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Abstract 

The ProBiS algorithm performs a local structural comparison of the query protein surface 

against the non-redundant database of protein structures. It finds proteins that have binding 

sites in common with the query protein. Here, we present a new parallelized algorithm, Parallel-

ProBiS, for detecting similar binding sites on clusters of computers. The obtained speedups of 

the parallel ProBiS scale almost ideally with the number of computing cores up to about 64 

computing cores. Scaling is better for larger than for smaller query proteins. For a protein with 

almost 600 amino acids, the maximum speedup of 180 was achieved on two interconnected 

clusters with 248 computing cores. Source code of Parallel-ProBiS is available for download 

free for academic users at http://probis.cmm.ki.si/download. 

 

Introduction 

The exponential increase in computer power has made searches in protein structural databases 

of thousands of protein structures routine. A variety of techniques exist for protein similarity 

searching, ranging in computational complexity from global structural superposition methods[1] 

to more complex substructure or fingerprint searches.[2-5] The ProBiS algorithm of Konc and 

Janežič[6] belongs to the latter class of algorithms and detects pairwise local similarities in 

proteins by computing the similarity of protein graphs, which are representations of specific 

proteins. It runs in the ProBiS web server[7] at http://probis.cmm.ki.si and the parallel version 

was used to create the ProBiS-Database,[8] a repository of over 420 million precalculated 

binding site similarities and local pairwise alignments of PDB structures at 

http://probis.cmm.ki.si/database. Despite the complexity of comparing entire protein structures, 

ProBiS has demonstrated its ability to find intricate similar three-dimensional patterns in sites 

involved in binding of small molecules, ions, proteins, or nucleic acids;[6] its compelling 

advantages are speed and the ever-increasing availability of appropriate protein structures. 

 

While ProBiS is one of the fastest and most advanced local similarity search techniques in 

general usage, emerging problems in structural bioinformatics,[9,10] drug repositioning,[11,12] and 

prediction of protein function[13,14] require dramatically faster methods for calculating structural 

similarities. The currently available PDB database holds more than 180 thousand single chain 

protein structures and is currently being used for a variety of bioinformatics analyses. 

Exhaustive structural similarity searches on a database containing hundreds of thousands of 

structures present a challenge to commonly used structural alignment algorithms.[1,5] Even more 

time consuming are exhaustive database searches such as those in ProBiS, which represents 

http://probis.cmm.ki.si/download
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proteins at the level of functional groups and seeks similar three-dimensional binding site 

patterns. Since there are more than one hundred thousand protein single chains in the PDB, all-

against-all comparisons of protein structures which can easily require billions of comparisons, 

can also present a challenge to conventional algorithms.  

 

The need for parallelization arises from this rapid growth of the PDB. On the other hand, 

contemporary computers typically have multiple computing units (cores),[15] however, with naive 

programming approaches a single program will only exploit a single computing core. While a 

single comparison of two proteins can be done in linear time, procedures such as all-against-all 

comparison of PDB database require computing times which are the square of the database 

size. Consequently, as the size of PDB database increases,[5] faster similarity methods are 

required to handle the increasing computational load. 

 

The Message Passing Interface (MPI) standard for communication in parallel computing offers a 

solution to this problem.[16] The CPUs of modern computers have multiple cores that are 

separately programmable and can, when used proficiently, offer significant increases in 

computation speed over single CPUs,[17] and Ethernet connections enable fast connectivity 

between separate computers. Parallelization has been applied effectively to related problems in 

computational chemistry, including molecular dynamics[18] and 3D similarity comparisons of 

small molecules.[19] 

 

In this paper we present a parallelized version of ProBiS. This is a new algorithm that calculates 

the local similarity metric between protein structures, and is especially suited to efficient 

execution on multiple CPUs and on computers of varying power interconnected in a network, 

which are available in contemporary computing platforms or computing clouds.[18] When 

calculating local structural similarities in a database of over 29,000 protein structures, this 

parallel version of the ProBiS algorithm is 180 times faster on a cluster of 49 computer nodes 

than the existing ProBiS algorithm implemented with script-based concurrent runs.  We explain 

the ProBiS algorithm, provide a description of our new Parallel-ProBiS algorithm, and present 

performance benchmarks and comparison of the two algorithms. The code is freely available for 

academic users at http://probis.cmm.ki.si/download.  
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Methods 

Benchmark Database of PDB Protein Structures 

The non-redundant PDB database used in this article was built by clustering 181,882 protein 

single chains in the PDB with >95% sequence identical structures.[5,6] A representative of each 

cluster is chosen and surface residues of the selected representative proteins are identified and 

converted to protein graph representations, which are saved into 29,266 ‘surface files’ which 

enable fast pairwise comparisons by ProBiS. 

 

Overview of the ProBiS Algorithm 

ProBiS performs a local structural comparison of the query protein surface against the non-

redundant PDB database.[6] It finds proteins that have binding sites in common with the query 

protein. Similar binding sites can be found even in proteins of different folds. It also detects 

structurally conserved regions on the query protein structure, and provides structural 

superimpositions of the query protein and the similar proteins. The algorithm exploits the fact 

that binding sites share similar patterns of interactions in proteins which perform similar 

functions. 

 

ProBiS first defines the solvent accessible surface by rolling a probe, an atom of 1.4 Å radius 

over the protein atoms represented as van der Waals spheres. Residues that are up to 4 Å 

below this surface are considered for comparison. The surface is represented as a protein 

graph, i.e., structure of vertices and edges.[2,6] This representation, which is on the level of 

functional groups, considers both geometrical and physicochemical properties of the surface. 

Possible interactions of a protein with ligands are thus taken into account. A structural similarity 

search algorithm, which employs a fast maximum clique algorithm[20] and operates 

independently of fold and sequence, performs a local, surface-oriented comparison of the 

proteins represented as graphs. All possible similar regions between two compared proteins are 

identified. Each maximum clique, i.e., its rotational–translational variation, represents a rigid, 

local similarity, which is then used to locally superimpose the two compared protein structures. 

Finally, the two superimposed structures are subject to local alignment of their backbones, to 

find similarities that were missed using maximum clique approach. This final alignment finds 

similar sites that adopt different conformations in the two compared proteins. Degrees of 

structural conservation are calculated for all amino acid residues of the query protein and reveal 

the extent to which a particular residue appears in the local structural alignments that were 

found within the protein database. 



 

Parallel-ProBiS Implementation 

Parallelization of the time consuming protein comparison process should be accomplished in 

such a way that it is equally efficient on single or multicore computing systems, and on 

homogeneous or heterogeneous computing clusters or in computing clouds. This implies that 

the parallelization methodology must incorporate automatic balancing of computation. The 

pairwise comparisons by ProBiS are computationally intensive and repetitive and each 

comparison is independent, and thus the algorithm is appropriate for parallelization. 

Parallelization on the level of a single computing node can be implemented using batch 

scripts[6,7] but such an approach is not effective on parallel and distributed computing platforms 

with a lot of interconnected computing nodes. Because the ProBiS comparison implies a high 

ratio between the computation time and communication time, it can be better parallelized on a 

task level with an approach known as multi-experimental.[17]  

 

A parallel platform can be represented as a set of slave nodes with a single master node and in 

this context, the experiments are individual pairwise comparisons, i.e., processes that run on 

slave nodes. Bookkeeping is implemented as a separate process that runs on the master node. 

Usually, the master bookkeeping process is much simpler than the comparison processes and 

the master node can run concurrently with the slave processes. 

 

The program that activates the ProBiS algorithm is the same for all computing slave nodes and 

has two parts, first for the supervising master process with a process ID of 0, and second for the 

remaining slave processes. The program is presented as a flowchart in Figure 1. The 

communication between parallel processes is implemented using a standard MPI library,[17] and 

consists of the master node sending protein names to slave nodes that will return comparison 

results to the master node. Communications are short and infrequent: for every pairwise protein 

comparison, only a few bytes long message with the protein name that is to be compared with 

the query, and a few kilobytes long return message with the results of the pairwise comparison, 

are sent. In addition, queues of protein names on the slave nodes serve as buffers, providing 

slave nodes with work, while the master node is busy. The computation of each pairwise protein 

comparison takes between hundreds of milliseconds and a few seconds to complete, and thus 

the time lost on communication between processes is several orders of magnitude shorter than 

the computation time. Consequently, restrictions posed by the communication channel 



bandwidth and message latency are very low. We experienced that the standard 100 Mb/s 

Ethernet suffices to connect several hundreds of slaves with the master node. 

 

Since the MPI is available in a standard form for most of the existing platforms,[21] our approach 

is highly portable. The parallel code can also run on heterogeneous systems, with different 

hardware architecture and different operating systems. Because of the asynchronous design of 

the proposed solution, the communication requirements are minimal and the computational load 

is automatically balanced, supporting our expectations that the speedup of the proposed parallel 

program will be close to ideal. 

 

Benchmarking Methodology 

We measured the speedup of the proposed parallelization on a number of benchmarking 

problems based on the calculation of similarity of a query protein against all the proteins in a 

non-redundant benchmark PDB database - a common task in many structural alignment 

applications. We have selected a small set of query proteins, 1phr.A (177 amino acids), 1acb.E 

(245 a.a.), 1iov.A (306 a.a.), 1uzf.A (589 a.a.), to measure the impact of protein size on the 

performance of the Parallel-ProBiS algorithm. 

 

The benchmark tests were performed on the cluster at the National Institute of Chemistry (NIC) 

in Ljubljana, Slovenia. This cluster is composed of 18 state-of-the-art computing nodes, from 

which, as many as 14, each with two quad-core Intel Xeon 5520 2.26 GHz processors, were 

available for the test. All nodes ran under Ubuntu 10.04 LTS operating system. Further tests 

were run on a heterogeneous system obtained by connecting to an additional cluster at the 

Jozef Stefan Institute (IJS) in Ljubljana, Slovenia, composed of 37 computing nodes, each with 

a single quad-core Intel Xeon 5520 2.26 GHz processor. These nodes ran under the Ubuntu 

11.04 operating system. The topology of the NIC and IJS clusters is shown in Figure 2. One of 

the nodes in each cluster acts as a gateway to the Internet. The nodes of both clusters are 

interconnected with Gigabit Ethernet links, however both gateway nodes can communicate with 

a maximum bandwidth of 100 Mb/s. The MPI library requires that all computing nodes belong to 

the same network address space, therefore a Virtual Private Network (VPN) was established for 

the tests involving both IJS and NIC clusters. The VPN server resided on the gateway computer 

of the IJS cluster. Computers of the IJS cluster were connected to it directly, whereas 

computers of the NIC cluster communicate via the NIC gateway node. The Mpich2 1.2.1 library 

was used as an implementation of the MPI standard[21] on both clusters.  



 

We first ran the ProBiS algorithm on single cores to find out the shortest sequential execution 

time T1 of the non-parallel version of the algorithm. Then we ran the Parallel-ProBiS algorithm 

on 1, 2, 4, 8, and 14 nodes of the NIC cluster. These were in two configurations -  

hyperthreading was either active or inactive, which resulted in 16 or 8 processes per node, and 

the total number of processes p = {16, 32, 64, 128, 224} or p = {8, 16, 32, 64, 112}, respectively. 

Finally, we ran the performance tests on the heterogeneous system of 13 NIC cluster nodes 

with 8 and 16 processes per node, and 36 IJS cluster nodes with 4 and 8 processes per node, 

for the total of p = 298 and p = 496, respectively. We measured the execution time of the 

Parallel-ProBiS Tp and calculated the speedup[17] as S = T1/Tp. The maximum theoretic 

speedup, also termed the ideal speedup, equals p. All tests were run ten times to show the 

statistical properties of the measured results.  

 

Results 

To assess the performance of the Parallel-ProBiS algorithm, we carried out a series of database 

searches with different query proteins. The performance on a single node, a cluster of nodes, 

and two clusters located at two institutions and connected through the Internet, was evaluated. 

Each measurement was repeated ten times and the speedup of the parallel versus the non-

parallel ProBiS algorithm was calculated. Details are in Tables SI1 and SI2 in the 

Supplementary Information. 

 

The Parallel-ProBiS using MPI-based parallelization achieves on a single node slightly better 

speedups than the script-based naive parallelization of the non-parallel ProBiS algorithm (Figure 

3). The speedup is almost ideal with up to 8 processes in the case of inactive hyperthreading; 

with active hyperthreading, the speedup still increases, but with a slower rate. Hyperthreading 

contributes up to 30% to the final speedup on all 16 processes, which indicates that the Parallel-

ProBiS algorithm is able to concurrently exploit floating point calculation, integer processing, 

and memory data transfer.  

 

The speedup of Parallel-ProBiS tested on the NIC cluster depends on the size of a query 

protein (Figure 4). For smaller query proteins of ~200 amino acids, i.e., 1phr.A and 1acb.E, the 

speedup virtually does not increase when using more than 8 nodes. Therefore small proteins 

should not be calculated on more than 8 nodes. The parallel scaling efficiency, which is defined 

as the ratio between the measured speedup and the ideal speedup, is between 44% and 95%, 



with inactive hyperthreading, and between 25% and 62%, with active hyperthreading. It 

decreases with the number of computing nodes and increases with the protein size. 

Hyperthreading effectively increases the speedup between 15% and 40% for the tested query 

proteins on up to 14 nodes of the NIC cluster, and should be active, if the number of available 

nodes is limiting. 

 

We then tested Parallel-ProBiS on NIC and IJS clusters, consisting of 13 and 36 nodes, 

respectively (Table 1). As before, the speedups are better for larger proteins. The best speedup 

so far, 161, was obtained for 1uzf.A, the largest protein in the test set. Contrary to our previous 

results on a single cluster, hyperthreading decreases the speedups for all query proteins. We 

think that the communication is probably the cause of this worsened performance. If this is true, 

the speedups for smaller query proteins should decrease more than the speedups for larger 

proteins with active hyperthreading, because the nodes computing smaller query proteins need 

to communicate more frequently. This can be seen and is confirmed by the data in Table 1. 

 

Parallel-ProBiS guarantees a balanced computational load at the granularity of a single pairwise 

comparison, but lack of finer granularity can produce some wait times at the last few 

comparisons. In the worst case, all processes except a single one finish their assigned 

comparisons and must wait for the last process that just started its last assigned comparison. 

We addressed this by sorting the comparison database proteins, i.e., the non-redundant PDB, 

by their decreasing size (Figure 1), so that small proteins are computed last. 

 

We do not see any significant degradation in speedup stemming from the slower communication 

link between NIC and IJS clusters. For example, the speedup per process for protein 1uzf.A on 

NIC cluster with 112 processes is ~0.75; on both clusters with 248 processes ~0.73. The 

speedup per process is expected to decrease with the number of nodes, and the slower link 

between the two clusters does not seem to affect this. This confirms that the proposed 

methodology is very appropriate for the network and cluster computing. The speedup is not as 

high as expected with active hyperthreading, probably because of the increased communication 

overhead of the MPI library. Also, with the increasing number of nodes, the number of parallel 

processes approaches the number of pairwise comparisons, which results in unbalanced load 

and idle cores. This is a limitation of the current methodology, which becomes apparent, when 

the algorithm is run on more than 8 nodes and the query protein's size is less than 245 amino 

acids (Figure 4). 



 

Further increase of the speedup is possible by the parallelization on the level of protein 

comparison itself, which will result in a finer granularity of the problem and easier load-balancing 

of processors. Particularly, we plan to parallelize the maximum clique algorithm,[20] which is the 

essential building block of the proposed protein structural comparisons. We will explore the 

efficiency of many-core and GPU platforms in further parallelization approaches. 

 

The asset of the proposed Parallel-ProBiS is its ease of use and better performance, compared 

to naive parallelization using batch script. The only requirement is that the Parallel-ProBiS 

program is properly installed on all nodes and that the master node is able to communicate to all 

slave nodes through the MPI library. 

 

Conclusions 

The growing size of the PDB requires the development of faster algorithms for structural 

comparisons of protein structures. We have described a new parallel algorithm Parallel-ProBiS, 

which enables efficient searches against the entire PDB database. This algorithm is well-suited 

to implementation on clusters or clouds of heterogeneous computers. It demonstrates an 161-

fold speedup on 248 computing cores compared to the non-parallel version that runs on a single 

core. The proposed parallel algorithm scales well with the number of computers it is running on, 

enabling high performance on large computer clusters. By providing two orders of magnitude in 

speedup, the Parallel-ProBiS algorithm enables dramatically larger calculations than previously 

possible. We anticipate that these local similarity search capabilities will enable a new class of 

bioinformatics applications from drug repositioning to off-target prediction. The Parallel-ProBiS 

algorithm is available for download at http://probis.cmm.ki.si/download. 
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Tables 

 

Table 1. Test results on interconnected NIC and IJS clusters with inactive hyperthreading (248 

processes) and active hyperthreading (496 processes). 

Number of Execution time [s] Speedup 

Processes Nodes 1phr.A 1acb.E 1iov.A 1uzf.A 1phr.A 1acb.E 1iov.A 1uzf.A 

248 13+36 136±48.2 141±63.7 251±19.9 288±4.38 100 82.3 116 180 

496 13+36 335±91.0 357±233 359±42.3 399±20.5 40.6 32.6 81.4 130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure Captions 

 

Figure 1. Overview of Parallel-ProBiS algorithm. Part of the algorithm executed on master node 

is in white boxes; part executed on slave nodes is in grey boxes. Input: query protein (protein 

A); comparison protein database; number of slave nodes (n); slave queue size (q). Output: 

pairwise local structural alignments of query protein with all database proteins. 

 

Figure 2. Topology of experimental setup; nodes p0 - p17 represent the NIC cluster, and nodes 

k0 - k36 represent IJS cluster. 

 

Figure 3. Speedup of Parallel-ProBiS on a single computing node of the NIC cluster as a 

function of the number of processes executed. Hyperthreading was inactive () or active (). 

The speedup of the script-based parallelization (black) is averaged over all tested proteins.  

 

Figure 4. Speedup of Parallel-ProBiS as a function of the number of NIC computing nodes. If 

hyperthreading is inactive, each computing node executes 8, if active 16 Parallel-ProBiS 

processes concurrently. Ideal speedup (black), which is the maximum theoretic speedup, equals 

the number of processes; e.g., for 14 computing nodes, it is calculated as 14x8=112 (8 

processes per computing node), if hyperthreading is inactive, and 14x16=224 (16 processes per 

computing node), if active. 


