm trace. In each step, first vertex is 

removed from the working set U (blue arrow  in oval), and added to the current clique C 

(blue vertex in oval); vertices not connected to the first vertex are removed from U (blue cross 

 in oval). Each oval is one step of the algorithm and recursive calls are arrows numbered 1−9 

to indicate their sequence. Branches, not executed due to bounding condition |U| + |C| ≤ 
Cmax are in the reddened area enclosed by a dashed line. Vertex coloring is omitted for clarity; 

|U| is used in the bounding condition instead of the number of colors. In step 4, a maximum 

clique Cmax={a,b,c,d} is found. 

 

MaxCliquePara Maximum Clique Algorithm 

Here, we introduce the new parallel maximum clique algorithm, MaxCliquePara, based on 

the MaxCliqueSeq algorithm outlined in the previous section. A flowchart of the 

MaxCliquePara algorithm is shown in Figure 7. The algorithm employs the multi-threading 

techniques, which are supported in most programming languages without extra libraries or 

other sort of software support. This makes the algorithm portable to other languages and 

operating systems. It can run on most modern multi-core computer architectures. The parallel 

algorithm behaves identically to the MaxCliqueSeq algorithm when executed on a single core, 

but takes slightly longer to execute, due to the added thread management code. However, 

when executed on multiple cores it easily compensates this overhead if the maximum clique 

problem to be solved is not trivial, e.g., high density graphs.  
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Figure 7. Flowchart of the MaxCliquePara parallel maximum clique algorithm, consisting of 

main algorithm (top) and parallel thread execution (bottom). 

 

Main Algorithm 

The main algorithm (see Main algorithm in Figure 7) starts with a preprocessing step 

consisting of the initial ordering and renumbering of vertices. This step is not parallelized, 

since its execution time, in comparison to the total time needed to find a maximum clique, is 

significant only on small and easily solvable graphs. These graphs are not the target graphs of 

our algorithm and can be often searched more efficiently by a sequential algorithm. 

The next step, which also executes sequentially, is the preparation of the first job. This step 

generates a data structure comprised of an empty current clique C and maximum clique Cmax, 

a color-numbered working set of vertices U, and an adjunct set of vertices V.  

The algorithm proceeds with the creation of p worker threads, the number of which can be 

set at runtime. Setting p to the number of cores has proven as the most efficient in our tests. 

Worker threads are created and started in a sequence, each thread on its own core. At creation, 

threads may also be assigned affinity to be associated with a single core throughout their 

lifetime. The alternative is to leave the thread management completely to the operating 

system, which may rotate their host cores, causing a lower cache hit rate. Our preliminary 

tests, however, failed to reveal any significant difference between run times of the algorithm 

with or without affinity settings. 

The final step of the main algorithm is to wait for all the threads to terminate and to free 

their resources. The maximum clique found is stored in the shared variable Cmax, and is 

renumbered back to the original numbering, before being returned to the user. 

 

Parallel Thread Execution 

Each newly created thread (see Threads in Figure 7) enters a loop, and first checks for 

available jobs. If no jobs are available, all the work has already been assigned, thus thread 

terminates. If a job is available, the thread acquires it and attempts to split it into two jobs: if 

the number of vertices in the job’s working set U is above the user–defined threshold, the first 

vertex is removed from U and the modified working set is used to create a new job. The 

threshold size of U for splitting the job, |U| >= 5, was determined with preliminary tests, as 

splitting jobs with |U| < 5 slowed down the execution. The new job can then be acquired by 



 

12 

a new thread, when a core becomes available. The thread then proceeds with a search on the 

modified working set with the removed vertex added to its current queue. If the job cannot be 

split as defined then the thread processes the whole job and the next thread in line will find no 

available jobs. 

The final and most time demanding activity is the job solution, i.e., searching for the 

maximum clique in the working set of vertices U of the acquired job. This is done in function 

Expand (Figure 5), whose working set of vertices U is defined by the current job rather than 

being the result of preprocessing as in the sequential algorithm. 

Communication between threads is achieved through use of shared variables, e.g., Cmax, 

which are protected from multiple concurrent modifications and accesses with mutual 

exclusion or mutex (see Figure 7).
31

 Since the use of mutexes exacts an overhead, their 

number is kept to a minimum. Shared variables, e.g., integers, which can be read and 

modified, using atomic operations, are allowed for unprotected access without use of mutexes. 

For example, the global variable Cmax is write-protected by a mutex, whereas |Cmax|, which 

is an integer, is not. The Cmax could be a thread-private variable and only synchronized upon 

completion, which could result in faster execution. However, our preliminary tests showed 

that such an optimization of the storage and protection policy of Cmax would have almost no 

effect on the execution time and would also complicate the program. 

Threads explore multiple disjunct branches of the search tree, each branch rooted in a 

different starting vertex as shown in Figure 8 on an example graph from Figure 1. Thread 1 

explores a branch that has vertex a as a root and all other vertices as candidates. Thread 2 

explores another branch, obtained by first job splitting, and has vertex b as a root and all other 

vertices, except vertex a, as candidates. The number of candidate vertices in the working set 

U decreases with each additional thread, and the average execution time decreases 

accordingly, thus the complex, most time-consuming branches, are searched first. When the 

threads exploring complex branches finish their work, the only remaining threads are those 

that explore simple branches, which allows for low idle time and good load-balancing. 

In contrast to the sequential algorithm (Figure 6), the parallel algorithm explores two 

branches at the same time (Figure 8). This decreases number of steps, i.e., 7 as opposed to 9 in 

the sequential algorithm, and results in faster execution time (speedup) of the MaxCliquePara 

algorithm. However, a branch can remain unpruned (see blue shaded oval in Figure 8) in 

parallel algorithm, whereas the same branch is pruned in the sequential algorithm (Figure 6). 

This branch is not pruned, because at the time Thread 2 starts traversing this branch, Thread 1 

did not find the maximum clique with four vertices yet (as is the case in the sequential 

algorithm), and thus Thread 2 only has the maximum clique with three vertices in the 

bounding condition. Therefore, the blue shaded branch searched by Thread 2 is not pruned in 

the parallel algorithm, which makes Thread 2 to traverse one more branch compared to the 

sequential algorithm trace. This inefficiency of the parallel algorithm is compensated by the 

concurrent execution of three threads compared to a single thread in the sequential algorithm. 

The inverse example could be envisioned, in which a maximum clique found by one thread 

would help prune branches of another thread, thus acting advantageously on the pruning 

process in the parallel algorithm. Judging from the super-linear speedups achieved on general 

and protein graphs (see Results), this is often the case. 
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Figure 8. Parallel MaxCliquePara algorithm trace executed as two threads (Thread 1 and 

Thread 2). Each thread execution is the same as described in Figure 6 except that in Thread 2, 

a new step 5 (blue shaded oval) represents branch that was pruned by MaxCliqueSeq, but not 

by MaxCliquePara. In step 5 of Thread 1 a maximum clique Cmax= {a,b,c,d} is found.  

Results 

We evaluated the performance of the MaxCliquePara algorithm in terms of execution times 

and speedups on DIMACS graphs, used in standard benchmarking of maximum clique 

algorithms, and on typical protein product benchmark graphs to determine the algorithm’s 

performance on general and protein graphs. Our algorithm was compared with 

MaxCliqueDyn
16

 and BBMC
23

 algorithms, which are currently the fastest maximum clique 

algorithms available, and Bron-Kerbosch,
32

 which is among the most widely used maximal 

clique algorithms. All experiments were repeated 15 times with negligible standard deviations 

in execution times, therefore average results are shown. The test computer with a dual CPU 

2.30 GHz Intel Xeon E5-2630, each with six physical cores, running server version of Ubuntu 

12.04 was used. 

 

General DIMACS Graphs 

Results on a single core show that on most general DIMACS graphs, MaxCliqueSeq is 

faster than the BBMC and MaxCliqueDyn algorithms, whereas the Bron-Kerbosch algorithm 

is always the slowest (Table 1). 
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Table 1. Execution times for DIMACS graphs
a
 on a single core using three exact maximum 

clique algorithms, with results given as a mean of 15 trials ± standard deviation 

 Execution time
b
 [s] 

Graph name MaxCliquePara MaxCliqueDyn BBMC
c
  Bron-Kerbosch 

 hamming8-2 0.000865 ± 8.5e-05  0.00375 ± 4.8e-05  0.00135 ± 7.9e-05 (N/A)  > 2h 

 brock200 2  0.00391 ± 0.00072  0.00735 ± 0.00012  0.00369 ± 0.00021 (<0.001)  0.18 ± 0.0052 

 keller4  0.00868 ± 0.00073  0.014 ± 0.00023  0.0111 ± 0.00063 (<0.001)  1.25 ± 0.0038 

 san400 0.5 1  0.00966 ± 0.00053  0.00732 ± 7.4e-05  0.0103 ± 5e-05 (0.016)  2990 ± 3.5 

 p hat300-2  0.00985 ± 5.9e-05 

 

 

 0.0212 ± 0.00021  0.0112 ± 0.00019 (<0.001)  24 ± 0.048 

 p hat500-1  0.0129 ± 6.7e-05  0.0181 ± 0.00027  0.0122 ± 2.4e-05 (<0.001)  0.228 ± 0.0006 

 brock200 3  0.0139 ± 0.0014  0.0294 ± 0.00029  0.0151 ± 0.00082 (<0.001)  1.93 ± 0.039 

 hamming10-2  0.0165 ± 7.8e-05  4.54 ± 0.0078  0.0444 ± 6.9e-05 (0.063)  > 2h 

 san200 0.9 2  0.0268 ± 0.00025  0.371 ± 0.0015  0.134 ± 0.0016 (0.062)  > 2h 

 san200 0.9 3  0.0299 ± 0.0025  1.89 ± 0.013  1.82 ± 0.031 (0.015)  > 2h 

 C125.9  0.0316 ± 0.0018  0.06 ± 0.0038  0.0413 ± 0.00065 (0.016)  1690 ± 1.7 

 p hat700-1  0.045 ± 0.0038  0.0677 ± 0.0039  0.0451 ± 0.0025 (0.047)  1.08 ± 0.0045 

 hamming8-4  0.0465 ± 0.0045  0.0367 ± 0.00021  0.0468 ± 0.0027 (0.015)  11.3 ± 0.032 

 brock200 4  0.048 ± 0.0004  0.0961 ± 0.0013  0.0526 ± 0.0007 (0.063)  7.91 ± 0.031 

 san400 0.7 2  0.0661 ± 0.00038  0.0944 ± 0.00029  0.297 ± 0.0014 (0.063)  > 2h 

 johnson16-2-4  0.094 ± 0.0082  0.225 ± 0.0029  0.104 ± 0.0068 (0.062)  1.18 ± 0.01 

 sanr200 0.7  0.118 ± 0.0094  0.218 ± 0.0027  0.154 ± 0.0048 (0.125)  27.1 ± 0.077 

 san400 0.9 1  0.122 ± 0.0012  21 ± 0.047  4.47 ± 0.014 (0.031)  > 2h 

 san200 0.9 1  0.145 ± 0.012  0.0547 ± 0.00023  0.175 ± 0.0074 (0.094)  > 2h 

 gen200 p0.9 44  0.25 ± 0.0078  0.956 ± 0.0037  0.596 ± 0.0056 (0.187)  > 2h 

 p hat1000-1  0.263 ± 0.0044  0.35 ± 0.0038  0.301 ± 0.00067 (0.421)  5.57 ± 0.022 

 MANN a27  0.265 ± 0.0064  1.99 ± 0.025  0.316 ± 0.004 (0.187)  > 2h 

 sanr400 0.5  0.285 ± 0.0064  0.526 ± 0.0047  0.311 ± 0.019 (0.327)  12.6 ± 0.037 

 brock200 1  0.287 ± 0.0086  0.538 ± 0.0062  0.389 ± 0.0054 (0.312)  167 ±  0.45 

 p hat500-2  0.303 ± 0.0068  0.852 ± 0.0051  0.487 ± 0.0018 (0.39)  > 2h 

 san400 0.7 1  0.362 ± 0.0072  0.217 ± 0.00069  0.438 ± 0.0014 (0.125)  > 2h 

 gen200 p0.9 55  0.47 ± 0.01  0.469 ± 0.0015  0.543 ± 0.011 (0.437)  > 2h 

 san400 0.7 3  0.564 ± 0.0025  1.43 ± 0.0063  1.5 ± 0.0097 (0.437)  > 2h 

 p hat300-3  0.993 ± 0.0091  2.51 ± 0.013  1.66 ± 0.012 (1.31)  > 2h 

 san1000  1.7 ± 0.0095  0.284 ± 0.0019  1.75 ± 0.009 (0.375)  > 2h 

 p hat1500-1  2.38 ± 0.0093  2.93 ± 0.017  2.92 ± 0.0029 (3.92)  > 2h 

 p hat700-2  2.38 ± 0.0081  7.06 ± 0.02  3.68 ± 0.0024 (3.79)  > 2h 

 sanr200 0.9  13.6 ± 0.077  25.5 ± 0.065  30.2 ± 0.35 (13.9)  > 2h 

 p hat500-3  55.7 ± 0.22  183 ± 0.6  105 ± 0.57 (76.1)  > 2h 

 sanr400 0.7  70.2 ± 0.29  99.4 ± 0.25  94.4 ± 0.47 (102)  > 2h 

 brock400 4  94.6 ± 0.25  154 ± 0.81  145 ± 0.6 (143)  > 2h 

 p hat1000-2  116 ± 0.67  230 ± 1.3  200 ± 0.86 (193)  > 2h 

 brock400 2  117 ± 0.77  171 ± 1  161 ± 0.87 (140)  > 2h 

 MANN a45  119 ± 1.1  1395 ± 19  156 ± 0.28 (42.4)  > 2h 

 brock400 3  196 ± 4.5  348 ± 2.9  332 ± 2 (240)  > 2h 

 brock400 1  279 ± 6.5  368 ± 2.4  377 ± 0.81 (348)  > 2h 

 p hat700-3  1118 ± 2  3208 ± 40  2080 ± 14 (1640)  > 2h 

 C250.9  1299 ± 14  1802 ± 21  2256 ± 33 (1290)  > 2h 
a 
Statistics of the DIMACS graphs are given in Supporting Information in Table ST1. 

b 
Graphs are sorted by increasing execution times; fastest execution time in each row is in bold. 

c 
Execution times achieved by our implementation of the BBMC algorithm and times reported by 

Segundo et al.
18

 (in parentheses) are given. Latter times cannot be compared with our results due to 
no reproducibility. See Supporting Information. 
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Figure 9. Speedup of the parallel MaxCliquePara algorithm on DIMACS graphs. Graphs are 

sorted by increasing execution times on a single core. Exact values for speedups are given in 

Supporting Information in Table ST2. 
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Speedups of the MaxCliquePara algorithm on multiple cores are shown in Figure 9. 

Speedups differ greatly between the different DIMACS graphs and there are several super-

linear
b
 speedups, which occur mostly in large and dense instances of san and brock graph 

families (Figure 9). There were 8 super-linear speedups out of 43 graphs tested when 

executing on two cores (see Table ST2). Super-linear speedup occurred, for example, in 

san200 0.9 1 graph, where a speedup of ~80 was achieved on 4 cores. In this graph, the 

parallel algorithm was clearly able to prune away significantly more branches of the search 

tree, due to sharing the bounding condition between the threads, than its sequential 

counterpart. 

In two graphs, hamming 8-2 and hamming 10-2, the parallel speedups were <1 for all 

numbers of cores and decreased with increasing number of cores (Figure 9). There were also 

less extreme cases where speedup increased almost linearly up to certain number of cores but 

stagnated or even decreases at higher numbers of cores, e.g., in MANN a25 and MANN a45 

graphs in which speedup increased to ≈ 4 on up to four cores, then stagnated, and fell to ≈ 3 at 

24 cores. This undesired effect may be related to a very high density and very large maximum 

cliques of these graphs (see Table ST1), causing the parallel algorithm to prune less branches 

than the sequential algorithm.  

In the majority of graphs, however, speedup increases with the number of cores. In Figure 9, 

a general trend in speedup depending on the execution time of the sequential algorithm can be 

seen. Speedups are higher for graphs that are harder to solve, i.e., in which the sequential 

algorithm needs more time to find the maximum clique. For example, in the hamming 8-2 

graph that is solved very quickly, the parallelization overhead consisting of sequential 

preprocessing, are the main causes for a slowdown. Conversely, in harder graphs, such as 

p hat500-3, speedup increases almost linearly with each additional core. In such graphs, even 

the 12 additional virtual cores provided by hyperthreading increase the speedup, although less 

than the physical cores (experiments on up to 12 cores use all physical cores while the 

experiments on 24 cores use 12 physical and 12 virtual cores). These results clearly indicate 

that MaxCliquePara algorithm is significantly faster than two comparable algorithms on most 

DIMACS graphs, and that on some graphs it achieves speedups of up to two orders on 

multiple cores. 

 

Protein Product Graphs 

Results on a single core show that MaxCliquePara algorithm outperforms the other three 

tested algorithms on most protein product graphs (Table 2). The difference in execution times 

is especially large in favor of our algorithm on 2w00B-3h1tA and 3hrzA-2hr0A graphs, where 

MaxCliquePara’s is almost 80 times faster than BBMC algorithm. The Bron-Kerbosch 

algorithm performs better on protein product graphs than on DIMACS graphs. It is the fastest 

on two graphs; however, it is orders of magnitude slower than the three maximum clique 

algorithms on all other graphs. 

                                                 

b
 Super-linear speedup is the speedup greater than k, on k cores. It can be achieved if one or 

more caches are integrated with individual cores, increasing total cache size available to the 

algorithm, allowing faster execution on the account of faster memory access. Super-linear 

speedup can also be achieved if the parallel algorithm traverses the search space using a more 

efficient trajectory than its corresponding sequential algorithm. 
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Table 2. Execution times on protein product graphs on a single core using four exact 

maximum clique algorithms, with results given as a mean of 15 trials ± standard deviation 

  Number 
of amino 
acids  n

a
  p

b
 

Clique 
size 

Execution time [s] 

Graph name MaxCliqueSeq MaxCliqueDyn BBMC Bron-Kerbosch 

3zy0D-3zy1A <50 61 0,98 52  0.000205 ± 0.000064  0.000244 ± 0.000066  0.000217 ± 0.00009  > 2h 

3p0kA-3gwlB 200-300 138 0,94 89  0.000896 ± 0.000071  0.00171 ± 0.00009  0.000996 ± 0.00038  > 2h 

2uv8I-2j6iA >2000 200 0,86 69  0.00327 ± 0.00019  0.00866 ± 0.000075  0.00441 ± 0.00033  > 2h 

1f82A-1zb7A 500-1000 271 0,99 247  0.0104 ± 0.00097  0.0401 ± 0.00017  0.0127 ± 0.00093  3330 ± 6.7 

2w4jA-2a2aD 300-400 563 0,98 447  0.0693 ± 0.00073  0.38 ± 0.0012  0.0809 ± 0.0018  0.0353 ± 0.0011 

1kzkA-3kt2A 50-100 451 0,97 346  0.0695 ± 0.0062  0.193 ± 0.0038  0.0616 ± 0.0054  5470 ± 18 

2w00B-3h1tA 1000-1500 346 0,91 143  0.0894 ± 0.00013  0.465 ± 0.0085  6.38 ± 0.095  0.368 ± 0.0068 

1allA-3dbjC 100-200 655 0,97 500  0.113 ± 0.0053  0.606 ± 0.0088  0.669 ± 0.0086  0.000372 ± 0.000016 

2fdvC-1po5A 400-500 750 0,96 556  0.259 ± 0.002  0.938 ± 0.0017  0.378 ± 0.00095  > 2h 

3hrzA-2hr0A 1500-2000 905 0,94 563  5.66 ± 0.072  4.43 ± 0.011  444 ± 1.8  > 2h 

a n is number of vertices in a graph. 

b p is graph density. 

c Fastest execution time in each row is in bold. 

 
 

The results on multiple cores show favorable speedups achieved by the MaxCliquePara 

algorithm (Figure 10). Speedups reached their peaks at 5 to 8 threads, but additional threads 

decreased speedups. For example, in graphs 2w00B-3h1tA and 3hrzA-2hr0A, MaxCliquePara 

achieved high speedups of 14 and 43 when using 6 and 7 threads, respectively. In both cases 

speedup decreased when additional threads were added. Speedups were higher on larger 

protein product graphs, suggesting that our algorithm is most suitable for comparison of larger 

protein structures composed of several hundreds of amino acids. These results indicate that 

MaxCliquePara algorithm is very suitable for use in protein structural comparisons.
2
 

 

Figure 10. Speedup of the MaxCliquePara algorithm on protein product graphs on multiple 

cores. Graphs are sorted by the increasing execution time on a single core (left to right, top to 

bottom). Exact values for speedups are given in Supporting Information in Table ST3.  
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Conclusion 

The newly developed exact parallel maximum clique algorithm MaxCliquePara is 

presented. It demonstrates an efficient solution of maximum clique problems and outperforms 

most widely used sequential algorithms on general DIMACS and protein-derived benchmark 

graphs on a single and on multiple cores. The performed experiments show significant 

speedups of the MaxCliquePara algorithm for lower numbers of parallel cores on most tested 

graphs. With up to the maximum 12 available physical cores, and even with the additional 12 

hyperthreading-enabled cores (a total of 24 cores), the speedup scales great on larger and more 

computationally demanding graphs. An important advantage of MaxCliquePara is its use of 

the shared memory parallelism, which enables small overhead, and thus fast execution on 

wide range of graph sizes. Super-linear speedups are observed, consistent with expectations 

for an algorithm that traverses a tree of possible solutions. For graphs that are “easy” for the 

sequential maximum clique algorithm, i.e., with the execution time in order of milliseconds, 

the parallelism brings no significant benefits. The speedups are, however, almost always 

greater than one, therefore, the MaxCliquePara algorithm can currently be taken as one of the 

fastest general maximum clique algorithms for almost all but the most trivial graphs.   
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