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aParallel and Distributed Systems Laboratory, “Jožef Stefan” Institute, Jamova 39, Ljubljana, Slovenia
bFaculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia

cDepartment of Electrical Energy, Systems and Automation, Faculty of Engineering and Architecture, Ghent University,
Belgium

dInstitute of Computational Engineering, University of Luxembourg, 6 Avenue de la Fonte, 4364 Esch-sur-Alzette,
Luxembourg

eVisiting Professor, Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang, Vietnam
fDivision of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

gFaculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
hSoete Laboratory, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 903, Zwijnaarde

B, 9052, Belgium

Abstract

We present numerical computation of stresses under fretting fatigue conditions derived from closed form
expressions. The Navier-Cauchy equations, that govern the problem, are solved with strong and weak
form meshless numerical methods. The results are compared to the solution obtained from well-established
commercial package ABAQUS, which is based on finite element method (FEM). The results show that the
weak form meshless solution exhibits similar behaviour as the FEM solution, while, in this particular case,
strong form meshless solution performs better in capturing the peak in the surface stress. This is of particular
interest in fretting fatigue, since it directly influences crack initiation. The results are presented in terms
of von Mises stress contour plots, surface stress profiles, and the convergence plots for all three methods
involved in the study.

Keywords: MLSM, MLPG, Navier equation, convergence, meshless, meshfree, fracture, crack, fretting
fatigue

1. Introduction

Two loaded surfaces in contact, that are exposed to a relative oscillatory movement, experience fretting
fatigue. Fretting fatigue tangibly downgrades the surface layer quality, producing increased surface roughness
and micropits, which reduces the fatigue strength of the components up to 50% [1]. The phenomenon is
present in many mechanical assemblies, e.g. bolted joints, shrink-fitted shafts, etc., and it is, therefore,
a critical research topic [2]. Even though crystal plasticity, metallurgical changes, and thermomechanical
effects may significantly impact fretting fatigue [3], their effects have been ignored in many recent numerical
life predictions of fretting [4, 5, 6]. Generally, the problem is simplified, and the numerical models rely on
the computation of stress fields near the contact region, obtained either by analytical solutions or by finite
element analysis. Those stress fields, in conjunction with fracture mechanics approaches, are used to predict
crack initiation and propagation lives under partial slip conditions with reasonable accuracy [7, 8]. In this
regard, the efficient estimation of the stress field around the contact area is still of great importance.

The complexity of the fretting fatigue phenomenon arises from the presence of the sticking and sliding
regimes at the contact interface, which play an important role on the crack initiation zone. A common way
to identify these regimes is to observe the contact surface of samples after test [9, 7], the undamaged and
unworn part is considered to be sticking while the slip region is characterized by worn out and damaged area.
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Therefore, a surface discontinuity is created at the stick-slip boundary. Characterization of stick-slip zones
may also be achieved by analysing curves of tangential loads Q with respect to the applied normal load P
(Q-P curves) In [10, 11] authors proposed fretting maps that considered the influence of normal load, sliding
displacement and wear on the stick-slip regime. Regarding simulation methods, many researches consider
numerical stress analysis of contact to study the stick-slip zone, for example, in [12, 13, 6].

Recent laboratory studies [14] indicated that the stress field could experience singularity at the transition
between sticking and sliding regimes. However, in a recent numerical investigation of fretting fatigue, the
authors demonstrated the absence of singularities in the stress field [15]. This paper extends the discussion
from [15] by comparing three conceptually different numerical approaches for the solution of a stress field
in the contact area, with the ultimate goal to establish confidence in the numerical solution of the stress
field in a typical fretting fatigue simulation. In this paper the contact is mimicked by surface normal and
tangential traction loads derived from closed form expressions [2]. More details on treatment of the contact
in meshless context can be found in [16, 17, 18].

From the numerical point of view, the most difficult part of fretting fatigue simulations is the computation
of the stress tensor within the bodies in play, by solving the Navier-Cauchy partial differential equations
(PDEs). When comparing two classes of numerical methods, namely, the weak form methods and the strong
form methods, the conceptual difference between them is that strong form methods solve the underlying
problem in its strong, differential form, directly approximating partial differential operators appearing in the
equation. On the other hand, weak form methods solve the weak formulation of the problem, which reduces
derivative order by using integral theorems. The discretization of the equation is done by weakly imposing
the equation in each element or subdomain, and by choosing appropriate subspaces where the solution is
sought.

Traditionally, the Navier-Cauchy equations are tackled in their weak form with the Finite Element Method
(FEM) [19]. However, linear elasticity problems have also been investigated with alternative meshless meth-
ods [20], in both forms, strong and weak [21, 22, 23], and with different conclusions. For example, the strong
form solution based on a generalised diffuse derivative approximation, combined with a point collocation, is
reported to provide excellent results [24]. Also, in a recent paper [21], the authors use a strong form method,
based on augmented collocation with radial basis functions, and report good behavior. The literature also
reports that meshless collocation approaches are not well-suited for contact and fretting problems. Hermite
type collocation was proposed as a remedy, but this was shown to lead to lower accuracy compared to the
FEM solution [25].

The conceptual difference between meshless methods and mesh-based methods is in the treatment of
relations between nodes. In mesh-based methods the nodes need to be structured into polygons (mesh) that
covers the whole computational domain, while on the other hand, meshless methods define relations between
nodes directly through the relative nodal positions [26]. An immediate consequence of such a simplification
is greater generality regarding the approximation, and the position of computational points, both crucial for
dealing with large gradients or possibly singular behavior, e.g. at the corner between a pad contacting with
a specimen, or at a crack tip. This flexibility in point placement comes at the price of the need to identify
neighboring nodes, and, for weak form based methods, leads to computationally expensive integration of
usually non-polynomial functions [20], which also occurs in methods such as isogeometric analysis [27].

The most well-known mesh-based strong form method is the Finite Difference Method (FDM) that
was later generalized into many meshless variants in pursuit of greater freedom regarding the selection of
approximation type and lesser geometric limitations, see [28, 29, 30] for some early references.

In meshless methods, instead of predetermined interpolation over a local support, a more general approach
with variable support and basis functions is used, e.g. collocation using Radial Basis Functions [31] or ap-
proximation with monomial basis [32]. There are many other methods with more or less similar methodology
introducing new variants of the strong form meshless principle [20].

Meshless methods are not restricted by the choice of material behaviour, and are fully general. However,
point collocation methods are not naturally suited to tackling plasticity, mainly because the discretised
gradient operator used to compete the left hand side (stiffness matrix) has to be strictly identical to that
used to compute the right hand side (residual vector), to ensure convergence of Newton Raphson. This is
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however possible, as was shown in the literature [33, 34, 35].
In spite of decades of research on meshfree and meshless methods, starting with the work of Monaghan

on smoothed particle hydrodynamics [36], and later complemented by the inception of Galerkin meshfree
methods such as the Element-Free Galerkin method (EFG) [37], there is no consensus today on the relative
performance of various meshfree methods, which is clearly problem dependent. For example, enriched
meshfree methods have emerged to cope with the inability of original formulations to deal with discontinuities,
strong or weak, as well as singularities and boundary layers.

Spurred by the advent of massively parallel computing on chips, such as graphical processing units (GPUs)
and similar multi-threaded architectures, either used in isolation or in concert with CPUs, a recent trend
has been to develop meshless collocation approaches for PDEs, because they allow the assembly of nodal
equations completely independently. Two classes of collocation schemes have surfaced: (1) those relying on
field approximation, such as the isogeometric collocation approach [38], or: (2) on directly approximating
the discretization operator [39]. The mathematics community has put significant effort in understanding the
approximation properties of both classes of methods [40].

On the other hand, weak form meshless methods are generalizations of mesh-based weak form FEM. An
overarching framework, which can be seen as a superset of most meshfree methods, is the Meshless Local
Petrov Galerkin Method (MLPG) [41]. There exist different variants of MLPG, which include Bubnov-
Galerkin, Petrov-Galerkin and collocation methods. The different variants are obtained through the choice
of the trial and test spaces [20]. In the weak-form based approaches, test and trial functions may be chosen as
Moving Least Squares approximants. Contrary to FEM, where the main loop is generally over the elements,
in MLPG and most weak-form based meshless methods, the main loop is performed over the integration
points. For each integration point, a local support is used to evaluate field values and weight functions. In
the last few decades, there have been many variants of MLPG introduced to mitigate numerical instabilities
and to improve accuracy and convergence rate, etc. [20]. In this paper, we will use a more general formulation
of Meshless Local Strong Form Method (MLSM) [26].

The rest of the paper is organized as follows: in Section 2, the governing problem is introduced, Section 3
is focused on meshless numerical techniques, and Section 4 focuses on presentation and discussion of results.

2. Governing problem

Displacements and stresses are quantities of interest in analyses of solid bodies under loading conditions.
The stresses are expressed with the stress tensor σ and are related to displacements ~u via Hooke’s law:

σ = C : ε, ε =
1

2
(∇~u+ (∇~u)T), (1)

where C is the fourth order stiffness tensor. The traction to any surface with normal ~n is given as ~t = σ~n.
Only isotropic homogeneous materials will be considered in this paper, which simplifies C to

Cijkl = λ̃δijδkl + µ̃(δikδjl + δilδjk), (2)

where λ̃ and µ̃ are material’s Lamé parameters. Note that the letter µ is later used for the coefficient of
friction. The equilibrium equation for forces and moments is a form of a Cauchy momentum equation:

∇ · σ = ~f, (3)

where ~f is the body force. For strong form methods, the Cauchy-Navier equation is used, obtained by
substituting (1) into (3):

(λ̃+ µ̃)∇(∇ · ~u) + µ̃∇2~u = 0. (4)

For weak form methods, the Cauchy momentum equation (3) is reformulated to its weak form counterpart.
The solution ~u satisfies ∫

Ω

σ(~u) : ε(~v) dV −
∫
∂Ω

~t(~u) · ~v dS −
∫

Ω

~f · ~v dV = 0, (5)
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for every test function ~v from a suitable function space, where Ω represents the domain and ∂Ω its boundary.
Two types of boundary conditions are usually specified, referred to as essential or Dirichlet boundary

conditions, and traction or natural boundary conditions. Essential boundary conditions specify displacements
on some portion of the boundary of the domain, i.e. ~u = ~u0, while traction boundary conditions specify
surface traction σ~n = ~t0, where ~n is an outside unit normal to the boundary of the domain.

In two dimensions, we will use simplified component-wise notation for ~u and σ:

~u = (u, v) and σ =

[
σxx σxy
σxy σyy

]
. (6)

2.1. Case definition

The case analyzed in this paper is the same as the one discussed in Pereira et al. [15]. A small thin
rectangular specimen of width W , length L and thickness t made of aluminum AA2420-T3 is considered.
The specimen is stretched in one axis with oscillatory axial traction σax, normally compressed in another
axis by two cylindrical pads with force F , that additionally act tangent to the surface with force Q, and thus
producing tangential traction. The setup is shown schematically in Figure 1a.

The analytical model for surface tractions is employed to obtain suitable boundary conditions for numer-
ical simulations. Contact tractions are modeled using an extension of Hertzian contact theory [2], predicting
the contact half-width

a = 2

√
FR

tπE∗
, (7)

where E∗ is the combined Young’s modulus, computed as 1
E∗ =

1−ν2
1

E1
+

1−ν2
2

E2
, where Ei and νi represent the

Young’s moduli and Poisson’s ratios of the specimen and the pad, respectively.
Normal traction p is computed as in Hertzian contact theory

p(x) =

{
p0

√
1− x2

a2 , |x|≤ a
0, |x|> a

, p0 =

√
FE∗

tπR
, (8)

where F
t represents the force per unit thickness, and p0 is the maximal pressure.

Due to the presence of tangential traction, the effect of friction is modeled by splitting the surface under
contact into two zones, stick and slip zones. The parameters c and e, representing stick zone half-width and
eccentricity due to axial loading, respectively, are computed as

c = a

√
1− Q

µf
, e = sgn(Q)

aσax
4µp0

, (9)

where µ is the coefficient of friction.
Tangential traction q(x), dependent on the coefficient of friction µ, is defined as

q(x) =


−µp(x) + µp0c

a

√
1− (x−e)2

c2 , |x− e|< c,

−µp(x), c ≤ |x− e|, |x|≤ a,
0, |x|> a.

(10)

Additionally, the tangential force Q must be smaller than the maximal permitted force µF , predicted
by Coulomb’s law, to be possible to define the stick half-width c. There is also an upper bound for axial
traction σax given by (10), implying the limit σax ≤ 4(1− c

a ). Both of these inequalities are satisfied in all
our examples.

We assume that plane strain conditions are valid, and thus, reduce the problem to two dimensions, and
use symmetry along the horizontal axis. The domain Ω for numerical simulations, which represents half the
specimen, is given by

Ω = [−L/2, L/2]× [−W/2, 0]. (11)
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(a) Scheme of the experiment. (b) Numerical domain and boundary conditions.

Figure 1: Case description. Ratios in drawings are not to scale.

The boundary conditions, that are used for numerical simulations, are illustrated in Figure 1b. Note that
symmetry boundary conditions are used on the bottom boundary. All parameters are set as in [15]:

Specimen dimensions: L = 40 mm, W = 10 mm and t = 4 mm,

Material parameters: E1 = E2 = 72.1 GPa, ν1 = ν2 = 0.33,

Forces and tractions: F = 543 N, Q = 155 N, σax = 100 MPa.

The effect of cylinder pads is completely characterized by their pad radii. Two different pad radii, R = 10 mm
and R = 50 mm were considered, each for two different coefficients of friction, µ = 0.3 and µ = 2, resulting
in four numerical examples with derived parameters specified in Table 1.

µ = 0.3 µ = 2

R = 10 mm

a = 0.2067 mm

p0 = 418.1041 MPa

c = 0.0450 mm

e = 0.0412 mm

a = 0.2067 mm

p0 = 418.1041 MPa

c = 0.1914 mm

e = 0.0062 mm

R = 50 mm

a = 0.4622 mm

p0 = 186.9818 MPa

c = 0.1007 mm

e = 0.2060 mm

a = 0.4622 mm

p0 = 186.9818 MPa

c = 0.4279 mm

e = 0.0309 mm

Table 1: Derived parameter values for all four considered cases.

The top boundary conditions, given by tractions p(x) and q(x), are illustrated for all four cases in Figure 2.
As seen also from Table 1, the pad with larger radius has lower normal traction than its smaller counterpart.
A coefficient of friction µ has a clear effect on the stress profile, as it causes significant stress concentrations
and high gradients near the edges of stick and slip zones.

3. Meshless numerical method

The main goal of this paper is to compare different numerical methods for solution of linear elasticity
problem under contact conditions, which are not considered in this paper. Instead, a simplified model with
boundary conditions that mimic frictional contact through normal and tangential traction loads derived from
closed form expressions [2] is used.

In this section, two conceptually different meshless methods are described. We first describe the Meshless
Local Strong Form method (MLSM) [22], a meshless method solving problems in strong form, which is
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Figure 2: Top traction profiles p and q for four considered cases. The stick zone is shown in the gray color, and the slip zone is
shown in the beige color.

followed by the Meshless Local Petrov Galerkin (MLPG) method [42], a weak form meshless numerical
method. The common methodology of both methods is the Moving Least Squares (MLS) approximation,
which is described first.

3.1. MLS approximation

A generalized MLS approximant û, introduced by Shepard [43], and later generalized from monomials
to1 arbitrary basis functions such as Radial Basis Functions (RBFs), is defined by

û(x) =

m∑
j=1

αj(x)bj(x) ≡ bT(x)α(x), (12)

where bj are basis functions. For example, a quadratic monomial basis in a two-dimensional domain is
provided by

bT(x, y) = [1, x, y, x2, y2, xy], m = 6. (13)

The unknown coefficients αj(x) in Equation (12) are not constant, but also functions of x (hence the name
“moving”). At any point x with n neighboring nodes, that constitute its support domain, coefficients αj(x)
can be obtained by minimizing

R2 =

n∑
i=1

w(x− xi)(u(xi)− bT(xi)α(x))2, (14)

where w:R→ R is a non-negative weight function, and xi are the neighboring points. Minimizing (14) with
respect to x yields a system of equations of the form

A(x)α(x) = B(x)u, (15)

where α(x) are the unknown coefficients, u are the function values in support nodes, A(x) =
∑n
i=1 w(x −

xi)b(x)b(x)T, and B(x) = [w(x− x1)b(x1), . . . ,w(x− xn)b(xn)]. Solving (15) for α(x), and substituting
it into (12) we obtain

û(x) = b(x)T[A(x)]−1B(x)u = ϕT(x)u. (16)
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From (16), we can immediately write the MLS shape functions as

ϕT(x) = b(x)T[A(x)]−1B(x). (17)

One can also compute the derivatives of û simply by differentiating the shape functions. For example, the
first derivative is given by

∂ϕ

∂xk
(x) =

∂bT

∂xk
(x)[A(x)]−1B(x)

− bT(x)[A(x)]−1 ∂A

∂xk
(x)[A(x)]−1B(x) + bT(x)[A(x)]−1 ∂B

∂xk
(x).

(18)

3.2. MLSM formulation

The Meshless Local Strong Form method is a generalization of several strong form meshless methods
reported in literature, e.g. the Finite Point Method [44], RBF-FD method [45], Diffuse Approximate
Method [32], Local Radial Basis Function Collocation Method [31], etc. A PDE Lu = f is imposed at
nodes by means of direct evaluation of differential operators, i.e. operator L is approximated at a point p as

(Lu)(p) ≈ (Lû)(p) = (Lϕ)(p)Tu, (19)

where Lϕ is approximated as
(Lϕ)(p)T ≈ (LbT)(p)A(p)−1B(p). (20)

In a case when the number of support points is the same as the number of basis functions, this approximation
is exact. If the basis b consists of monomials, this method reproduces the Finite Point Method, and if the
basis b consists of radial basis functions, centered in support nodes, the operator approximation is the same
as in RBF-FD or Local Radial Basis Function Collocation Method.

Using (19), the PDE Lu = f can be approximated at each internal node p with the linear equation

(Lϕ)(p)Tu = f . (21)

For the Nb boundary nodes, the Dirichlet conditions can be imposed directly as long as the approximation
scheme is interpolatory, i.e. possesses the Kronecker Delta property [20], while Neumann boundary conditions
are discretized in a similar fashion as the equation itself. Gathering all the equations leads to a sparse linear
global system with O(Nn) nonzero elements, which can be solved to obtain a numerical approximation of u
at N discretization points. For more detailed description of MLSM, the reader is referred to [22].

3.3. MLPG formulation

The MLPG method [42] is based on the weak formulation of a problem∫
Ω

(L1u)(L2v) dV −
∫
∂Ω

(~n · L3u)v dS −
∫

Ω

fv dV = 0, (22)

where u is the unknown solution and v is a test function. Unlike FEM, which interpolates the trial solution
with shape functions, the MLPG approximates it with MLS shape functions (17). The MLS approximant
û(x) is required to satisfy the weak form in the neighborhood of every internal node xi = (xi, yi), by using
a suitable test function, which in our case is a compactly supported hat shaped function

wi(x, y) = max

{(
1−

(
x− xi
di/2

)2
)(

1−
(
y − yi
di/2

)2
)
, 0

}
, (23)

Therefore, integration of (22) only needs to be performed over a local square subdomain Qi with side di,

Qi = suppwi = [xi − di/2, xi + di/2]× [yi − di/2, yi + di/2]. (24)
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Substituting wi for v and û for u into (22), the following equation is obtained for each internal node xi:∫
ΩQi

(L1û)(L2wi) dV −
∫
∂ΩQi

(~n · L3û)wi dS −
∫

ΩQi

fwi dV = 0. (25)

Note that unless ΩQi
intersect ∂Ω, the boundary integral over ∂ΩQi

vanishes, due to wi being compactly
supported. Substituting the definition of û from (16) into (25), a linear equation for unknowns ui is ob-
tained. The coefficients of this equation are not computed exactly but rather approximated using Gaussian
quadrature formulas on nq points. Note that each computation of the integrand requires the computation of
MLS shape function ϕ or its derivatives. Assembling all equations together, a global system of equations is
obtained. Essential boundary conditions can not be imposed directly, as MLS shape functions do not possess
the Kronecker δ property. Therefore, the value of u is not necessarily reproduced by û. A common method
for imposing boundary conditions is using collocation, i.e. instead of requesting u = u0, a condition û = u0

is imposed for every boundary node. Adding this equations to the global system, a sparse N ×N system is
obtained, which can be solved using standard procedures to obtain a numerical approximation of u.

Regarding the calibration parameters, calibrating shape parameters for radial basis function is well re-
searched [46], but no special calibration was necessary in our case. The chosen values were default values
of the appropriate order of magnitude, such as 1 or 100. The behavior of the methods themselves is well
researched and comparisons of the methods on test problems have been performed before [47]. Both methods
behave well on the test problems and converge with expected orders of accuracy.

4. Results and discussion

4.1. Comparison of meshless and ABAQUS results

We first present the results of the meshless techniques, and then compare them with the results obtained
from a well established commercially available software ABAQUS R©. The model consists only of the half
specimen part and the effect of pad contact interaction has been replaced by normal and tangential traction
loads at contact interface. These loading and boundary conditions are the ones discussed in section 2.1
(summarized in Figure 1b). The symmetric boundary condition is applied to the bottom of the specimen
model. One side of the specimen is restricted to move in x and y directions (as in the experiemental set-up),
while the maximum cyclic axial load is applied to the other side of the specimen. The analysis considered
a purely elastic material, aluminum 2420-T3, with typical material properties, also described in section 2.1.
The model has been meshed using with 2D quadrilateral bilinear, plane strain, reduced integration element
(CPE4R) and also with 2D quadrilateral quadratic, plane strain, reduced integration element (CPE8R). The
model dimensions and also the partitions and seeds used in the ABAQUS analysis are the same as the ones
used in [15].

For a complete analysis in ABAQUS considering the contact interaction between pad and specimen (using
Lagrange multipliers method and Coloumb friction law), for the same cyclic loading condition and material
considered in this paper, the reader is refered to [15].

For fair comparison, all meshless results in this section are also computed on the nodes extracted from
ABAQUS meshes (Figure 3).

In MLSM, n = 25 support nodes and m = 15 Gaussian basis functions, defined as follows, are used

bi(x) = exp(‖x− xi‖2/τ2), (26)

with τ = 150δr(xi), where δr(x) is the distance to the closest neighbor of xi. In MLS approximations,
Gaussian weight with τ = δr(xi) was used. In MLPG computations, MLS approximation over 13 closest
nodes was used, with MLS weight defined as

w(x) = ω(‖x‖/r(x)), ω(ρ) =

{
1− 6ρ2 + 8ρ3 − 3ρ4 ρ ≤ 1,

0 ρ > 1,
(27)
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Figure 3: Nodes from the densest ABAQUS mesh used in R = 10 mm, µ = 0.3 case.

where r(x) is the average distance from x to its 13th and 14th closest node. The integration domain size di
was set to di = 0.7r(xi), the 2D integrals were approximated with Gaussian quadrature with 9 points and
line integrals were approximated using 3 points.

In Figure 4 the von Mises stress is presented for all the four cases defined in Table 1. The informative
plots in Figure 4 are generated from results computed by MLSM.

As already noted in [15], the surface traction σxx is of particular interest due to its volatile behavior
on the boundary of the stick and slip zones. The maximal surface traction is a good indicator of possible
damage location, and can be used as a guide for crack initiation. It is therefore crucial that this value is
computed as accurately as possible, which is a challenging task. For illustration, in case of R = 10 mm, the
contact area is approximately 100 times smaller than domain length L, and the stress on the edge of the
contact is concentrated only on a small portion of the contact area. Extensive refinement is needed to even
obtain the correct shape of the stress profile on the top, and even more so to determine it accurately. In
Figure 5, stress σxx(x, 0) under the contact, computed with MLSM, MLPG and ABAQUS, is presented. It
can be seen that all three approaches capture the general behavior of the observed stress field, and that the
results agree well.

Because of the significance of the maximal stress, a more precise analysis was done by comparing the
maximal stress σxx on the top of the domain

σmax
xx := max

x∈[−2a,2a]
σxx(x, 0), (28)

with respect to the mesh size, measured in number of nodes under the contact (Figure 6). We present this
study in Figure 6, where we observe a different behavior between the strong form method MLSM and the weak
form methods MLPG and ABAQUS (FEM). For ABAQUS, we used two types of elements, namely, CPE4R
and CPE8R, where the former represents a linear element and the latter represents a quadratic element.
Both the weak form methods, MLPG and ABAQUS behave similarly, while the strong form method MLSM
shows different pattern. Nevertheless, they all seem to converge in the asymptotic range (when the number
of nodes is sufficiently high). Note that the results of MLPG lie nicely between the CPE4R results and the
CPE8R results. More importantly, the results of MLPG are obtained on the same number of nodes that are
used by CPE4R elements. This shows that for this problem, MLPG delivers higher accuracy than ABAQUS.
The difference between MLPG and ABAQUS results can be attributed to the fact that in ABAQUS, the
CPE4R elements are used (with reduced integration), whereas in MLPG, the 2D integrals are approximated
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Figure 4: Von Mises stress of four considered cases computed by MLSM on densest meshes. In each panel, a stress in a whole
specimen is shown on the top, followed by a magnified picture showing only the region under the contact area.

with Gaussian quadrature with 9 points, and line integrals with 3 points. These points in MLPG are sufficient
for approximating an integral of the product of two quadratic functions.

To get a better insight into this phenomenon, two groups of plots are presented in Figure 7 for the
case R = 10 mm and µ = 2. In the upper two panels, σxy profiles are provided for all three methods
(ABAQUS with two different type of elements), for different numbers of nodes under the contact. Note that
σxy should reproduce boundary condition q, and therefore, we can compare the computed results against
the prescribed condition, which is marked as “Exact”. The same, even more pronounced effect, is present
in the computation of σxx (bottom two panels) of Figure 7. All plots confirm that to capture the peak
in the stress, the weak form methods require more nodes in comparison to the strong form method. This
observation of weak form methods aligns with the typical observations from FEM studies, that more points
are required to approximate sharp peaks and high gradient functions. However, in this particular case, the
MLSM shows considerably more accurate results, even when ABAQUS uses twice the number of nodes (with
CPE8R elements).

The reason behind this behavior is not clear, and could be attributed to the sensitivity of the strong form
solution to point placement as well as the tendency of weak form based methods to smooth sharp gradients.
This tendency can be overcome by, for example, e adaptivity in (enriched) finite element methods, and
adaptive enrichment schemes for moving singularities and discontinuities.

The important factor of the numerical solution is its computational time. We executed all three solution
procedures on server with 16-core Intel R© Xeon R©Gold 6130 Processors running CentOS 7.4 operating system.
Execution times of both meshless methods are, as expected, longer in comparison to the ABAQUS solution,
since we are comparing research code of a prototype algorithm to a fully optimized code of a mature method.
Nevertheless, the computation times are comparable, e.g. ABAQUS with CPE4R elements needed 17 s to
solve problem on N = 45686 nodes, while MLSM and MLPG required 25 s and 56 s, respectively.

4.2. Solution on meshless nodal distribution

Results presented in Section 4.1 have been computed on the nodes from the ABAQUS software that
relies on meshing. A simple nodal positioning algorithm has been developed which does not require any

10



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x/a

-400

-200

0

200

400

σ
x
x
(x
,0
)
[M

P
a]

R = 10 mm µ = 0.3

ABAQUS

MLPG

MLSM

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x/a

-500

0

500

1000

σ
x
x
(x
,0
)
[M

P
a]

R = 10 mm µ = 2

ABAQUS

MLPG

MLSM

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x/a

-200

-100

0

100

200

300

σ
x
x
(x
,0
)
[M

P
a]

R = 50 mm µ = 0.3

ABAQUS

MLPG

MLSM

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x/a

-200

0

200

400

600

σ
x
x
(x
,0
)
[M

P
a]

R = 50 mm µ = 2

ABAQUS

MLPG

MLSM

Figure 5: Surface stress σxx(x, 0) under contact, computed with three different methods. ABAQUS results are CPE4R elements.

mesh generation. Although meshless methods do not need a structured mesh, and in some cases even
randomly positioned nodes can be used [48], it is well-known that using regularly distributed nodes leads to
more accurate and stable results [26, 49, 50].Therefore, despite the apparent robustness of meshless methods
regarding nodal distributions, certain efforts are to be invested into node placement [51], with the ultimate
goal to maximize stability and accuracy, and to retain the generality of the meshless principle. A possible
approach to achieve this goal is to distribute nodes with a quite simple algorithm based on Poisson Disc
Sampling. Such algorithms have been already used in a meshless context [52]. First, a seed node is positioned
randomly within the domain. Then, new nodes are added on the circle centered at the seed node and with
a radius supplied as a desired nodal density parameter (δr), i.e. the value δr(x, y) represents the desired
distance between node with coordinates (x, y) and its closest neighbor. In the next iteration, one of the
newly added nodes is selected as the new seed node, and the procedure is repeated. The most expensive
part of the algorithm is to check if newly positioned node violates proximity criterion, i.e. if a newly added
node is positioned too close to any of already positioned nodes. The search can be efficiently implemented
with k-d tree or some similar structure. To solve the problem at hand, we use the following δr function

δr(x, y) = dα(∆x− δx) + δx, d = min{d1, d2, d3, d4, 1},

where

d1 =
∥∥∥(x−(−a)

ηx
, yηy

)∥∥∥ , d2 =
∥∥∥(x−aηx , yηy

)∥∥∥ ,
d2 =

∥∥∥(x−(e+c)
ηx

, yηy

)∥∥∥ , d4 =
∥∥∥(x−(e−c)

ηx
, yηy

)∥∥∥ , (29)

and ηx, ηy are scaling parameters with ηx = 3
4L, ηy = 6

10W/2. Values ∆x = 1
100L and α = 1.2 were used

in all discretizations, while δx varied to produce nodal distributions with different densities. Meshes for
exponentially spaced δx were generated for each case, with δx ranging from 0.025∆x to 0.00014∆x, resulting
in final discretization begin approximately 7200 times denser under the contact region than on the other
boundaries. A sample mesh generated using the proposed distribution function (29) is shown in Figure 8.

Using the proposed nodal distribution instead of the ABAQUS mesh, the results for σmax
xx from Figure 6

have been reproduced, and are shown in Figure 9 for both the meshless methods. As expected, we observe
similar behavior as with ABAQUS meshes. The non-smooth convergence plots are an artifact of more
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irregular node positions. Contrary to ABAQUS meshes, where one element (and consequently one node)
is always put on the edge of the contact area, the nodes placed using the method described above pay no
attention to contact zone boundaries. Therefore, when imposing boundary conditions, some variation in
capturing high stress values is to be expected.

5. Conclusions

In this paper, we introduced meshless methods for stress computation in a typical fretting fatigue simu-
lation. The results are first compared to the well-established ABAQUS software, and they are found to be
in good agreement. The weak form MLPG behaves similarly to the ABAQUS solution, which is also based
on a weak form method (FEM). However, in this particular case, the strong form meshless method (MLSM)
shows different behavior. It performs notably better in capturing the peak surface stress, which is a crucial
solution value in the fretting fatigue simulation as it directly influences the crack initiation. This strong form
meshless method provides an accurate maximal stress with a significantly lower number of nodes under the
contact, which could be an advantage in fretting fatigue simulations with high number of cycles.

Our future research will be devoted to devising automatic error estimation and mesh adaptation ap-
proaches for generalized finite differences and point collocation schemes [53, 54, 55, 45]. We will also in-
vestigate optimal point placement and stencil selection [56, 40], as well as local enrichment for both, point
collocation and Galerkin methods, to accelerate convergence.
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Figure 6: Maximal surface σxx under contact with respect to the number of nodes under the contact. Computed with MLPG,
MLSM and ABAQUS (two element types, namely, CPE4R and CPE8R). MLPG and MLSM results are on the same number
of nodes that are used by ABAQUS CPE4R elements.
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Figure 7: For case R = 10 mm and µ = 2, the σxy (above) and σxx (below) surface stress profiles near the contact border.

Figure 8: Nodes from the densest distribution with δx = 2.7a · 10−4 used in R = 10 mm, µ = 0.3 case.
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Figure 9: Maximal surface σxx under contact with respect to the number of nodes under the contact computed with MLPG
and MLSM meshless methods on meshless nodal distributions.
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