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Spatial Autocorrelation and Entropy for Renewable
Energy Forecasting
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Abstract In renewable energy forecasting, data are typically collected by ge-
ographically distributed sensor networks, which poses several issues. i) Data
represent physical properties that are subject to concept drift, i.e., their char-
acteristics could change over time. To address the concept drift phenomenon,
adaptive online learning methods should be considered. ii) The error distri-
bution is typically non-Gaussian. Therefore, traditional quality performance
criteria during training, like the mean-squared error, are less suitable. In the
literature, entropy-based criteria have been proposed to deal with this prob-
lem. iii) Spatially-located sensors introduce some form of autocorrelation, that
is, values collected by sensors show a correlation strictly due to their relative
spatial proximity. Although all these issues have already been investigated in
the literature, they have not been investigated in combination. In this paper,
we propose a new method which learns artificial neural networks by addressing
all these issues. The method performs online adaptive training and enriches the
entropy measures with spatial information of the data, in order to take into ac-
count spatial autocorrelation. Experimental results on two photovoltaic power
production datasets are clearly favorable for entropy-based measures that take
into account spatial autocorrelation, also when compared with state-of-the art
methods.
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1 Introduction

Sensor networks enable monitoring and study of dynamic physical phenomena
on previously impossible granularity levels (Jayasumana 2009). However, when
gathering and analyzing data produced by sensor networks, it is necessary to
take into account that sensors are geographically distributed, they naturally
produce a continuous stream of data, they act in time-changing environments
and that the number of sensors can be very large and can change over time.
Seeking spatial and temporal-aware information in a sensor network leads to
additional computational challenges but, at the same time, creates new oppor-
tunities for storage, processing and analysis (Aggarwal 2013). Recent advances
in data analytics and data mining provide techniques that can appropriately
address the complex dynamics of sensor networks, i.e. processing large data
volumes and accounting for spatio-temporal information (Nanni et al 2008)
(Appice et al 2014).

In this paper, we consider data streams coming from sensors monitoring
renewable energy plants, mainly for the purpose of forecasting energy produc-
tion. Forecasting the produced energy with high accuracy represents one of
the key issues in smart grid systems (Usaola et al 2004) (European Photo-
voltaic Industry Association 2014). The reason is that the forecasts of both
the consumption and the production enable dynamic pricing models, as well
as proactive control of the macrogrid network. However, mining data streams
generated from sensors that measure physical properties and, in particular,
mining renewable energy data, introduces additional challenges discussed in
the following.

First, renewable energy production highly depends on a particular physi-
cal phenomena, e.g., wind power production from wind speed and photovolatic
(PV) power production from solar irradiance. Moreover, some physical proper-
ties (like wind speed and solar irradiation) show the concept drift phenomenon,
i.e., their characteristics change over time (Bessa et al 2009). For this reason,
it is of fundamental importance to consider the issue of concept drift when
applying data mining methods in sensor networks. In fact, adaptive models
typically produce better predictions in presence of concept drift, although
they need a continuous model update. As a consequence, many machine learn-
ing algorithms have been applied in renewable energy forecasting for learning
adaptive models (Bessa et al 2009) (Bacher et al 2009) (Sharma et al 2011).

Second, when forecasting renewable energy production, the transformation
of the renewable resource into power changes the statistical properties of the
prediction errors (Lange 2005). Studies confirm that the shape of the error
distribution from forecasting renewable energy production is typically non-
Gaussian (Bludszuweit et al 2008) (Fabbri et al 2005) (He et al 2014) Dowell
and Pinson (2016) Gneiting et al (2006). However, most of the existing ap-
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proaches adopt the mean-square error (MSE) as a quality criterion. Minimizing
the MSE during the learning phase is optimal only if the probability distribu-
tion function (pdf) of the prediction errors is Gaussian (Bishop 1995). Studies
for wind power prediction have shown that for non-Gaussian pdf, entropy-
based measures (Principe and Xu 1999b) (Principe and Xu 1999a) (Erdogmus
and Principe 2002) (Morejon and Principe 2004) are more suitable for training
(Bessa et al 2008) (Bessa et al 2009).

Lastly, geographically distributed power plants bring spatial dependencies
(autocorrelation) in measured values with the effect of violating the classical
i.i.d. (independently and identically distributed) assumption of examples. Spa-
tial dependencies are motivated by the Tobler’s first law of geography (1970)
according to which “everything is related to everything else, but near things
are more related than distant things”. The consideration of these spatial de-
pendencies, although requiring additional effort in the learning task, generally
leads to better models (Stojanova et al 2012). Several approaches consider the
spatial dimensions in stream data (Gaber et al 2005), but they do not consider
the problem of non-Gaussian error distribution. In addition, they do not take
the spatial autocorrelation into account and, thus, do not take advantage from
the inherent spatial dependencies in the data (Borcard et al 2004).

In the method we propose, we exploit entropy-based measures for online
adaptive training of Artificial Neural Networks (ANNs), when forecasting one-
day ahead renewable energy production; more specifically, forecasting one-
day ahead PV energy production at hourly granularity. To the best of our
knowledge, there is no method for online training of ANNs which optimizes
entropy and, at the same time, takes into account spatial autocorrelation of
values observed by sensors. Moreover, methods for online training of ANNs,
which optimize entropy for renewable power prediction, have been tested so
far on wind power prediction (Bessa et al 2008) (Bessa et al 2009), but not on
PV power.

The remainder of the paper is organized as follows. In the next section,
we discuss the background of the work presented. Next, in Section 3, we de-
scribe the method and the entropy measures which take into account spatial
autocorrelation. The experimental design and key experimental questions are
outlined in Section 4. Section 4 also presents and discusses the results of the
empirical evaluation. Finally, we draw the main conclusions and give directions
for further work in Section 5.

2 Related Work

In this work, we focus on forecasting energy produced by renewable energy
plants. This task has been deeply investigated during the last years (Usaola
et al 2004) (European Photovoltaic Industry Association 2014). Existing work
refers to a single renewable power generation system (Rashkovska et al 2015),
or refers to multiple renewable power generation systems distributed over an
extended geographic area (Bacher et al 2009) (Pelland et al 2013) (He et al
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2014). In the literature, several data mining solutions have been applied in
the context of renewable energy power forecasting and they are generally clas-
sified as physical and statistical (and data mining) approaches. The physical
approach is heavily based on Numerical Weather Prediction (NWP) (Math-
iesen and Kleissl 2011) (Zhang et al 2015b), with the addition of physical
considerations (e.g., orography) (Bofinger and Heilscher 2006), or sensor data
(Pelland et al 2013) (Bessa et al 2015). On the other hand, the statistical
approach is based on models that relate historical values with forecasted vari-
ables. They are mainly based on time series (Chakraborty et al 2012), but
there are also approaches that learn adaptive models from data e.g., autore-
gressive (AR) models (Bacher et al 2009), Vector autoregression (VAR) models
(Bessa et al 2015) (Dowell and Pinson 2016) (Cavalcante et al 2017) (Gneiting
et al 2006), artificial neural networks (ANNs) (Kalogirou 2000) (Rashkovska
et al 2015), or Support Vector Machines (Sharma et al 2011). Adaptive mod-
els are considered to produce better predictions regarding concept drift, but
recently, combinations of statistical (ANN and SVM) and physical approaches
have also been investigated (Buhan and Cadirci 2015). Other studies perform
the forecasting task relying on the analysis of sky and cloud images (Marquez
and Coimbra 2013) (Chu et al 2013) (Yang et al 2014). The comparison and
the assessment of the aforementioned classes of approaches for renewable en-
ergy forecasting can be found in several comprehensive studies (Jebaraj and
Iniyan 2006) (Kleissl 2013) (Inman et al 2013) (Lauret et al 2015) (Pedro and
Coimbra 2012) (Hong et al 2016), whereas (Zhang et al 2015a) focuses on the
assessment of metrics for solar power forecasting.

However, most of the existing approaches ignore the spatial information of
the plants, even when it is easily accessible: they mainly generate forecasting
models that do not consider sites’ proximity (or even work on single plants).
In this work, we show that this information loss may result in lower predic-
tive capabilities of the models. We propose to learn forecasting models from
data related to multiple plants by leveraging the spatial autocorrelation that
characterizes geophysical phenomena, such as irradiance and cloud coverage.

Several works in the literature consider multiple plants taking into account
spatial autocorrelation (Bacher et al 2009) (Lorenz et al 2008) (Pelland et al
2013) (Bessa et al 2015) (Cavalcante et al 2017) (Tastu et al 2014) (Dowell
and Pinson 2016) (Gneiting et al 2006) (Ceci et al 2017). Specifically, some
works exploit the information of sites in the vicinity. For instance, in (Gneiting
et al 2006), geographically dispersed meteorological observations in the vicinity
of a wind farm are used as off-site predictors. In (Dowell and Pinson 2016),
spatio-temporal dependencies are captured using a sparse parametrization of
VAR models, which retains coefficients linking sites that exhibit spatial co-
dependence and discards those that do not. Similarly, in (Bessa et al 2015),
the authors propose a spatio-temporal model, based on the VAR framework
fitted with Recursive Least Squares and Gradient Boosting. In (Cavalcante
et al 2017), a set of different sparse structures for the VAR model are explored
using the least absolute shrinkage and selection operator (LASSO) framework.
In (Tastu et al 2014), the authors propose a conditional parametric model for
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tracking spatio-temporal dependencies, based on the assumption that the local
forecasting error made at time t at the target location depends on the errors
previously observed at a set of neighboring sites.

On the contrary of these methods, our method considers non-linear de-
pendencies existing between the feature space (weather conditions) and the
target space (observed production), which is not the case with auto-regressive
algorithms that usually train a model exclusively based on the target space.
By exploiting one-day-ahead weather forecasts as independent variables of the
model, it is possible to provide valuable information when weather conditions
are changing over time. This potentially leads to an increased predictive accu-
racy of the model. Methodologically, our method incorporates spatial weight-
ing factors in entropy-based optimization criteria, depending on the pairwise
distance between plants. This allows to explicitly exploit the spatial depen-
dencies between plants during the training phase. In (Ceci et al 2017), the
idea is to use feature construction methods and apply off-the-shelf learning
methods (based on the MSE training criteria) for forecasting. In this paper,
we include the spatial autocorrelation into entropy-based measures for train-
ing models, which has not been done previously. As discussed in the previous
section, the use of entropy-based measures has been motivated by the non-
Gaussian distribution of errors when forecasting wind or photovoltaic power
production.

Concerning entropy-based measures for training models, Information Theo-
retic Learning (ITL), introduced by Principe (Principe and Xu 1999b) (Principe
and Xu 1999a), deals with entropy (as a measure of information content) while
learning models. In renewable energy forecasting, ITL has been used for the
first time on wind parks in Portugal (Bessa et al 2008) (Bessa et al 2009).
Renyi’s entropy (Rényi 1976), integrated with a Parzen windows estimation of
the error distribution (Parzen 1962), has been used in the formulation of three
ITL criteria (minimum entropy, maximum correntropy and the combination
of both) for training neural networks for wind power prediction. When com-
paring the MSE criterion with the entropy-based criteria, the results showed
that adopting entropy, instead of MSE, as a performance criterion leads to
better predictions (in terms of higher frequency of errors close to zero and
insensitivity to outliers). However, as discussed before, in the literature there
is no approach which takes into account spatial autocorrelation while learn-
ing neural networks with entropy-based criteria. Moreover, while the use of
entropy-based measures has already been investigated in the field of wind
power forecasting, there is no study that has employed such measures in the
field of PV power forecasting.

Another related research field to this topic is that of data mining methods
which take spatial autocorrelation into account. Initial studies in this field are
based on the SAR model (spatial autoregressive), defined as:

êi = ρ

N∑
j=1

wijej + εi i = 1, . . . , N, (1)



6 Michelangelo Ceci et al.

where N is the number of training observations, ej = Yj − Y is the prediction
error for the average, wij represents the spatial proximity between i and j,
ρ expresses the spatial dependence, and εi is the error that follows a normal
distribution.

For the specific task of learning predictive models, (Zhao and Li 2011)
have proposed a decision tree learning algorithm that replaces a traditional
entropy-based measure with the “spatial entropy” (Li and Claramunt 2006).
This measure evaluates the dispersion of the entropy over the neighborhoods.
Decision trees are also used in (Rinzivillo and Turini 2007) where, however,
the spatial entropy is computed for each example as the weighted information
gain of overlapping examples.

For the regression task, a well-known way to take spatial autocorrelation
into account is GWR (Geographically Weighted Regression) (Fotheringham
et al 2003). In GWR, a linear regression model is associated to each point
(u, v). In this way, the weighting of an example is not a constant, but depends
on (u, v). Formally:

y(u, v) = α0(u, v) +
∑
k

αk(u, v)xk(u, v) + ε(u,v), (2)

where αk(u, v) is estimated from measurements close to (u, v).
The idea of local models which use autocorrelation is also used in Kriging

(Bogorny et al 2006), where an optimal linear interpolation method is used to
estimate the response values y(u, v) at each site (u, v). Linear interpolation
takes into account: a structural component, which represents a constant trend
(average), a random component (spatially correlated), and noise. Finally, in
(Ceci and Appice 2006), the authors propose a spatial associative classifier that
simultaneously learns spatial association rules and a classifier (which exploits
association rules). For regression, (Malerba et al 2005) presents a regression
method that captures both global and local spatial effects of the predictive
attributes in the learning phase.

3 Method

In this section, we present our approach for online learning of ANNs to fore-
cast one-day ahead renewable energy production. However, before providing
technical details, we check the preconditions for the application of the MSE
criteria, that is, the Gaussian distribution of the prediction errors. Afterwards,
we present the entropy measures that consider spatial autocorrelation and, fi-
nally, we present the online learning algorithm.

3.1 Entropy-based measures in renewable power prediction: preconditions

In (Bessa et al 2009), the authors motivated the use of entropy-based mea-
sures for training ANNs in the context of wind power forecasting with the
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non-Gaussian distribution of the wind speed error. In particular, the authors
considered wind speed predictions for one wind park (gathered from the NWP
MM5 metereological mesoscale wind speed/direction model) for the year 2005
against real wind speed values measured by the metering station at the wind
park. Then, they performed a Kolmogorov-Smirnov test, which rejected the
null hypothesis of Gaussian distribution of the wind speed prediction error.

For photovoltaic data, we followed the same approach. In particular, we
considered a real world photovoltaic dataset and computed two prediction
errors: one obtained by considering the irradiance observed by the sensors
against the irradiance predicted by the NWP PVGIS1 model and another
obtained considering the irradiance observed by the sensors against the av-
erage historical irradiance observed by the sensors at the same hour of the
same month of the same year. Moreover, we computed the power produc-
tion prediction error, obtained using ANNs (we used the algorithm RPROP+:
http://www.heatonresearch.com/encog/).The prediction error histograms
compared to normal distributions are shown in Fig. 1. We then performed
the Kolmogorov-Smirnov normality tests and all the tests rejected the null
hypothesis of Gaussian distribution of the irradiance and the power prediction
error, with very high significance (p-value < 0.0001). As it can be seen from
the figures, the distributions involved in our work are skewed, flatter than the
Gaussian distribution and characterized by very high frequency of errors close
to zero. This motivated the investigation of entropy-based measures in the
context of photovoltaic data, as a potential way to improve the predictions of
the power produced by the plants.

3.2 Entropy with Spatial Autocorrelation

The basic approach in a training procedure (when learning from examples)
is to find a mapper/model between the output and input variables by opti-
mizing the parameters of some learning algorithm based on some performance
criterion. For example, when training ANNs, in each iteration, we adjust their
weights based on a performance criterion that is some kind of estimation of the
prediction error. Fig. 2 illustrates the generic training procedure of an ANN.

The performance criteria considered in this paper, as in (Bessa et al 2009),
are the three ITL criteria, defined as follows:

– Criterion 1: Minimum error entropy (MEE) - the fundamental ITL cri-
terion that minimizes the entropy, which is equivalent to maximizing the
information potential V (Principe and Xu 1999b) (Principe and Xu 1999a)
(Bessa et al 2009):

MEE(ε)⇔ maximizeV = maximize
1

N2

N∑
i=1

N∑
j=1

G(εi − εj , 2σ2), (3)

1 http://re.jrc.ec.europa.eu/pvgis/

http://www.heatonresearch.com/encog/
http://re.jrc.ec.europa.eu/pvgis/
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(a) (b)

(c)

Fig. 1: Prediction error histograms and normal distribution (curve): (a) irradi-
ance sensors vs. PVGIS, (b) irradiance sensors vs. average historical irradiance
sensor data, (c) actual power vs. predicted power using ANNs.

Fig. 2: Basic training procedure of an Artificial Neural Network

where εi is the error of sample i, εj is the error of sample j, G is a Gaussian
kernel function, N is the number of data points and σ is the kernel size.

– Criterion 2: Maximum correntropy (MCC) – an approximation criterion
in terms of an entropy concept based on a similarity measure, called cor-
rentropy (Barbounis and Theocharis 2007):

MCC(ε)⇔ maximize
1

N

N∑
i=1

G(εi, σ
2). (4)
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– Criterion 3: Minimum error entropy with fiducial points (MEEF) – a
compromise between minimizing entropy and maximizing correntropy:

MEEF (ε)⇔ maximize

[
γ

1

N

N∑
i=1

G(εi, σ
2)+(1−γ)

1

N2

N∑
j=1

N∑
i=1

G(εj−εi, 2σ2)

]
,

(5)
where γ is a weighting constant between 0 and 1.

Criterion 1 is based on Renyi’s entropy definition and on a representation of
the error pdf by the Parzen window method (Parzen 1962). When combining
Renyi’s entropy definition with an estimate of a pdf by the Parzen window
method, it has been shown that the practical evaluation of the entropy can
be done using the information potential of the dataset, by simply calculating
the Gaussian function values of the vector distances between pairs of samples
(Principe and Xu 1999b,a). This, according to (Erdogmus et al 2002) and
(Bessa et al 2009), implicates that the information potential Vk+1 at time
k + 1 of the error can be iteratively estimated, according to Equation 6. This
formula takes into account a Parzen-Window Density Estimation over the time
dimension. In this way, when we have a new observation, the error of the neural
network is computed and added to a time window with L errors of previous
predictions. Formally, the formula can be written as:

Vk+1 = (1− λ) · Vk +
λ

L

k∑
i=k−L+1

G(εi − εk+1, 2σ
2), (6)

where L is the size of a the Parzen window P , λ is the forgetting factor with
values between 0 and 1, and G is a Gaussian kernel function with a variance
2σ2. This approach guarantees that a single window of L most recent errors
is taken into account for the minimization of the MEE. The consideration of
the Parzen window, in principle, provides additional (historical) information
to be used during minimization and, consequently, makes predictions more
robust to overfitting. Minimization is based on the classical gradient descent
approach.

In our method, we follow the same principle when exploiting spatial in-
formation. In particular, we modify the MEE criterion by adopting a kernel
function that, in pairwise evaluation of examples, smooths the contribution of
examples to be considered in the model by weighting their vicinity.

MEE(ε)⇔ maximize 1
|P |

∑
p∈P

1

N2

N∑
i=1

N∑
j=1

1

|N(p)|
·
∑

q∈N(p)

(
1−

dist(p, q)

maxDist(P )

)
G(ε

q
i − ε

q
j , 2σ

2
).

(7)

In this formula,N is the number of time points, P is the set of plants,N(p) ⊂ P
is the set of the neighbourhood plants2 of the plant p, εpi is the error for the

2 In our formulation, the neighborhood N(p) includes the considered current plant p, i.e.
p ∈ N(p).
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plant p at the i-th time point, dist is the distance between two plants, and
maxDist(P ) is:

maxDist(P ) = max
p,q∈P,p6=q

dist(p, q). (8)

Consequently, the update of the information potential is:

VMEE
k+1 = (1− λ)VMEE

k + 1
|P |

∑
p∈P

λ

L

k∑
i=k−L+1

[
1

|N(p)|
∑

q∈N(p)

(
1− dist(p, q)

maxDist(P )

)
G(εqi − e

q
k+1, 2σ

2)

]
.

(9)
It is noteworthy that Equation (9) is similar to Equation (6), with a cor-

rection of the kernel, which allows us to give priority to the maximization of
the information potential of spatial areas with a high density of plants and,
consequently, reduce the importance of the maximization of the information
potential for low density spatial areas. The rationale is that, in this way, we
are able to make smoother predictions in high-density regions. The purpose
is to make the method more robust to overfitting and, consequently, increase
the predictive capabilities of the system.

Concerning Criterion 2, we can modify the optimization defined in formula
(4), by considering the spatial component:

MCC(ε)⇔ maximize 1
|P |

∑
p∈P

1

N

N∑
i=1

1

|N(p)|
∑

q∈N(p)

(
1− dist(p, q)

maxDist(P )

)
G(εqi , σ

2).

(10)
This formula, like formula (7), provides a correction of the kernel, which

allows us to give priority to the maximization of the information potential
of spatial areas with a high density of plants and, consequently, reduce the
importance of the maximization of the information potential for low density
spatial areas. Moreover, we can easily make formula (10) incremental and
exploit the Parzen window to provide additional (historical) information to be
used during optimization:

VMCC
k+1 = (1− λ)VMCC

k + 1
|P |

∑
p∈P

λ

L

k∑
i=k−L+1

[
1

|N(p)|
∑

q∈N(p)

(
1− dist(p, q)

maxDist(P )

)
G(εqk+1, σ

2)

]
.

(11)
Similarly to criteria 1 and 2, also criterion 3 can be modified, in order to

take into account spatial information:

MEEF (ε)⇔ maximize
1

|P |
∑
p∈P

1

N

N∑
i=1

1

|N(p)|
∑

q∈N(p)

(
1− dist(p, q)

maxDist(P )

)
·

·

[
γG(εqi , σ

2) + (1− γ)
1

N

N∑
j=1

G(εqj − ε
q
i , 2σ

2)

]
. (12)
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We can also make formula (12) incremental and exploit the Parzen window:

VMEEF
k+1 = (1− λ) · VMEEF

k + 1
|P |

∑
p∈P

λ

L

k∑
i=k−L+1

[
1

|N(p)|
·

·
∑

q∈N(p)

(
1−

dist(p, q)

maxDist(P )

)(
γ ·G(εqk+1, σ

2) + (1− γ) ·G(εqi − ε
q
k+1, 2σ

2)

)]
. (13)

In all the formulae that consider spatial autocorrelation (formulae (9), (11)

and (13)), we use the same definition of spatial proximity:
(

1− dist(p,q)
maxDist(P )

)
.

The benefit of such a function is two-fold: (1) it avoids the problem of choosing
a distance threshold to identify which plants are included in the local neigh-
bourhoods, which usually implies discarding the contribution of plants that
are more distant than the specified threshold; (2) for a specified plant, each
neighbour’s contribution is weighted proportionally to its closeness with re-
spect to the specified plant under analysis, avoiding the näıve solution that
gives an equal weight to each neighbour.

From the point of view of the algorithm, in order to properly address the
spatial component in formulae (9), (11) and (13), |P | Parzen windows (of size
L) are employed, one for each plant p in the network. This choice adds a cost
in space which is minor, considering that we only have to group examples
per site. However, the management of the neighbourhoods in the algorithm
adds a cost in time, which is linear with the number of plants in the network.
This problem can be mitigated by pre-computing the values of the G function
to be used in the inner loop. In the case of correntropy, the computation
of VMCC

k+1 requires additional time, introduced by the Parzen window: this
represents a real difference in terms of time complexity with respect to the
original computation of the maximum correntropy.

From a more theoretical viewpoint, it is important to verify that the cost
function satisfies the differentiability requirement for gradient descent learn-
ing. In this respect, it has been demonstrated that entropy and correntropy
based cost functions are differentiable and they can be easily wrapped into the
backpropagation framework to train any nonlinear system (in particular neu-
ral networks) with gradient descent learning (Principe 2010). Since the cost
functions proposed in this paper adapt the original formulations of entropy
and correntropy with a spatial smoothing factor that considers the pairwise
distance between plants, it follows that the differentiability property is still
guaranteed for the cost functions proposed, since the weighted sum of differ-
entiable functions is still a differentiable function. The same applies for the
MEEF criterion.

3.3 On-line learning algorithm

The training methodology follows a self-adaptive online training approach.
For training purposes, the neural network is initialized with random weights
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and the training data are passed through the network (feed-forward phase).
For each training example, the difference between the predicted value and the
expected value is stored in the specific Parzen window of the plant p, from
which the example originated. Then, the training phase takes place (at the
end of each day), according to the standard backpropagation scheme, and
the error in the network is calculated and updated, according to one of the
chosen criteria: MEE (3), MCC (4), MEEF (5), MEESA (7), MCCSA (10),
MEEFSA (12).

For each learning session (at the end of each day), the optimization process
iterates until the error starts to grow for two consecutive epochs, or until a
maximum number of epochs is reached (800 in our experiments). Comparing
our approach with that implemented in (Bessa et al 2009), instead of using
a validation set chosen independently from the training set, we evaluate the
behavior of the error only on the training set. In fact, the use of a fixed
validation set (e.g. a fixed month or period in the year, as done in (Bessa et al
2009)), leads to the problem of overfitting the model to the climatic conditions
of that specific period. Moreover, the validation set has to be independent of
the training set, but this leads to the problem of removing useful data for
training.

The topology of the ANN is composed of three layers: an input layer with
In = |I| neurons, defined by the cardinality |I| of input features (such as
temperature, irradiance, windspeed, humidity, . . . ); an output layer with On =
1 (single power prediction at a specified hour for the next day); and a hidden
layer with Hn = 2

3 .(In + On) neurons, as suggested in (Sheela and Deepa
2013). For training ANNs, we use the Encog implementation of the Resilient
Propagation (RPROP+) algorithm (Heaton 2015). We use RPROP+ because
it has been already successfully applied in renewable energy prediction (Bessa
et al 2009) (Ceci et al 2017). We have modified the RPROP+ implementation
to include, besides the MSE cost function, also MEE (3), MCC (4), MEEF
(5), MEESA (7), MCCSA (10) and MEEFSA (12).

3.4 Automated parameters’ tuning

As discussed before, our method requires to set up the value for the following
input parameters:

– L: Parzen window size
– λ: Forgetting factor
– σ: Kernel size.

The value of L could be set depending on the specific execution time con-
straints and available data. However, the optimal values for λ and σ are often
difficult to obtain. In order to take into account this aspect, we have intro-
duced a function which, given two sets LV and KS of possible values for λ
and σ (respectively), automatically performs a grid search over the different
configurations, exploiting historical data during the training phase.
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For this purpose, the training set is partitioned into learning set and val-
idation set. Given a single day in the validation set, a model is learned on
previous training days and evaluated on the validation day. This process is
repeated ten times for each pair (λ, σ) ∈ LV ×KS and the average forecast-
ing error is collected. The effect is equivalent to a cross-validation scheme for
parameter tuning, but coherent with the data stream setting, which considers
only data observed in the past as training data. The function returns the list
of pairs (λ, σ), involved in the grid search, ordered in ascending order by the
average forecasting error obtained (e.g., Root Mean Squared Error (RMSE)),
as well as the best configuration (λB , σB) found.

In conclusion, this procedure is a valuable addition to the method and
provides the ability to identify the best parameter configuration for a specific
dataset with no manual effort. It is particularly helpful in real application
scenarios, when no prior knowledge about the data characteristics of a specific
solar farm is available.

4 Experiments

In this section, we first provide a description of the datasets and clarify the
objective of the learning task. Then, we describe the experimental setting, and
report and discuss the results.

4.1 Data description

In our experiments, we used two datasets: a real world PV dataset, named PV
Italy, collected by an Italian company (which operates in the renewable energy
sector), and a simulated dataset concerning PV production in the USA, pro-
vided by the National Renewable Energy Innovation (NREL)3, and henceforth
referred to as PV NREL.

The input features considered are the geographic coordinates of the plants
(lat, lon) and the weather variables temperature, irradiance, pressure, wind-
speed, wind bearing, humidity, dew point and cloud cover. They are queried
from Forecast.io4 for both datasets, whereas irradiance is queried from PVGIS5

only in the case of PV Italy. Data are collected for each plant, for each hour
and for each day.

The independent (target) variable yi,j,h is the power production of the i-th
plant at time h (hour) of the day j. The task is to predict the power production
for each hour of the next day (24 values are predicted in the same prediction
step).

3 http://www.nrel.gov/
4 http://forecast.io/
5 http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php

http://www.nrel.gov/
http://forecast.io/
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php
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Fig. 3: Geographical distribution of the plants in the PV Italy dataset

4.2 Datasets

PV Italy data are generated every 15 minutes by sensors on 17 plants in
Italy. (Fig. 3). The time period spans from January 1st, 2012 to May 4th,
2014. The original dataset contains many missing values for the features con-
sidered, due to sensor failures or communication problems, and many outliers
(values outside the range defined, according to the 4-sigma “rule-of-thumb”:
[x−4·σx; X+4·σx]). To solve these problems, we followed the same data prepro-
cessing steps described in (Ceci et al 2017), according to which we substituted
missing values and outliers with the average of the same feature observed for
the same month of the same year at the same hour.

PV NREL dataset originally consists of simulated PV data for 6000 plants
for the year 2006. We performed adaptive cluster sampling (Thompson 1990)
over the original dataset, by first selecting 16 states with the highest Global
Horizontal Irradiation (GHI): Alabama, Arizona, Arkansas, California, Col-
orado, Florida, Georgia, Kansas, Louisiana, Mississipi, Nevada, New Mexico,
Oklahoma, South Carolina, Texas and Utah. Then, from each state, we se-
lected 3 PV plants, resulting in PV data from 48 plants (see Fig. 4). The data
was not affected by outliers or missing values.

The description of the datasets is summarized in Table 1. All the datasets
and the system are available for replication and future research purposes
as a permanent repository on Zenodo: http://doi.org/10.5281/zenodo.

1242854 (Ceci et al 2018).

http://doi.org/10.5281/zenodo.1242854
http://doi.org/10.5281/zenodo.1242854
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Table 1: Brief description of the datasets

Dataset Plants Days Rows
PV Italy
PV NREL

17
48

857 (731 training, 126 test)
365 (240 training, 125 test)

264689
331968

Fig. 4: Example of plant selection by cluster sampling for the PV NREL
dataset.

4.3 Experimental settings

For the evaluation, we performed a random selection of days, to split data
between training set (85% of days) and testing set (15% of days). For each
dataset, the experiments were run five times, with different random splits into
training and test days. The learning strategy was iterative - for each testing
day, the model was learned on a fixed size window consisting of the data of
the previous days and tested on the considered day (example(s) unseen by the
trained model). After testing, the testing day becomes part of the training set.
This testing-retraining procedure was repeated for each testing day and the
error contributed to the reported result. For each run, the final error result was
obtained by averaging the daily errors made by the neural network (which, in
turn, were obtained by averaging the hourly errors).

For all the experiments, we investigated different values for the Kernel
size σ2, the forgetting factor λ and the Parzen window size L. The aim is to
evaluate the sensitivity of the method with respect to the different values of
these parameters. In particular, the following values were tested according to a
grid analysis (i.e., all the combinations of possible values have been analyzed):
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– Kernel size σ2: 0.4, 0.5, 0.6;
– Forgetting factor λ: 0.04, 0.08, 0.12;
– Parzen window size L: 1000, 2000, 4000.

Moreover, we investigated two additional settings: NoSpatial – the latitude
and longitude of the plant are not taken as input atributes, and LatLon – the
latitude and longitude of the plant are taken as input attributes (in addition
to spatial information implicitly included in the adopted criteria).

For the evaluation of the results, we consider Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE) and Normalized Percentage Absolute
Error (NPAE) as indicators of the predictive performance. The results for a
particular training criterion are denoted with the name of the criterion, i.e.,
MCC, MEE and MEEF , while for the same criteria, when considering also
spatial autocorrelation in the entropy measure, the results are accompanied
additionally with the abbreviation SA, i.e MCCSA, MEESA and MEEFSA.
For each criterion, we also make a performance comparison (in terms of per-
centage of improvement) with respect to the results obtained by the ARIMA
(AutoRegressive Integrated Moving Average) model. ARIMA models are de-
signed for time series analyses and for forecasting tasks (Box et al 2015). For
this reason, we consider the ARIMA model as a good baseline. For evalua-
tion, we used the Spark-TS library6 to implement the ARIMA predictive task,
under the same experimental conditions used for the ANNs. A utility func-
tion has been applied to perform a model search that automatically selects
the best ARIMA model, based on AIC (Akaike Information Criterion) values.
The process is similar to the one described in (Hyndman et al 2007).

We also compared the results obtained by our method with respect to
the elastic net regularized linear regression algorithm (Zou and Hastie 2005)
and the isotonic regression algorithm (Barlow and Brunk 1972). In particular,
the former overcomes the limitations of the LASSO (Least Absolute Shrink-
age and Selection Operator) method (which penalty function has shown to
present different drawbacks (Zou and Hastie 2005)) by combining the L1 and
L2 penalties of the LASSO and ridge methods, whereas the latter is capable
of fitting a non-decreasing free-form line to a set of points, without making
assumptions about the linearity of the target function. For both regression
algorithms, we adopted the implementations available in the Spark MLlib 7.
Since the algorithm for elastic net regularized linear regression requires, as
input, a regularization parameter, we performed a grid search considering the
values {0.15, 0.3, 0.45} and reported the best result obtained. No parameter is
required for the Spark implementation of the isotonic regression algorithm.

Finally, we also compared our algorithms with the well-known SVR (Sup-
port Vector Regression) algorithm, also using different kernels (linear, poly-
nomial, sigmoid). In this case, we used the implementations available in the
Weka toolkit8.

6 https://github.com/sryza/sparktimeseries
7 https://spark.apache.org/docs/latest/mllib-guide.html
8 http://www.cs.waikato.ac.nz/ml/weka/

https://github.com/sryza/spark−timeseries
https://spark.apache.org/docs/latest/mllib-guide.html
http://www.cs.waikato.ac.nz/ml/weka/
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In order to statistically evaluate our approach, we compared the RMSE
obtained with different configurations and different algorithms by considering
two statistical tests: i) a Friedman test combined with Nemenyi post-hoc tests
and ii) a Signed Rank Wilcoxon test.

In the former, we followed the suggestions reported in (Demšar 2006) and
we plotted the graphs which summarize the results. This test is used to com-
pare:

– the different entropy-based criteria,
– the effect of different values of kernel size,
– the effect of different values of λ,
– the effect of the size of the Parzen windows,
– all the methods considered in this study.

The latter is used to compare the spatial autocorrelation variant with the
corresponding variant which does not consider spatial autocorrelation.

4.4 Results and discussion

The results for the PV Italy and PV NREL datasets, for the two settings
and for all training criteria, are reported in Tables 2 and 3. The improve-
ment of the best performing results for each Kernel size and forgetting fac-
tor λ are highlighted in bold. The results refer to executions with Parzen
window size L = 4000, which is the best value for this parameter accord-
ing to Fig. 6 (which is commented later). Additional results with other val-
ues for the Parzen window size can be found at the following link: https:
//zenodo.org/record/1242854#.WvArJ9OFMyk. At first inspection, the re-
sults show that the best overall performances for each dataset are always
obtained by considering spatial autocorrelation: MEESA is the best criterion
for PV Italy (with Impr. = 17.71%) and MCCSA is the best criterion for PV
NREL (with Impr. = 40.70%).

To provide statistical support to this conclusion, we performed the Wilcoxon
Signed Rank Test in order to compare each criterion with its counterpart which
uses spatial autocorrelation. The results are reported in Table 4. The (∗) sym-
bol marks the comparisons in which the newly proposed entropy-based mea-
sures, that consider spatial autocorrelation, outperform the baseline entropy-
based measures, i.e., entropy measures without considering spatial autocor-
relation. The results show that the entropy measures that consider spatial
autocorrelation always outperform the corresponding baseline entropy mea-
sures. Moreover, for the MCC and the MEEF criteria, the difference in per-
formance is statistically significant. The important conclusion we can draw
from these results is that spatial autocorrelation provides important informa-
tion that allow the algorithm to improve its prediction capabilities. This is
obtained by smoothing the contribution of examples to be considered in the
model by weighting their vicinity. Moreover, this conclusion is valid indepen-
dently of the parameter configuration adopted.

https://zenodo.org/record/1242854#.WvArJ9OFMyk
https://zenodo.org/record/1242854#.WvArJ9OFMyk
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λ 0.04
Kernel Size 0.4 0.5 0.6

RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.%

MCC No Spatial 0.139 0.104 10.356 14.12 0.138 0.103 10.295 14.50 0.137 0.102 10.157 15.31
MCC Lat Lon 0.138 0.103 10.341 14.19 0.140 0.104 10.432 13.45 0.140 0.105 10.483 13.41
MCCSA No Spatial 0.138 0.103 10.311 14.47 0.137 0.102 10.215 15.01 0.138 0.103 10.307 14.63
MCCSA Lat Lon 0.139 0.104 10.372 14.00 0.139 0.104 10.409 13.80 0.139 0.104 10.415 13.78
MEE No Spatial 0.137 0.103 10.281 14.95 0.138 0.103 10.269 14.70 0.136 0.101 10.147 15.47
MEE Lat Lon 0.141 0.105 10.547 12.81 0.143 0.107 10.722 11.64 0.139 0.104 10.358 13.84
MEESA No Spatial 0.138 0.103 10.305 14.52 0.138 0.103 10.291 14.58 0.138 0.102 10.240 14.66
MEESA Lat Lon 0.140 0.105 10.451 13.23 0.138 0.103 10.281 14.44 0.141 0.105 10.523 12.71
MEEF No Spatial 0.137 0.102 10.184 15.30 0.138 0.102 10.160 14.57 0.139 0.103 10.269 13.87
MEEF Lat Lon 0.141 0.105 10.530 12.83 0.139 0.103 10.252 14.08 0.140 0.104 10.358 13.20
MEEFSA No Spatial 0.137 0.102 10.207 15.29 0.138 0.103 10.307 14.36 0.137 0.104 10.372 15.24
MEEFSA Lat Lon 0.139 0.104 10.408 13.65 0.141 0.107 10.716 12.75 0.139 0.106 10.582 13.56

λ 0.08
Kernel Size 0.4 0.5 0.6

RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.%

MCC No Spatial 0.137 0.102 10.197 15.26 0.137 0.102 10.183 15.01 0.138 0.104 10.426 14.29
MCC Lat Lon 0.140 0.105 10.532 13.06 0.140 0.105 10.484 12.94 0.142 0.108 10.760 12.03
MCCSA No Spatial 0.138 0.104 10.380 14.22 0.137 0.102 10.196 15.16 0.137 0.103 10.315 14.81
MCCSA Lat Lon 0.140 0.105 10.548 12.92 0.139 0.103 10.350 13.81 0.140 0.106 10.583 13.11
MEE No Spatial 0.137 0.102 10.211 14.85 0.137 0.102 10.175 14.96 0.137 0.102 10.234 15.09
MEE Lat Lon 0.140 0.105 10.476 13.35 0.140 0.105 10.466 13.45 0.142 0.108 10.839 11.79
MEESA No Spatial 0.138 0.103 10.335 14.35 0.137 0.102 10.183 15.21 0.138 0.104 10.412 14.31
MEESA Lat Lon 0.140 0.105 10.506 13.43 0.138 0.103 10.304 14.19 0.142 0.107 10.728 12.13
MEEF No Spatial 0.139 0.103 10.275 14.00 0.138 0.102 10.151 14.71 0.136 0.100 10.001 15.66
MEEF Lat Lon 0.139 0.103 10.347 13.67 0.140 0.104 10.363 13.37 0.138 0.103 10.284 14.25
MEEFSA No Spatial 0.138 0.103 10.284 14.53 0.136 0.101 10.109 16.01 0.135 0.101 10.089 16.51
MEEFSA Lat Lon 0.140 0.105 10.486 12.98 0.139 0.105 10.459 13.69 0.138 0.105 10.501 14.75

λ 0.12
Kernel Size 0.4 0.5 0.6

RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.%

MCC No Spatial 0.137 0.102 10.196 15.06 0.139 0.104 10.380 13.67 0.138 0.103 10.283 14.39
MCC Lat Lon 0.142 0.106 10.618 12.20 0.140 0.105 10.464 13.20 0.139 0.104 10.405 13.63
MCCSA No Spatial 0.138 0.103 10.303 14.61 0.137 0.102 10.224 14.92 0.139 0.104 10.357 14.05
MCCSA Lat Lon 0.140 0.105 10.530 13.14 0.140 0.105 10.509 13.27 0.140 0.105 10.528 12.96
MEE No Spatial 0.137 0.102 10.227 14.99 0.136 0.101 10.141 15.54 0.136 0.101 10.116 15.63
MEE Lat Lon 0.139 0.104 10.402 13.63 0.141 0.106 10.559 12.56 0.140 0.104 10.448 13.43
MEESA No Spatial 0.140 0.104 10.404 13.51 0.138 0.103 10.252 14.49 0.133 0.100 10.001 17.71
MEESA Lat Lon 0.141 0.106 10.555 12.84 0.140 0.105 10.545 13.00 0.138 0.105 10.461 14.29
MEEF No Spatial 0.139 0.102 10.241 13.99 0.139 0.103 10.277 13.81 0.137 0.102 10.187 15.12
MEEF Lat Lon 0.142 0.107 10.692 11.76 0.139 0.104 10.364 13.64 0.141 0.106 10.555 12.84
MEEFSA No Spatial 0.138 0.103 10.312 14.26 0.136 0.101 10.068 15.62 0.136 0.102 10.194 15.42
MEEFSA Lat Lon 0.139 0.104 10.362 14.13 0.141 0.108 10.778 12.48 0.137 0.105 10.502 14.89

Table 2: Average RMSE, MAE and NPAE (5 runs) for the PV Italy dataset,
with the best performing Parzen window configuration (Parzen window
size=4000). The percentage of improvement (Impr.%) considered is w.r.t. the
ARIMA baseline model in terms of RMSE.

As clarified before, for a wider comparison, we performed Nemenyi tests on
the results for all datasets, considering different training criteria and parameter
settings:

– Training criteria considering spatial autocorrelation (Fig. 5): The test shows
that the MCCSA criterion outperforms MEEFSA, which in turn outper-
forms MEESA. This is in line with results obtained in (Bessa et al 2009),
where the MCC and MEEF criteria achieved better performances than
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λ 0.04
Kernel Size 0.4 0.5 0.6

RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.%

MCC No Spatial 0.176 0.139 13.949 31.93 0.174 0.138 13.847 32.55 0.172 0.135 13.541 33.45
MCC Lat Lon 0.160 0.123 12.321 38.06 0.160 0.124 12.448 37.94 0.154 0.118 11.799 40.17
MCCSA No Spatial 0.174 0.138 13.799 32.55 0.173 0.137 13.653 32.99 0.176 0.140 14.016 31.70
MCCSA Lat Lon 0.156 0.121 12.096 39.40 0.153 0.117 11.744 40.70 0.157 0.120 12.020 39.28
MEE No Spatial 0.174 0.138 13.819 32.51 0.174 0.138 13.769 32.59 0.176 0.140 14.007 31.84
MEE Lat Lon 0.160 0.123 12.317 38.14 0.158 0.122 12.248 38.70 0.156 0.121 12.075 39.40
MEESA No Spatial 0.177 0.142 14.151 31.41 0.174 0.138 13.818 32.49 0.173 0.137 13.696 33.00
MEESA Lat Lon 0.153 0.118 11.777 40.69 0.155 0.119 11.903 40.10 0.156 0.120 12.003 39.69
MEEF No Spatial 0.176 0.139 13.890 31.90 0.174 0.137 13.735 32.59 0.177 0.141 14.120 31.49
MEEF Lat Lon 0.160 0.125 12.453 37.87 0.155 0.120 11.985 39.78 0.155 0.119 11.906 40.09
MEEFSA No Spatial 0.174 0.137 13.701 32.60 0.175 0.139 13.890 32.07 0.176 0.138 13.774 31.66
MEEFSA Lat Lon 0.159 0.123 12.329 38.55 0.153 0.118 11.790 40.70 0.161 0.122 12.177 37.62

λ 0.08
Kernel Size 0.4 0.5 0.6

RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.%

MCC No Spatial 0.176 0.139 13.936 31.96 0.175 0.139 13.888 32.20 0.174 0.138 13.751 32.51
MCC Lat Lon 0.158 0.122 12.180 38.97 0.154 0.118 11.773 40.46 0.156 0.119 11.918 39.62
MCCSA No Spatial 0.173 0.138 13.757 32.81 0.174 0.138 13.780 32.62 0.174 0.138 13.847 32.56
MCCSA Lat Lon 0.156 0.120 11.980 39.64 0.155 0.119 11.945 39.87 0.158 0.122 12.183 38.89
MEE No Spatial 0.176 0.139 13.934 31.78 0.175 0.138 13.804 32.35 0.177 0.141 14.111 31.56
MEE Lat Lon 0.157 0.121 12.097 39.19 0.157 0.121 12.080 39.27 0.153 0.117 11.721 40.67
MEESA No Spatial 0.176 0.139 13.928 31.77 0.173 0.137 13.734 32.82 0.175 0.139 13.874 32.19
MEESA Lat Lon 0.157 0.121 12.091 39.35 0.158 0.122 12.191 38.81 0.158 0.122 12.184 38.80
MEEF No Spatial 0.175 0.139 13.931 32.06 0.174 0.138 13.824 32.47 0.173 0.136 13.635 33.10
MEEF Lat Lon 0.158 0.122 12.192 38.66 0.161 0.125 12.519 37.68 0.158 0.122 12.175 38.99
MEEFSA No Spatial 0.178 0.141 14.089 31.18 0.173 0.137 13.728 32.89 0.176 0.140 13.979 31.92
MEEFSA Lat Lon 0.157 0.122 12.154 39.19 0.160 0.123 12.344 37.93 0.158 0.123 12.252 38.68

λ 0.12
Kernel Size 0.4 0.5 0.6

RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.% RMSE MAE NPAE Impr.%

MCC No Spatial 0.172 0.135 13.550 33.38 0.176 0.139 13.910 31.89 0.175 0.139 13.910 32.04
MCC Lat Lon 0.159 0.123 12.341 38.36 0.159 0.123 12.319 38.25 0.155 0.120 11.966 39.78
MCCSA No Spatial 0.177 0.141 14.084 31.35 0.174 0.138 13.826 32.42 0.175 0.140 13.965 32.10
MCCSA Lat Lon 0.154 0.118 11.779 40.45 0.157 0.120 12.039 39.34 0.158 0.122 12.196 38.69
MEE No Spatial 0.175 0.138 13.829 32.30 0.174 0.138 13.769 32.57 0.174 0.138 13.789 32.61
MEE Lat Lon 0.156 0.119 11.916 39.71 0.159 0.122 12.236 38.49 0.158 0.121 12.141 38.98
MEESA No Spatial 0.175 0.139 13.855 32.21 0.177 0.140 14.019 31.54 0.177 0.140 14.048 31.62
MEESA Lat Lon 0.161 0.125 12.516 37.81 0.157 0.122 12.159 39.05 0.159 0.122 12.242 38.32
MEEF No Spatial 0.174 0.138 13.761 32.71 0.175 0.139 13.946 32.04 0.175 0.140 13.959 32.05
MEEF Lat Lon 0.158 0.122 12.179 38.79 0.154 0.118 11.768 40.30 0.156 0.120 12.022 39.50
MEEFSA No Spatial 0.174 0.138 13.756 32.78 0.177 0.140 14.003 31.52 0.175 0.138 13.794 32.37
MEEFSA Lat Lon 0.159 0.123 12.251 38.58 0.157 0.121 12.055 39.20 0.158 0.122 12.195 38.63

Table 3: Average RMSE, MAE and NPAE (5 runs) for PV NREL. For de-
scription and configurations see caption of Table 2

MCCSA vs MCC MEESA vs MEE MEEFSA vs MEEF
0.018(∗) 0.181(∗) 0.004(∗)

Table 4: Wilcoxon Signed Rank Tests (all datasets). Legend: (∗) indicates that
the spatial autocorrelation variant outperforms its non-spatial autocorrelation
counterpart. Bold: improvement is statistically significant at α = 0.05.



20 Michelangelo Ceci et al.

MEE, although not exploiting spatial autocorrelation. This is also in line
with the results presented in (Liu et al 2007), where the MCC criteria
has shown better performances than MEE in the regression setting. The
theoretical motivation of this behavior is that correntropy is insensitive to
the peak in the noise PDF tail, effectively handling the bulk of residuals
around the origin (Liu et al 2007).

– Kernel Size σ2 (Fig. 5): The selection of larger values for the Kernel size is
favorable. The test shows that the results with Kernel size = 0.6 slightly
outperform the results with Kernel Size = 0.5, which in turn outperform
the results with Kernel Size = 0.4.

– Forgetting factor λ (Fig. 6): The results with λ = 0.04 and λ = 0.08
outperform the results with = 0.12. There is no statistically significant
difference between the results with λ = 0.04 and λ = 0.08. This result
shows how much we should weight the recent examples.

– Parzen window size L (Fig. 6): The results show that performance is in-
creasingly better when using a wider Parzen window. In particular, results
with Parzen window size = 4000 are better than the ones obtained with
Parzen window size = 2000 and Parzen window size = 1000. This con-
firms that the consideration of a Parzen window is always beneficial.

This analysis is confirmed by the results obtained by the automated pa-
rameters’ tuning procedure, which identifies the following best configurations
for Parzen window size = 4000:

– PV Italy: λB = 0.08, σB = 0.6
– PV NREL: λB = 0.04, σB = 0.5.

In our analysis, we also compare our algorithms MCCSA, MEESA and
MEEFSA with competitor algorithms. RMSE values are reported in Table
5, where the elastic net regularized linear regression algorithm is identified as
LinReg and the isotonic regression algorithm is identified as IsoReg. It can be
noticed that, among the competitors, SV RPoly is the best performing method
for both datasets: average RMSE=0.141 for PV Italy and 0.166 for PV NREL.

Fig. 5: Nemenyi test for different training criteria (left) and different values
for the Kernel size σ2 (right), considering all datasets. The best criteria and
Kernel size values are positioned on the right.
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Average RMSE performance of all algorithms
Method PV Italy PV NREL
LinReg 0.165 0.230
IsoReg 0.204 0.265
SV RSig. 0.175 0.208
SV RLin. 0.170 0.179
SV RPoly 0.141 0.166
ARIMA 0.168 0.251
MCCSA 0.139 (±0.002) 0.165 (±0.010)
MEESA 0.139 (±0.002) 0.166 (±0.010)
MEEFSA 0.138 (±0.002) 0.167 (±0.009)

Table 5: Average RMSE for all the algorithms with the best performing
Parzen window configuration (Parzen window size=4000). Results of MCCSA,
MEESA andMEEFSA are averaged over all the configurations and their stan-
dard deviation is reported in parenthesis. Bold: best performing algorithm for
each dataset.

However, if we see the RMSE results obtained by the proposed algorithms,
it is clear that they outperform all the competitors of a great margin.

In Fig. 7, we compare all the methods and variants using a Nemenyi
test. From this visual representation of the ranks, we can see that the over-
all best performing model for all datasets is ANN with MCCSA followed by
MEEFSA and MEESA. If we consider the performances of other competitor
algorithms, SV RPoly exhibits worse performances than the criteria which use
spatial autocorrelation, and similar performances with respect to the criteria
without spatial autocorrelation (MCC, MEE, MEEF ). Other algorithms
(IsoReg, ARIMA, LinReg, SV RLin. and SV RSig.) show statistically signifi-
cantly worse performances. We also observe that all the criteria which consider
spatial autocorrelation are ranked better than their counterparts (this confirms
the statistical test reported in Fig. 4).

In order to inspect the forecasting error obtained with the proposed method
at a finer level of granularity, we have also represented the results obtained
with the best performing criterion (MCCSA), in different time frames of the

Fig. 6: Nemenyi test for different values of the forgetting factor λ (left) and the
Parzen window size L (right), considering all datasets. The best configurations
are positioned on the right.
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Fig. 7: Nemenyi test considering all models and all window sizes. The best
configurations are positioned on the right.

day (Fig. 8, 10) and with increasing time horizons (cumulative RMSE), up to
one-day-ahead (Fig. 9, 11). This brings additional insights on the impact of our
learning criteria for different lead-times. In particular, it can be observed that
the most challenging hours of the day, in which RMSE is higher than 0.2, are
included in the range between 08:00 and 13:00 for the PV Italy dataset, and in
the range between 11:00 and 16:00 for the PV NREL dataset. This is normal
considering the fact that in central hours of the day the energy production is
higher and, obviously, the prediction is (relatively) more error-prone.

A better analysis, reported in Figures 12 and 13, shows the accuracy of
the models in terms of the coefficient of determination (R2) over different
time frames of the day. These results are obtained as (one minus) the squared
ratio between the RMSE of the best performing training criterion (MCCSA)
and the RMSE of a baseline method, which predicts one-day-ahead energy
production as the average production observed in the training data (average).
The graphs show that our method is more helpful in the central hours of
the day, when the production may vary significantly and can be significantly
different from the simple average. This behaviour is completely different from
what was observed in Cavalcante et al (2017) for wind power forecasting. The
reason is that in wind power forecasting there is always some contiguity from
one hour to the next hours, whereas for PV energy production, nightly hours
introduce a strong discontinuity in the produced energy.

Figures 14 and 15 help to better understand this phenomenon. In these
figures, we report the error reduction in percentage, observed in different time
frames of the day. The results are obtained considering the relative change
in percentage between the RMSE obtained with MCCSA and the RMSE
obtained by predictions based on historical average. They confirm that the
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Fig. 8: Average forecasting error (RMSE) in different time frames of the day,
at a three-hour granularity for the PV Italy dataset. Results are obtained with
the MCCSA training criterion.

Fig. 9: Average forecasting error (RMSE) with increasing time horizons (cu-
mulative), up to one-day ahead for the PV Italy dataset. Results are obtained
with the MCCSA training criterion.

biggest improvement is obtained during the central hours of the day. The rea-
son is that the power produced increases during the hours featured by high
irradiance. Therefore, the power production during these hours is challenging
to predict using a baseline model, which has been trained over historical data
and assumes that 1) the weather conditions remain close to the average the
following day and 2) there is no spatial autocorrelation. In contrast, the base-
line model is more likely to be accurate during the initial and final hours of the
day, when spatial autocorrelation is less important due to reduced irradiance.
The results depicted in Figures 8, 9, 10, 11, 12, 13, 14 and 15 are averaged over
different configurations of λ and σ and using a Parzen window of size 4000.
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Fig. 10: Average forecasting error (RMSE) in different time frames of the day,
at a three-hour granularity for the PV NREL dataset. Results are obtained
with the MCCSA training criterion.

Fig. 11: Average forecasting error (RMSE) with increasing time horizons (cu-
mulative), up to one-day ahead for the PV NREL dataset. Results are obtained
with the MCCSA training criterion.

Finally, we present a scalability analysis obtained with increasing values
of the Parzen window size, considering the best performing training criterion.
The results in terms of RMSE are reported in Figures 16 and 17, whereas.
the results in terms of execution time are reported in Fig. 18. It can be ob-
served that the best value of RMSE has been obtained with a Parzen window
size of 8000 for both datasets: the RMSE obtained with a Parzen window
size wider than 8000 examples, tends to become stable or increase. Moreover,
the execution time required to perform training with wider Parzen window
sizes, increases significantly. Therefore, we can conclude that the best trade-
off between the accuracy of the model and the training time required, can be
obtained with Parzen window sizes ≤ 8000 examples.
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Fig. 12: Coefficient of determination (R squared) over different time frames
of the day, for the PV Italy dataset. Results are obtained as the proportion
between the RMSE of the best performing training criterion (MCCSA) and
the RMSE of a baseline average predictor.

Fig. 13: Coefficient of determination (R squared) over different time frames
of the day for the PV NREL dataset. Results are obtained as the proportion
between the RMSE of the best performing training criterion (MCCSA) and
the RMSE of a baseline average predictor.

5 Conclusions

This paper targets several issues in sensor network data mining, in particular,
in mining renewable energy data. To deal with the concept drift of physical
properties, such as wind speed and solar irradiation, it works in an online adap-
tive learning setting. Next, motivated by the non-Gaussian error distribution
when forecasting renewable energy production, it investigates several entropy-
based criteria for online adaptive training of ANNs: MCC, MEE and MEEF .
Moreover, it also compares the afore-mentioned baseline entropy-based criteria
with their variants that consider also the spatial information of the data. Such
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Fig. 14: Percentage of error reduction in different times frames of the day for
the PV Italy dataset. Results are obtained considering the RMSE of the best
performing training criterion (MCCSA) and the RMSE of a baseline average
predictor.

Fig. 15: Percentage of error reduction in different times frames of the day, for
the PV Italy dataset. Results are obtained considering the RMSE of the best
performing training criterion (MCCSA) and the RMSE of a baseline average
predictor.

variants, that consider spatial autocorrelation, to the best of our knowledge,
are introduced for the first time in the present study.

The empirical evaluation was performed on two photovoltaic datasets which
differ from each other in their size (number of examples), the number of plants,
the characteristics of the geographical distribution of the plants, etc. Results
show that different training criteria are shown to perform better on different
datasets. However, in general, they also show that using entropy-based crite-
ria that consider spatial autocorrelation leads to improvement over those that
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Fig. 16: Average forecasting error (RMSE) with increasing values of the Parzen
window size for the PV Italy dataset. Results are obtained with the best
performing training criterion (MCCSA).

Fig. 17: Average forecasting error (RMSE) with increasing values of the Parzen
window size, for the PV NREL dataset. Results are obtained with the best
performing training criterion (MCCSA). (MCCSA).

do not consider spatial autocorrelation. The actual improvement will always
depend on the spatial and other characteristics of the plant.
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