
UNIVERSITY OF LJUBLJANA

FACULTY OF MATHEMATICS AND PHYSICS

Mathematics – 3rd cycle

Jure Slak

ADAPTIVE RBF-FD METHOD

PhD Thesis

Advisor: dr. Gregor Kosec

Ljubljana, 2020

UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 3. stopnja

Jure Slak

ADAPTIVNA RBF-FD METODA

Doktorska disertacija

Mentor: dr. Gregor Kosec

Ljubljana, 2020

Acknowledgments

I would like to acknowledge the financial support given by the ARRS research core fund-

ing No. P2-0095 and the Young Researcher program PR-08346.

I would like to thank my mentor Gregor Kosec for his support and guidance during

the past years, for many fruitful discussions about the research topic and otherwise, and

for giving me the freedom to work independently, yet being there for me when needed.

I have learned a lot of things from him, and will continue to do so.

Thanks are extended to Roman, the former head of the Parallel and Distributed Sys-

tems Laboratory, to all other members of the laboratory, and the E6 department of the

Jožef Stefan Institute, for creating a supporting and empowering environment.

I wish to also thank the PhD committee members, Stéphane Bordas, Bor Plestenjak

and Emil Žagar, for carefully reading the thesis, correcting many mistakes and suggest-

ing a lot of improvements, raising the quality of this work.

For enabling me to focus on the research and not worry about much else, I have to

thank my parents and my sister, who supported me throughout my studies, and have

started and reinforced my interest in math and science.

I would also like to thank my schoolmates and friends, Anja, Vesna and Žiga, for

many lunches full of debates, rants and exchanges of various experiences.

Finally, I would like to extend my sincerest thanks to my girlfriend Ines, who stood

by my side and shared my troubles, always being supporting and caring and helping

me in any way she could. This includes reading the first final drafts of the thesis and

without her, it would not have been in the state it is now.

v

Zahvala

Za začetek bi rad omenil finančno podporo ARRS temeljnega programa P2-0095 in pro-

grama mladih raziskovalcev PR-08346.

Svojemu mentorju, Gregorju Koscu, bi se rad zahvalil za podporo in nasvete med

preteklimi leti, za veliko plodnih pogovorov o raziskovalnih problemih in drugih stvareh,

ter za dano svobodo, potrebno za samostojno delo. Od njega sem se veliko naučil in

upam, da se bom še marsičesa.

Zahvaljujem se tudi Romanu Trobcu, kot takratnemu vodji Laboratorija za vzpore-

dno in porazdeljeno računanje, vsem drugim članom laboratorija in odseka E6 Instituta

Jožefa Stefana, za prijetno in vzpodbudno delovno okolje.

Rad bi se zahvalil tudi članom komisije, Stéphanu Bordasu, Boru Plestenjaku in Emilu

Žagarju za natančno branje disertacije, zamnogo popravkov in pripomb, ki so nedvomno

izboljšale kvaliteto dela.

Da sem lahko praktično nemoteno študiral in mi ni bilo treba skrbeti za mnogo dru-

gega, se zahvaljujem svojim staršem in sestri, ki so me podpirali tekom študija ter že od

malega vzpodbujali moje zanimanje za znanost in matematiko.

Rad bi se zahvalil svojim sošolcem in prijateljem, posebej Anji, Vesni in Žigi, s ka-

terimi smo imeli mnogo kosil, napolnjenih z debatami, skupinskim pritoževanjem in

izmenjavo različnih izkušenj.

Nazadnje bi se rad zahvalil še mojemu dekletu, Ines, ki mi je stala ob strani, me

podpirala, si z mano delila vse težave in mi pomagala po svojih najboljših močeh. To

vključuje tudi branje prvih končnih osnutkov disertacije in brez nje delo gotovo ne bi

bilo v stanju, kot je sedaj.

vii

Abstract

Radial-basis-function-generated finite differences (RBF-FD) is a method for solving par-

tial differential equations (PDEs), which is developed into a fully automatic adaptive me-

thod during the course of this work. RBF-FD is a strong form meshless method, which

means that it does not require a mesh of the problem domain, but uses only a set of nodes

as the basis for the discretization. A large part of this PhD is dedicated to algorithms for

meshless node generation. A new algorithm for construction of variable density mesh-

less discretizations in arbitrary spatial dimensions is developed. It can generate points

in the interior and on the boundary, has provable minimal spacing requirements, can

generate N points in O(N logN) time and the resulting node sets are compatible with

RBF-FD. This algorithm is used as the basis of a newly proposed h-adaptive procedure
for elliptic problems. The behavior of the procedure is analyzed on classical 2D and 3D

adaptive Poisson problems. Furthermore, several contact problems from linear elastic-

ity are solved, demonstrating successful adaptive derefinement and refinement, with the

densest parts of the discretization being more than a million times denser than the coars-

est. Finally, the software developed for this work and broader research is presented and

published online as an open source library for solving PDEs with strong form methods.

Math. Subj. Class. (2010): 65N50, 65N99, 65D99, 65Y20, 68Q25, 65-04, 74B05, 65D25,
65D05, 65Y05

Keywords: meshfree methods, meshless methods, radial basis functions, partial differ-

ential equations, adaptivity, refinement, node generation, finite differences, scattered

data

ix

Povzetek

Končne diference, generirane z radialnimi baznimi funkcijami (RBF-FD), so metoda za

numerično reševanje parcialnih diferencialnih enačb (PDE), ki jo v delu razvijemo v av-

tomatsko adaptivno metodo. RBF-FD spada med brezmrežne metode, ki enačbe rešujejo

v močni obliki. Brezmrežnost pomeni, da metoda ne potrebuje diskretizacije domene

problema v obliki mreže, temveč lahko za diskreten izračun uporabi le množico ustre-

zno razporejenih točk. Velik del doktorata je posvečen algoritmom za generiranje dis-

kretizacijskih točk. Razvit je tudi nov algoritem za konstrukcijo diskretizacij v poljub-

nih dimenzijah s prostorsko spremenljivo diskretizacijsko razdaljo. Algoritem je prime-

ren za generiranje točk v notranjosti in na robu domene, dokazano ohranja predpisano

minimalno razdaljo med točkami in potrebuje O(N logN) časa za generiranje N točk.

Konstruirane množice točk so kompatibilne z RBF-FD metodo in posledično algoritem

uporabimo kot osnovo novega postopka za h-adaptivno reševanje eliptičnih problemov.

Obnašanje postopka je analizirano na klasičnih dvo- in tro-dimenzionalnih Poissonovih

problemih. Poleg tega je rešenih tudi več kontaktnih problemov iz linearne elastostatike,

s katerimi pokažemo uspešno goščenje in redčenje diskretizacije, ki se avtomatsko prila-

gaja problemu, pri čemer razmerje med najgostejšimi in najredkejšimi deli diskretizacije

naraste tudi do več milijonov. Na koncu je predstavljena programska oprema, razvita

za to delo in širše raziskave, objavljena pa je tudi na spletu kot odprtokodna knjižnica,

namenjena reševanju PDE v močni obliki z brezmrežnimi metodami.

Math. Subj. Class. (2010): 65N50, 65N99, 65D99, 65Y20, 68Q25, 65-04, 74B05, 65D25,
65D05, 65Y05

Ključne besede: brezmrežne metode, radialne bazne funkcije, parcialne diferencialne

enačbe, adaptivnost, zgoščevanje, generiranje točk, končne diference, razpršeni podatki

xi

Contents

Introduction 1
Thesis outline . 2

Literature . 2

Contributions . 3

Hardware and software . 4

1 Function approximation on scattered data 5
1.1 Mairhuber-Curtis theorem . 6

1.2 Positive definite kernels and reproducing kernel Hilbert spaces 8

1.3 Methods for scattered data approximation 11

1.3.1 Sheppard’s interpolation . 12

1.3.2 Moving least squares . 13

1.3.3 Radial basis functions . 16

1.4 Error estimates and condition numbers for kernel based interpolation . . 27

1.4.1 Basic quality measures for a node set 27

1.4.2 Error estimates . 30

1.4.3 Stability . 33

2 RBF-FD and similar methods 35
2.1 A brief review of the history of meshless methods 35

2.1.1 Meshless methods and radial basis functions 36

2.2 Approximation of partial differential operators 37

2.2.1 Using scattered data interpolation 38

2.2.2 Using the method of undefined coefficients 39

2.2.3 RBF-FD with augmentation . 39

2.2.4 Least-squares based methods . 41

2.2.5 Properties of stencil weights . 42

2.2.6 Computational aspects . 45

2.2.7 Examples . 46

2.3 PDE discretization . 49

2.3.1 Explicit evaluation . 50

2.3.2 Implicit solution . 51

2.3.3 Ghost nodes . 52

2.3.4 Special cases . 53

xiii

xiv Contents

3 Domain discretization 55
3.1 Basic definitions and state of the art . 56

3.1.1 Existing algorithms for interior node generation 57

3.1.2 Requirements for node generation algorithms 59

3.2 Node generation in domain interiors . 61

3.2.1 Algorithm . 62

3.2.2 Time and space complexity . 64

3.2.3 Minimal spacing requirements 67

3.3 Node generation on parametric surfaces 69

3.3.1 Algorithm . 70

3.3.2 Possible generalizations . 72

3.3.3 Time and space complexity . 72

3.3.4 Minimal spacing requirements 73

3.4 Analysis of node generation algorithms 76

3.4.1 Quasi-uniformity . 77

3.4.2 Variable density and local regularity 77

3.4.3 Time complexity and execution time 82

3.4.4 Miscellaneous aspects . 84

3.4.5 Behavior of RBF-FD on generated nodes 86

3.5 Stencil selection . 89

4 Adaptivity 91
4.1 Types of refinement . 92

4.2 Error indicators . 94

4.3 Adaptive solution procedure for elliptic problems 95

4.3.1 Spacing function modification . 97

4.3.2 Minimal adaptive example . 98

4.4 Classical problems . 100

4.4.1 L-shape domain . 101

4.4.2 Fichera’s corner . 104

4.4.3 Analysis of adaptivity parameters 105

4.5 Contact problems . 107

4.5.1 Linear elasticity . 107

4.5.2 Disk under stress . 109

4.5.3 3D point contact . 113

4.5.4 Hertzian contact . 116

4.5.5 Fretting fatigue contact . 121

5 Implementation 125
5.1 Minimal working example . 127

5.2 Library modules . 129

5.2.1 Domains . 129

5.2.2 Approximations . 129

5.2.3 Operators . 131

5.3 Benchmarks . 133

Conclusions and future work 137

Contents xv

Bibliography 156

Razširjeni povzetek v slovenščini 157
Uvod . 157

Organizacija dela . 158

Literatura . 158

Doprinos . 158

Programska in strojna oprema . 159

S.1 Aproksimacija funkcij na razpršenih podatkih 160

S.2 RBF-FD in podobne metode . 163

S.3 Diskretizacija domene . 166

S.4 Adaptivnost . 168

S.5 Implementacija . 172

Zaključki in nadaljnje delo . 172

List of Figures

1.1 Scattered nodes and corresponding function values 5

1.2 Linear interpolation over a triangulation 6

1.3 A configuration used in the proof of the Mairhuber-Curtis theorem . . . 8

1.4 Example of a kernel-generated data-dependent basis 8

1.5 Variants of Sheppard’s interpolation . 13

1.6 Variants of least squares approximation 16

1.7 RBF interpolant with positive definite RBFs 18

1.8 RBF interpolant with conditionally positive definite RBFs 24

1.9 Fill and separation distance of a node set 28

2.1 Approximation of Laplacian with constant and scaled shape parameter . 48

3.1 Meshless, FEM and FDM discretization 55

3.2 Progress of the node generation algorithm 63

3.3 Different options for candidate generation 64

3.4 Illustration of parametric surface node placing 70

3.5 Discretization of a Möbius strip . 72

3.6 Example domains in 2D and 3D . 76

3.7 Quasi uniformity of interior node generation algorithms 78

3.8 Quasi uniformity of combined proposed node generation algorithms . . 79

3.9 Quasi uniformity of variable density node sets 80

3.10 Node sets with variable density in 2D and 3D 81

3.11 Histograms of normalized distances to nearest neighbors 82

3.12 Execution time for node set generation 83

3.13 Combined execution time of boundary and interior fill algorithm 84

3.14 Sensitivity of RBF-FD to node positioning 87

3.15 Differentiation matrices and their spectra 88

4.1 Errors with different orders of monomials augmentation 93

4.2 Construction of the new spacing function 98

4.3 Demonstration of the adaptive procedure 100

4.4 Adaptation of nodal spacing to the second derivative 101

4.5 L-shape problem . 102

4.6 Errors of numerical solution to the L-shape problem 102

4.7 Adaptive solving of L-shape problem . 103

4.8 Fichera’s corner . 104

4.9 Errors of numerical solution to the Fichera problem 105

xvii

xviii List of Figures

4.10 Behavior of the adaptive procedure with respect to αr 106

4.11 Disk under diametrical compression . 110

4.12 Errors under uniform and adaptive refinement when solving the com-

pressed disk problem . 111

4.13 Computed stress profiles during adaptive solving of the compressed disk

problem . 112

4.14 Errors and number of nodes during the adaptive iteration when solving

the compressed disk problem . 113

4.15 Error field and nodal distributions in the initial and final iteration while

solving the compressed disk problem . 114

4.16 3D point contact problem . 115

4.17 Errors and solution of the 3D point contact problem 115

4.18 Von Mises stress along the body diagonal in the 3D contact problem . . . 115

4.19 Hertzian contact problem . 117

4.20 Errors and node counts during the adaptive iteration for the solution of

the Hertzian contact problem . 118

4.21 Normal stress profiles in contact area during adaptive iteration for the

solution of Hertzian contact problem . 119

4.22 Comparison between the manual and adaptively obtained density 120

4.23 Schema of a fretting fatigue laboratory test 121

4.24 Computational domain with boundary conditions and surface tractions

with stick and slip zones . 122

4.25 Surface traction σxx compared with two other FEM solutions 124

4.26 Error of the adaptively obtained surface traction σxx 124

5.1 The idea of coordinate free numerics . 125

5.2 Solutions of a steady state advection-diffusion equation in 1D, 2D and 3D 127

5.3 Execution time and accuracy of FreeFem++ and Medusa 134

5.4 Execution times of different stages of computation 135

S.1 Razpršene točke in funkcijske vrednosti 160

S.2 Krovna in ločitvena razdalja množice točk 163

S.3 Delovanje algoritma za generiranje točk 167

S.4 Občutljivost RBF-FD na postavitev točk 167

S.5 Konstrukcija nove funkcije razmika . 169

S.6 Hertzov kontaktni problem . 170

S.7 Napake in število točk med adaptivnim reševanjem Hertzevega kontak-

tnega problema . 170

S.8 Profili normalne napetosti v okolici kontakta med adaptivnim reševa-

njem Hertzovega kontaktnega problema 171

List of Tables

1.1 Accuracy and stability bounds for commonly used RBFs 34

3.1 Statistics of relative distances to nearest neighbors 83

3.2 Medians and deviations of the number of nodes and errors 87

4.1 Stencil sizes used for higher order augmentation 92

4.2 Number of nodes and errors in the demo adaptive iteration 101

4.3 Errors and node counts during the adaptive iteration for the solution of

the 3D point contact problem . 116

4.4 Errors and detailed node counts during the adaptive iteration for the

solution of the Hertzian contact problem 120

4.5 Node counts during the adaptive iteration for the solution of the fretting

fatigue contact problem . 123

xix

List of Algorithms

3.1 Node generation in domain interiors . 65

3.2 Randomized candidate generation . 66

3.3 Node generation on parametric surfaces 71

4.1 Adaptive solution procedure . 96

5.1 Computation of stencil weights . 130

xxi

Introduction

Numerical solving of Partial Differential Equations (PDEs) began in 1911, when Richard-

son used the now classical finite difference approximation to compute stresses in a

dam [Ric11]. From the beginning the practical applications drove the development of

numerical methods for solving PDEs. Geometrical constraints of regular grids were too

severe, and the Finite ElementMethod (FEM)was developed in the 1940s [Cou43; Hre41],

which uses a division of the domain into simpler parts as the basis of the discretization

and solves the problem in its weak form. It rose in popularity in the following decades

along with the openly available software implementations. Another benefit of the me-

thod are its solid mathematical foundations, provided by Strang and Fix [SF73] or Ciar-

let and Raviart [CR73] in 1973, along with later developed error and stability analyses.

Other popular methods, such as the Finite Volume Method, also use similar mesh-based

discretizations and the weak form of the problem. However, mesh generation has always

been a difficult problem. It is often themost difficult part of the computational procedure,

that often requires manual intervention and cannot be fully automated, especially in 3D.

Problems with concentrated solution gradients, such as local stress concentrations in

elastostatics, require finer meshes in critical areas. Furthermore, the areas where a fine

mesh is required are not necessarily known beforehand and dynamic adaptation of the

mesh might be desired, which can further complicate the mesh generation.

As a response to this difficulties, numerical methods have been developed that do not

require a mesh for discretization of the domain. Some only use a mesh on the boundary,

such as the Boundary Element Method (BEM), and others only use a set of nodes in the

domain interior and on the boundary. Such methods were named meshless or mesh-free
methods. The connectivity relation between nodes that defines a mesh is substituted

with a list of local neighboring nodes. Despite the simplicity of the meshless discretiza-

tion when compared to mesh-based discretization, the points still cannot be positioned

arbitrarily and must not be too close nor leave too large parts of the domain uncovered,

since this might cause instabilities or lack of convergence. One aim of this thesis is to

provide an efficient node generator that produces variable density node sets for irregular

domains in arbitrary dimensions.

A recently popularized meshless method is the radial-basis-function-generated finite

differences (RBF-FD) method, a generalization of the finite differences method to scat-

tered nodes that shows good error and stability behavior. A downside of many meshless

methods, including RBF-FD, is a lack of solid mathematical foundations, such as global

error estimates and stability criteria. Nonetheless, RBF-FD has been increasingly used in

practical applications. The other goal of this thesis is to explore its refinement potential,

and develop a fully automatic adaptive solution procedure, which adapts the nodal dis-

tribution to the problem requirements using the developed node generation algorithm.

1

2 Introduction

Thesis outline
The thesis presents the necessary tools for fully automatic adaptivity in order: it first

discusses function approximation on scattered data, then local strong form approxima-

tions of differential operators, then the construction of domain discretizations and fi-

nally, adaptivity. Specifically:

• Chapter 1 discusses function approximation on scattered data, which is a prereq-

uisite for all meshless methods considered in this work, and for adaptivity itself.

It provides a summary of the main methods used for scattered data approxima-

tion with the focus on RBF interpolation. The non-singularity theorems for RBF

interpolation with Gaussians, Multiquadrics, Inverse multiquadrics and polyhar-

monics are proven. We also review error and stability results to help with the

understanding of the behavior of local operator approximations.

• Chapter 2 introduces the RBF-FDmethod for solving PDEs. It is put in comparison

with least-squares based methods and some illustrative examples are discussed, to

address the problems commonly faced when using RBFs with shape parameters.

This helps us guide the decision towards using monomials augmented polyhar-

monic splines.

• Chapter 3 defines the domain discretization and the procedure to construct it. The

algorithms for point placing in the domain interior and on the boundary are pre-

sented and compared with two other algorithms. We prove several properties of

the algorithms and the produced discretizations and analyze other important prop-

erties empirically. This chapter lays the groundwork for adaptivity.

• Chapter 4 presents the fully automatic adaptive procedure for elliptic problems.

The behavior of the procedure is analyzed on classical problems and then the pro-

cedure is applied to contact problems.

• Chapter 5 gives a short overview of the implementation and the Medusa library,

including the reasoning for some of the design choices. It is not meant to serve

as technical documentation (that is the role of http://e6.ijs.si/medusa/docs/)
but as a description of ideas that made the creation of the library possible, and the

importance of having it available.

Literature
The main sources for the main topics in this work are as follows:

• Scattered data approximation topics were mainly sourced from [Wen04].

• The content regarding RBF-FD and similar methods was sourced mainly from the

book [FF15a] and review papers [Ngu+08] and [FF15c].

• Domain discretization algorithms that we compare our algorithms with are pub-

lished in papers [FF15b] and [SKF18].

http://e6.ijs.si/medusa/docs/

Contributions 3

• Linear elasticity topics are mainly sourced from [Sla12] with additional material

from [Sad14]

• Contact problems were mainly sourced from the book [WD00].

Contributions
Chapters 3 and 4 present the original work of the author, Jure Slak. The Medusa library,

presented in Chapter 5 is the work of Gregor Kosec and Jure Slak along with other con-

tributors to the code and related materials as listed in [SK19e].

Parts of this work have been published in the following papers, or are included in

the following pre-prints.

[SK19b] J. Slak and G. Kosec, Refined meshless local strong form solution of Cauchy–
Navier equation on an irregular domain, Engineering Analysis with Bound-

ary Elements 100 : 3–13, Mar. 2019, doi: 10.1016/j.enganabound.2018.
01.001 (cited on pp. 93, 118, 121).

[SK19c] J. Slak andG. Kosec,Adaptive radial basis function-generated finite differences
method for contact problems, International Journal for Numerical Methods in

Engineering 119 (7) : 661–686, Aug. 2019, doi: 10.1002/nme.6067 (cited on

pp. 93, 94, 107).

[SK19d] J. Slak and G. Kosec, On generation of node distributions for meshless PDE
discretizations, SIAM Journal on Scientific Computing 41 (5) :A3202–A3229,
Oct. 2019, doi: 10.1137/18M1231456 (cited on pp. 59, 61, 62, 85, 88).

[SK19e] J. Slak and G. Kosec, Medusa: A C++ library for solving PDEs using strong
form mesh-free methods, arXiv:1912.13282, Dec. 2019, url: https://arxiv.
org/abs/1912.13282 (cited on pp. 3, 158).

[DKS20] U. Duh, G. Kosec, and J. Slak, Fast variable density node generation on para-
metric surfaces with application to mesh-free methods, arXiv:2005.08767, May

2020, url: https://arxiv.org/abs/2005.08767 (cited on p. 70).

The present author also co-authored the following papers and pre-prints.

[JSK19] M. Jančič, J. Slak, and G. Kosec, Analysis of high order dimension independent
RBF-FD solution of Poisson’s equation, arXiv:1909.01126, Sept. 2019, url: htt
ps://arxiv.org/abs/1909.01126 (cited on p. 92).

[Kos+19] G. Kosec, J. Slak, M. Depolli, R. Trobec, K. Pereira, S. Tomar, T. Jacquemin,

S. P. A. Bordas, and M. A. Wahab, Weak and strong from meshless methods
for linear elastic problem under fretting contact conditions, Tribology Inter-

national 138 : 392–402, Oct. 2019, doi: 10.1016/j.triboint.2019.05.041
(cited on pp. 121, 123).

[Mak+19] M. Maksić, V. Djurica, A. Souvent, J. Slak, M. Depolli, and G. Kosec, Cooling
of overhead power lines due to the natural convection, International Journal of
Electrical Power & Energy Systems 113 : 333–343, Dec. 2019, doi: 10.1016/
j.ijepes.2019.05.005.

https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1002/nme.6067
https://doi.org/10.1137/18M1231456
https://arxiv.org/abs/1912.13282
https://arxiv.org/abs/1912.13282
https://arxiv.org/abs/2005.08767
https://arxiv.org/abs/1909.01126
https://arxiv.org/abs/1909.01126
https://doi.org/10.1016/j.triboint.2019.05.041
https://doi.org/10.1016/j.ijepes.2019.05.005
https://doi.org/10.1016/j.ijepes.2019.05.005

4 Introduction

[Moč+20] J. Močnik Berljavac, P. K. Mishra, J. Slak, and G. Kosec, RBF-FD analysis of 2D
time-domain acoustic wave propagation in heterogeneous Earth’s subsurface,
arXiv:2001.01597, Jan. 2020, url: https://arxiv.org/abs/2001.01597.

Additionally, the author presented the following conference papers at international

conferences [SK16], [SK18b], [SK18a], [SK18d], [KS18c], [KS18b], [SK19b], [SSK19a],

[KS19b], [KS19a], [SK20] and coauthored the following conference papers: [KS18a],

[MSK19], [SK18c], [SSK19b], [DKS19], [Duh+20], [JSK20].

Hardware and software
All numerical simulations were performed on a laptop computer with Intel® Core™
i7-7700HQ CPU @ 2.80GHz processor and 16GB of DDR4 SODIMM memory with

2400MT/s transfer rate.

All described procedures were implemented in C++17 [ISO17] and compiled with

g++ (Arch Linux 9.3.0-1) 9.3.0 on Linux kernel 4.19.121-1-MANJARO. By default,

flags

-std=c++17 -fopenmp -O3 -Wall -Wextra -Wfloat-conversion
-Wno-deprecated-copy -Wno-maybe-uninitialized -pedantic -DNDEBUG

were used. Additionally, Eigen was used with the Intel®Math Kernel library (MKL)

[Int18] with the Pardiso sparse linear solver. The cmake build system (v. 3.17.2) was

used to build the executables. The software for all analyses in this work, for producing

figures and .tex sources as well are available at: https://gitlab.com/jureslak/phd.
The software makes use of the Medusa library (v. 3e7409f64), which is available at

https://gitlab.com/e62Lab/medusa. The Medusa library in turn includes the Eigen
library for matrix manipulation (version 3.3.7 with manually added multi-indexing sup-

port) [GJ+10], nanoflann library for k-d trees [BR14], RapidXml [Kal11] for handling

XML files, HDF5 software suite for handling HDF5 files [Fol+11] and [Fos+11] for out-

put formatting.

Most post-processing was done withMatlab [Mat17], which includes the preparation

of most figures, except for the ones explicitly mentioned below. The external Matlab

package export_fig [Alt20] was extremely helpful with exporting high-quality images.

Drawings in figures 1.3, 3.1, 3.4, 4.11, 4.16, 4.19, 4.23 and 4.24 were created with Inkscape

graphics editor [Ink20].

https://arxiv.org/abs/2001.01597
https://gitlab.com/jureslak/phd
https://gitlab.com/e62Lab/medusa

Chapter 1

Function approximation on scattered
data

The problem of function interpolation on scattered data is formulated as follows: given

data sites or nodes X = {x1, . . . ,xn} ⊂ Rd
and function values ui = u(xi), construct a

function û, such that û(xi) ≈ ui. An example of such setup is shown in Figure 1.1. The

data sitesX are assumed to be scattered, i.e., having no regular structure. If that were not
the case, and the data sites were distributed, for example, in a regular grid, approximation

schemes from one-dimensional interpolation can be generalized and applied.

Figure 1.1: An example set of scattered nodes X = {xi = (xi, yi)}45i=1 (left) and their

corresponding function values ui (right). Function values are sampled from a function

uex(x, y) = cos(5x(1− y)) exp(−6 ((x− 0.5)2 + (y − 0.6)2)) + 0.5.

One option is to add some structure to the data sites by e.g. triangulation and then

use triangulation-based interpolation schemes. This option can be inefficient in practice,

and can cause artifacts in the interpolant that originate from the triangulation itself and

not from the data. An example of this is shown in Figure 1.2.

Another option is to extend polynomial interpolation to a multivariate case, but the

Mairhuber-Curtis theorem tells us that there will inevitably be some point configura-

tions, where the interpolation problem is not well-posed. Radial basis function interpo-

lation, first used by Hardy in 1970s [Har71] does not require any additional structure on

5

6 Chapter 1. Function approximation on scattered data

Figure 1.2: The original function uex (left) and the reconstruction û from pairs (xi, ui),
using linear interpolation over the Delaunay triangulation of X (right). The artifacts

from triangulation edges are clearly visible in û.

the nodes. Later, the connection between positive definite kernels and RBF-interpolation

was discovered and many well-posedness theorems for RBF interpolation were proven.

In this chapter, we review the methods for scattered data interpolation with emphasis

on RBF interpolation. First, we review the results of the Mairhuber-Curtis theorem in

Section 1.1, followed by an introduction to positive definite kernels in Section 1.2. In

Section 1.3 we review known methods for scattered approximation that are most com-

monly used with meshless methods, i.e. Sheppard’s interpolation, moving least squares

and RBF interpolation, where we also prove the RBF nonsingularity theorems. Finally,

some error bounds and stability observations for RBF interpolation are given in Sec-

tion 1.4. Further information on RBFs and their usage can be found in the monograph

by Buhmann [Buh03].

1.1 Mairhuber-Curtis theorem
Mairhuber-Curtis theorem deals with generalization of polynomial interpolation from

1-dimensional case to higher-dimensional spaces. Univariate polynomial interpolation

has the property that given data sites x1 < x2 < . . . < xn and their corresponding

function values fi, there exists a unique interpolating polynomial p ∈ Pn−1(R), such
that p(xi) = fi.

This is a desirable property, that motivates the definition of Haar spaces. The fol-

lowing definitions and ideas for the proofs follow [Wen04, p. 19].

Definition 1.1.1 (Haar space). Suppose that Ω ⊂ Rd
contains at least n points. A linear

space V ⊂ C(Ω) of continuous functions is called a Haar space iff for any set of distinct

data sites {x1, . . . ,xn} ⊆ Ω and corresponding function values {f1, . . . fn} ⊆ R there

exists exactly one function p ∈ V , such that p(xi) = fi, for i = 1, . . . , n.

With above definition, we can say that Pn−1(R) is a n-dimensional Haar space for

any Ω ⊆ R with at least n distinct points.

1.1. Mairhuber-Curtis theorem 7

An alternative characterization of Haar spaces is given in the following statement.

Proposition 1.1.2 (Characterization of Haar spaces). Suppose that Ω ⊂ Rd contains at
least n points. Then, V is a Haar space iff for any distinct points {x1, . . . ,xn} ⊆ Ω and
any basis {u1, . . . , un} of V , the determinant of the collocation matrix is nonzero:

det(uj(xi)) ̸= 0. (1.1.1)

Proof. We prove the stated equivalence by proving that det(uj(xi)) ̸= 0 implies that V
is a Haar space and that det(uj(xi)) = 0 implies that V is not a Haar space.

Let the determinant of the collocation matrix be nonzero and let {(xi, fi)} be the

data sites and their corresponding values. Since u1, . . . , un form a basis of V , the sought

function p must be of the form p =
∑︁n

j=1 αjuj . The interpolation conditions

n∑︂
j=1

αjuj(xi) = fi (1.1.2)

form a system of linear equations, whose determinant is nonzero by assumption, and

thus its solution, the coefficients αj , are unique.

Conversely, let the collocation matrix A = [uj(xi)]
n
i,j=1 be singular, which means

that there exists a nonzero vector α in its kernel. Writing Aα = 0 explicitly gives

∀i = 1, . . . , n :
n∑︂

j=1

αjuj(xi) = 0, (1.1.3)

which means that the function p =
∑︁n

j=1 αjuj interpolates values {(xi, 0)}ni=1. But, so

does the zero function, and since α ̸= 0, the interpolant is non-unique and V is not a

Haar space.

The Mairhuber-Curtis theorem deals with existence of Haar spaces in higher spatial

dimensions. The result is famously negative, except in simple situations, and it gives a

hint towards alternative interpolation schemes.

Theorem 1.1.3 (Mairhuber-Curtis). Let d ≥ 2 and suppose that Ω ⊆ Rd contains at least
n points and an interior point. Then there exists no Haar space on Ω of dimension n ≥ 2.

Proof. LetU be any linear subspace ofC(Ω)with basis {u1, . . . , un} andx0 be an interior

point of Ω. Since x0 is an interior point, there exists a radius r, such that B(x0, r) ⊆ Ω.
Because d ≥ 2 and n ≥ 2, we can have the following configuration: let x1(t) and x2(t)
be continuous paths with t ∈ [0, 1], such that x1(0) = x2(1) and x2(0) = x1(1), but are
otherwise disjoint. Additionally, choose distinct points x3, . . .xn that do not lie on any

of the curves x1 or x2. An example of such configuration is shown in Figure 1.3.

Let us consider the determinant of the collocation matrices

D(t) := det([uj(xi(t))]
n
i,j=1). (1.1.4)

The collocation matrices at t = 0 and t = 1 only have the first two rows swapped, and

so D(0) = −D(1) must hold. But, since x1 and x2 are continuous, so is D(t), and by

intermediate value theorem there exists a t∗, such that D(t∗) = 0.
We now have the situation that for distinct points {x1(t

∗),x2(t
∗),x3, . . . ,xn} the

determinant of the collocation matrix is zero, and by the characterization of Haar spaces

(Proposition 1.1.2), U is not a Haar space.

8 Chapter 1. Function approximation on scattered data

Figure 1.3: An example configuration used in the proof of theMairhuber-Curtis theorem.

The consequence of the Mairhuber-Curtis theorem is that any functional space will

always have singular point configurations, when considering multivariate interpolation

(of at least 2 points). The take-away is, as succinctly put by Fasshauer [Fas11, p. 14], that

“The linear function space used for multivariate interpolation should be data-dependent”.
One promising option on how to achieve that is presented in the next section.

1.2 Positive definite kernels and reproducing kernel
Hilbert spaces

A simple approach to data-dependent scattered data interpolation is to use kernel-based

function space, with basis of the form {K(·,x1), . . . ,K(·,xn)}, where K : Ω × Ω → R
is a function, called kernel.

Figure 1.4: Plot of a radial kernel K(x,y) = exp((ε∥x− y∥)2), ε = 1
4
(left) and a node-

dependent basis generated by K (right).

An interpolant constructed on data sites X = {x1, . . . ,xn} with function values fi
from this space would be of the form

p(x) =
n∑︂

j=1

αjK(x,xj) (1.2.1)

1.2. Positive definite kernels and reproducing kernel Hilbert spaces 9

and the interpolation conditions

∀i = 1, . . . , n : p(xi) = fi (1.2.2)

can be assembled in a system of linear equations⎡⎢⎣K(x1,x1) · · · K(x1,xn)
.
.
.

.
.
.

.

.

.

K(xn,x1) · · · K(xn,xn)

⎤⎥⎦
⎡⎢⎣α1

.

.

.

αn

⎤⎥⎦ =

⎡⎢⎣f1...
fn

⎤⎥⎦ , (1.2.3)

compactly written as Kα = f .
An important family of kernels are symmetric positive definite kernels.

Definition 1.2.1 (Symmetric kernel). A kernel K : Ω × Ω → R is called symmetric, iff

K(x,y) = K(y,x) for all x,y ∈ Ω.

Definition 1.2.2 (Positive definite kernel). A symmetric kernelK : Ω×Ω→ R is called

positive definite on Ω iff its associated matrix K = [K(xi,xj)]
n
i,j=1 is positive definite

for any n ∈ N and for any set of distinct points {x1, . . . ,xn} ⊆ Ω.

It follows directly from the definition of positive definite kernels that linear systems

of the form (1.2.3) arising from scattered data interpolation are nonsingular, since the

matrix K is guaranteed to be symmetric and positive definite (thus invertible).

It is important to note that the existence of a basis {K(·,x1), . . . ,K(·,xn)} is not
in contradiction to Mairhuber-Curtis theorem due to its data-dependence. The current

proof of the theorem fails for data dependent bases, because when the points x1 and

x2 are continuously swapped, two columns of the interpolation matrix swap along with

the rows, not causing a sign change in the determinant, making us unable to deduce

anything about the zeros of the determinant of the collocation matrix.

One of the simplest kernels are the radial kernels. These are kernels of the form

K(x,y) = ϕ(∥x− y∥), (1.2.4)

where ϕ : [0,∞)→ R is a univariate function, and ∥·∥ is usually the Euclidean norm. In-

terpolation with these types of kernels is called interpolation with radial basis functions,

and will be considered in more detail later, in Section 1.3.3, along with the characteriza-

tion of functions ϕ which generate positive definite kernels.

Positive definite kernels are strongly tied with reproducing kernel Hilbert spaces, i.e.

Hilbert spaces which posses a reproducing kernel.

Definition 1.2.3 (Reproducing kernel). LetH be a Hilbert space of functions f : Ω→ R.
A kernel K : Ω × Ω → R is called a reproducing kernel for H if functions K(·,y) ∈ H
for all y ∈ Ω and f(y) = ⟨f,K(·,y)⟩ for all f ∈ H and y ∈ Ω.

Proposition 1.2.4 (Uniqueness of reproducing kernels). The reproducing kernel of a
Hilbert space is unique.

Proof. Suppose we have two reproducing kernels,K1 andK2. Since f(y) = ⟨f,K1(·,y)⟩
and f(y) = ⟨f,K2(·,y)⟩, we have

⟨f,K1(·,y)−K2(·,y)⟩ = 0 (1.2.5)

10 Chapter 1. Function approximation on scattered data

for all f ∈ H and y ∈ Ω. Since K1(·,y) ∈ H and K2(·,y) ∈ H, so is K1(·,y)−K2(·,y)
and substituting this nor f in (1.2.5), we obtain ∥K1(·,y) − K2(·,y)∥2 = 0 for all y ∈
Ω.

To understand how reproducing kernels are connected to positive definite kernels,

we will need a connection with the dual space, given by the following characterization.

Proposition 1.2.5 (Characterization of reproducing kernel Hilbert spaces). H has a re-
producing kernel if and only if all the point evaluation functionals are continuous.

Proof. We denote the point evaluation functions at point y ∈ Ω with δy . Using the

reproducing kernel K, we can express δy(f) = ⟨f,K(·,y)⟩. Its continuity follows from

the continuity of the inner product.

Conversely, assume that all point evaluation functions δy are continuous. By Riesz’s

representation theorem, there exists a function ky ∈ H, such that δy(f) = ⟨f, ky⟩ for
all f ∈ Ω. Defining K(x,y) = ky(x) gives the reproducing kernel.

With above characterization, we are equipped to show some of the special features

that reproducing kernels have.

Proposition 1.2.6 (Properties of reproducing kernels). Let H be a real Hilbert space of
functions f : Ω→ R with reproducing kernel K. Then

• K(x,y) = ⟨K(·,x),K(·,y)⟩H = ⟨δx, δy⟩H∗

• K is symmetric, i.e. ∀x,y ∈ Ω: K(x,y) = K(y,x)

• Convergence in norm implies pointwise convergence, i.e. if fn → f in ∥ · ∥H, then
fn(x)→ f(x) for all x ∈ Ω.

Proof. The inner product of δx and δy can be computed using Riesz’ representation map-

pingR : H∗ → H and using the fact thatR(δy) = K(·, y) which was shown in proof of

Proposition 1.2.5:

⟨δx, δy⟩H∗ = ⟨Rδx,Rδy⟩H = ⟨K(·,x),K(·,y)⟩. (1.2.6)

Using the reproducing property of K, we get that

⟨K(·,x),K(·,y)⟩ = K(y,x), (1.2.7)

but, using the symmetry of the inner product we have

⟨K(·,x),K(·,y)⟩ = ⟨K(·,y),K(·,x)⟩ = K(x,y) (1.2.8)

which shows the first and second properties. The third property follows by estimating

|fn(x)− f(x)| = |⟨fn − f,K(·,x)⟩| ≤ ∥fn − f∥∥K(·,x)∥ (1.2.9)

using Cauchy-Schwarz inequality.

Finally, we are able to show that all reproducing kernels are positive semi-definite.

1.3. Methods for scattered data approximation 11

Theorem 1.2.7 (Positive semi-definiteness of reproducing kernels). A reproducing ker-
nel K is positive semi-definite. Additionally, K is positive definite if and only if the point
evaluation functionals are linearly independent.

Proof. We consider the quadratic formαTKαwithK = [K(xi,xj)]
n
i,j=1 for any n ∈ N,

for any set of distinct points {x1, . . . ,xn} ⊆ Ω and for any α ∈ Rn
, α ̸= 0. We know

that K is symmetric from Proposition 1.2.6. To see that it is positive-semi definite, we

observe that

n∑︂
i=1

n∑︂
j=1

αiαjK(xi,xj) =
n∑︂

i=1

n∑︂
j=1

αiαj⟨δxi
, δxj
⟩H∗ (1.2.10)

=

⟨︃ n∑︂
i=1

αiδxi
,

n∑︂
j=1

αjδxj

⟩︃
H∗

(1.2.11)

=

⃦⃦⃦⃦ n∑︂
i=1

αiδxi

⃦⃦⃦⃦2
H∗
≥ 0. (1.2.12)

The final sum can be zero with nonzero α only if δxi
are linearly dependent.

Reproducing kernel Hilbert spaces are very helpful in establishing error bounds or

optimality properties for interpolants. However, in practice, we often start with a pos-

itive definite kernel, without the Hilbert space it belongs to. The construction of the

reproducing kernel Hilbert space is based on the idea that it must include all functions

f =
∑︁n

j=1 αjK(·,xj) and that for such f , if reproducing kernel Hilbert space H would

already be known, it would hold that

∥f∥2H = ⟨f, f⟩H =
n∑︂

i=1

n∑︂
j=1

αiαj⟨K(·,xi),K(·,xj)⟩H =
n∑︂

i=1

n∑︂
j=1

αiαjK(xi,xj).

(1.2.13)

This fact can be used to define HK(Ω) = span{K(·,y); y ∈ Ω} equipped with a

bilinear form(︄
n∑︂

i=1

αiK(·,xi),
n∑︂

j=1

βjK(·,yj)

)︄
K

=
n∑︂

i=1

n∑︂
j=1

αiβjK(xi,yj). (1.2.14)

It can be shown [Wen04, p. 137] that (·, ·)K as defined above defines an inner product

onHK withK as the reproducing kernel. SpaceHK defined this way is not yet a Hilbert

space (it is in fact a pre-Hilbert space), but a suitable completion can be found. This

Hilbert space is then called native space for a given kernel and denoted by NK,X . It will

be useful for proving error bounds for RBF interpolation in Section 1.4.

1.3 Methods for scattered data approximation
We will now review three methods for meshless scattered data interpolation, that are

also commonly used as a foundation for strong form meshless methods: Sheppard’s

interpolation, Moving Least Squares (MLS) and RBF interpolation.

12 Chapter 1. Function approximation on scattered data

1.3.1 Sheppard’s interpolation
Sheppard’s interpolation, sometimes called “inverse distance weighting” is a simple ap-

proach to scattered data interpolation developed by Sheppard in 1960s [She68]. The

function value at a point x is computed as a weighted sum of all the data sites

û(x) =

⎧⎨⎩x, if x ∈ X,∑︁n
i=1wi(x)ui∑︁n
i=1wi(x)

, otherwise,

(1.3.1)

where the weight wi(x) = ∥x − xi∥−p
is given by p-th power of the inverse distance.

An example of this is shown in Figure 1.5. Continuity of û depends on the continuity of

the weights wi. The most common choice for exponents is p = 2, with large values of p
causing the points closer to x to have larger influence than the ones further away and

as p→∞ the scheme degrades into nearest-neighbor interpolation, where every point

is assigned the value of its nearest data site, and the resulting interpolant is a piecewise

constant function on Voronoi cells of X .

Modified Sheppard’s interpolation

When number of data sites n is large, it can become computationally inefficient to com-

pute Sheppard’s interpolant (1.3.1). A modification was soon proposed [GW78] to re-

strict the weighted average only to closest nodes within a given radius R, which is

equivalent to using the weights

wi(x) =

(︃
max(0, R− ∥x− xi∥)

R∥x− xi∥

)︃2

. (1.3.2)

This approximation makes the computation more efficient and the approximant û re-

mains continuous and well defined, provided that the sphere around x of radius R in-

cludes at least one point. Because the sum over the data sites can omit points outside of

radius R, the computation of the interpolant can be sped up using data structures that

support spatial range queries, such as k-d trees. Thus, O(n log n) preprocessing time is

needed, but each evaluation costs O(k), where k is the largest number of data sites in a

sphere of radius R.
The weighted sum in (1.3.1) can also be restricted to k nearest nodes, for k ≪ n. We

will call this k-Sheppard’s approximation. This also allows for a significant improvement

in running time over the classical version, from O(n) to O(k) with O(n log n) prepro-
cessing, where k is now a fixed integer and not a variable number of nodes, making this

version more robust in terms computational requirements. However, the approximant û
is not necessarily continuous along the edges of the Voronoi cells induced by nodes X .

An extreme case of this is 1-Sheppard’s interpolation, which is just nearest neighbor

interpolation. Sheppard’s interpolation and its variants are shown in Figure 1.5.

1.3. Methods for scattered data approximation 13

Figure 1.5: Variants of Sheppard’s interpolation for p = 2 shown on data (xi, ui) taken
from uex. The original function uex is shown in Figure 1.2.

1.3.2 Moving least squares
Moving least squares approximation was developed in 1970s [Lan79] with the main idea

to solve a local weighted least squares problem for every evaluation point x. Using the

same notation as above, the moving least squares approximant û is defined at a point x
as û(x) = p∗(x), where p∗ is a multivariate polynomial which minimizes the weighted

least squares error:

p∗ = argmin
p∈Pm(Rd)

n∑︂
i=1

(ui − p(xi))
2ω(x,xi), (1.3.3)

where p is sought in the space of d-variate polynomials of total degree not greater than

m. The weight function ω is most often of the form ω(x,y) = ωδ(x−y), where ωδ(x) =

14 Chapter 1. Function approximation on scattered data

ω(x/δ) and ω is a compactly supported function ω : R2 → [0,∞). This ensures that the
weight is translation-invariant and only data sites in the ball around x with radius δ
influence the approximant value û(x).

To obtain p∗ in practice, we first have to fix a basis (p1, . . . , pℓ) of Pm(Rd), with
ℓ =

(︁
m+d
d

)︁
. Additionally, when constructing the approximant around a point x, any

data sites xi for which ω(x,xi) = 0 are discarded. Next, we assume that the remaining

data sites (still called X = {x1, . . . ,xn}) form a Pm(Rd)-unisolvent set. Writing the

sought polynomial p∗ as

p∗ =
ℓ∑︂

j=1

α∗
jpj (1.3.4)

and substituting it into (1.3.3), we can write the minimization problem in terms of α∗
as

α∗ = argmin
α∈Rℓ

n∑︂
i=1

e2iω(x,xi), ei = ui −
ℓ∑︂

j=1

αjpj(xi) (1.3.5)

which can be further rewritten into matrix form as

α∗ = argmin
α∈Rℓ

∥e∥2ω, e = Pα− u, (1.3.6)

where P is a n× ℓ matrix

P =

⎡⎢⎣p1(x1) · · · pℓ(x1)
.
.
.

.
.
.

.

.

.

p1(xn) · · · pℓ(xn)

⎤⎥⎦ , (1.3.7)

u is the vector of function values and ω is the vector of weights ω = (ω(x,xi))
n
i=1.

The weighted least squares problem can be rewritten into standard form by intro-

ducing a diagonal matrixW with entriesWii =
√︁
ω(x,xi) and findingα

∗
is reduced to

α∗ = argmin
α∈Rℓ

∥WPα−Wu∥2. (1.3.8)

This system is of full rank, because elements ofW are positive and X was assumed to

be unisolvent. The overdetermined system can be solved either via normal equations

PTW 2Pα∗ = PTW 2u, (1.3.9)

or using QR, SVD or other decompositions to obtain α∗
. After obtaining α∗

, the value

of û can be easily obtained via (1.3.4).

If the coefficients α are computed at a certain point p, the function

p∗(x) =
ℓ∑︂

i=1

α∗
i (p)pi(x) (1.3.10)

is the weighted least squares (WLS) approximant around p and only one overdetermined

system needs to be solved to compute it.

1.3. Methods for scattered data approximation 15

However, if coefficients α are computed for each evaluation point x, the resulting
approximant is called a moving least squares (MLS) approximant, and can be thought of

as an envelope of all WLS approximants. The resulting function is

û(x) =
ℓ∑︂

i=1

αi(x)pi(x). (1.3.11)

The top row of Figure 1.6 shows WLS and MLS approximants of the function uex.
Monomial orderm = 2was used with basis {1, x, y, x2, xy, y2} and a weight ω(x,xi) =
exp(−∥x−xi∥2/σ2)with σ = 0.25. The bottom left plot showsMLSwith the compactly

supported weight ω(x,xi) = ϕ2(∥x− xi∥/δ), ϕ2(s) = (1− 3s2 + 2s3)+. The spikes in
the plot are from the points x where there were less than 6 neighboring data sites and

the least squares system was under-determined. With δ = 0.25 the number of neighbor

included in a circle with radius δ varied from 1 to 14. If a larger δ were chosen, the

function would be smooth.

The complexity of WLS isO(ℓ2n+ℓ3) for computation ofα andO(ℓ) per evaluation.
The complexity of the MLS approximation is O(ℓ2n+ ℓ3) per evaluation, since we need
to solve an over-determined system at each point x. The value ℓ denotes the number of

basis functions and the value n the number of data sites xi, for which ω(x,xi) > 0. This
means that the cost can be significantly reduced by using suchω thatω(x, ·) is compactly

supported. Another option is to always use only k closest nodes, ℓ ≤ k ≤ n, and
we call this approximation k-MLS. This guarantees a good time complexity of O(ℓ2k +
ℓ3), but, similarly to k-Sheppard’s interpolation, there can be discontinuities along the

boundaries of Voronoi cells where the set of closest nodes changes. An example of k-
MLS approximation with basis {1, x, y, x2, xy, y2} and a weight ω(x,xi) = exp(−∥x−
xi∥2/σ2) with σ = 0.25 is shown in the bottom right corner of Figure 1.6.

Special case when ℓ = 1

When least squares approximation includes only a constant polynomial, the solutionα∗

is a scalar and can be found in a closed form. We choose the basis (p1 = 1), which gives

P = [1, . . . , 1] and using the normal equations (1.3.9) we obtain

û(x) = α∗ p1 =

∑︁n
i=1 uiw(x,xi)∑︁n
i=1w(x,xi)

.

This can be recognized as a form similar to Sheppard’s interpolation (1.3.1), but with

different weights. Such û do not in general interpolate values ui, but can be though of

as a moving average of ui.

Special case when ℓ = n

If the size of the basis ℓ is the same as the number of data sites n, the least squares

problem becomes an interpolation problem with conditions û(xi) = ui. The minimal

error norm of 0 is achieved at p∗ that is the solution of Pα∗ = u (note that P is square

n × n). In particular, this means that the weights w(x,xi) are irrelevant and that all

dependency of α∗
on x is gone.

16 Chapter 1. Function approximation on scattered data

Figure 1.6: Variants of least squares approximation shown on data (xi, ui) taken from

uex. The original function uex is shown in Figure 1.2.

1.3.3 Radial basis functions
Radial basis functions offer a simple way to perform data-dependent interpolation on

a set of data sites X = {x1, . . . ,xn} with corresponding function values fi. Given a

function ϕ : [0,∞)→ R, a radial basis function (RBF) centered at c is defined as

ϕc : Rd → R, ϕc(x) = ϕ(∥x− c∥). (1.3.12)

The value c is called the center of the RBF.
The name radial function is justified, since ϕc is radial in the sense of the following

definition.

Definition 1.3.1 (Radial function). A function f : Rn → R is called radial if it is of the
form f(x) = ϕ(∥x∥) for some ϕ : [0,∞)→ R.

1.3. Methods for scattered data approximation 17

Example 1.3.2. Commonly used radial functions include

• Gaussian: ϕ(r) = exp(−(εr)2),

• Multiquadric: ϕ(r) =
√︁

1 + (εr)2),

• Inverse multiquadric: ϕ(r) = (1 + (εr)2)−
1
2 ,

• Polyharmonic: ϕ(r) =

{︄
rk, k odd

rk log r, k even

.

The parameter ε is called a shape parameter and is a positive real number that determines

the shape of the RBF.

Definition 1.3.3 (Radial basis functions). LetX be a set of points inRd
and ϕ : [0,∞)→

R a function. The set of radial functions

{ϕx; x ∈ X} (1.3.13)

is called the set of radial basis functions on the centers X , generated by ϕ.

Remark 1.3.4. The name basis is not always justified, as the functions ϕxi
are not al-

ways linearly independent, as shown in the following example. However, the previously

listed radial basis function do indeed form a basis and satisfy nonsingularity interpola-

tion theorems, justifying the name.

Example 1.3.5. Radial basis functions inR generated by ϕ(r) = r2 on centers {−2,−1,
0, 1, 2} are not linearly independent.

The obtained radial basis functions are ϕ−2(x) = (x + 2)2, ϕ−1(x) = (x + 1)2,
ϕ0 = x2, ϕ1(x) = (x− 1)2 and ϕ2(x) = (x− 2)2. These are 5 polynomials of 2nd degree

and cannot be linearly independent, for example ϕ−2 = −3ϕ0 + 3ϕ−1 + ϕ1 holds.

An RBF interpolant for nodes X is of the form

û(x) =
n∑︂

j=1

αjϕ(∥x− xj∥) (1.3.14)

and the interpolation conditions û(xi) = fi form a system of linear equations⎡⎢⎣ϕ(∥x1 − x1∥) · · · ϕ(∥x1 − xn∥)
.
.
.

.
.
.

.

.

.

ϕ(∥xn − x1∥) · · · ϕ(∥xn − xn∥)

⎤⎥⎦
⎡⎢⎣α1

.

.

.

αn

⎤⎥⎦ =

⎡⎢⎣f1...
fn

⎤⎥⎦ , (1.3.15)

compactly written as Aϕα = f . This can be recognized as a special form of a kernel

interpolant with a radial kernel Kϕ(x,y) = ϕ(∥x−y∥). Figure 1.7 shows interpolation
of uex with Gaussian and inverse multiquadric RBFs.

Naturally, we are interested in the well-posedness of such interpolation problems in

general, which translates to (non)singularity of the interpolation matrix Aϕ. We will in

fact be able to prove that for many functions ϕ, the matrixAϕ even is positive definite. In

fact, most of the remainder of this section is dedicated to the task of proving (conditional)

18 Chapter 1. Function approximation on scattered data

Figure 1.7: RBF interpolant on data (xi, ui) using Gaussians (left) and inverse multiquad-

rics (right).

positive definiteness of the 4 RBF types listed in examples 1.3.2 as well as a famous

characterization of positive definite functions, so that proving positiveness on all Rd
is

reduced to a simple derivative check.

To this end, we first define the notion of a positive definite function.

Definition 1.3.6 (Positive definite function). A function Φ: Rd → C is positive semi-

definite iff the kernel KΦ(x,y) = Φ(x − y) is positive semi-definite, i.e. the quadratic

form

n∑︂
i=1

n∑︂
j=1

αiαjΦ(xi − xj) (1.3.16)

is nonnegative for any n ∈ N, any n distinct points {x1, . . . ,xn} ⊆ Rd
and any coeffi-

cients (α1, . . . , αn) ∈ Cn
. If the form is equal to 0 only if all αi are 0, then the function

is called positive definite.

Definition 1.3.7 (Positive definite radial function). A univariate function ϕ : [0,∞)→
R is positive (semi-)definite on Rd

if the function Φ(x) = ϕ(∥x∥) is positive (semi-

)definite.

To derive the aforementioned derivative check, we will first introduce the canonical

example of a positive definite function, the exponential. This will allow us to connect

positive definite functions to Fourier transforms.

Example 1.3.8 (Positive semi-definitness of exponentials). The function

Φ(x) = exp(ixTy) (1.3.17)

is positive semi-definite for any fixed y ∈ Rd
for any d. Indeed, if we observe the

1.3. Methods for scattered data approximation 19

condition for positive semi-definitness and compute

n∑︂
j=1

n∑︂
k=1

αjαk exp(i(xj − xk)
Ty) =

(︄
n∑︂

j=1

αje
ixT

j y

)︄(︄
n∑︂

k=1

αke
−ixT

ky

)︄
(1.3.18)

=

⃓⃓⃓⃓
⃓

n∑︂
j=1

αje
ixT

j y

⃓⃓⃓⃓
⃓
2

≥ 0, (1.3.19)

we can see that it is always nonnegative.

What follows is the famous characterization of positive semi-definite functions, orig-

inally due to Bochner [Boc33] and described in modern measure-theoretic language

in [Wen04, p. 70]. Positive semi-definite functions are characterized somewhat anal-

ogously to Example 1.3.8 as Fourier transforms of finite nonnegative Borel measures.

Theorem 1.3.9 (Bochner). A continuous function Φ: Rd → C is positive semi-definite iff
it is the Fourier transform of a finite nonnegative Borel measure µ on Rd, i.e.

∀x ∈ Rd : Φ(x) = ˆ︁µ(x) = (2π)−d/2

∫︂
Rd

e−ixTωdµ(ω). (1.3.20)

Proof. We will prove only the easy direction, i.e. that Fourier transforms of nonnegative

finite Borel measures are positive definite, since that will suffice to prove that many

important RBFs are positive definite.

As in the Example 1.3.8 we choose distinct xj ∈ Rd
and αj ∈ C and compute

n∑︂
j=1

n∑︂
k=1

αjαkΦ(xj − xk) =
n∑︂

j=1

n∑︂
k=1

αjαk(2π)
−d/2

∫︂
Rd

ei(xj−xk)
Tωdµ(ω) (1.3.21)

= (2π)−d/2

∫︂
Rd

(︄
n∑︂

j=1

αje
−ixT

j ω

)︄(︄
n∑︂

k=1

αke
ixT

kω

)︄
dµ(ω) =

= (2π)−d/2

∫︂
Rd

⃓⃓⃓⃓
⃓

n∑︂
j=1

αje
−ixT

j ω

⃓⃓⃓⃓
⃓
2

dµ(ω) ≥ 0.

The result is nonnegative due to integrating a nonnegative function with respect to a

nonnegative measure.

The assumptions of Theorem 1.3.9 can be strengthened slightly to obtain a sufficient

condition for positive definiteness.

Theorem 1.3.10. If the carrier of a finite nonnegative Borel measure µ contains an open
subset, then its Fourier transform is positive definite.

Proof. We only present the main ideas of the proof. Let U be an open subset, so that

µ(U) > 0. Then, for distinct xj ∈ U , we have from the final step in computation (1.3.21)

that
n∑︂

j=1

αje
−ixT

j ω = 0 (1.3.22)

must hold for all ω ∈ U . By the identity theorem from complex analysis, this can be

extended to all ω ∈ Rd
, where we can use the linear independence of exponentials.

20 Chapter 1. Function approximation on scattered data

Corollary 1.3.11. Let f ∈ L1(Rd) be continuous, nonvanishing and nonnegative. Then

Φ(x) =

∫︂
Rd

f(ω)e−ixTωdω (1.3.23)

is positive definite.

Proof. Define the measure µ as µ(B) =
∫︁
B
f(x)dx. The conditions on f imply that µ

is a finite nonnegative Borel measure, with carrier of µ equal to support of f , which
must contain an interior point. Thus, its Fourier transform is positive definite by Theo-

rem 1.3.10.

Equipped with the last corollary, we can prove that Gaussians are positive definite

on any Rd
.

Theorem 1.3.12 (Gaussians are positive definite). Gaussian RBF ϕ(r) = exp(−(εr)2) is
positive definite on Rd for all d.

Proof. The function Φ(x) = ϕ(∥x∥2) = exp(−(ε∥x∥2)2) can be written as

Φ(x) = (2ε)−dπ− d
2

∫︂
Rd

e−∥ω∥22/(4ε2)e−ixTωdω. (1.3.24)

Since ω → e−∥ω∥22/(4ε2) is in L1(Rd), continuous, nonvanishing and nonnegative, ϕ is

positive definite by corollary 1.3.11.

This result will be useful to obtain the famous characterization of radial basis func-

tions that are positive definite for every dimension d in terms of completely monotone

functions.

Definition 1.3.13 (Completely monotone function). A function ψ ∈ C((0,∞)) is called
completely monotone on (0,∞) if

(−1)ℓψ(ℓ)(r) ≥ 0 (1.3.25)

for all r > 0 and all ℓ ∈ N. Function ϕ is additionally called completely monotone on

[0,∞) if it is in C([0,∞)).

We will borrow the following fact from analysis about completely monotone func-

tions.

Theorem 1.3.14 (Haussdorff-Bernstein-Widder). A function ψ : [0,∞) → R is com-
pletely monotone on [0,∞) if and only if it is the Laplace transform of a nonnegative finite
Borel measure ν, i.e.

ψ(r) =

∫︂ ∞

0

e−rtdν(t). (1.3.26)

The fact that functionsψ of the form (1.3.26) are indeed completelymonotone follows

directly from successive differentiation. For the proof in the other direction, see for

Example [Wen04, p. 91].

1.3. Methods for scattered data approximation 21

Remark 1.3.15. The assumption on finitness of ν is necessary to get continuity of ψ
at 0. Monotonicity on (0,∞) is guaranteed by only having a nonnegative Borel ν on

[0,∞).

The Haussdorff-Bernstein-Widder theorem allows us to connect completely mono-

tone functions to positive semi-definite radial basis functions, using the following char-

acterization by Schoenberg.

Theorem 1.3.16 (Shoenberg). A function ψ is completely monotone on [0,∞) if and only
if ϕ, given by ϕ(r) = ψ(r2), is positive semi-definite on Rd for all d.

Proof. Once again, we shall prove only the simple direction, which will allow for check-

ing that given functions are positive definite. If ψ is completely monotone, then by

Haussdorff-Bernstein-Widder theorem it allows the representation

ψ(r) =

∫︂ ∞

0

e−rtdν(t) (1.3.27)

for a nonnegative finite Borel measure ν. We can now check that ϕ is positive semi-

definite on Rd
by choosing arbitrary (xj)

n
j=1 and α ∈ C and computing

n∑︂
j=1

n∑︂
k=1

αjαkϕ(∥xj − xk∥) =
n∑︂

j=1

n∑︂
k=1

αjαk

∫︂ ∞

0

e−t∥xj−xk∥2dν(t) = (1.3.28)

=

∫︂ ∞

0

n∑︂
j=1

n∑︂
k=1

αjαke
−t∥xj−xk∥2dν(t) ≥ 0, (1.3.29)

The final integral is nonnegative since ν is nonnegative and because we have already

proven in Theorem 1.3.12 that Gaussians are positive definite.

We will now rewrite the previous theorem from the point of view where we would

want to check ϕ for positive definitness and amend it with characterization conditions

for that.

Theorem1.3.17 (Characterization of positive definitness for allRd
). The following state-

ments are equivalent for ϕ : [0,∞)→ R:

(i) function ϕ is positive definite on every Rd

(ii) function ψ, given by ψ(r) = ϕ(
√
r), is completely monotone on [0,∞) and not con-

stant

(iii) ϕ has the form

ϕ(r) =

∫︂ ∞

0

e−tr2dν(t) (1.3.30)

for a finite nonnegative Borel measure ν that is not concentrated as zero.

22 Chapter 1. Function approximation on scattered data

Proof. Equivalence for semi-definitness follows from Shoenberg’s theorem. To test for

positive definitness, we again observe the expression∫︂ ∞

0

n∑︂
j=1

n∑︂
k=1

αjαke
−t∥xj−xk∥2dν(t), (1.3.31)

for α ̸= 0. Positive definitness of Gaussians implies strict positivity of the integrand, as

long as all xi are distinct and t > 0. The value of t = 0 is not a problem, unless ν is

concentrated at zero, in which case the sum and the integral can be zero.

The property that ν is concentrated at zero (i.e. ν = c δ0, where δ0 is the Dirac

measure at zero) is in fact equivalent to the fact that ϕ is constant, as in that case

ϕ(r) =

∫︂ ∞

0

e−tr2d(cδ0) = c. (1.3.32)

Property (ii) is extremely useful to check positive definitness for a desired function

ϕ, such as in the following corollary.

Corollary 1.3.18 (Inverse multiquadrics are positive definite). The inverse multiquadrics

ϕ(r) = (1 + (εr)2)−β
(1.3.33)

are positive definite for β > 0 and ε > 0 on any Rd.

Proof. We define ψ(r) = (1 + ε2r)−β
. It is not constant and it is completely monotone,

since

(−1)ℓψ(ℓ)(r) = (−1)ℓε2ℓ(1 + ε2r)−β−ℓ(−β)(−β − 1) · · · (−β − ℓ+ 1) ≥ 0. (1.3.34)

Additionally it can be verified, that the measure realizing the representation (1.3.27) is

given by dν(t) = ε−2β

Γ(β)
tβ−1e−t/ε2dt.

Positive definitness of other radial basis functions can be verified similarly, for ex-

ample Laguerre-Gaussian, Poisson and Matérn functions [Fas07, p. 40].

Is is also important to note that Theorem 1.3.17 only characterizes RBFs that are pos-

itive definite for all Rd
, and quite some time passed before examples of RBFs that are

positive definite only on Rd
for d ≤ d0 were discovered. Nowadays, compactly sup-

ported RBFs are of interest, especially when large clouds of points are considered, since

they yield a sparse interpolation matrix Aϕ. One technique for generating a compactly

supported positive definite function ϕ from a continuous compactly supported nonzero

ψ : [0,∞)→ R is by using convolution to define

ϕ(∥x∥) =
∫︂
Rd

ψ(∥y∥)ψ(∥x− y∥) dy. (1.3.35)

Positive definitness follows from

n∑︂
j=1

n∑︂
k=1

αjαkϕ(∥xj − xk∥) =
∫︂
Rd

⃓⃓⃓⃓
⃓

n∑︂
j=1

αjψ(∥xj − y∥)

⃓⃓⃓⃓
⃓
2

dy (1.3.36)

1.3. Methods for scattered data approximation 23

and linear independence of translations ofψ, which is compactly supported and continu-

ous. Schaback [Sch95a] presents this idea in more detail and Wendland [Wen04, chapter

9] proved nice overview of compactly supported RBFs in general.

The cost of computing the RBF interpolant is O(n3), with O(n) for each evaluation.

If compactly supported RBFs are used, this cost can be reduced to the number of nodes

present in the support.

Augmentation with monomials

Some popular choices of radial basis functions, such as polyharmonic RBFs are not pos-

itive definite. Furthermore, RBF interpolants do not in general reproduce polynomials.

However, polynomial reproduction is often desirable, and the RBF interpolant (1.3.14)

can be augmented with monomials by introducing it in the form

û(x) =
n∑︂

j=1

αjϕ(∥x− xj∥) +
q∑︂

ℓ=1

βℓpℓ(x), (1.3.37)

where pℓ are polynomials that form a basis of Pm(Rd), the space of polynomials of (total)

degree lower or equal to m. This means that q must be equal to the dimension of the

space of polynomials, i.e. q = dimPm(Rd) =
(︁
m+d
m

)︁
. Such an interpolant will necessarily

reproduce monomials up to the orderm.

Interpolation conditions û(xi) = fi give n equations for n + q variables, and q ad-
ditional constraints are necessary to compensate for the added degrees of freedom. It is

advantageous to add the conditions of the form

n∑︂
j=1

αjpℓ(xj) = 0, ∀ℓ = 1, . . . , q, (1.3.38)

which yield the (n+ q)× (n+ q) interpolation system[︃
Aϕ P
PT 0

]︃ [︃
α
β

]︃
=

[︃
f
0

]︃
, (1.3.39)

where P is the n× q matrix of evaluated polynomials

P =

⎡⎢⎣p1(x1) · · · pq(x1)
.
.
.

.
.
.

.

.

.

p1(xn) · · · pq(xn)

⎤⎥⎦ . (1.3.40)

The added conditions retain the symmetry of the matrix and will prove useful in further

analysis. Similarly as before, we will be able to prove that the system is uniquely solvable

for some important classes of RBFs. An example of an interpolant obtained this way is

shown in Figure 1.8.

First, let us define the key property of that will ensure solvability of the interpolation

system.

24 Chapter 1. Function approximation on scattered data

Figure 1.8: RBF interpolant on data (xi, ui) using multiquadrics (left) and polyharmonics

(right). The interpolation was augmented with monomials of order 0 and 1, respectively.

Definition 1.3.19 (Conditionally positive definite function). A continuous function

Φ: Rd → C is positive semi-definite of order m + 1 iff its associated quadratic form is

nonnegative, i.e.

n∑︂
i=1

n∑︂
j=1

αiαjΦ(xi − xj) ≥ 0 (1.3.41)

for any n ∈ N, any n distinct points {x1, . . . ,xn} ⊆ Rd
and any coefficients (α1, . . . ,

αn) ∈ Cn
, which satisfy

n∑︂
j=1

αjp(xj) = 0 (1.3.42)

for all complex polynomials of degree not greater thanm, i.e. p ∈ Pm(Cd). If the form is

equal to 0 only if all αi are 0, then the function is called conditionally positive definite.

We are often interested in minimal order of a conditionally positive definite function

ϕ, since any conditionally positive (semi-)definite function of order m is also of order

ℓ ≥ m, due to the fact that the space of admissible α narrows down with larger ℓ,
since more conditions are added. Conditional positive (semi-)definiteness of order zero

is equivalent to ordinary positive (semi-)definitness.

The condition in Definition 1.3.19 is equivalent to the fact that the matrix Aϕ is pos-

itive definite on the space of vectors α satisfying

n∑︂
j=1

αjpℓ(xj) = 0 (1.3.43)

for a selected basis pℓ of p ∈ Pm(Cd).

Definition 1.3.19 is also extended to radial functions.

1.3. Methods for scattered data approximation 25

Definition 1.3.20 (Conditionally positive definite radial function). A univariate func-

tion ϕ : [0,∞) → R is conditionally positive (semi-)definite of order m on Rd
if the

function Φ(x) = ϕ(∥x∥) is conditionally positive (semi-)definite of orderm.

We first show that Definition 1.3.19 of conditional positive definitness is good, in the

sense that the interpolation system is solvable for conditionally positive definite Φ, and
uniquely solvable if unisolvency of X is assumed.

Theorem1.3.21 (Well-posedness of RBF interpolation augmentedwithmonomials). Let
Φ be conditionally positive definite of order m + 1 and X be a Pm(Rd)-unisolvent set of
centers. Then the interpolation system of RBFs augmented with monomials (n+q)×(n+q)
interpolation system [︃

Aϕ P
PT 0

]︃ [︃
α
β

]︃
=

[︃
f
0

]︃
, (1.3.44)

is uniquely solvable. Furthermore, if X is not assumed to be unisolvent, the system is still
solvable.

Proof. For unique solvability, we will prove that the matrix is invertible. Given the ho-

mogeneous equations of the interpolation system

Aϕα+ Pβ = 0 (1.3.45)

PTα = 0. (1.3.46)

wewish to prove thatα = 0 and β = 0 is the only solution. The latter of these equations
gives exactly the conditions on α used in conditional positive definitness. Multiplying

the first equation byαT
from the left givesαTAϕα = 0, sinceαTPβ is zero, because of

the second equation (1.3.46). The conditional positive definitness is exactly the condition

that ensures α = 0. What remains of the first equation is Pβ = 0, which can be used

to deduce β = 0 due to unisolvency of the node set X .

If unisolvency ofX is not assumed, the system is still solvable, albeit not uniquely. To

see this, we must se that the span of the left hand side of (1.3.45) is the whole space Rn
,

i.e. so that for any f we can find at least one such pair of α and β, that Aϕα+Pβ = f .
Formally, we wish to prove that A(ker(PT)) + imP = Rn

. First, we note that this sum

is direct: if x ∈ A(ker(PT))∩ imP , then x can be written as x = Aϕα = Pβ for some

α ∈ ker(PT) and β ∈ Rq
. This implies that

αTx = αTAϕα = αTPβ = (PTα)Tβ = 0Tβ = 0, (1.3.47)

since α ∈ ker(PT). Because Aϕ is positive definite on ker(PT), we can deduce that

α = 0 from αTAϕα = 0. Consequently, x = Aα = 0 and the sum is indeed direct. We

can now use a simple dimension argument to deduce solvability. We can estimate

n ≥ dim
[︁
A(ker(PT)) + imP

]︁
= dim

[︁
A(ker(PT))⊕ imP

]︁
(1.3.48)

= dimA(ker(PT)) + dim imP = dimker(PT) + dim imP = (1.3.49)

= dim
[︁
im(P)⊥

]︁
+ dim imP = n, (1.3.50)

where we used the fact thatAϕ restricted to ker(P
T) is bijective, that ker(PT) = im(P)⊥

and that sum of orthogonal complements is direct.

26 Chapter 1. Function approximation on scattered data

Themethod of interpolation can be extended to other linearly independent functions

other than monomials, with a similar proof.

To find examples of conditionally positive definite functions (other than positive def-

inite functions), we overview the basic theoretical foundations. Many results analogous

to those obtained for positive definite functions can be proven for conditionally positive

definite functions. This includes a theorem analogous to Bochner’s characterization in

terms of generalized Fourier transforms [Wen04, chapter 8.2] and a theorem analogous

to Schoenberg’s characterization in terms of completely monotone functions. The latter

is named after Micchelli and provides a very useful tool for checking conditional positive

definitness.

Theorem 1.3.22 (Micchelli). Let ψ ∈ C[0,∞) ∩ C∞(0,∞) be given. The function ϕ,
given by ϕ(r) = ψ(r2), is conditionally positive semi-definite of order m ≥ 0 on every Rd

if and only if (−1)mψ(m) is completely monotone on (0,∞).

The proof of the theorem reduces to the representation theorem for completely mo-

notone functions and the fact that Gaussians are positive definite. Full details are given

in e.g. [Wen04, p. 114]. It also includes the following test for conditional positive definit-

ness, which is a generalization of Theorem 1.3.17.

Theorem 1.3.23 (Test for conditional positive definitness for all Rd
). Suppose that ψ ∈

C[0,∞) ∩ C∞(0,∞) is not a polynomial of degree m. Then ϕ, given by ϕ(r) = ψ(r2) is
conditionally positive definite of orderm on every Rd.

Using this, we can easily check two major families.

Proposition 1.3.24 (Multiquadrics are conditionally positive definite). The multiquad-
rics ϕ(r) = (−1)⌈β⌉(1+(εr)2)β , for β > 0, β /∈ N, ε > 0 are conditionally positive definite
of orderm = ⌈β⌉.
Proof. We define ψ(r) = ϕ(

√
r) = (−1)⌈β⌉(1 + ε2r)β and compute

ψ(k)(r) = (−1)⌈β⌉β(β − 1) · · · (β − k + 1)ε2k(1 + ε2r)β−k. (1.3.51)

The choicem = ⌈β⌉ is the smallest one such that all subsequent derivatives alternate in

signs, giving a completely monotone function.

Specifically, that means that famous Hardy’s multiquadrics (β = 1/2) [Har71] are
conditionally positive definite of order 1, and should be augmented with at least a con-

stant.

Proposition 1.3.25 (Polyharmonics are conditionally positive definite). The polyhar-
monics ϕ(r) = (−1)⌈β/2⌉rβ , for β > 0, β /∈ 2N, are conditionally positive definite of order
m = ⌈β/2⌉.
Proof. Once again we define ψ(r) = (−1)⌈β/2⌉rβ/2 and compute

ψ(k)(r) = (−1)⌈β/2⌉β
2

(︃
β

2
− 1

)︃
· · ·
(︃
β

2
− k + 1

)︃
rβ/2−k. (1.3.52)

and the same argument about changing signs applies as before, giving the order m =
⌈β/2⌉.

In particular, for ϕ(r) = r2k+1
the order is k+1, meaning that monomials of at least

order k should be added to interpolation.

1.4. Error estimates and condition numbers for kernel based interpolation 27

The shape parameter ε

Many of the basis function described feature a shape parameter ε > 0, which controls

the flatness of the basis functions. The value of ε influences the accuracy of the inter-

polant and the condition number of the interpolation matrix. Decreasing ε often leads to
higher accuracy, but also high condition number of the interpolation matrix, and a lot of

research was dedicated to the analysis of the effect of the shape parameter and choosing

the optimal one [FZ07a; FZ07b; BMK12].

Interestingly, even though the matrices Aϕ often turn singular as ε → 0, it was
shown (using Taylor expansions of RBFs) that the limit ε→ 0 leads to polynomial inter-

polation for many common RBF types, including Gaussians, multiquadrics and inverse

multiquadics [LF05]. This lead to other algorithms for stably computing RBF interpolants

for small ε, such as Contour-Padé integration [FW04], or RBF-QR algorithms [FP08].

1.4 Error estimates and condition numbers for kernel
based interpolation

For one-dimensional interpolation of scattered data (i.e. non-uniformly spaced points),

the error estimates are often specified as h := maxi=1,...,n ∆xi = maxi=1,...,n(xi − xi−1)
tends towards zero. Estimates of errors of scattered data interpolants will take a similar

form, but, we first need to define the appropriate generalization for quantities related to

nodal spacing.

1.4.1 Basic quality measures for a node set
In numerical methods, where subdivisions T of a domain Ω are used for discretization,

such as the finite element method, the properties of elements, such as volumes, diame-

ters and aspect ratios are used to define the quality of T and are used in convergence and

stability theorems. It is commonly assumed in convergence theorems that the sequences

of meshes are quasi uniform, which represents the idea that all elements of the subdi-

vision are of comparable size and the difference in element sizes stays approximately

constant [BS07]. Similar notions are used in meshless methods, with the additional ben-

efit that there are no conditions on the shape of the elements but only on the distances

between nodes. Some terminology also needs to be adapted to the meshless setting, as

expressions such as “mesh size”, or “mesh ratio” are no longer appropriate. We will use

the following definitions throughout this work, following [Wen04; HSW12].

Definition 1.4.1 (Fill distance). Let Ω ⊆ Rd
be bounded and X = {x1, . . . ,xn} ⊆ Ω a

set of points. The fill distance hX,Ω of X in Ω is defined to be

hX,Ω = 2 sup
x∈Ω

min
j=1,...,n

∥x− xj∥. (1.4.1)

The definition is well formed, because the supremum exists due to boundedness of

Ω. The half of fill distance is also called fill radius, covering radius, or mesh norm of X .

It measures how well data sites in X cover Ω in the sense that the largest ball with a

center in Ω that contains no data site, can have the diameter at most hX,Ω.

28 Chapter 1. Function approximation on scattered data

The complementing property to fill distance is the separation distance of a set of data

sites.

Definition 1.4.2 (Separation distance). Let X = {x1, . . . ,xn} ⊆ Rd
be a set of points.

The separation distance sX of X is defined to be

sX = min
1≤ i< j≤n

∥xi − xj∥. (1.4.2)

The separation distance is simply the distance between two data sites that are closest

together. Note that we implicitly assumed n ≥ 2, which will remain our assumption

when discussing quantities related to separation distances.

Very loosely, one can think of the fill distance as a measure of how far and how close

apart neighboring data sites can be. Illustration of a node set on a domain with marked

separation and fill distances is shown in Figure 1.9.

Figure 1.9: Fill and separation distance of a node set.

Different authors use different multiplicative constants for definitions of fill and sep-

aration distances [Wen04; HSW12]. These differences are irrelevant in light of the fol-

lowing definitions.

Definition 1.4.3 (Node set ratio). The ratio of fill distance and separation distance for

a given node set X ⊆ Ω is called node set ratio and defined as

γX,Ω =
hX,Ω

sX
. (1.4.3)

Definition 1.4.4 (Quasi-uniform node sets). LetΩ be bounded. A sequence of node sets

{Xλ}λ∈Λ ⊂ Ω is called quasi-uniform, if the node set ratio is uniformly bounded, i.e. if

there exist constants cl, cu > 0 independent of λ, such that for all λ

cl ≤ γXλ,Ω ≤ cu. (1.4.4)

1.4. Error estimates and condition numbers for kernel based interpolation 29

Formally, quasi-uniformity of a single node set is vacuous, but a general goal is to

keep cl large and cu small. What the notion of quasi uniformity represents is that we

can assume that the distances between neighboring points will be approximately uni-

form throughout the domain, in the sense that the distance between closest and farthest

neighbors can differ for a ratio of at most max(cu, cl), which we desire to be small. Ad-

ditionally, the lower bound cl is often non-problematic, as demonstrated by the next

proposition.

Proposition 1.4.5 (Separation distance is smaller than fill distance). For any pointsX =
{x1, . . . ,xn} ⊆ Rd and any bounded Ω, such that Ω \

⋃︁n
i=1B(xi, sX/2) is nonempty, it

holds that
sX ≤ hX,Ω. (1.4.5)

Proof. Let c be a point in Ω \
⋃︁n

i=1B(xi, sX/2). The fill distance can be bounded as

hX,Ω = 2 sup
x∈Ω

min
i=1,...,n

∥x− xi∥ ≥ 2 min
i=1,...,n

∥c− xi∥ ≥ 2sX/2 = sX . (1.4.6)

Remark 1.4.6. For the requirements of the Proposition 1.4.5 to be satisfied, it is sufficient

to assume that Ω contains all midpoints of all pairs of data sites, or that Ω contains the

convex hull of X .

Moreover, it is enough that Ω is connected. We can easily show that connectedness

implies nonemptiness ofΩ\
⋃︁n

i=1B(xi, sX/2) by contraposition. IfΩ\
⋃︁n

i=1B(xi, sX/2)
is empty, then Ω ⊆

⋃︁n
i=1B(xi, sX/2) and we can easily find a separation

U = B(x1, sX/2) and V =
n⋃︂

i=2

B(xi, sX/2). (1.4.7)

Both U and V are open, nonempty, since they contain at least x1 and x2, respectively,

and U ∩ V = ∅, because all centers of the balls are at least sX apart.

This means that we can most of the time safely assume that cl = 1.

Example 1.4.7 (Equidistant intervals). Consider a set X of n+ 1 equispaced points on

an interval [0, 1],Xn = {i/n, i = 0, . . . , n}. Their separation distance is hXn,[0,1] = 1/n,
which is realized if the center of a ball is placed in the midpoint between two data sites.

The minimal separation distance is also sX = 1/n, and Xn are quasi-uniform on [0, 1],
since γXn,[0,1] = 1 for all n.

If we keep the set of points the same, but increase the domain to [−1, 2], the fill

distance stays at 1 no matter the n, and γXn,[−1,2] is no longer bounded.

Example 1.4.8 (Regular grid). A regular grid of points Gh on [0, 1]d with spacing h has

separation distance sGh
= h and fill distance

√
dh, if the center of the ball is positioned

in a center of any grid cell. Regular grids are quasi-uniform, since γGh,[0,1]d is bounded

with cu =
√
d.

Another important feature of quasi-uniform node sets is that the nodal spacing is

proportional to the number of nodes in the usual way.

30 Chapter 1. Function approximation on scattered data

Proposition 1.4.9 (Relation between nodal spacing and number of nodes). Let Ω ⊆ Rd

be bounded and measurable and let X = {x1, . . . ,xn} be quasi-uniform with constant
cu > 0. Then, there exist constants c1, c2 > 0, independent of X , such that

c1n
−1/d ≤ hX,Ω ≤ c2n

−1/d. (1.4.8)

Proof. Since h := hX,Ω is the fill distance, h/2 is the covering radius and we have Ω ⊆⋃︁n
i=1B(xi, h/2). Measuring the volumes gives

|Ω| ≤

⃓⃓⃓⃓
⃓

n⋃︂
i=1

B(xi, h/2)

⃓⃓⃓⃓
⃓ ≤

n∑︂
i=1

|B(xi, h/2)| = n
πd/2

Γ(d/2 + 1)
(h/2)d, (1.4.9)

which proves the lower bound, as 2 d
√︁
|Ω|

d
√

Γ(d/2+1)
√
π

n−1/d ≤ h.
For the upper bound we use the fact that Ω is bounded. There exists a radiusR and a

point x0, such that Ω ⊆ B(x0, R). By extending the radius further by sX/2, we ensure
that this ball also includes all the empty balls centered at xi:

n⋃︂
i=1

B(xi, sX/2) ⊆ B(x0, R + sX/2). (1.4.10)

Because B(xi, sX/2) are disjoint, we can make the following comparison of volumes

n
πd/2

Γ(d/2 + 1)
(sX/2)

d ≤ πd/2

Γ(d/2 + 1)
(R + sX/2)

d, (1.4.11)

which gives n ≤ (1 + 2R/sX)
d
. Since R ≥ sx/2 (otherwise X would only have one

point), we can estimate n ≤ (1 + 2R/sX)
d ≤ (4R/sX)

d
. This can be further estimated

by using h ≤ cusX , as it follows from quasi uniformity of X . This gives us

n ≤ (4Rcu)
dh−d

or h ≤ 4Rcun
−1/d. (1.4.12)

The last proposition shows that sX , hX,Ω and n−1/d
are all equivalent measures of

nodal spacing. Furthermore, if we look at a sequence of node sets {Xλ}λ∈Λ such that

hXλ,Ω → 0, we can say that |Xλ| = Θ(h−d
Xλ,Ω

).

1.4.2 Error estimates

An important tool for error estimation of kernel-based interpolants are the cardinal or
Lagrange basis functions and are defined by the Kronecker delta property:

Definition 1.4.10 (Cardinal functions). Given a positive definite kernel K and a node

set X , the functions u∗j ∈ span{K(·,x1), . . . ,K(·,xn)} that satisfy

u∗j(xi) = δi,j, i, j = 1, . . . , n, (1.4.13)

are called cardinal functions.

1.4. Error estimates and condition numbers for kernel based interpolation 31

The asterisk in the name is due to the fact that cardinal functions can be seen as the

dual basis to the evaluation functionals δxi
.

Cardinal functions trivialize the interpolation problem. Given data fj , the interpolant
û can be simply written as

û(x) =
n∑︂

j=1

fju
∗
j(x), (1.4.14)

and since cardinal functions do not depend on fj , having them known beforehand would

be a major advantage. They are available beforehand only for specific point configura-

tions, but can be computed pointwise. The following propositions offers such a way and

also proves their existence.

Proposition 1.4.11 (Existence, uniqueness and computation of cardinal functions). For
a given positive definite kernel K and a node set X , a cardinal basis exists, is unique, and
can be computed pointwise as the solution of

Ku∗(x) = k(x), (1.4.15)

where u∗(x) = [u∗j(x)]
n
j=1 and k(x) = [K(x,xi)]

n
i=1.

Proof. One proof of existence and uniqueness is to view the Kronecker delta property

as n interpolation problems, one for each uj . All of this problems are uniquely solvable

for a positive definite kernel K, proving both. This approach is not computationally the

most efficient.

Instead, consider an interpolation problem û(xi) = fi. Seeking the interpolant in

the standard basis as û(x) = k(x)Tα gives rise to a linear system (1.2.3) for unknowns

α, written as Kα = f . The solution can be written as α = K−1f , which gives the

interpolant as û(x) = k(x)TK−1f . This form is exactly the cardinal form of interpola-

tion (1.4.14) written in vector notation, giving u∗
j(x)

T = k(x)TK−1
.

This also enables them to be computed for a given x as the solution of a system

Ku∗(x) = k(x), due to symmetry of K .

The cardinal basis can be used to estimate the pointwise error of the kernel inter-

polant, due to its ability to separate the values fi from data sites xi. The error analysis
is done in the native space of the kernel K, described in Section 1.2.

Theorem 1.4.12 (Error bound for kernel interpolation). For a given positive definite ker-
nel K, a node setX and a function f from the native spaceNK,X , we can bound the point-
wise error as

|f(x)− û(x)| ≤ ∥f∥NK,X
PK,X(x), (1.4.16)

where the power function PK,X is equal to

PK,X(x) =
√︁
K(x,x)− k(x)TKk(x). (1.4.17)

Proof. All the inner products and norms are from the native space NK,X . Using the

representation u∗
j(x)

T = k(x)TK−1
, the reproducing properties, and Cauchy-Schwartz

32 Chapter 1. Function approximation on scattered data

inequality we get

|f(x)− û(x)| =

⃓⃓⃓⃓
⃓⟨f,K(·,x)⟩ −

n∑︂
j=1

fju
∗
j(x)

⃓⃓⃓⃓
⃓ =

=

⃓⃓⃓⃓
⃓⟨f,K(·,x)⟩ −

n∑︂
j=1

⟨f,K(·,xj)⟩u∗j(x)

⃓⃓⃓⃓
⃓ (1.4.18)

=

⃓⃓⃓⃓
⃓⟨f,K(·,x)−

n∑︂
j=1

K(·,xj)u
∗
j(x)⟩

⃓⃓⃓⃓
⃓

=
⃓⃓
⟨f,K(·,x)− u∗(x)Tk(·)⟩

⃓⃓
≤ ∥f∥∥K(·,x)− u∗(x)Tk(·)∥.

The final term in the above inequality can be simplified further to obtain

∥K(·,x)− u∗(x)Tk(·)∥2

= ⟨K(·,x),K(·,x)⟩ − 2⟨K(·,x),u∗(x)Tk(·)⟩+ ⟨u∗(x)Tk(·),u∗(x)Tk(·)⟩

= K(x,x)− 2u∗(x)Tk(x) +

⟨︄
n∑︂

j=1

K(·,xj)u
∗
j(x),

n∑︂
j=1

K(·,xj)u
∗
j(x)

⟩︄

= K(x,x)− 2k(x)TK−1k(x) +
n∑︂

i=1

n∑︂
j=1

u∗i (x)u
∗
j(x)⟨K(·,xi),K(·,xj)⟩

= K(x,x)− 2k(x)TK−1k(x) +
n∑︂

i=1

n∑︂
j=1

u∗i (x)u
∗
j(x)K(xi,xj)

= K(x,x)− 2k(x)TK−1k(x) + u∗(x)TKu∗(x)

= K(x,x)− 2k(x)TK−1k(x) + k(x)TK−1KK−1k(x)

= K(x,x)− k(x)TK−1k(x) = PK,X(x)
2

Similar estimates can bemade for derivatives of interpolants, and for augmented ker-

nel interpolation. This type of interpolation uses conditionally positive definite kernels,

which are analogous to conditionally positive RBFs. The following theorem states the

general result.

Theorem 1.4.13 (Error bound for derivatives using augmented kernel interpolation).
Let Ω ⊆ Rn be open and assume that K is 2k-continuous conditionally positive definite
kernel on Ω with respect to P ⊆ Ck(Ω). Suppose that the node set X is P-unisolvent, and
denote the interpolant of f ∈ NK,X with û. Then for every x ∈ Ω and every α ∈ Nd

0 with
|α| ≤ k, the interpolation error is bounded by

|Dαf(x)−Dαû(x)| ≤ P
(α)
K,X(x)∥f∥NK,X

, (1.4.19)

where the power function P (α)
K,X(x) is given as

P
(α)
K,X(x)

2 = Dα
1 D

α
2 K(x,x)− 2

n∑︂
j=1

Dαu∗j(x)D
α
1 K(x,xj) (1.4.20)

+
n∑︂

i=1

n∑︂
j=1

Dαu∗i (x)D
αu∗j(x)K(xi,xj).

1.4. Error estimates and condition numbers for kernel based interpolation 33

The bounds in terms of fill distance are typically obtained by bounding the power

function PK,X or PK,X(x). These bounds are of the form

PK,X(x)
2 ≤ cF (hX,Ω), (1.4.21)

where c is some constant independent ofX . Many bounds for specific kernels, especially

kernels generated by RBFs have been found over the years. A list of bounds is specified in

Table 1.1 and additional theorems specifying bounds for the generalized power functions

involving derivatives are proven in e.g. [Wen04, ch. 11].

1.4.3 Stability
Scattered data interpolant is defined by knowing its coefficients α, which can be com-

puted from the interpolation system (1.2.3), (1.3.15) or (1.3.39), in case of augmentation.

In all of these, the coefficients α satisfy the relation

αTKα = αTf , (1.4.22)

whereK is the interpolation matrix of the kernel. Knowing the lower and upper bounds

on the above quadratic form as

λ∥α∥2 ≤ αTKα ≤ Λ∥α∥2 (1.4.23)

enables us to estimate the relative perturbation of the solution in case of a perturbation

in function values. Given this perturbation as f + ∆f , we can estimate the resulting

perturbation α+∆α as

∥∆α∥
∥α∥

≤ Λ

λ

∥∆f∥
∥f∥

. (1.4.24)

If we focus on the case when K is positive definite, then optimal Λ and λ are the

largest and the smallest eigenvalues of K , respectively. A more useful upper bound on

Λ can be obtained using one of the classical matrix estimates: for a matrix A ∈ Rn×n
it

holds that ∥A∥2 ≤ nmaxi,j |ai,j|, and thus

Λ ≤ nmax
i,j
|K(xi,xj)| ≤ n∥K∥∞, (1.4.25)

which shows that growth of Λ can be at most linear with n. Sadly, this is not the case
for λ.

We will prove a famous result in RBF approximation theory: the trade-off principle

by Schaback, which says that we cannot have both accuracy and stability at the same

time, when computing α in the standard basis (but it is possible in other basis, see the

remarks at the end of Section 1.3.3). When reading the theorem it is good to keep in

mind that P 2
K,X is a factor in upper bounds for accuracy (1.4.16) and 1/λ is a factor in

stability bounds.

Theorem 1.4.14 (Trade-off principle [Sch95b]). Let u∗j be cardinal functions for kernelK
on a node set X ⊆ Ω ⊆ Rn. Then for all x ∈ Ω \X we have

1 ≤ 1 +
n∑︂

j=1

u∗j(x)
2 ≤ PK,X(x)

2/λ(Kx), (1.4.26)

34 Chapter 1. Function approximation on scattered data

where

λ(Kx) = inf
α ̸=0

αTKxα

αTα
(1.4.27)

and Kx is the interpolation matrix of the kernel K on node set X ∪ {x}.

Proof. The proof is surprisingly short. Knowing that the power function PK,X is ex-

pressed as in the proof of Theorem 1.4.12, we get

P 2
K,X(x) = K(x,x)− 2u∗(x)Tk(x) + u∗(x)TKu∗(x) (1.4.28)

If we add an additional point x0 = x to X and define u∗0(x) = −1, we can write the

power function as a quadratic form and bound it

P 2
K,X(x) =

n∑︂
i=0

n∑︂
j=0

u∗i (x)u
∗
j(x)K(xi,xj) ≥ λ(Kx)

n∑︂
j=0

u∗j(x)
2. (1.4.29)

Writing the term at j = 0 separately gives the result.

The trade-off principle says that both P 2
K,X and λ(Kx)

−1
cannot be small together.

The theorem also gives a bound on cardinal functions u∗j and in turn on the Lebesgue

function Λ(x) =
∑︁n

i=1 |u∗j(x)|.
Lower bounds for λ(K) on an arbitrary set X are related to the separation distance

sX . They typically have the form

λ(K) ≥ cG(sX), (1.4.30)

where c is some constant, independent of X . Similarly to upper bounds of PX,Ω, many

bounds for specific kernels, especially kernels generated by RBFs have been found over

the years. A list of bounds is specified in Table 1.1 and additional theorems speci-

fying bounds for the generalized power functions involving derivatives are proven in

e.g. [Wen04, ch. 12]. The table is adapted from [Sch95b] and [Wen04], where the bounds

are also referenced or proven.

Table 1.1: Accuracy and stability bounds for commonly used RBFs. When present, both

parameters β and ε are assumed to be real and positive. The value c denotes a constant,
and d denotes the number of dimensions.

Abbr. Name K(x,y) = ϕ(r),
r = ∥x− y∥

F (h) G(s)

GA Gaussians exp(−(εr)2) e−c|log h|/h s−de−cd2/(εs)2

MQ Multiquadrics (−1)⌈β⌉(1+(εr)2)β, β /∈ N e−c/h sβ−(d−1)/2e−cd/(εs)

IMQ Inverse MQ (1 + (εr)2)−β e−c/h s−β−(d−1)/2e−cd/(εs)

PH Polyharmonics (−1)⌈β/2⌉rβ, β /∈ 2N hβ sβ

These bounds also show the effect that the scaling of the shape parameter ε can have

on the condition number. Scaling the parameter ε proportional to 1/s (≈ 1/h for quasi-

uniform node sets) will keep the product εs constant. The effects of this for operator

approximation are illustrated in Example 2.2.11 (page 47).

Chapter 2

RBF-FD and similar methods

Radial-basis-function-generated finite differences (RBF-FD) is a strong-form meshless

method for solving PDEs. More specifically, RBF-FD is a method of approximating par-

tial differential operators on scattered nodes, which can than be canonically used to

solve PDEs. To understand its place among other meshless methods and its distinctive

features, we briefly review the history of meshless in Section 2.1. In Section 2.2 we

describe how RBF-FD and similar methods approximate partial differential operators.

Notably, this includes establishing an equivalence between derivation from function ap-

proximation and from the method of unknown coefficients. This is also generalized to

least-squares based methods. Additional properties of stencil weights such as linearity

and in some cases, the Kronecker delta property are established. With the outlook to

using the approximations in practice, we review some important computational aspects.

Finally, we describe how the computed approximations can be used to solve PDEs in

Section 2.3, along with other commonly used techniques for handling boundary condi-

tions.

2.1 A brief review of the history of meshless methods

One of the first developed meshless methods is the Smoothed Particle Hydrodynamics

(SPH) [GM77], used initially for astronomical simulations, and today best known for its

usage in computational fluid dynamics. The first meshless methods for boundary value

problems were generalizations of FEM to a mesh-free setting, starting with the Diffuse

Element Method (DEM) [NTV92] in 1992. DEM was soon extended by Belytschko into

the Element Free Galerkin (EFG) method [BLG94] which has similar methodology to

FEM in the sense that the problem is solved in its weak form using test and trial func-

tions, but uses Moving Least Squares (MLS) based shape functions instead of (piecewise)

monomials, since they can be defined without a mesh. It also uses a background grid

for integration, and since its shape functions do not satisfy the Kronecker delta prop-

erty, there is some additional work needed to enforce the boundary conditions, often

via Lagrange multipliers. The use of a background grid led to some authors classify-

ing the method as not “truly meshless”, even though the precise definition has not been

agreed upon [Bel+96]. Any methods that use background grids or cells of some kind

are not seen as “truly meshless”. There has also been a drive to develop “truly mesh-

less” data pre- and post-processors [MKX07]. Additionally, while there may have been

35

36 Chapter 2. RBF-FD and similar methods

a distinction betweenmeshless andmesh-free methods, the terms are nowadays used in-

terchangeably [CB15]. Another interesting class of methods developed in that time was

based on reproducing kernels, which aimed to achieve higher order consistency than

SPH [Liu+95]. The search for additional desirable properties also drove the develop-

ment of partition of unity methods (PUM) [MB96; BM97]. A more thorough overview

of the mentioned methods and other methods developed at the same time is given by

Belytschko [Bel+96].

A few years after EFG, the Meshless Local Petrov Galerkin (MLPG) method was pub-

lished by Atluri and Zhu [AZ98]. MLPG also solves the problem in its weak form, but

locally, by enforcing the equation for selected subdomains of the whole computational

domain. Similarly to FEM, the Boundary Element Method has been generalized to a

meshless setting both with global weak forms as the Boundary Node Method [MM97]

and local weak forms as the Local Boundary Integral Method (LBIM) [ZZA98]. One of

the first books on the topic of meshless methods, which focuses mostly on weak form

methods with applications to elasticity, was by Liu [Liu02] and an overview of more re-

cent developments in the weak-form meshless community is given in the review paper

by Nguyen et al. [Ngu+08], or a shorter article by Viana and Lai [VRL07].

Along with the development of weak-form methods, the development was also on-

going in the area of strong form methods. The finite difference method (FDM) was gen-

eralized to scattered grids [PK75; LO80] to allow for more flexible geometry, often called

FDM methods on irregular or arbitrary grids. In general, the strong form methods were

unified under the name “collocation methods” and can be viewed as a special case of

weighted residual methods, where the test functions are chosen to be the Dirac delta

distributions [Ngu+08]. Among the most notable strong-form collocation methods was

the the Finite Point Method developed in 1996 [Oña+96], which approximates a par-

tial differential operator using either least squares, weighted least squares or moving

least squares method. The method is well researched and has been used with a wide

variety of problems, including in 3D [OOI07]. Many other ideas that were used in weak-

form methods were also applied to strong-form methods, such as reproducible kernel

approximations, resulting in a point collocation method based on reproducing kernel

approximations [Alu00]. Another notable method if the Finite Pointset Method, an im-

provement upon SPH, which is still actively used in practical applications [Jef+15]. It is

described in great detail in a recent PhD thesis by Suchde [Suc18]. For more details on

meshless methods, the reader can refer to textbooks by Fasshauser [Fas07] or the brief

review by Chen and Belytschko [CB15].

2.1.1 Meshless methods and radial basis functions

Meshless methods based on radial basis function have been around nearly from the be-

ginning. Kansa was the first to suggest in 1990 that RBFs could be used for deriva-

tive approximation [Kan90a] and, consequently, for development of numerical methods

for solving PDEs [Kan90b]. This led to the development of the global collocation me-

thods [FS98] (nowadays called “the Kansa method”), which exhibit good convergence

properties (even exponential in appropriate circumstances [Che+03]), but with the same

conditioning problem as the scattered interpolation, with various proposed solutions,

such as better algorithms to avoid working in standard basis [FLF11] or using multi-

2.2. Approximation of partial differential operators 37

precision packages [KH17]. Moreover, the cost of the global approach scales as O(N3),
where N represents the number of nodes, making it infeasible for large node sets.

As the answer to the shortcomings of the global methods, the local methods emerged.

Alongwith alreadymentioned local methods, Tolstykh suggested the use of RBFs to gen-

erate finite difference-like formulas in his conference presentation “On using RBF-based

differencing formulas for unstructured and mixed structured-unstructured grid calcula-

tions” [Tol00]. Afterwards, similar ideas were suggested a few times [WL02; SDY03],

including in a PhD thesis by Wright [Wri03]. One benefit of RBF-based finite differ-

ence formulas is that they do not, contrary to polynomials, suffer from Haar-Mairhuber-

Curtis theorem and the possibility of singular point configurations, as discussed in Chap-

ter 1. The newmethod was eventually named RBF-generated finite differences (RBF-FD)

and was and continues to be used in various applications, from elasticity [TS03], diffu-

sion problems [ŠV06], fluid-flow [CS07; KŠ08], and more recently also flame propaga-

tion [KB13], dynamic thermal rating [KS18c] and option pricing [MS18]. The state and

usages of global and local RBF-based methods are described in more detail in a review

paper by Fornberg and Flyer [FF15c]. One of the main criticisms of the RBF-FD when

compared to the least-squares based local methods is that the choice of the RBF and

its shape parameter play a large role in accuracy and stability of the method [Suc18,

sec. 2.2]. This is true, and plenty of research has been done on approximation properties

of RBF-FD [Bay+10], the choice of the shape parameter [BMK11] and the scaling of the

shape parameter [BMK12]. It was also suggested to scale the shape parameter in a way

to keep the condition number below a certain threshold [Fly+12].

Recently, the role of polynomial augmentation has been investigated in a series

of papers “On the role of polynomials in RBF-FD approximations” [Fly+16; Bay+17;

BFF19] where polyharmonic (also called power [Wen04]) RBFs ϕ(r) = rk augmented

with monomials were suggested as a promising alternative to classical RBFs. Polyhar-

monics do not have a shape parameter and avoid bad conditioning under refinement,

while keeping consistency due to inclusion of monomials. Preliminary comparison with

least-squares methods have been performed [Bay19], but further investigation is needed.

From out personal experience RBF-FDmethodwith polyharmonic RBFs augmentedwith

monomials was more stable with respect to the nodal positions than least-squares based

methods, which is why it was also used in this work. Additional recent trends related

to RBF-FD include solving PDEs on (possibly evolving) surfaces [SNK18; Pet+19], stabi-

lization techniques for transport equations [Jav+19; Sok+19] and adaptivity (see review

on page 92). Some parallelization efforts have also been made [BFE12], but more work

in this area is also needed.

2.2 Approximation of partial differential operators
Most local strong form methods approximate a partial differential operator L applied to

u at a point p in the form

(Lu)(p) ≈
n∑︂
i=i

wiu(xi) = wTu, (2.2.1)

where X = {x1, . . . , xn} are nodes around p, called the stencil of p. The weights wi

depend on the operator L, the point p, and the neighboring nodes xi, but not on the

38 Chapter 2. RBF-FD and similar methods

function u. When important, we will write the dependence explicitly as wL,X
i (p).

This type of an approximation can be viewed as approximating L at p with a func-

tional that maps tuples of functional values in neighboring nodes to values of L applied

to the function at p. Assembling the weights in a vectorw = [wi]
n
i=1 gives us the Riesz’

representation of this functional, and the approximated value can be obtained by using

just a dot product with u = [u(xi)]
n
i=1.

2.2.1 Using scattered data interpolation
A general technique to obtain an approximation of an operator L at p is to construct an

approximation û ≈ u on a neighborhood Ω ⊆ Rd
of p and use (Lû)(p) as an approxi-

mation of (Lu)(p). We will assume that p has a stencil consisting of n points X ⊆ Ω,
X = {x1, . . . ,xn}. If the approximation û is of the form

û(x) =
n∑︂

i=1

αibi(x) = b(x)Tα, (2.2.2)

for some unknown coefficients α and some basis = (b1, . . . , bn), bi : Ω → R, then the

coefficients α can be obtained by solving a system of linear equations

Bα = u, (2.2.3)

where u is the vector of function values in stencil nodes u = [u(xi)]
n
i=1 and B is the

interpolation matrix B = [bj(xi)]
n
i,j=1.

We can express α as α = B−1u and write the approximant as

û(x) = b(x)Tα = b(x)TB−1u. (2.2.4)

The approximation of L at p is now given as

(Lu)(p) ≈ (Lû)(p) = (Lb)(p)TB−1u =: wL,X(p)Tu. (2.2.5)

The expression for (Lû)(p) can be viewed in two ways

(Lû)(p) = (Lb)(p)Tα =

wL,X(p)T⏟ ⏞⏞ ⏟
(Lb)(p)TB−1u⏞ ⏟⏟ ⏞

α

= wL,X(p)Tu. (2.2.6)

The first expression (Lû)(p) = (Lb)(p)Tα gives the coefficients α from known func-

tion values u, offering us the way to obtain values of û for any p, as well as any operator
L, by applying it to the basis functions. The second option (Lû)(p) = wL,X(p)Tu al-

lows us to compute wL,X(p)T, for a fixed point p and operator L, but independently
of function values (which may even be unknown at the time) and the same values of

wL,X(p)T can be used for different functions u.
We can compute wL,X(p)T as wL,X(p)T = (Lb)(p)TB−1

, which is equivalent to

solving the system

BTwL,X(p) = (Lb)(p), (2.2.7)

where the transpose of matrix B is used.

This can also be used to obtain the cardinal functions in a pointwise fashion, as

described already in Section 1.4.2, by using L = id, i.e.

u∗(x)T = b(x)TB−1. (2.2.8)

2.2. Approximation of partial differential operators 39

2.2.2 Using the method of undefined coefficients
The final system

BTwL,X(p) = (Lb)(p), (2.2.9)

obtained above can also be viewed in a different light, as the method of undefined coef-

ficients. Once again, we seek the approximation in form

(Lu)(p) ≈
n∑︂
i=i

wiu(xi) = wTu, (2.2.10)

but instead of obtainingw from approximant û, we require that approximation (2.2.9) is

exact for a certain basis b. This leads to n linear equations, obtained by substituting bj
for u:

(Lbj)(p) =
n∑︂
i=i

wibj(xi), (2.2.11)

which written as a linear system give

BTw = (Lb)(p), (2.2.12)

which is the same system as derived before. This equivalence of these two derivations

is helpful to understand the behavior of the approximations: on the one hand, the in-

terpolation formulation is useful, as error analyses for interpolants are often available,

while this formulation directly gives the reproduction properties by construction and

also immediately derives the final system as needed in the computation.

2.2.3 RBF-FD with augmentation
If radial basis functions are used as the basis to obtain the stencil weights, the resulting

method is called RBF-generated finite differences (RBF-FD). In case of positive definite

RBFs, or pure RBF-interpolation, the procedure used to generate the weights is exactly

the same as above, using bi = ϕxi
= ϕ(∥ ·−xj) as basis functions. This gives the system⎡⎢⎣ϕ(∥x1 − x1∥) · · · ϕ(∥x1 − xn∥)

.

.

.

.
.
.

.

.

.

ϕ(∥xn − x1∥) · · · ϕ(∥xn − xn∥)

⎤⎥⎦
⎡⎢⎣w1

.

.

.

wn

⎤⎥⎦ =

⎡⎢⎣(Lϕx1)(p)
.
.
.

(Lϕxn)(p)

⎤⎥⎦ , (2.2.13)

which can be written more compactly as Aϕw = ℓϕ. The matrix Aϕ is the same as the

interpolation matrix in (1.3.15), due to its symmetry, and the solvability and stability

analysis is exactly the same as in the interpolation case. This also generalizes to other

positive definite kernels, and the properties derived in Chapter 1 can be applied.

Augmentation with monomials

For conditionally positive RBFs, we have to augment RBFs with monomials to ensure

solvability. Recall from Section 1.3.3 that the interpolant is sought in the form

û(x) =
n∑︂

j=1

αjϕ(∥x− xj∥) +
q∑︂

ℓ=1

βℓpℓ(x) =
[︁
ϕ(x)T π(x)T

]︁ [︃α
β

]︃
, (2.2.14)

40 Chapter 2. RBF-FD and similar methods

where we used the ϕ(x) and π(x) to denote the RBF and polynomial bases. The un-

known coefficients of the approximation namelyα andβ, are still expressed as solutions
of a linear system [︃

Aϕ P
PT 0

]︃ [︃
α
β

]︃
=

[︃
u
0

]︃
, (2.2.15)

where Aϕ is the RBF collocation matrix and P the monomial collocation matrix, as de-

fined in 1.3.39. An operator L applied to û can be expressed as

(Lû)(p) =
[︃
(Lϕ)(p)
(Lπ)(p)

]︃T [︃
Aϕ P
PT 0

]︃−1 [︃
u
0

]︃
:=

[︃
w
λ

]︃T [︃
u
0

]︃
= wTu. (2.2.16)

Similarly to before, we see that the final expression remains a weighted sum of function

values in stencil nodes, but the weights w are computed as a solution of the (n + q) ×
(n+ q) system [︃

Aϕ P
PT 0

]︃ [︃
w
λ

]︃
=

[︃
ℓϕ
ℓπ

]︃
. (2.2.17)

The vectors ℓϕ = [(Lϕxj
)(p)]nj=1 and ℓπ = [(Lpk)(p)]qk=1 contain the values of L applied

to basis functions. The values λ are discarded after computing the solution.

This procedure can also be seen in the same light as the method of undefined coeffi-

cients. We would like to ensure that the approximation

(Lu)(p) ≈
n∑︂
i=i

wiu(xi) = wTu, (2.2.18)

is exact for all RBFs ϕxj
and all monomials pℓ. However, that is impossible, as the system

would be over-determined. Instead, exactness is required for monomials,

(Lpk)(p) = wTu, ∀k = 1, . . . , q (2.2.19)

giving the second equation PTw = ℓπ of (2.2.17). The meaning of the whole system is

summarized in the following proposition, where we can se that the discarded values λ
act as Lagrange multipliers.

Proposition 2.2.1 (RBF-FD weights as constrained minimization [Fly+16]). The RBF-
FD weights w with monomial augmentation are determined as a solution to the equality-
constrained minimization problem

min J(w) =
1

2
wTAϕw −wTℓϕ subject to PTw = ℓπ. (2.2.20)

Proof. The Lagrangian is given by

L(w,λ) =
1

2
wTAϕw −wTℓϕ − λT(PTw − ℓπ), (2.2.21)

and the conditions ∇wL = 0 and ∇λL = 0 give exactly the system (2.2.17). The fact

that the solution is a global minimum follows from the fact that Aϕ is positive definite

on the null space of PT
. Indeed, let (w,λ) be the solution of (2.2.17) and w̃ some other

2.2. Approximation of partial differential operators 41

vector satisfying the constraints. The difference∆w = w̃−w ̸= 0 satisfies PT∆w = 0
and the minimized expression is equal to

J(w̃) =
1

2
(w +∆w)TAϕ(w +∆w)− (w +∆w)Tℓϕ (2.2.22)

= J(w) +
1

2
∆wTAϕ∆w +∆wTAϕw −∆wTℓϕ (2.2.23)

= J(w) +
1

2
∆wTAϕ∆w +∆wT(ℓϕ − Pλ)−∆wTℓϕ (2.2.24)

= J(w) +
1

2
∆wTAϕ∆w > J(w), (2.2.25)

because Aϕ is positive definite on the null space of PT
.

2.2.4 Least-squares based methods

Another way of obtaining strong form approximations forL is by not using interpolants

over local neighborhoods but only approximants. We will derive the procedure for com-

putation of stencil weights, based on weighted least squares approximation. We can

recall from Section 1.3.2 that the approximant is of the form

û(x) =
m∑︂
j=1

αjbj(x) = b(x)Tα (2.2.26)

for some basis bj (usually monomials) and that coefficients α are obtained as a solution

of a least squares problem

WBα = Wu, (2.2.27)

where B = [bj(xi)]
n,ℓ
i=1,j=1 is the n × ℓ collocation matrix and Wii =

√︁
ω(x,xi) is the

diagonal matrix of weights.

Expressing the coefficients α as α = (BTW 2B)−1BTW 2u allows us to express the

value of L applied to û at p as

(Lû)(p) = (Lb)(p)T(BTW 2B)−1BTW 2u =: wTu, (2.2.28)

where the stencil weights w are computed as

w = [(Lb)(p)T(BTW 2B)−1BTW 2]T = W 2B(BTW 2B)−1(Lb)(p). (2.2.29)

Similarly to how we developed alternative views on computations ofw in case of in-

terpolation or augmented interpolation, we will find an interpretation ofw as a solution

of an under-determined weighted problem.

Proposition 2.2.2 (Alternative derivation ofWLS-based stencil weights). TheWLS sten-
cil weights w are a solution of

min
w∈Rn

n∑︂
i=1

(wi/Wii)
2, subject to BTw = (Lb)(p). (2.2.30)

42 Chapter 2. RBF-FD and similar methods

Proof. The constraints of the problem are obtained by requiring the stencil weights to

exactly reproduce L for the basis functions bj :

(Lbj)(p) =
n∑︂

i=1

wibj(xi), ∀j = 1, . . . , ℓ. (2.2.31)

This is similar to the method of undetermined coefficients, but the number of equations

ℓ is less (or equal to) than the number of unknowns n. The remaining degrees of freedom

are determined by minimization instead of adding more basis functions.

The weighted minimization problem can be transformed to an ordinary least-norm

under-determined problem, by substituting w = W w̃ and solving the problem

min
w̃∈Rn

n∑︂
i=1

w̃2, subject to BTW w̃ = (Lb)(p). (2.2.32)

The solution of least-norm under-determined problem is expressed as the pseudoinverse,

which takes the form

w̃ = (BTW)T(BTW (BTW)T)−1(Lb)(p) = WB(BTW 2B)−1(Lb)(p), (2.2.33)

giving the final weights as

w = W w̃ = W 2B(BTW 2B)−1(Lb)(p). (2.2.34)

The computation of the weights in this case is best done by first solving the under-

determined system (2.2.32), using e.g. normal equations, QR, SVD, and then multiplying

the final result byW .

2.2.5 Properties of stencil weights
So far, we derived three different procedures for computing stencil weights wL,X(p)
and two views for each of them: one derived by applying L to a suitable approximant

and another by requiring exactness for a certain set of functions and determining the

remaining coefficients using suitable minimization. The three options will be denoted

as follows.

• Interpolation:

wL,X
I(b)(p) = B−T(Lb)(p), |X| = |b| = n (2.2.35)

• Polynomial augmented RBF:

wL,X
RBF(ϕ,m)(p) =

[︃
In 0
0 0

]︃ [︃
Aϕ P
PT 0

]︃−1 [︃
(Lϕ)(p)
(Lπ)(p)

]︃
(2.2.36)

• WLS:

wL,X
WLS(b, ω)(p) = W 2B(BTW 2B)−1(Lb)(p), |X| = n, |b| = ℓ (2.2.37)

2.2. Approximation of partial differential operators 43

The subscript I(b) denotes interpolation with basis functions b, subscript RBF(ϕ,m)
denotes RBF interpolation augmented with monomials up and including degreem, and

subscript WLS(b, ω)WLS approximation with basis b and weight function ω.

The following prepositions restates the equality of cardinal functions and stencil

weights for interpolation, proven in 2.2.1, into above notation.

Proposition 2.2.3 (Interpolation stencil weights evaluated at stencil nodes). The stencil
weights computed using interpolation satisfy the Kronecker-delta property:

(wid,X
I(b) (xi))j = δij. (2.2.38)

Furthermore, the derivatives of stencil weights are easy to compute, regardless of the

approximation procedure used to obtain the weights.

Proposition 2.2.4 (Differentiation of stencil weights).

(Lwid,X)(p) = wL,X(p) (2.2.39)

Proof. All three weights can be computed as wL,X(p) = M(Lb)(p), for some constant

matrixM . Thus,

Lwid,X(p) = LM(b)(p) =M(Lb)(p) = wL,X(p). (2.2.40)

Both RBF andWLS stencil weights reduce to interpolation stencil weights for special

cases.

Proposition 2.2.5 (Special cases reducing to interpolation). The following special cases
hold:

• If RBF is used without augmentation, it reduces to RBF interpolation:

wX,L
RBF(ϕ,0) = wX,L

I((ϕxj)
n
j=1)

, (2.2.41)

• If the number of basis functions is the same as the number of stencil nodes in WLS
approximation, it reduces to interpolation:

wX,L
WLS((bj)nj=1, ω)

= wX,L
I((bj)nj=1)

. (2.2.42)

• If the number of stencils nodes equals the number of augmenting monomials, i.e.
|X| =

(︁
m+d
d

)︁
, then stencil weights reduce to polynomial interpolation:

wX,L
RBF(ϕ,m) = wX,L

I(π), (2.2.43)

In particular, the second point also means that for ℓ = n the WLS shapes are independent
of the weight ω.

44 Chapter 2. RBF-FD and similar methods

Proof. The first point is obvious from the definition of RBF interpolation. The second

point is obvious from definition of weighted least squares, since the system is not overde-

termined and can be solved exactly. Alternatively, using the interpretation in the spirit

of Proposition 2.2.2, there is nothing to minimize, since constraints leave no degrees of

freedom. Finally, this can also be made clear directly from the expression for stencil

weights. The matrix B is square if n = ℓ and the basis and points are assumed to be

such that B is invertible. This gives

wX,L
WLS((bj)nj=1, ω)

= W 2B(BTW 2B)−1(Lb)(p) (2.2.44)

= W 2BB−1W−2B−T(Lb)(p) = B−T(Lb)(p) = wX,L
I((ϕxj)

n
j=1)

. (2.2.45)

Similarly, if the number of points in RBF interpolation is equal to the number of

constraints, the constraints in (2.2.20) consume all the degrees of freedom. Alternatively,

since P is invertible in this case, the equation PTα = 0 implies α = 0 reducing it to

polynomial interpolation.

Proposition 2.2.6 (Reduction to FDM). The interpolation stencil weights reduce to stan-
dard finite difference weights if the nodes X form a regular grid around p, i.e. X =
Gk

h =
∏︁d

i=1{pi + jh, j = −k, . . . , k} and the basis b is the tensor basis of monomials,
b(x) =

⨂︁d
i=1{x

j
i , j = 0, . . . , 2k}.

Proof. In the setup as described above, the interpolating function û becomes a tensor

product of Lagrange interpolating polynomials on a grid, which is exactly the setup

used to derive stencil weights in the finite difference method.

A useful property of all stencil weights is linearity in L.

Proposition 2.2.7 (L-linearity of stencil weights). All three types of stencil weights
wL,X(p) are linear in L, i.e.

wαL1+βL2,X(p) = αwL1,X(p) + βwL2,X(p). (2.2.46)

Proof. All three weights can be computed aswL,X(p) =M(Lb)(p), for some matrixM
independent of L and some basis functions b. Linearity follows directly:

wαL1+βL2,X(p) =M((αL1 + βL2)b)(p) (2.2.47)

=M [(α(L1b) + β(L2b)] (p)) (2.2.48)

=M(α(L1b)(p) + β(L2b)(p)) (2.2.49)

= αM(L1b)(p) + βM(L2b)(p) (2.2.50)

= αwL1,X(p) + βwL2,X(p).

The consequences of linearity is that stencil weights for operators of the form

L =
∑︂
|α|≤k

aαD
α, Dα =

∂|α|

∂xα1
1 · · · ∂x

αd
d

, (2.2.51)

can be easily computed knowing only finitely many “basis” stencil weights wDα, X(p).
Note that this property is useful only if L is known in such form, and even if it is,

applying L to basis functions directly might be easier or more numerically stable then

computing the weights using linearity.

2.2. Approximation of partial differential operators 45

2.2.6 Computational aspects
All of the formulas (2.2.35), (2.2.36) and (2.2.37) for stencil weights contain a matrix in-

verse. However, the formulas should not be used as written, but instead by solving an

appropriate linear system and then possibly transforming the solution. This ensures bet-

ter control over the stability properties and the execution time with a wide variety of

matrix decompositions to choose from, depending on the properties of the matrix. For

positive definite RBF or for WLS with normal equations Cholesky decomposition can be

used, otherwise general purpose LU or QR solvers can be used, or even SVD. This is also

useful in situations where weights for multiple operators L have to be computed on the

same set of nodesX . As only the right hand side of the system depends on L, the matrix

can be computed and decomposed only once (in cubic time), the decomposition can be

stored and subsequent weights can be computed in quadratic time.

Another important aspect that is often only noted in passing (e.g. [Ngu+08]) is the

importance of evaluation in the local scaled coordinate frame. The following example il-

lustrates the importance of this recommendation when computing weights numerically.

Example 2.2.8 (FDM weight computation – shifting). Consider a classical one-dimen-

sional setup with b = {1, x, x2}, compute the stencil weightswX,L
I(b) around point x

∗
with

stencil X = {x0 − h, x0, x0 + h}. In a typical situation we expect x∗ to be close to x0,
eg. x0 − x∗ = Θ(h), while x0 and h can be arbitrary.

Without translation and scaling, the matrix interpolation matrix B1 is equal to

B1 :=

⎡⎣1 x0 − h (x0 − h)2
1 x0 x20
1 x0 + h (x0 + h)2

⎤⎦ . (2.2.52)

Evaluated in a local frame, by shifting the origin into point x∗, we obtain

B2 :=

⎡⎣1 x0 − x∗ − h (x0 − x∗ − h)2
1 x0 − x∗ (x0 − x∗)2
1 x0 − x∗ + h (x0 − x∗ + h)2

⎤⎦ . (2.2.53)

Closed form expressions are available for Frobenius condition numbers of Bi:

κF (Bi) =

√︂
(2h4+2h2(6χ2

i+1)+3(χ4
i+χ2

i+1))(4h4+h2(2−6χ2
i)+6(χ4

i+4χ2
i+1))

2h2 (2.2.54)

=
3√
2

1

h2
+

15

2
√
2

χ2
i

h2
+

3

2
√
2
+

21χ2
i

4
√
2
+O(h2, χ2

i), (2.2.55)

where χ1 = x0 and χ2 = x0 − x∗. The Taylor expansion shows that B1 becomes ill-

conditioned if |x0| ≫ 1 or |h| ≪ 1. Case 2 fixes the first problem, as χ = Θ(h), but still
suffers from instabilities when |h| ≪ 1.

To avoid these unnecessary numerical inaccuracies, all expressions should be evalu-

ated as functions of local dimensionless coordinates
xi−x∗

δ
, where x∗

is a chosen point,

usually near the center of X and δ is a local measure of distance, such as the diameter

of X or distance between the two nodes closest to x∗
. This makes the computational

procedure independent of the choice of origin and the units of the coordinate system.

We can also view this as choosing a local basis {bj((· − x∗)/δ)} instead of {bj}. How-
ever, when computing L applied to scaled bj , one has to take care to not omit additional

factors of δ that might appear due to scaling.

46 Chapter 2. RBF-FD and similar methods

Example 2.2.9 (FDM weight computation – scaling). Continuing with the same nota-

tion from example above, we compute B3 using the approach described above. We take

δ = h and the matrix B3 is

B3 :=

⎡⎣1 χ3 − h (χ3 − h)2
1 χ3 χ2

3

1 χ3 + h (χ3 + h)2

⎤⎦ , (2.2.56)

where χ3 = x0−x∗

h
. Again, closed form expression for Frobenius condition number is

available,

κF (B3) =

√︃
3

2

√︂
χ4
3 + 3χ2

3 + 2
√︂
3 (χ2

3 + 5)χ2
3 + 7 (2.2.57)

=
√
21 +

51

4

√︃
3

7
χ2
3 +O

(︁
χ4
3

)︁
, (2.2.58)

In this case, the condition number is bounded under initial assumption χ3 = O(1) and
the problem is well conditioned regardless of the choice of x0 and h.

As a concrete example for choice of x0 = 100, h = 0.02 and x∗ = 100.01, the
following condition numbers are computed:

κF (B1) ≈ 5.30463 · 1011, (2.2.59)

κF (B2) ≈ 5305.69, (2.2.60)

κF (B3) ≈ 6.79283, (2.2.61)

further demonstrating the differences in described approaches.

Remark 2.2.10. All the matrices Bi appearing in examples 2.2.8 and 2.2.9 were Van-

dermonde matrices, and despite being unstable, linear systems involving Vandermonde

matrices can be solved un a stable way using QR decomposition [BNT19]. However,

despite being able to overcome the issues outlined in these particular cases with a more

involved method, shifting and scaling the coordinate system beforehand is still benefi-

cial in general, as we can ensure that the same stencil will result in the same matrix,

regardless of its absolute position, the choice of units and the linear solver being used.

The points discussed in this chapter are all reflected in the implementation of the

approximation, as described in Section 5.2.2.

2.2.7 Examples

Apart from the example coinciding with FDM discussed in the previous section, we will

show a few other illustrative examples. Some regular examples can be computed in

closed form, and the convergence properties of various RBFs have been investigates in

such cases [Bay+10].

Since all commonly used computational procedures for stencil weights are transla-

tion invariant, we will always choose the stencil around the origin.

2.2. Approximation of partial differential operators 47

Example 2.2.11 (Gaussian RBF-FD weights on a regular stencil). Consider the RBF-

FD weights on a stencil X = {(0, 0), (−h, 0), (h, 0), (0,−h), (0, h)} for the Laplacian

operator using Gaussian RBFs. The system for weights wX,∇2
(0) is

⎡⎢⎢⎢⎢⎣
1 e−ε2h2

e−ε2h2
e−ε2h2

e−ε2h2

e−ε2h2
1 e−4ε2h2

e−2ε2h2
e−2ε2h2

e−ε2h2
e−4ε2h2

1 e−2ε2h2
e−2ε2h2

e−ε2h2
e−2ε2h2

e−2ε2h2
1 e−4ε2h2

e−ε2h2
e−2ε2h2

e−2ε2h2
e−4ε2h2

1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
w1

w2

w3

w4

w5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−4ε2

4e−ε2h2
ε2 (ε2h2 − 1)

4e−ε2h2
ε2 (ε2h2 − 1)

4e−ε2h2
ε2 (ε2h2 − 1)

4e−ε2h2
ε2 (ε2h2 − 1)

⎤⎥⎥⎥⎥⎦ ,
(2.2.62)

which can be solved to obtain

wX,∇2

(0)T =

[︃
−4ε2

(︃
1 +

ε2h2

sinh2(ε2h2)

)︃
, w2, w2, w2, w2

]︃
, w2 =

4ε4h2e3ε
2h2

(e2ε2h2 − 1)
2 . (2.2.63)

The weights do not sum to zero, which means that the approximation does not even

reproduce constants. However, the approximation is of second order, as we can compute

uTwX,∇2 −∇2u = 2ε4h2u+ ε2h2∇2u+
1

12
h2
(︃
∂4u

∂x4
+
∂4u

∂y4

)︃
+O(h4), (2.2.64)

where all the expressions are evaluated at (0, 0). If ε is constant, this approximation

converges with order 2, as shown in Figure 2.1. While the theoretical and computed

errors match initially, the computed approximation eventually breaks down due to bad

conditioning of the interpolation matrix. But, if we scale ε = ε0/h to avoid conditioning
problems, the leading error terms change to

2ε20/h
2u+ ε20∇2u+

1

12
h2
(︃
∂4u

∂x4
+
∂4u

∂y4

)︃
+O(h4, h−4), (2.2.65)

which is of the form c1h
−2 + c2 + c3h

2
, where the constants depend on u and ε0. This

is not convergent and gives a classical error shape with two local minima, as shown in

Figure 2.1. The deviation between the theoretical and predicted errors for scaled version

is due to the fact the theoretical version only includes the initial terms of the Taylor

expansion as derived in (2.2.64).

This lack of convergence is important enough that it has its own name, and has

been called divergence due to “stagnation” or “saturation” errors [Fly+16]. The shape ε
is often chosen as small as possible due to conditioning, and the divergent terms come

into play at much smaller h than in our example, when the domain is already “saturated”

with nodes, and the error “stagnates”. However, the true behavior of this phenomenon is

simply that the approximation with scaled ε is not convergent with the truncation error

as described in (2.2.65).

48 Chapter 2. RBF-FD and similar methods

Figure 2.1: Error and condition number of the approximation of the Laplacian on regular

grid with constant and scaled shape parameter ε using Gaussian RBFs. The theoretical

and computed lines in the right plot overlap completely, so they are drawn at a slight

offset to keep both visible.

The scaling of ε is still often used, because the interpolation matrix is a function of

εh, and is constant, if ε is scaled proportionally to 1
h
, meaning that its condition number

is constant as well. This behavior is similar to other RBFs that include a shape parameter.

The Frobenius condition number of the interpolation matrix can be computed in (rather

long) closed form, but we give its Taylor expansion instead:

κF =
5

2

√︃
13

2
χ−4 − 37√

26
χ−2 +

75313

780
√
26
− 3343049

25350
√
26
χ2 +O

(︁
χ4
)︁
, (2.2.66)

where χ = εh. We can see that the condition number grows with the 4th power as

ε → 0 with a constant h, or as h → 0 with a constant ε. The condition number is also

shown in Figure 2.1 for both the scaled and the non-scaled version.

This example is also a demonstration of the trade-off described in Section 1.4.3, since

scaled parameter gives us stability without accuracy, and constant parameter gives ac-

curacy, but is unstable.

One way to avoid the problems with space parameters is to use a RBF that does

not have one – the polyharmonics ϕ(r) = r2k+1
. These are only conditionally positive

definite and need to be augmented with monomials of at least up to order k to ensure

solvability. The properties of polyharmonic RBFs with monomial augmentation were

investigated in PhD thesis by Barnett [Bar15].

Example 2.2.12 (Polyharmonic RBF-FD weights with monomial augmentation). As a
contrast to the previous example, we include another example of weights that can be

computed in closed form. We use a regular 9-noded stencilX = {{0, 0}, {0,−h}, {0, h},
{−h, 0}, {h, 0}, {−h,−h}, {−h, h}, {h,−h}, {h, h}} and compute the weights for Lap-

lacian around point (0, 0) using ϕ(r) = r3 and monomial augmentation of 2nd order.

Note that we can compute approximations using no or lower augmentation, but it

turns out that the resulting approximation does not converge. For 2nd order augmenta-

2.3. PDE discretization 49

tion, the interpolation matrix is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 h3 h3 h3 h3 2
√
2h3 2

√
2h3 2

√
2h3 2

√
2h3 1 0 0 0 0 0

h3 0 8h3 2
√
2h3 2

√
2h3 h3 5

√
5h3 h3 5

√
5h3 1 0 −h 0 0 h2

h3 8h3 0 2
√
2h3 2

√
2h3 5

√
5h3 h3 5

√
5h3 h3 1 0 h 0 0 h2

h3 2
√
2h3 2

√
2h3 0 8h3 h3 h3 5

√
5h3 5

√
5h3 1 −h 0 0 h2 0

h3 2
√
2h3 2

√
2h3 8h3 0 5

√
5h3 5

√
5h3 h3 h3 1 h 0 0 h2 0

2
√
2h3 h3 5

√
5h3 h3 5

√
5h3 0 8h3 8h3 16

√
2h3 1 −h −h h2 h2 h2

2
√
2h3 5

√
5h3 h3 h3 5

√
5h3 8h3 0 16

√
2h3 8h3 1 −h h −h2 h2 h2

2
√
2h3 h3 5

√
5h3 5

√
5h3 h3 8h3 16

√
2h3 0 8h3 1 h −h −h2 h2 h2

2
√
2h3 5

√
5h3 h3 5

√
5h3 h3 16

√
2h3 8h3 8h3 0 1 h h h2 h2 h2

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 −h h −h −h h h 0 0 0 0 0 0
0 −h h 0 0 −h h −h h 0 0 0 0 0 0
0 0 0 0 0 h2 −h2 −h2 h2 0 0 0 0 0 0
0 0 0 h2 h2 h2 h2 h2 h2 0 0 0 0 0 0
0 h2 h2 0 0 h2 h2 h2 h2 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.2.67)

and the right hand side is[︁
0 9h 9h 9h 9h 9

√
2h 9

√
2h 9

√
2h 9

√
2h 0 0 0 0 2 2

]︁T
. (2.2.68)

The block structure of the system is nicely visible in this example. Only first 9 elements

of the solution vector are kept, and are equal to

w =

[︃
−8.971

h2
,
3.330

h2
,
3.330

h2
,
3.330

h2
,
3.330

h2
,−1.087

h2
,−1.087

h2
,−1.087

h2
,−1.087

h2

]︃T
,

(2.2.69)

where the constants can be computed exactly, but have no special meaning. The weights

sum to zero, and are consistent with up to 2nd order monomials by construction. Indeed,

the error is of order h2 with the constant proportional to a combination of 4th derivatives

of u.

Ultimately, we decided to use polyharmonic splices ϕ(r) = r3 with monomials aug-

mentation of the second order. This allows us to avoid convergence and stability issued

that are present when using pure Gaussian (or other) RBFs, removes any shape param-

eter tuning and reproduces monomials up to order 2. The choice of power 3 was arbi-

trary, and does not have much effect on the overall performance [Fly+16]. While being

more expensive to compute thanWLS-based stencils (O((n+ℓ)3) vs.O(nℓ2)), this setup
also exhibited better stability with respect to nodal positions than WLS-based methods,

which is important for adaptivity.

2.3 PDE discretization
After obtaining the computational weights (in any of the ways described in the previous

section), we are finally equipped to solve the PDE-governed problems. The procedure to

actually obtain the solution of a PDE depends greatly on the type of the problem being

solved. The two most common patterns are solving an elliptic boundary value problem,

by assembling a sparse linear system, and solving an initial value problem with explicit

time iteration.

50 Chapter 2. RBF-FD and similar methods

Both of these patterns are described in the following sections and share the same

setup: a domain Ω, with boundary ∂Ω = Γd ∪ Γn which represents the parts of the

boundary where Dirichlet and Neumann boundary conditions are applied, respectively.

Furthermore, we will use the following discretization ofΩ, the construction of which
will be discussed in greater detail in Chapter 3. The discretization consists of N nodes

X = (x1, . . . ,xN) placed in the domain, of which some lie in the interior, some on the

Neumann boundary and some on the Dirichlet boundary. Each node xi ∈ X also has

a corresponding stencil Si of size ni ≤ N consisting of neighboring nodes with indices

Ii = (Ii,1, . . . , Ii,ni
). Thus, Ii,j is the index of the j-th stencil node of i-th node and we

additionally define Si,j = xIi,j to denote the coordinates of this node.

With the above discretization, we can compute and store stencil weights wL,Si(xi)
for all nodes xi and operators L that appear in the problem. These weights, domain

nodes and the stencil indices Ii are needed for PDE discretization.

2.3.1 Explicit evaluation

Consider a sample time-dependent initial value problem on domain Ω:

∂u

∂t
(x, t) = (Lu)(x, t) in Ω, (2.3.1)

u(x, t) = f(x, t) at t = 0, (2.3.2)

u(x, t) = gd(x, t) on Γd, (2.3.3)

∂u

∂n⃗
(x, t) = gn(x, t) on Γn, (2.3.4)

where Γd and Γn are Dirichlet and Neumann boundaries, respectively, and f , gd and gn
are known functions.

The spatial part of the PDE can be discretized into a system of ODEs by introducing

ui(t) := u(xi, t) and replacing spatial operators with their discrete approximations as

per (2.2.1), to obtain

∂ui
∂t

(t) =

ni∑︂
j=1

(wL,Si(xi))juIi,j(t) in Ω, (2.3.5)

ui(t) = f(xi, t) at t = 0, (2.3.6)

ui(t) = gd(x, t) on Γd (2.3.7)

d∑︂
ℓ=1

(n⃗)ℓ

ni∑︂
j=1

(w∂ℓ,Si(xi))juIi,j(t) = gn(x, t) on Γn. (2.3.8)

The notation ∂ℓ :=
∂

∂xℓ
was used to denote the ℓ-th coordinate derivative.

This scheme can then be further discretized in time to obtain a suitable stepping

scheme. Using explicit Euler scheme in time, starting at t = 0 with time step ∆t, we

2.3. PDE discretization 51

define uki = ui(k∆t). The iteration then proceeds as follows:

u0i = f(xi), for all nodes xi (2.3.9)

uk+1
i = uki +∆t

(︄
ni∑︂
j=1

(wL,Si(xi))juIi,j(t)

)︄
, for internal nodes xi, (2.3.10)

uk+1
i = gd(xi, (k + 1)∆t), for Dirichlet nodes xi, (2.3.11)

uk+1
i =

gn(xi, (k + 1)∆t)−
ni∑︂
j=2

ukIi,j

d∑︂
ℓ=1

(n⃗)ℓ(w
∂ℓ,Si(xi))j

d∑︂
ℓ=1

(n⃗)ℓ(w
∂ℓ,Si(xi))1

, for Neumann xi. (2.3.12)

The iteration on the Neumann boundary is obtained by expressing ui from the dis-

cretized version (2.3.8) of the Neumann boundary conditions. Additionally, to express

the iteration explicitly, we need to assume that each nodexi is a member of its own sten-

cil. For the sake of simplicity, we can assume that it is the first stencil node, meaning

that Si,1 = xi and Ii,1 = i. This allows us to express it out of the discretized Neumann

conditions as follows:

∂u

∂n⃗
(xi, t) =

d∑︂
ℓ=1

(n⃗)ℓ(∂ℓu)(xi) ≈
d∑︂

ℓ=1

(n⃗)ℓw
∂ℓ,Si(xi)

TuI(i) (2.3.13)

=
d∑︂

ℓ=1

(n⃗)ℓ

ni∑︂
j=1

(w∂ℓ,Si(xi))juIi,j =
d∑︂

ℓ=1

(n⃗)ℓ

ni∑︂
j=1

(w∂ℓ,Si(xi))juIi,j (2.3.14)

=

ni∑︂
j=1

uIi,j

d∑︂
ℓ=1

(n⃗)ℓ(w
∂ℓ,Si(xi))j = (2.3.15)

= ui

d∑︂
ℓ=1

(n⃗)ℓ(w∂ℓ,Si
(xi))1 +

ni∑︂
j=2

uIi,j

d∑︂
ℓ=1

(n⃗)ℓ(w
∂ℓ,Si(xi))j. (2.3.16)

The expression uI(i) represents a vector of function values in stencil nodes uI(i) =
(u(xj))j∈I(i).

Similar expressions to equations (2.3.9–2.3.12) can be developed for other time it-

erations schemes. Additionally, same techniques can be used to efficiently explicitly

differentiate an already known field if needed.

2.3.2 Implicit solution
In this case, we consider a boundary value problem

Lu = f in Ω, (2.3.17)

u = gd on Γd, (2.3.18)

∂u

∂n⃗
= gn on Γn, (2.3.19)

52 Chapter 2. RBF-FD and similar methods

where, as before, Γd and Γn are Dirichlet and Neumann boundaries, and f , gd and gn
are known functions. Similarly to before, each of the operators in above equations is

approximated with stencil weights using (2.2.1). The unknown values ui := u(xi) are
treated as unknown variables. This gives us the following system of equations:

ni∑︂
j=1

(wL,Si(xi))juIi,j = f(xi) for internal nodes xi, (2.3.20)

ui = gd(xi) for Dirichlet nodes xi, (2.3.21)

d∑︂
ℓ=1

(n⃗)ℓ

ni∑︂
j=1

(w∂ℓ,Si(xi))juIi,j = gn(xi) for Neumann nodes xi. (2.3.22)

This system of N linear equations can be written as Mu = r, where i-th row of

the system corresponds to the equation that holds for node xi. The matrixM is called

the differentiation matrix, because it contains the differentiation weights, i.e. the stencil
weights of the differential operators in the problem. The N × N matrix M and the

right-hand side r are given by

Mi,Ii,j = (wL,xi
)j, ri = f(xi), for internal nodes xi, (2.3.23)

Mi,i = 1, ri = gd(xi), for Dirichlet nodes xi, (2.3.24)

Mi,Ii,j =
d∑︂

ℓ=1

(n⃗)ℓ(w
∂ℓ,Si(xi))j, ri = gn(xi), for Neumann nodes xi, (2.3.25)

where index j runs from 1 to ni. The differentiation matrix M is sparse with at most∑︁N
i=1 ni nonzero entries. The nodal values for Dirichlet nodes are explicitly known,

and can in practice be substituted in the other equations and moved into the right hand

side, which reduces the number of degrees of freedom by the number of nodes on the

Dirichlet boundary.

The equations (2.3.23–2.3.25) define the unknown field u implicitly by using stencil

weights and the solution of the systemMu = r is the numerical approximation of the

unknown function u. Similar approximations can be obtained for vector equations, or

in implicit time stepping schemes.

2.3.3 Ghost nodes
Another technique that can be useful when applying boundary conditions is the use

of ghost or fictitious nodes. This technique is often used in FDM to handle Neumann

boundary conditions with symmetric differences, and it is used similarly in strong form

meshless methods. The stencils near the boundary are usually one-sided, and to avoid

that, one or more layers of nodes can be added outside of Ω. For a boundary node xi

with local spacing h(xi) the ghost node is usually added in the outside normal direction

at position xi + h(xi)n⃗i, where n⃗ is the outside unit normal. If more than one layer is

desired, further layers can be added at positions xi + 2h(xi)n⃗i, xi + 3h(xi)n⃗i, . . .

Additional nodes introduce additional degrees of freedom, which are filled by requir-

ing that the PDE itself holds in the boundary node besides also requiring the bound-

ary conditions. In case of a boundary value problem (2.3.17–2.3.19), besides requir-

ing
∂u
∂n⃗
(xi) = gn(xi), we add another equation (Lu)(xi) = f(xi). If more than one

2.3. PDE discretization 53

layer was added, then we can fill the additional degrees of freedom with equations

(LLu)(xi) = (Lf)(xi), (LLLu)(xi) = (LLf)(xi), . . .
While the ghost nodes in FDM help with the derivation of the equations and do not

necessarily appear in the final equations, in strong formmeshlessmethods they do in fact

add additional degrees of freedom and we also obtain “function values” corresponding

to these nodes. However, note that neither L for f are ever evaluated in the ghost nodes

and the obtained function values only represent a possible extension of the solution u.

2.3.4 Special cases
Finite difference method

Similarly to how local stencil weights coincide with stencil weights for FDM, the whole

strong-form solution procedure reduces to FDM if the same setup as in Proposition 2.2.6

is used. If the nodes are arranged in a rectangular grid, stencils of 9 closest nodes and

tensor monomial basis in 2D give exactly the assumptions for Proposition 2.2.6, which

means that every interior stencil is the same as the FDM stencil. The assembly of the

differentiation matrices is exactly the same as in FDM, and so is the handling of the

boundary conditions (with or without ghost nodes).

A direct FDM implementation is of course faster, since stencil weights can be com-

puted analytically beforehand. However, the meshless setup has an advantage of being

easy to generalize to higher order methods, where the manual computation and case-

analysis of stencil weights near the boundary becomes tedious.

Kansa method

One of the first meshless methods for solving PDEs in strong form was the collocation

method developed by Edward Kansa [Kan90b], who generalized the RBF-based methods

for scattered data interpolation to solving PDEs.

To illustrate the method, we will describe how to solve a simple boundary value

problem

Lu = f in Ω, (2.3.26)

u = gd on ∂Ω. (2.3.27)

The method assumes that N collocation nodes X = {x1, . . . ,xn} are present in the

domain, and that the solution is of the form û(x) =
∑︁N

i=1 αiϕ(∥x − xi∥). This is sub-
stituted in the equation (Lû)(x) = f(x) for all internal nodes and into û(x) = gd(x)
for all boundary nodes. Thus, assuming nodes 1 to I are in the interior and I + 1 to N
are on the boundary, we get the system⎡⎢⎢⎢⎢⎢⎢⎢⎣

Lϕ(∥x1 − x1∥) · · · Lϕ(∥x1 − xN∥)
.
.
.

.
.
.

.

.

.

Lϕ(∥xI − x1∥) · · · Lϕ(∥xI − xN∥)
ϕ(∥xI+1 − x1∥) · · · ϕ(∥xI+1 − xN∥)

.

.

.

.
.
.

.

.

.

ϕ(∥xN − x1∥) · · · ϕ(∥xN − xN∥)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣α1

.

.

.

αN

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(x1)
.
.
.

f(xI)
g(xI+1)

.

.

.

g(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.3.28)

54 Chapter 2. RBF-FD and similar methods

The solution of this system gives the coefficients α which in turn give the solution û.
RBF-FD method coincides with the Kansa method in an extreme case.

Proposition 2.3.1 (Kansa method as a special case of RBF-FD). If the stencil of each
node includes all nodes, i.e. S(i) = X for all i = 1, . . . , N , then RBF-FD is equivalent to
the Kansa method.

Proof. Instead of seeking the approximation in form u(x) =
∑︁N

i=1 αiϕ(∥x − xi∥), we
can seek the approximation from the same space using cardinal basis

û(x) =
N∑︂
i=1

uiw
id,X(x), (2.3.29)

where we used the fact that cardinal basis corresponds to stencil weights for L = id.
Substituting û for u in the PDE and in the boundary conditions and evaluating at the

collocation points, gives the RBF-FD differentiation matrix due to 2.2.4 and 2.2.3, the

unknowns are the function values ui and the right hand side remains the same.

Of course, using Kansa method directly is more efficient than using RBF-FD with

full stencils. The most expensive part of the Kansa method is the O(N3) solution of the

dense system, while RBF-FD would require N computations of stencil weights, which

cost O(N3) each, and an additional O(N3) for the system solution.

Chapter 3

Domain discretization

One of the main advantages of mesh-free methods is that they do not rely on polygoniza-

tion of the computational domain to solve PDEs but instead approximate the solution

using scattered computational nodes. Classical methods, such as FEM use computational

nodes and connectivity relation as the basis of the discretization, and grid-basedmethods

such as FDM can also be viewed as having an implicit rectangular mesh. Most meshless

methods only use computational nodes and substitute connectivity relations with sten-

cils of neighboring nodes. The discretizations used by these three types of methods are

shown in Figure 3.1.

Figure 3.1: From left to right: meshless, FEM and FDM discretization. Only two stencils

of closest 6 nodes are shown in meshless discretization for clarity.

Meshless methods discretize the domain by positioning N points, called computa-
tional nodes, or simply nodes in the domain and on its boundary. Each point is also

assigned a set of neighboring nodes, as shown for a boundary and an interior node in

Figure 3.1. The details of meshless discretizations and the terminology that is used dif-

fers on amethod-by-method basis. Weak formmethods, such asMLPG [AZ98], often use

FEM terminology which is sometimes adapted to strong form methods as well [Ngu+08;

TK15]. Thus the ball with a large enough radius to include all the neighboring nodes

of a given node is called the local subdomain [AZ98], the support domain [TK15] or the

domain of influence [Ngu+08]. The nodes themselves are often called support nodes. For
strong form methods, FDM terminology is often transferred into meshless context, and

neighboring nodes are often called stencils, despite not having the same shape for each

55

56 Chapter 3. Domain discretization

node and thus deviating from the original meaning. Some authors also call the neigh-

boring nodes local point clouds [Oña+96] or stars [LO80] and the center node the star
node, inspired by the star shape that is created if all neighboring nodes are connected to
the center node. We will use the FDM terminology and use the term stencil.

The desired structure of domain discretization has been briefly described in Sec-

tion 2.3. The next section gives the formal definition of a domain discretization used

in this work and reviews state of the art algorithms for generating computational nodes.

A new algorithm for generating nodes on the interior is presented in Section 3.2 and

its generalization to surfaces, including domain boundaries, is presented in Section 3.3.

These two algorithms together present a complete algorithm for generating computa-

tional nodes and will form the foundations of the adaptive solution procedure. Analyses

of both algorithms and the generated node sets are described in Section 3.4. Finally, we

discuss stencil selection algorithms in Section 3.5 to fully define how domain discretiza-

tions are constructed.

3.1 Basic definitions and state of the art
Consider a domain Ω ⊆ Rd

, which we will assume is a connected open subset with a

piecewise smooth boundary. The notation [N]will be used to denote the set {1, . . . , N}.

Definition 3.1.1 (Domain discretization). A (meshless, mesh-free) domain discretiza-

tion or a (meshless, mesh-free) representation of Ω is a tuple D = (X, I, τ, n⃗), where

• X represents a node set {x1, . . . ,xN}, such that all the nodes are contained in

the closure of Ω, i.e. xi ∈ Ω. When working with nodes, it will be worthwhile

to have them ordered, and thus we formally define X as an injective function

X : [N]→ Ω, X(i) = xi.

• I represents stencil indices. The stencil of i-th node has size ni and the indices

will be denoted as {Ii,1, . . . , Ii,ni
}. Formally, n is a function n : [N] → N giving

the stencil size and I :
⋃︁N

i=1{(i, j), j ∈ [n(i)]} → [N] is the function giving the

stencil indices. We will write ni and Ii,j instead of n(i) and I(i, j).

Furthermore, we will define the stencil function S as S(i, j) = X(I(i, j)), and
similarly adopt the notation Si,j for j-th stencil node of the i-th node. More-

over, the one-argument versions Ii = I(i) := (Ii,1, . . . , Ii,ni
) and Si = S(i) :=

(Si,1, . . . , Si,ni
) will also be used when referring to the tuple of all stencil indices

or nodes, respectively.

• τ represents different node types. The two most common types are boundary

and interior nodes, but these can be further refined into subgroups. We will al-

low each node to be assigned a whole number, formally making τ a function

τ : [N]→ Z, with a general agreement that negative values of τ represent bound-
ary nodes and positive values represent interior nodes. Thus,X(τ−1(N)) ⊆ Ω and

X(τ−1(−N)) ⊆ ∂Ω.

• For boundary nodes, we also require the outer unit normals n⃗i for boundary nodes

xi to be known. This is usually needed only on the Neumann boundary, but

3.1. Basic definitions and state of the art 57

if the domain is discretized without a particular problem in mind, the normals

are assumed to be computed for all boundary nodes. Formally, n⃗ is a function

n⃗ : τ−1(−N)→ Rd
, ∥n⃗i∥ = 1, where we once again adopt the notation n⃗i = n⃗(i).

Sometimes it is convenient to refer to stencils directly from the node instead of its

index. This is possible, because the nodes are distinct, and the left inverse X−1
exists.

With slight abuse of notation we will write I instead of I ◦X−1
, and similarly, S instead

of S ◦X−1
, for one-argument versions of I and S. This allows us to refer to node indices

as I(xi) and stencil nodes as S(xi).
The Definition 3.1.1 does not account for ghost nodes. Ghost nodes can be thought

of as members ofX and can be contained as stencil nodes of other non-ghost nodes, but

they themselves have neither stencils nor normals.

The construction of domain discretizations is often divided into three steps: gener-

ation of boundary nodes, generation of interior nodes and computation of stencils. The

first to develop were the algorithms for interior node generation, as nodes in the interior

are needed even for 2D examples, where boundary is one-dimensional.

3.1.1 Existing algorithms for interior node generation

In the beginning of the development of meshless methods positioning of computational

nodes was considered simple, and the advantage that nodes can be scattered was some-

times stretched to the point that it was advertised that arbitrarily positioned nodes can

be used (see [Liu02, p. 14]). This would make node generation seemingly trivial, but it

soon turned out that such simplification leads to unstable results.

Without dedicated algorithms to generated scattered node sets, researchers often

turned to existing mesh generators, with the idea to generate the mesh with desired

properties and discard the connectivity information. This rationale was also explained

by Liu [Liu02, p. 14]: “There are very few dedicated node generators available commer-

cially; thus, we have to use preprocessors that have been developed for FEM.”. Such an

approach has a few problems. Firstly, it is conceptually flawed, since one major point

of using meshless methods is to avoid meshing and all the difficulties that come with it.

Secondly, it is computationally wasteful, as we also compute the unneeded connectivity

relations. Finally, some authors have reported that node layouts obtained by meshing

yielded unstable operator approximations [SKF18], making them unable to obtain a so-

lution.

Other approaches were researched, with the goal to cater to the strengths of mesh-

less methods, such as simple generalizations to three and higher dimensions and the

ability to use highly spatially variable node distributions. Some specialized algorithms

for meshless node generation of layouts have been developed in recent years andmost of

them can generally be categorized into either mesh-based, refinement-based, iterative,

advancing front or sphere-packing algorithms.

The downsides of mesh-based approaches have already been discussed. Their up-

side is that they are well developed, mature, easy to use and familiar. Most popular

mesh generation algorithms (e.g. algorithms in the computational geometry algorithms

library CGAL
1
[FP09]) also cannot be easily altered to only generate the nodes, as mesh

1https://doc.cgal.org/latest/Mesh_3/index.html

https://doc.cgal.org/latest/Mesh_3/index.html

58 Chapter 3. Domain discretization

generation is tied together with generation of new nodes. Additionally, mesh-based ap-

proaches also include filling the domain with points on a rectangular, hexagonal or any

other repeating grid pattern, which causes trouble with spatially variable density or ir-

regular domains. Such approaches can be useful on a case-per-case basis, but not in

general.

Refinement based algorithms start from a small node set and adds nodes to produce

a larger one, repeating until some criterion is satisfied. This idea is commonly used in

mesh-generation as well. An example of this are the 2D Ruppert’s algorithm [Rup95]

and its generalization to 3D [She98], which both use Delaunay refinement. This ap-

proach is not directly generalizable to meshless node generation, but others are. For

example, Voronoi diagram related techniques are used by Mu et al. [DGJ02] and a quad-

tree refinement-based mesh generator [FG08] has been adapted by Zamolo and No-

bile [ZN18] into a variable density 2D meshless node generator.

Existing node sets can be improved using iterative approaches. A common approach

is to move the nodes locally by simulating free charged particles, which results in a

type of node configuration called minimal energy nodes [HS04]. Other approaches

include Voronoi relaxation [BSD09], bubble simulation [Liu+10] or a combination of

above [CK99]. Iterative methods require an initial distribution and thus do not really

count as algorithms for node generation. The initial distribution can be chosen to be

random one of the simple grid-based node sets, but the number of iterations to obtain

a good node set can be large and the overall procedure can be very expensive. A user

is thus often required to consider a trade-off between node quality (i.e. number of itera-

tions) and execution time. Furthermore, not many of the iterative methods are designed

to handle spatially variable densities.

One approach to node generation are the circle or sphere packingmethods [LTU00b],

which generate densely packed high quality node distributions, at the expense of com-

putational time. However, such methods are not only useful for domain discretization,

but have uses in the graphics community as well. Poisson disk sampling, a supersam-

pling method used also in image anti-aliasing [Coo86] has been repurposed as a node

generation algorithm by Shankar et al. [SKF18] in 2018. Poisson disk sampling ensures

a required minimal inter-point distance and has efficient implementation in arbitrary

dimension due to Bridson [Bri07]. It has been successfully used with high order RBF-FD

approximations, but does not support variable nodal spacing.

Another approach to node generation are the advancing front methods. These meth-

ods begin node generation in a certain location (e.g. the domain boundary) and advance

towards non-discretized parts of the domain, generating nodes along the way. These

methods are also common approaches for mesh generation but are often restricted to

two dimensions [PS04], with some 3D techniques also available [LP88], that can be gen-

eralized to produce point sets as well [LO98]. Drumm, Tiwari and Kuhnert [Dru+08] also

briefly describe an background-grid advancing front-based technique, which is similar

to Poisson disk sampling, but with applying additional corrections after the node set

has been generated, to remove nodes that are too close and additionally fill too large

gaps. One of the first papers dedicated to algorithms for generating node sets suitable

for strong-form meshless methods was published in 2015 by Fornberg and Flyer [FF15b]

and included an advancing font based methods. The method is inspired by the process

of dropping variable-sized grains into a bucket and yields quality variable density node

3.1. Basic definitions and state of the art 59

distributions in 2D. It is also reasonably computationally efficient in practice and has

since been improved to run in log-linear time [SK18a].

Historically, the algorithm by Fornberg and Flyer was one of the first to outline the

need for dedicated meshless node generation, and solved the problem fairly efficiently

in 2D. The algorithm based on Poisson disk sampling with Bridson’s implementation

as used by Shankar was the next in historic succession and supports generation of uni-

formly spaced node distribution in arbitrary dimensions. Also in 2018, Zamolo and No-

bile [ZN18] published two new algorithms for 2D variable density node generation. A

pre-print uploaded to arXiv in late 2018 by Slak and Kosec presented a new efficient

algorithm for node generation, which is able to generate variably spaced distributions

in arbitrary dimensions. The paper was published in 2019 [SK19d]. In the meantime, a

pre-print authored by van der Sande and Fornberg describing a generalization of [FF15b]

that also supports generating variable density node distributions in arbitrary dimensions

was uploaded to arXiv [SF19], but has not been published as of writing this. Research

in related areas, such as parallel implementations and node generation on surfaces has

also a lot of activity lately. This is reviewed at the beginning of Section 3.3.

3.1.2 Requirements for node generation algorithms

As partially discussed in the previous section there exist requirements for algorithms

and for the generated node sets that make them suitable for strong-form meshless dis-

cretizations. They were often discussed implicitly, and have since been explicitly stated

in [SK19d]. A very similar list is given below along with the rationale for the property

and how existing algorithms behave. We will be using the definitions of fill distance,

separation distance and quasi-uniformity introduced in Section 1.4.1 to state some of

the requirements formally. The requirements are loosely ordered by decreasing impor-

tance.

1. Domain coverage The nodes should cover the whole domain, and not leave any

large areas without nodes. Formally, this means that the fill distance hX,Ω should

tend towards zero if the desired maximal nodal spacing tends toward zero as well.

This statement is vacuous when considering a single distribution, but even for a

single distribution hX,Ω should not be grater then the maximal desired spacing by

a large factor.

2. Minimal spacing guarantees. Too closely positioned nodes can severely impact

stability. Thus, provable minimal spacing guarantees are desirable. The simplest

guarantee for constant spacing h, is of the form

∥xi − xj∥ ≥ h, i ̸= j. (3.1.1)

For variable nodal spacing, lower bound for the distance ∥xi−xj∥ is still desired.
It is best if the bound is local, and that can be obtained in several different ways,

as discussed later, in Section 3.2.3.

3. Local regularity. Nodal distributions should be locally regular, i.e. the distances

between a node and its nearest neighbors should be approximately equal. This

60 Chapter 3. Domain discretization

requirement is based on the fact that local strong form meshless methods are of-

ten sensitive to nodal irregularities, such as large discrepancies in distances to the

nearest neighbors. Such irregularities can can cause ill-conditioned approxima-

tions, making the distribution inappropriate for solving PDEs.

This requirement together with the requirement for domain coverage and mini-

mal spacing is best formally expressed as quasi-uniformity for nodal distributions

where uniform spacing is desired. For distributions with variable spacing, a gen-

eralization of quasi-uniformity is defined in Section 3.4.1 that captures the same

notion locally.

Besides the formal definition of quasi-uniformity, other definitions of local regu-

larity exist, as introduced e.g. in [LTU00a]. However, in practice local regularity

means that the node sets produced by the algorithm should yield quality PDE so-

lutions when using local strong form methods.

4. Spatially variable densities. The algorithm should be able to produce node sets

with spatially variable density while conforming to the previous points, as spa-

tially variable nodal distributions are often required when dealing with irregular

domains or adaptivity. The desired nodal spacing can be assumed to be given as

a function h : Rd → (0,∞). The changes in spatial density should be gradual and

relatively smooth in order to satisfy the requirement of local regularity. The al-

gorithm should work without any continuity assumptions for reasonable h (see

remarks in 3.2.2) and should see a constant step h as a special case of variable step

h(x), not the other way around. Additional assumptions on h may be required

to prove additional properties of the algorithm (e.g. its commonly used that h is

Lipschitz).

5. Computational efficiency and scalability. Time complexity of the algorithm should

ideally be linear in number of generated nodes an not directly dependent on Ω
and h. The choice of Ω and h obviously affects the expected number of nodes

in the domain, but the time complexity should be the same regardless of which

combination of h and Ω produced this many nodes.

Time complexity that is similar to linear in practice, e.g.O(N logN) is acceptable,
while time complexity that is Ω(Nα), for α > 1, is undesirable. The algorithm

should also be computationally efficient in practice, making it feasible to use as a

node generation algorithm in an adaptive setting. A reasonable goal on today’s

laptop architectures is to generate 106 nodes per second (in a compiled language,

such as C, C++ or Fortran).

6. Compatibility between discretizations of interior or boundary. Boundary and interior
discretizations are often constructed separately, or the boundary or interior dis-

cretization is known beforehand. It is assumed that such discretizations are already

conforming to spacing h. In that case the generated node set should seamlessly

join with the existing (boundary) discretization to form a complete discretization

ofΩ. This helps to prevent problems often encountered when enforcing boundary

conditions (see [SKF18, sec. 3.5] and references therein).

3.2. Node generation in domain interiors 61

7. Compatibility with irregular domains. The algorithms should handle irregular do-

mains (i.e. not only regular shapes such as rectangles and circles). It can assume

that a characteristic function

χΩ : Rd → {0, 1},

χΩ(p) =

{︄
1, p ∈ Ω,

0, p /∈ Ω
(3.1.2)

is known, but can use other properties of Ω, as long as the performance is inde-

pendent of the particular shape, as discussed in point 5.

Algorithms that fill bounding boxes of domains are are seen as impaired in this as-

pect. Desirably, as the volume of Ω decreases, so should the number of operations

required by the algorithm.

8. Dimension independence. The same algorithm should work in all (low) dimensions

dwithout special cases. Furthermore, it should ideally also share the same general

implementation in all dimensions.

9. Direction independence. The properties of the produced distributions and running

time of the algorithm should be independent of the spatial orientation of the do-

main Ω or the coordinate system used.

10. Few free parameters. The number of free or tuning parameters of the algorithm

should be minimal. It should work well for all domains and density functions,

without any user intervention, making the algorithm robust and work “out of the

box”. Any potential free parameters should bewell understoodwith recommended

default values and explained effects.

11. Simplicity. Algorithms with simpler formulations and implementations are pre-

ferred.

The algorithm proposed in [SK19d] was developed to support efficient generation of

quality variable density distributions in arbitrary domains and dimensions, which was

not possible with the current algorithms. The satisfaction of these requirements for the

proposed algorithms and some of the existing algorithms are discussed in Section 3.4.

3.2 Node generation in domain interiors
The proposed node generation algorithm is similar to Poisson disk sampling [Coo86], a

type of stochastic sampling, which is used in graphical applications to generate points

that are uniformly distributed over a given region. Poisson disk sampling chooses sam-

ples in a domain Ω with the property that no two samples can be closer than a specified

distance h. This is done in a random fashion, by “dart throwing”, i.e. uniformly select-

ing a point p ∈ Ω and accepting it, if it is not too close to already accepted candidates.

The naive approach described above has time complexity of O(N2) for N generated

points, but an implementation by Bridson [Bri07] generates such distributions in O(N)

62 Chapter 3. Domain discretization

time in box-shaped domains and was successfully used as node generation algorithm by

Shankar et al. [SKF18].

Node sets for strong form mesh-free discretizations do not need the stochastic prop-

erties that Poisson disk sampling possesses. Instead, node distributions with variable

spacing are often desired. The Poisson disk sampling algorithms was adjusted to fit

these new objectives. The new algorithm keeps the same idea of generating new candi-

dates from existing nodes in an advancing front fashion, but adjusts the advancing to the

domain shape and desired spacing function h, while decreasing the effect of randomness.

3.2.1 Algorithm

The algorithm takes as input a region Ω, given by a characteristic function χΩ : Ω ⊆
Rd → {0, 1}, a nodal spacing function h : Ω ⊂ Rd → (0,∞) and a list of starting nodes
X , called “seed nodes”. These nodes are put in a queue, and will be used to generate new

nodes. During the course of the algorithm, each node can be either expanded, active or a
candidate. Active nodes are the ones currently in the queue. Expanded nodes are those

that have already been processed and dequeued. Candidates are nodes that have been

newly created and not yet enqueued. Both expanded and active nodes are accepted and

will appear in the resulting node set.

A spatial search structure S that supports insertions and nearest neighbor queries is

build on X . The algorithm processes points in a fasion similar to a breath-first search.

In i-th iteration of the algorithm, a node pi is dequeued. A set of candidates {ci,j}j is
generated around this node, in such a way that the candidates are spaced approximately

uniformly on the sphere with radius h(pi) and center pi. The candidates are processed

in order. If a candidate ci,j lies outside ofΩ, it is immediately rejected. It it lies inΩ, then
its nearest neighbor ni,j among already accepted nodes is found using S. If the distance
between ci,j and ni,j is lower than h(pi), then ci,j is rejected, otherwise it is accepted.
An accepted candidate is inserted into the queue and in S. When there are no more

nodes left in the queue, the set of nodes in S is returned as the result. The illustration of

the run time progress of the algorithm is shown in Figure 3.2 and the pseudocode of the

algorithm is listed as Algorithm 3.1. The algorithms uses an implicit queue in the initial

list X .

An important part of the algorithm is the candidate generation. Candidates are ob-

tained by choosing a set of unit vectors s⃗i,j that are distributed in all directions, and

define ci,j = pi + s⃗i,jh(pi). Thus we have reduced the problem of candidate generation

to an approximately uniform distribution of points on a unit sphere. One option is to

select a number of randomly uniformly distributed points each time. Another is to have

a preset fixed discretization of a sphere. Yet another is to have a fixed pattern, that is

slightly randomized each time. Figure 3.3 shows an example of these methods. Fixed

candidates method is the faster, because it can be precomputed, but can produce repeat-

ing patterns, gaps and other artifacts in the node set, which are not desired in general.

The node set produced by using random candidates exhibits no random structure, but

produces more loosely packed nodes. The randomized option is faster at candidate gen-

eration and covers all directions more uniformly, while still avoiding regular patterns

in the resulting node set. Further analysis of different candidate generation schemes

is reported in [SK19d]. The final chosen candidate generation method is the random-

3.2. Node generation in domain interiors 63

Figure 3.2: Progress of the node generation algorithm on a region defined by a polar

curve r(ϑ) = 1
4
(3+ cos(3ϑ)). The seed nodes lie on the boundary at ϑ values of 0, 2π/3

and 4π/3. The nodal spacing function is equal to h(x) = 0.05(1 + ∥x∥1).

ized option, which is implemented as Algorithm 3.2 in d dimensions using generalized

spherical coordinates.

Remark 3.2.1 (Numerical precision). When the algorithm checks that a candidate node

is not too close to any existing nodes on line 11, the comparison should be done with

some care. If a candidate c was generated from p at the distance h(p), it often happens

that the closest noden to c isp itself at exactly distance h(p). However, when comparing

this numerically, the check ∥c− n∥ ≥ h(p) should be substituted for

∥c− n∥ ≥ (1− ϵ)h(p), (3.2.1)

for some small positive ϵ, to avoid c from being rejected as being too close to p due to

numerical errors.

Remark 3.2.2 (Points on the boundary). Algorithm 3.1 does not generate points on

the domain boundaries. However, as seen in Figure 3.2, some of the generated points

can be placed near the domain boundary. Joining this discretization with an already

existing boundary discretization can be troublesome, as simply superimposing both dis-

cretization can lead to certain points being too close together. A generic solution in

64 Chapter 3. Domain discretization

Figure 3.3: Different options for candidate generation displayed on the same domain as in

Figure 3.2, but with seed nodes X = {(−1
4
,−1

2
), (−1

4
, 1
2
)}. Three candidate generation

methods are fixed, where 10 candidate angles are equispaced on [0, 2π), randomized,

where the fixed angles are added a uniformly random shift from [0, 2π), and finally,

random, where 10 angles are picked uniformly at random from [0, 2π). The bottom row

shows an arrow from each node to all the candidates that it generated, with seed nodes

marked with stars.

this case is to remove all the points of the interior discretization that are close to any

boundary points (e.g. for each boundary point p, removing any interior points in ra-

dius h(p)), as presented in [FF15b; SKF18]. Blindly removing the points might cause

gaps to arise between the boundary and interior, which can then be mitigated by post-

processing techniques, such as locally performing a few iterations of a charged particle

simulation [FF15b].

However, in our case, a simpler solution exists. If the boundary discretization is

generated first, or known beforehand, it can be used as a list of seed nodes for the interior

node generation algorithm. Alternatively, if we do not want to use all of the nodes of the

boundary discretization as the seed nodes, but still want the algorithm to not place nodes

too close to them, the boundary nodes can be pre-inserted into the spatial search data

structure. This way, they will be taken into account when placing new nodes, without

counting as seed nodes.

3.2.2 Time and space complexity
It is the easiest to state the time and space complexity in an output-sensitive manner,

depending on the number of nodes N . We will also denote with PS(N) the precompu-

3.2. Node generation in domain interiors 65

Algorithm 3.1 Node generation in domain interiors.

Input: A set Ω, given by a characteristic function χΩ : Ω ⊆ Rd → {0, 1}.
Input: A nodal spacing function h : Ω ⊂ Rd → (0,∞).
Input: A nonempty list of starting nodes X ⊆ Ω.
Input: Maximal number of nodes generated Nmax ≥ 0.
Input: A whole number k > 0, influencing the number of generated candidates.

Output: A list of nodes in Ω distributed according to spacing function h.

1: function fill(Ω, h, X , Nmax, k default 10)
2: S ← init(X) ▷ Initialize spatial search structure on points X .

3: i← 0 ▷ Current node index.

4: while i < |X| and i < Nmax do ▷ Until the queue is not empty.

5: pi ← X[i] ▷ Dequeue current point.

6: hi ← h(pi) ▷ Compute its nodal spacing.

7: for each s⃗i,j in candidates(d, k) do ▷ Loop through directions.

8: ci,j ← pi + his⃗i,j ▷ Generate a new candidate.

9: if ci,j ∈ Ω then ▷ Discard candidates outside the domain.

10: ni,j ← findNearest(S, ci,j) ▷ Find nearest node for proximity test.

11: if ∥ci,j − ni,j∥ ≥ hi then ▷ Test that ci,j is not too close to other nodes.

12: append(X, ci,j) ▷ Enqueue ci,j as the last element of X .

13: insert(S, ci,j) ▷ Insert ci,j into the spatial search structure.

14: end if
15: end if
16: end for
17: i← i+ 1 ▷ Move to the next non-expanded node.

18: end while
19: return X
20: end function

tation/initialization time used by the data structure S on N nodes, QS(N) is the time

spent on a radius query and IS(N) is the time spent for element insertion. Additionally,

the time complexity of the evaluation of χΩ is denoted by TΩ, and the time complexity

of evaluation of h with Th.
Let us denote the number of seed nodes in X with Ns = |X|. Initialization of the

search structure takes I(Ns) time, and initialization of other variables takes O(1) time.

The number of iterations of the main loop is equal to the number of generated points,

denoted by N . This is also the number of times h is evaluated. Denote the number of

candidates generated in each iteration with nc. In the worst case, we perform nc positive

evaluations of χΩ, costing ncTΩ time, nc queries on the search structure with at most N
nodes and nc insertions in the search structure with at mostN nodes. While the number

of evaluations of χΩ and queries might be close to the ncN bound, this is too pessimistic

for insertions. While one single candidate loop can cause multiple insertions, there can

be at most N −Ns in total. All other operations are (amortized) constant.

The total time complexity of the algorithm is therefore equal to

TS(N) = IS(Ns) +O(1) +N(Th + nc(TΩ +QS(N) +O(1))) +NIS(N) (3.2.2)

= IS(N) +O(N(Th + nc(TΩ +QS(N)))) +NIS(N) (3.2.3)

Many search structures, usually tree-based, that support desired behavior in logarith-

66 Chapter 3. Domain discretization

Algorithm 3.2 Randomized candidate generation.

Input: Spatial dimension d ∈ N, d > 0.
Input: Number of candidates k ∈ Z, k ≥ 0.
Input: Radius of the sphere r ∈ (0,∞).
Output: A set of points (position vectors) on a d-dimensional sphere with radius r.

1: function candidates(d, k, r default 1)
2: if d = 1 then ▷ Base case for recursion.

3: return {−r, r}
4: end if
5: ∆φ← 2π/k
6: offset← random(0, π)
7: C ← ∅
8: for i← 0 to ⌊k/2⌋ − 1 do ▷ Discretize d− 1 dimensional spherical slices at angles φi.

9: φi ← offset+ i∆φ
10: if φi ≥ π then ▷ Loop back into [0, π).
11: φi ← φi − π
12: end if
13: ri ← r sin(φi) ▷ The slice has a smaller radius.

14: ki ← ⌈k sin(φi)⌉ ▷ The slice has less nodes to maintain constant density.

15: Ci ← candidates(d− 1, ri, ki) ▷ Discretize recursively.

16: C ← C ∪ {(r cosφi, c) for c ∈ Ci} ▷ Add one coordinate to the front.

17: end for
18: return C
19: end function

mic time exist. Among the most common are ball trees [Omo89], k-d trees [Moo91] and

cover trees [BKL06], with a comparison of this and many other techniques for nearest

neighbor searching given by Kibriya and Frank [KF07]. In our general implementation

we use a k-d tree, and in this case the time complexity is

Tk-d tree = O(NTh +Nnc(TΩ + logN)) (3.2.4)

If nodal spacing h is assumed to not vary too much, the algorithm could be sped up

by using a uniform-grid based spatial search structure, usually with spacing h/
√
d, so

that there is at most one point per grid cell, similar to Bridson in his implementation of

Poisson disk sampling [Bri07]. When constructed on the (oriented) bounding box obbΩ,
the time complexity of its allocation and initialization is proportional to the number of

cells, which leads to time complexity

O

(︃
| obbΩ|
(h/
√
d)d

)︃
= O

(︃
| obbΩ|
|Ω|

N

)︃
, (3.2.5)

using the fact that for constant h the number of nodes is N = Θ(|Ω|/hd).
The subsequent insertions and queries in the grid are all O(1), thus improving the

time complexity of the algorithm for constant h to

Tgrid = O

(︃
| obbΩ|
|Ω|

N +NTh +NncTΩ

)︃
. (3.2.6)

3.2. Node generation in domain interiors 67

Furthermore, the factor
| obbΩ|

|Ω| can be eliminated by using a hash map of cells instead of

a grid; however, the practical benefit of that approach shows only with very irregular

domains.

Using a background cell structure is feasible even with moderately variable h, by
allowing more than one point per cell. For even higher variability, hierarchical cell grids

could be used, eventually degrading back into tree-like structures.

Most often, the number of candidates nc is a relatively small dimension dependent

constant, like 10 in 2D or 30 in 3D, and can be omitted inO-notation. The time complex-

ity of TΩ varies greatly with representation of Ω, but is often constant or logarithmic

(e.g. for balls, boxes, polygons). In many practical cases, when h is not too variable and

Ω not too irregular, the algorithm thus runs in linear time with a simple background grid

structure. Otherwise, it can be implemented to always run in log-linear time, indepen-

dent of Ω and h.
The spatial complexity is simple to deduce. The algorithm uses additional O(N)

space to generate the output set,O(nc) for candidate generation and additional memory

used by the space structure, usually another O(N) or O(N logN).

Remarks on the finiteness

Algorithm 3.1 has a parameter Nmax which limits the maximal number of nodes gener-

ated and is therefore forced to finish in finitely many steps. In practice this is usually

set to a higher number than the expected number of nodes, and acts as a fail-safe to

have a bounded running time and memory usage. Without it, the algorithm does not

necessarily finish if Ω and h are chosen badly.

Example 3.2.3 (Infinite node generation). The algorithms naturally runs forever if Ω
is unbounded. However, even if it is bounded and h is positive, the algorithm does not

necessarily finish.

If we choose Ω = (0, 1), h(x) = 1−x
2
, set the seed node to be x = 0, and run

the algorithm, we obtain a sequence of nodes x1 = 1
2
, x2 = 1

2
+ 1

4
, The general

recurrence relation is

xn+1 = xn + h(xn) (3.2.7)

and the general solution for this case is xn = 1− 2−n
. Thus, all nodes are contained in

Ω and the algorithm continues forever (at least in theory).

Such a thing cannot happen if h is constant. Every new node contains no previously

generated nodes in the ball with radius h/2. The volume covered by these balls grows

by a constant number (the volume of this sphere) each time a new node is added. Due to

boundedness of Ω, this must stop eventually. Furthermore, the algorithm is also finite if

h is variable but is bounded away from zero, i.e. h(x) > q > 0, using the same argument

as before with q instead of h.

3.2.3 Minimal spacing requirements
For constant spacing h, it is easy to state and prove the minimal spacing requirements

for the algorithm. For any distinct nodes xi,xj ∈ X , such that at least one of x1 and x2

is not a seed node, we have

∥xi − xj∥ ≥ h, (3.2.8)

68 Chapter 3. Domain discretization

as the check on line 11 of Algorithm 3.1 ensures that (3.2.8) holds up to numerical preci-

sion. The reason that at least one of the nodes must not be a seed node is that there are

no restrictions on the user input. However, if only one seed node is supplied, the bound

will hold for all nodes, otherwise we assume that the user has to take care that the seed

nodes are not positioned too closely together.

For spatially variable h, the same argument gives a global bound

∥xi − xj∥ ≥ min
x∈Ω

h(x) (3.2.9)

for i ̸= j, but it can be very coarse. Mitchell et al. [Mit+12] define more precise, local

bounds when considering spatially variable node sets. The empty disk property for a

sequence of nodes x1, . . . ,xN is satisfied if

∥xi − xj∥ ≥ f(xi,xj), (3.2.10)

for 1 ≤ i < j ≤ N , for some function f , which is evaluated at a previously accepted

node xi and a new candidate xj . Four choices of f were proposed, based on which

point’s spacing is taken into account when positioning new candidates:

• Prior-disks: f(xi,xj) = h(xi),

• Current-disks: f(xi,xj) = h(xj),

• Bigger-disks: f(xi,xj) = max{h(xi), h(xj)},
• Smaller-disks: f(xi,xj) = min{h(xi), h(xj)}.

By changing the comparison on the line 11 of Algorithm 3.1, we could satisfy any of these

properties, but it could cause the algorithm to terminate prematurely in some cases, if

e.g. h(xj) > h(xi).
The proposed node placing algorithm as stated satisfies neither of this variations, but

the property is instead established in the following proposition.

Proposition 3.2.4. Let the nodes xi, i = 1, . . . , N , be generated by Algorithm 3.1, where
first Nb nodes were given as seed nodes. Then

∥xk − xj∥ ≥ h(xβ(j)) (3.2.11)

holds for all 1 ≤ k < j ≤ N , j > Nb, where β represents the predecessor function.

Proof. The algorithm begins with Nb seed nodes, and each new candidate is generated

from a unique existing node, thus giving rise to a predecessor-successor relation. This

relation is illustrated in the bottom row of Figure 3.3. We can define the predecessor

function β : {Nb + 1, . . . , N} → {1, . . . N} for an accepted candidate xj that was gen-

erated from xi as β(j) = i. Seed nodes have no predecessor defined.

A node xj , generated from xi, is at a distance h(xi) from xi, thus satisfying the

equality

∥xi − xj∥ = h(xi) = h(xβ(j)), (3.2.12)

the so called prior-disks property for predecessor-successor pairs. The condition for node
acceptance is that the distance to already accepted nodes is not larger than h(xi). This
means that for all k < j, we have

∥xk − xj∥ ≥ h(xi) = h(xβ(j)), (3.2.13)

establishing the desired property.

3.3. Node generation on parametric surfaces 69

3.3 Node generation on parametric surfaces
The counterpart to generating nodes in domain interiors is to generate nodes on domain

boundaries. Nodes on the boundary are necessary to solve boundary-value problems but

they are often easier to generate ad-hoc, especially for 2D domains. For specific bound-

aries of 3D domains, such as spheres or tori, specialized algorithms for point placement

can also be used, and quite a few might exists. Hardin et al. offer a recent review of

popular point configurations on the sphere [HMS16].

To obtain a general algorithm we must first decide on a representation of the bound-

ary. Different surface representations are possible and the most commonly used is para-

metric representation (possibly split into patches), such as produced by geometric mod-

eling with non-uniform rational B-splines (NURBS) [PT12] or Radial Basis Functions

(RBFs) [Car+03]. Other representations include level-sets [ZOF01] or subdivision sur-

faces [LLS01] which each have their own advantages and disadvantages (see [Str06]).

Parametric representation is most suitable for point placement and most existing al-

gorithms also assume that domain boundary is available as a parametric surface, given

by a parametrization r : Λ→ Rd
. Existing techniques for point generation on paramet-

ric surfaces vary and are often generalizations of algorithms for spatial node generation.

The most elementary technique is the naive sampling, which samples the parametric

domain uniformly and then maps the points to the surface without any additional pro-

cessing. This results in a non-uniform distribution of nodes on the surface, depending

of the space-distorting properties of the parametric map. To counteract this distortions,

the spacing of points in the parametric space can be defined as

hscaled(λ) =
h√︁

detG(λ)
, G(λ) =

[︃⟨︃
∂r

∂xi
(λ),

∂r

∂xj
(λ)

⟩︃]︃
i,j

. (3.3.1)

This means that a sampling algorithm that supports variable density distributions is

needed. This scaling technique works well for conformal surface mappings as suggested

by Fornberg and Flyer [FF15b], but conformal mapping are not often easily available.

They can be computed numerically [Gu+12], but the computation is expensive and not

worth it in general, as better techniques exist.

Point sampling on surfaces is often treated in the context of random sampling, prob-

abilistic approaches that generate uniformly distributed points (in the sense of proba-

bility) are available [DHS13; KM15]. These are not suitable as node generators for PDE

discretizations due to the potentially high irregularity of generated node sets. However,

both naive and probabilistic approaches can be useful to generate initial distributions for

iterative discretization improvement schemes, such as minimal energy nodes [HS04].

Shankar et al. [SKF18] also offered a boundary discretization algorithms along with

the algorithm for interior generation. Their approach relies on supersampling and deci-

mation: the parametric space is sampled with e.g. 5 times smaller spacing, the points are

mapped to the surface and the mapped points are subsequently decimated to conform

to the required nodal spacing. However, the algorithm only deals with cases where the

surface is homeomorphic to a sphere S1
or S2

, where parametric domain is a rectangle

and nodal spacing is constant.

The surface placing algorithm proposed in the next section works in arbitrary di-

mensions with variable nodal spacing, with irregular surfaces and parametric domains,

70 Chapter 3. Domain discretization

but at the cost of requesting the user to supply the Jacobian ∇r of the surface map.

This can be problematic when compared to the simplicity of conformal mapping tech-

niques or supersampling, but offers robustness, and is also often available in NURBS or

RBF based geometric models. The algorithm and the analyses are also included in the

pre-print [DKS20].

3.3.1 Algorithm
The algorithm is a generalization of Algorithm 3.1 used to fill domain interiors. Assume

the boundary of Ω is parametrized by a regular parametrization r : Λ ⊆ RdΛ → ∂Ω ⊆
Rd

. The space Λ will be called the parametric space and its elements will be called

parameters. The dimension of the parametric space is usually d − 1, but can be lower,

when describing e.g. a curve in 3D space.

We wish to run the algorithm for discretizing domain interiors in the parametric

space Λ, and map the obtained parameters to the surface. However, the distances in

parametric space and on ∂Ω differ and simplymapping the points will not produce points

distributed with desired spacing.

When generating a candidate parameter direction s⃗ from λ ∈ Λ as µ = λ+ αs⃗, for
α > 0, we wish to choose α in such a way that

∥r(λ)− r(µ)∥ = h(r(λ)), (3.3.2)

where the norm is measured in Rd
. The illustration of this is shown in Figure 3.4.

Figure 3.4: Placing a candidateµ fromλ in the parametric domain and the corresponding

nodes on the surface.

To achieve this equality exactly, we would in general need to solve a nonlinear equa-

tion involving r, but we can approximate it using linear Taylor’s expansion.

r(µ) = r(λ+ αs⃗) = r(λ) + α∇r(λ)s⃗+R(λ, α, s⃗) ≈ r(λ) + α∇r(λ)s⃗, (3.3.3)

where the remainder termR(λ, α, s⃗) was dropped. Using this approximation in (3.3.2),

we obtain

h(r(λ)) = ∥r(λ)− r(λ)− α∇r(λ)s⃗∥ = α∥∇r(λ)s⃗∥, (3.3.4)

due to positivity of α. This can be used to obtain the candidate µ as

µ = λ+
h(r(λ))

∥∇r(λ)s⃗∥
s⃗, α =

h(r(λ))

∥∇r(λ)s⃗∥
. (3.3.5)

3.3. Node generation on parametric surfaces 71

Algorithm 3.3 Node generation on parametric surfaces.

Input: A set Λ, given by a characteristic function χΛ : Λ ⊆ RdΛ → {0, 1}.
Input: A parametrization r : Λ ⊆ RdΛ → ∂Ω and its Jacobian∇r.
Input: A nodal spacing function h : ∂Ω ⊂ Rd → (0,∞).
Input: A nonempty list of starting parameters L ⊆ Λ.
Input: Maximal number of nodes generated Nmax ≥ 0.
Input: A whole number k > 0, influencing the number of generated candidates.

Output: A list of nodes in ∂Ω distributed according to spacing function h.

1: function fill(Λ, r,∇r, h, L, Nmax, k default 10)
2: S ← init(r(L)) ▷ Initialize spatial search structure on points with parameters L.
3: i← 0 ▷ Current node index.

4: while i < |L| and i < Nmax do ▷ Until the queue is not empty.

5: λi ← L[i] ▷ Dequeue current parameter.

6: pi ← r(λi) ▷ Compute the point in ∂Ω.
7: hi ← h(pi) ▷ Compute its local nodal spacing.

8: for each s⃗i,j in candidates(dΛ, k) do ▷ Loop through directions in Λ.
9: µi,j ← λi + (hi/∥∇r(λi)s⃗i,j∥)s⃗i,j ▷ Generate a new candidate parameter.

10: if µi,j ∈ Λ then ▷ Discard parameters outside Λ.
11: ci,j ← r(µi,j) ▷ Map the candidate parameter to ∂Ω.
12: ni,j ← findNearest(S, ci,j) ▷ Find nearest node for proximity test.

13: ĥi,j ← ∥ci,j − pi∥ ▷ Compute the actual spacing.

14: if ∥ci,j − ni,j∥ ≥ ĥi,j then ▷ Test that ci,j is not too close to other nodes.

15: append(L,µi,j) ▷ Enqueue µi,j as the last element of L.
16: insert(S, ci,j) ▷ Insert ci,j into the spatial search structure.

17: end if
18: end if
19: end for
20: i← i+ 1 ▷ Move to the next non-expanded node.

21: end while
22: return r(L)
23: end function

Note that the linear equation for α can always be solved, as∇r(λ)s⃗must be nonzero

due to regularity of r. Due to truncation ofR the spacing betweenλ andµ is not exactly

h(r(λ)). Instead, we define the actual spacing

ĥ(λ, s⃗) =

⃦⃦⃦⃦
r(λ)− r

(︃
λ+

h(r(λ))

∥∇r(λ)s⃗∥
s⃗

)︃⃦⃦⃦⃦
. (3.3.6)

Higher orders of Taylor’s approximation could be used to obtain α as well, but we would

have to solve a quadratic (or higher order) equation and it would require the user to know

higher order derivatives of the surface, which is often not the case.

Other than the generation of candidate nodes, the algorithm works very similarly

to the interior fill algorithm. A list of initial parameters is provided and the parameters

are processed one by one. A spatial search structure containing already accepted nodes

in Rd
is kept. When new candidate parameters are generated from a candidate λ, the

candidate nodes are positioned according to (3.3.5). The spatial search structure is used

to determine if any of the nodes are too close. However, we cannot use the exact spacing

72 Chapter 3. Domain discretization

h(r(λ)), because it might happen that even r(λ) is too close to r(µ), due to the errors

in linear approximation of α. Instead, we use the distance ĥ, and if no other nodes are

present, the candidate is accepted.

The described algorithm is implemented in pseudocode as Algorithm 3.3. It returns a

list of nodes on the surface ∂Ω, but can be trivially modified to return the list of accepted

parametersλ as well if desired. Figure 3.10 shows an example of node set on a parametric

surface as well as the corresponding parameters in the parametric domain.

3.3.2 Possible generalizations

The algorithm as described requires a regular parametrization of a domain boundary

∂Ω. In general, it is not needed that the parametrized set is a boundary of some domain,

but can be an arbitrary surface of any dimension embedded in Rd
. The surface can

also be non-orientable, self-intersecting, or have a boundary itself. Figure 3.5 shows a

discretized Möbius strip, parametrized by

r(u, v) =

[︃
cos(u)

(︃
1

2
v cos(u/2) + 1

)︃
, sin(u)

(︃
1

2
v cos

(︂u
2

)︂
+ 1

)︃
,
1

2
v sin

(︂u
2

)︂]︃T
, (3.3.7)

whose boundary and interior were discretized using Algorithm 3.3.

Figure 3.5: Discretization of a Möbius strip.

The algorithm works the same way, if the spatial structure S already contains a

few nodes at the beginning. If the representation of the surface is made of patches, the

algorithm can be run consequently on each patch with S storing the discretization nodes

so far.

3.3.3 Time and space complexity

The analysis of time complexity is very similar to Algorithm 3.1. The only difference is

that we need to evaluate χΛ instead of χΩ and that we need to evaluate the parametric

mapping r. In the worst case, this happens nc times per candidate. Additionally, we

also need to evaluate ∇r once per generated node. If we denote the time complexities

3.3. Node generation on parametric surfaces 73

of evaluating χΛ, r and∇r with TΛ, Tr and T∇r, and assume we are using a k-d tree as
a spatial search structure, we can write the total time complexity as

Tsurface = O(N(Th + T∇r) +Nnc(TΩ + Tr + logN)). (3.3.8)

The spatial complexity remains the same as for Algorithm 3.1. However, the use of

a background-grid based search structure, even though faster, presents an even greater

memory overhead, as the points on the surface will not fully fill the space that the surface

occupies. However, if the interior fill algorithm is run directly after the boundary fill

algorithm, the spatial search structure generated at the end of Algorithm 3.3 can be

reused as the first step of Algorithm 3.1 to avoid construction of a new one.

3.3.4 Minimal spacing requirements
The surface node placing algorithm inherits minimal spacing requirements from the

underlying node placing algorithm in the parametric space. The only difference is that

ĥ is used as a spacing criterion instead of h, and we wish to quantify this error.

We denote this difference as∆h(λ, s⃗) = h(r(λ))− ĥ(λ, s⃗) and estimate it. First, we

will need the following lemma.

Lemma 3.3.1. Let a ∈ R and b, c ∈ Rn. Then

|a− ∥b+ c∥| ≤ |a− ∥b∥|+ ∥c∥. (3.3.9)

Proof. We differentiate two cases

(i) a ≤ ∥b+ c∥:

|a−∥b+c∥| = ∥b+c∥−a ≤ ∥b∥+∥c∥−a = ∥b∥−a+∥c∥ ≤ |∥b∥−a|+∥c∥ (3.3.10)

(ii) a ≥ ∥b+ c∥:

|a−∥b+ c∥| = a−∥b+ c∥ ≤ a− (∥b∥− ∥c∥) ≤ a−∥b∥+ ∥c∥ = |a−∥b∥|+ ∥c∥
(3.3.11)

We used the fact that ∥b∥ − ∥c∥ ≤ ∥b + c∥ ≤ ∥b∥ + ∥c∥ and a ≤ |a| hold for all a, b
and c.

This can be used to derive the following bounds on∆h. We need to assume that r is

differentiable onΛ to use Taylor’s theorem and the appropriate topological prerequisites

on Λ must be assumed, e.g. either Λ is open or r is defined on a neighborhood of Λ.

Proposition 3.3.2. The following estimates hold for ∆h:

|∆h(λ, s⃗)| ≤
√
dΛ
2

h(p)2
max
i∈[dΛ]

max
θ∈[0,α]

⃓⃓
s⃗T(∇∇ri)(λ+ θs⃗)s⃗

⃓⃓
∥∇r(λ)s⃗∥2

, α =
h(p)

∥∇r(λ)s⃗∥
, (3.3.12)

|∆h(λ, s⃗)| ≤
√
dΛ
2

h(p)2
max
i∈[dΛ]

sup
ζ∈B(λ,ρλ)∩Λ

σ1((∇∇ri)(ζ))

σdΛ(∇r(λ))2
, ρλ =

h(p)

σdΛ(∇r(λ))
, (3.3.13)

|∆h(λ, s⃗)| ≤
√
dΛ
2

h2M
σ1,M(∇∇r)
σ2
dΛ,m

(∇r)
, (3.3.14)

74 Chapter 3. Domain discretization

where

h2M = sup
λ∈Λ

h(r(λ))2, (3.3.15)

σ1,M(∇∇r) = max
i=1,...,dΛ

sup
λ∈Λ

σ1((∇∇ri)(λ)), (3.3.16)

σdΛ,m(∇r) = inf
λ∈Λ

σdΛ(∇r(λ)), (3.3.17)

and σi(A) denotes the i-th largest singular value of A.

Remark 3.3.3. We included above three estimates instead of only the final one, because

they differ in their locality. The first estimate depends on λ and s⃗, the second depends

on λ only, and the third is independent of λ and s⃗.
In particular, the final estimate proves that that the relative error in spacing |∆h|/h

decreases linearly with h for well behaved r, and therefore the algorithm for placing

points on surfaces asymptotically retains the minimal spacing of the underlying algo-

rithm for flat space.

Proof. The difference between the desired and the actual nodal spacing is first shown to

be bounded by the remainder of the Taylor series. We can estimate

|∆h(λ, s⃗)| = |h(p)− ĥ(λ, s⃗)| (3.3.18)

= |h(p)− ∥r(λ)− r (λ+ α(λ, s⃗)s⃗)∥| (3.3.19)

= |h(p)− ∥α(λ, s⃗)∇r(λ)s⃗+R(λ, s⃗)∥| (3.3.20)

≤ |h(p)− ∥α(λ, s⃗)∇r(λ)s⃗∥|+ ∥R(λ, s⃗)∥ (3.3.21)

=

⃓⃓⃓⃓
h(p)− h(p)

∥∇r(λ)s⃗∥
∥∇r(λ)s⃗∥

⃓⃓⃓⃓
+ ∥R(λ, s⃗)∥ (3.3.22)

= ∥R(λ, s⃗)∥, (3.3.23)

where the inequality holds due to the lemma 3.3.1 proven above and R(λ, s⃗) is the re-
mainder of the Taylor approximation as introduced in (3.3.3). It is only dependent on λ
and s⃗ and not α, since α itself is a function of λ and s⃗.

Standard bounds for reminders only hold on each component separately, so we esti-

mate

∥R(λ, s⃗)∥ ≤
√︁
dΛ max

i=1,...,dΛ
∥Ri(λ, s⃗)∥. (3.3.24)

and use the Lagrange form of remainder Ri(λ, s⃗) = 1
2
α2s⃗T∇∇ri(p + θs⃗)s⃗ on each

component. This gives us

Ri(λ, s⃗) =
1

2

h(p)2

∥∇r(λ)s⃗∥2
s⃗T(∇∇ri)(λ+ θs⃗)s⃗, (3.3.25)

for some θ ∈ [0, α], where ∇∇ri is the Hessian matrix of the i-th component of r. The
remainders can be bounded as

|Ri(λ, s⃗)| ≤
1

2
h(p)2

max
θ∈[0,α]

|s⃗T(∇∇ri)(λ+ θs⃗)s⃗|

∥∇r(λ)s⃗∥2
, (3.3.26)

3.3. Node generation on parametric surfaces 75

which is the first error bound.

To estimate the error around p for all directions s⃗, we can further bound (3.3.26)

and eliminate some occurrences of s⃗ by bounding matrix products with singular values,

making use of the fact that ∥s⃗∥ = 1:

∥∇r(λ)s⃗∥ ≥ σdΛ(∇r(λ)) > 0 (3.3.27)⃓⃓
s⃗T(∇∇ri)(λ+ θs⃗)s⃗

⃓⃓
≤ σ1((∇∇ri)(λ+ θs⃗)) (3.3.28)

where σdΛ is the smallest singular value of the Jacobian, which is positive as r is regular,

and σ1 is the largest singular value of the Hessian. Following that, we can bound Ri as

|Ri(λ, s⃗)| ≤
1

2
h(p)2

maxθ∈[0,α] σ1((∇∇ri)(λ+ θs⃗))

σdΛ(∇r(λ))2
(3.3.29)

≤ 1

2
h(p)2

sup
ζ∈B(λ,ρλ)∩Λ

σ1((∇∇ri)(ζ))

σdΛ(∇r(λ))2
(3.3.30)

where

ρλ =
h(p)

σdΛ(∇r(λ))
≥ α(λ, s⃗) (3.3.31)

is the radius of the ball B(λ, ρλ) centered at λ. The inequality above holds, as maxi-

mum over [0, α] is equal to supremum over (0, α) and since (0, α) ⊆ B(λ, ρλ) ∩ Λ, the
supremum is sought over a larger domain. This gives the second estimate

|∆h(λ, s⃗)| ≤
√
dΛ
2

h(p)2
max

i=1,...,dΛ
sup

ζ∈B(λ,ρλ)∩Λ
σ1((∇∇ri)(ζ))

σdΛ(∇r(λ))2
. (3.3.32)

To obtain a global estimate, we take the maximum of (3.3.32) over all λ:

|∆h(λ, s⃗)| ≤ sup
λ∈Λ

⎛⎜⎝√dΛ
2

h(p)2
max

i=1,...,dΛ
sup

ζ∈B(λ,ρλ)∩Λ
σ1((∇∇ri)(ζ))

σdΛ(∇r(λ))2

⎞⎟⎠ (3.3.33)

≤
√
dΛ
2

sup
λ∈Λ

(h(p)2)

max
i=1,...,dΛ

sup
λ∈Λ

sup
ζ∈B(λ,ρλ)∩Λ

σ1((∇∇ri)(ζ))

inf
λ∈Λ

σ2
dΛ
(∇r(λ))

(3.3.34)

≤
√
dΛ
2

sup
λ∈Λ

(h(p)2)

max
i=1,...,dΛ

sup
λ∈Λ

σ1((∇∇ri)(λ))

inf
λ∈Λ

σ2
dΛ
(∇r(λ))

(3.3.35)

=

√
dΛ
2

h2M
σ1,M(∇∇r)
σ2
dΛ,m

(∇r)
. (3.3.36)

The innermost supremum over local balls in (3.3.34) is superfluous when the supremum

is sought over the whole domain. The final equality simply denotes the resulting quan-

tities as given in the proposition.

76 Chapter 3. Domain discretization

3.4 Analysis of node generation algorithms
The analysis of the algorithm will be mainly done on two test domains, Ω2 and Ω3.

The test domain Ω2 in 2D will be the set, enclosed by the polar curve

r2(φ) =
1

4
(3 + cos(3φ)), φ ∈ [0, 2π). (3.4.1)

Since Ω2 is star-shape with respect to 0, we can define it as

Ω2 = {(x, y); ∥(x, y)∥2 < r2(arctan(y, x))} (3.4.2)

which also gives a fast and easy way of computing the characteristic function χΩ2 . The

function arctan is the two-argument form of inverse tangent function, which computes

arctan(y/x), but also takes into account the signs of x and y to return an angle in the

correct quadrant.

The test domain Ω3 in 3D will be the set of points enclosed by the following curve,

given in spherical coordinates as

r3(φ, ϑ) =
1

4

(︃
3 +

ϑ2(π − ϑ)2

4
(2 + cos(3φ))

)︃
, (φ, ϑ) ∈ [0, 2π)× [0, π). (3.4.3)

Once again, Ω3 is star-shaped with respect to 0, and we can define it as

Ω3 = {(x, y, z); ∥(x, y, z)∥2 < r3(arctan(y, x), arccos(z/∥(x, y, z)∥2)}. (3.4.4)

Both Ω2 and Ω3 are shown in Figure 3.6.

Figure 3.6: Example domains in 2D and 3D, given by (3.4.1) and (3.4.3), respectively.

When appropriate, the algorithm will be compared with two other node positioning

algorithms: the Poisson disk sampling algorithm by Bridson [Bri07], which was used

in [SKF18] as an interior node positioning algorithm and to the yet unpublished algo-

rithm by van der Sande and Fornberg [SF19] which supports variable density sampling

in 3D and uses a different technique analogous to dropping grains of sand in a bucket.

The present algorithm will be denoted with PA, and we will use PDS for Poisson disk

sampling and GD for the grain dropping algorithm.

3.4. Analysis of node generation algorithms 77

Implementation considerations

All three algorithms were implemented in C++ and, when needed, use the same imple-

mentation of background search grids and k-d trees. The implementation of background

search grids is our own, but the nanoflann library [BR14] was used when k-d trees were
required.

Best effort was put into the implementation of all three algorithms and they were in

the same environment as described in the introduction.

3.4.1 Quasi-uniformity
We will compare the proposed algorithm for generation of interior nodes with other

available algorithms. Test domainsΩ2 andΩ3 were filled with nodes with constant nodal

spacing h, for decreasing values of h. The present algorithm was used with k = 15 and
so was Poisson disc sampling. A random starting seed node was used. The grain drop

algorithm started with a background grid of nodes with density h/10, as recommended

by the authors. Separation distance was computed exactly, and fill distance was com-

puted by sampling points in Ω with a few times higher density than h and computing

the maximal distance to the closest node.

The results are shown in Figure 3.7. The separation distance agrees with the pre-

scribedminimal nodal spacing h and is closely reproduced with all three algorithms. The

fill distance also decreases proportionally the separation distance, as shown by the node

set rations plotted on the right. All three algorithms produced node sets with bounded

ratios and GD had the smallest mesh ratio.

The experimentwas re-run onlywith the proposed algorithm, but the boundary node

generation algorithm was used to first discretize the boundary and the resulting nodes

were used as seed node for the interior fill algorithm. This is the standard use of the

algorithms and is the one most relevant for generating node sets for PDE discretizations.

The results are shown in Figure 3.8. The results are similar to before, with the difference

that the minimal spacing can be lower than the target spacing. However, this is caused

by the boundary nodes and is asymptotically approaching the target spacing, as proven

in Proposition 3.3.2.

3.4.2 Variable density and local regularity
When considering discretizations with variable nodal spacing, quasi-uniformity is no

longer an appropriate criterion for nodal spacing. We define a concept of quasi unifor-

mity with respect to a spacing function h, that extends the notion of classical quasi-

uniformity to variable distributions. Additionally, distances to nearest neighbors will

also be analyzed to ensure that they are approximately equal in all directions.

To define quasi uniformity with respect to h, we need to define the local versions of

fill and separation distances.

Definition 3.4.1 (Local fill distance). The local fill distance hX,Ω(xi) at node xi is the
diameter of the largest ball with a center inΩ, such that xi lies on the boundary and that

the ball contains no nodes in the interior:

hX,Ω(xi) = sup
x∈Ω
{2∥x− xi∥;B(x, ∥x− xi∥) ∩X = ∅}. (3.4.5)

78 Chapter 3. Domain discretization

Figure 3.7: Fill and separation distance of node sets with constant density (left) and the

node set ratio of generated node sets (right). The node sets were generated with three

different interior node generation algorithms. The number of nodes at the smallest h
surpassed 106 in both 2D and 3D. The sXi

graphs in the left plot for all three algorithms

overlap with the target spacing line.

The local fill distance can be straightforwardly used to compute the overall fill dis-

tance.

Proposition 3.4.2 (Fill distance as a maximum of local fill distances). The fill distance
hX,Ω can be expressed as a maximum of local fill distances:

hX,Ω = max
xi∈X

hX,Ω(xi). (3.4.6)

Proof. The fill distance is expressed as hX,Ω = 2 supx∈Ω minxj∈X ∥x − xj∥. Local fill
distance is clearly smaller because it only considers empty balls touching a certain node

instead of all empty balls. However, any x ∈ Ω that realizes the supremum will touch

at least one node xi (otherwise the radius could be extended) and the local fill distance

at that xi will be equal to overall fill distance.

Definition 3.4.3 (Local separation distance). The local separation distance of the node

xi is the closest distance to any other node, i.e.

sX(xi) = min
xj∈X\{xi}

∥xj − xi∥. (3.4.7)

3.4. Analysis of node generation algorithms 79

Figure 3.8: Fill and separation distance of node sets with constant density (left) and the

node set ratio of generated node sets (right). The node sets were generated with the

proposed boundary and interior node generation algorithms. The number of nodes at

the smallest h surpassed 106 in both 2D and 3D.

Remark 3.4.4. The overall separation can be obtained by taking the minimum over

local separation distance sX = minxi∈X sX(xi).

Definition 3.4.5 (Quasi-uniformity with respect to prescribed nodal spacing). When

the desired nodal spacing is known in advance as a function h : Ω → (0,∞), we can

define the node set ratio as

γX,Ω, h =
maxxi∈X hX,Ω(xi)/h(xi)

minxi∈X sX(xi)/h(xi)
. (3.4.8)

Then a sequence of node sets {Xn} is called quasi-uniform with respect to hn if the

sequence γXn,Ω, hn is bounded independently of hn.

Remark 3.4.6. If hn are constants, then quasi-uniformity with respect to hn reduces to

ordinary quasi-uniformity. Indeed, the factor h(xi) in the node set ratio (3.4.8) can be

put before the maximum and minimum and cancels out, and the resulting maximization

and minimization are equal to the fill and separation distances, per propositions 3.4.2

and 3.4.4, respectively.

As a demonstration, we fill the two test domains Ω2 and Ω3 using variable nodal

spacing. The spacing function in our case will be constructed by selecting three points

80 Chapter 3. Domain discretization

p1, p2 and p3 of interest at angles φ1 = π/3, φ2 = π and φ3 = 5π/3 in 2D and the same

points in z = 0 plane in 3D. To construct h, we will need the distance

d(x) = min{∥x− p1∥, ∥x− p2∥, ∥x− p3∥} (3.4.9)

to these three points. The spacing h is then expressed as

h(x) = hmin +
d(x)

dmax

(hmax − hmin), (3.4.10)

where hmin and hmax are the minimal and maximal desired nodal spacing in the domain.

The value dmax represents dmax = supx∈Ω d(x), but does not need to be known exactly

and can be simply a reference distance. We will use dmax = 1.
Figure 3.10 shows node sets with variable spacing in 2D and 3D. Both node sets

have nodes on the boundary and in the interior, generated with algorithms 3.3 and 3.1,

respectively. The left side shows consecutive close-ups of the node set to visually asses

the gradual change in density.

To test quasi uniformitywith respect to h, domainsΩ2 andΩ3 were filledwith bound-

ary and interior node filling algorithms with spatial density (3.4.10). The values 1/hmin

varied from 50 to 5000 in 2D and from 10 to 500 in 3D. The values 1/hmax varied from 10

to 250 in 2D and from 5 to 30 in 3D. Both 1/hmin and 1/hmax were distributed equidis-

tantly in logarithmic space between the respective lower and upper bounds. The re-

sulting node set ratios with respect to h are shown in Figure 3.9. The local separation

distance sX(xi)was computed exactly, and the local fill distance hX,Ω(xi)was computed

numerically by using a fine uniform grid of sample points in Ω.

Figure 3.9: Quasi uniformity of variable density node sets with nodal spacing (3.4.10).

The number of nodes in the final case surpassed 106 in both 2D and 3D.

Another way to measure local regularity is to look at the distances to nearest neigh-

bors. For each node xi, we find n nearest neighbors (excluding xi itself) denoted xi,j ,

j = 1, . . . , n and compute the distances di,j = ∥xi−xi,j∥. The distances are normalized

by local spacing h(xi) to obtain the normalized distances d′i,j = di,j/h(xi). Addition-

ally, we also compute the average normalized neighbor distance d̄
′
i =

1
k

∑︁k
j=1 d

′
i,j , the

maximal and minimal normalized distances

(dmax
i)′ = max

j=1,...,k
d′i,j, (dmin

i)′ = min
j=1,...,k

d′i,j. (3.4.11)

3.4. Analysis of node generation algorithms 81

Figure 3.10: Node sets with variable density (3.4.10) in 2 and 3 spatial dimensions. The

left side shows consecutive enlargement of the initial figure towards the point (−0.5, 0).
The right hand side shows, from top to bottom, the complete node set X , the node set

on the boundary, and the parametric space with generated parameters.

82 Chapter 3. Domain discretization

The difference between these two quantities will be denoted with (d∆i)
′ = (dmax

i)′−
(dmin

i)′. Histograms of d′i,j are shown in Figure 3.11 for the uniformly distributed node

set, generated as the last data point of Figure 3.8 in 2D and 3D, and for the variably

spaced node set, generated as the last data point of Figure 3.9. The number of nearest

neighbors used was n = 6 in 2D and n = 12 in 3D, which roughly corresponds to the

first “layer” of neighboring nodes.

Figure 3.11: Histograms of normalized distances d′i,j to n nearest neighbors. Top row

represents data for node sets with constant spacing and the bottom for node sets with

variable spacing.

Both in 2D and in 3D, the majority of distances corresponds to local spacing h. The
second peak at around 1.2 in 2D is due to boundary nodes, which have one-sided stencils

and their distances follow a different distribution. Some values of d′i,j lower than 1 are

possible, due to errors in spacing on the boundary and, in case of variable h due to not

following the max-disks variant of minimal spacing criteria. Various additional statistics

are reported in Table 3.1.

3.4.3 Time complexity and execution time

We compare the time complexity and execution time of PA, PDS andGA algorithms. Two

variants of the proposed algorithm are tested, the variant with a k-d tree implementa-

tion with time complexity O(N logN) (called just PA) and the variant called PA-grid,

which produces exactly the same nodes, but uses a background grid as a spatial search

3.4. Analysis of node generation algorithms 83

Table 3.1: Statistics of relative distances to nearest neighbors for cases corresponding to

histograms in Figure 3.11.

h d N mean(d̄i) std(d̄i) mean((d∆i)
′) std((d∆i)

′)

constant 2 1628721 1.1858 0.0494 0.4828 0.1354

constant 3 1351528 1.2314 0.0386 0.5300 0.0818

variable 2 1033011 1.1851 0.0495 0.4835 0.1360

variable 3 1177844 1.2395 0.0369 0.5344 0.0764

structure, reducing the time complexity to O(N). The GD and PDS algorithms also use

the same background grid structure and also have O(N) running time. However, all the

algorithms using background structure have an additional cost factor of | bbΩ|/|Ω| due
to enclosing the domain in its bounding box. Additionally, if h is spatially variable, the

grid needs to be reasonably fine, and the running time and memory are better expressed

as O((minp∈Ω h(p))
d
, which can be significantly more than O(N).

Execution time for PDS and GD algorithms as well as the two variants of PA was

measured for the node sets produced during the interior quasi uniformity test from Sec-

tion 3.4.1, Figure 3.7. Measured execution times are shown in Figure 3.12.

Figure 3.12: Execution time for generation of node sets in Figure 3.7. Median execution

time of 15 runs is shown for each point, with absolute deviation being around 1%.

The measured execution times agree with the theoretical time complexity. In both

considered cases PDS and PA have very similar execution times. PA-grid is better than

both of them in 2D and in 3D, while GA performed best of all in 2D and similarly to PA

and PDS in 3D.

The execution time of the combined boundary and interior fill algorithms with k-d
tree spatial search structure is shown in Figure 3.13. The execution time agrees with

O(N logN) time complexity and the results for constant and spatially variable h have

very similar running times. This agrees with the theoretical complexity, which is not

directly dependent on h (only on the number of nodes). The algorithm is slower in

3D, due to more candidates, higher cost of k-d tree operations and more complicated

computation of the characteristic function.

84 Chapter 3. Domain discretization

Figure 3.13: Combined execution time of boundary and interior fill algorithm for cases

shown in figures 3.8 and 3.9.

3.4.4 Miscellaneous aspects
We now discuss the remaining requirements for node positioning algorithms as outlined

in Section 3.1.2.

Dimension and direction independence

The proposed surface and interior fill algorithms are dimension independent, in the sense

that the same algorithm can be used in any dimension d. This is also true for the imple-

mentation, the spatial dimension, and in case of boundary fill algorithm, also the para-

metric domain dimension are template parameters, meaning that they can be changed

at will, while keeping the same implementation.

Similarly to that, the specific position and rotation of the domain also does not play

any role in the algorithm. The node distributions are effectively the same in all cases.

The only problematic part of the algorithm could be candidate generation, but due to

random rotation applied to each batch of candidates, the starting rotation does not mat-

ter. However, if the candidate generation setup changed to a fixed pattern, the algorithm

would be direction dependent.

Poisson disk sampling and the grain-drop technique are also dimension independent.

Poisson Disk sampling is also direction independent, apart from the bounding box con-

struction, but the grain-drop algorithm is intrinsically directional, as it fills the domain

advancing along the last coordinate (or any other direction).

Irregular domains

The proposed algorithm handles irregular domains quite well with reasonable limita-

tions. The geometric shape of the domain is not really relevant, but does affect the

discretization, and the algorithms discovers the areas in the domain in a breadth-first

search manner as the advancing front moves forwards. Note that this approach might

sometimes fail to discover the whole domain, if domain includes parts narrower than

local spacing h. For example in an hourglass shape with a seed node in the top part,

the algorithm might stop, because it would fail to generate any candidates in the bottom

part. This can be avoided, if the discretization starts from the boundary, but cases where

3.4. Analysis of node generation algorithms 85

the algorithm fails to discretize some parts are still possible to construct. However, in

practice this is rarely a problem, since the discretization usually needs to be a few times

denser than the geometric features of the domain if we aim to adequately capture the

geometry in the PDE discretization.

Algorithms such as GD and PDS do not suffer from these kinds of problems, as they

discretize the bounding box of the domain, and only stamp out the domain shape after

the discretization is complete. In this aspect, the discretization is independent of the

domain shape, as long as it has the same bounding box, and problems may arise near the

edges. These are discussed in more detail in the next section. Filling the bounding box

causes these algorithms to generate | bbΩ|/|Ω| too many nodes, and the running time

does not scale proportionally to |Ω|. The proposed algorithm fares better in this aspect,

and only generates nodes inside Ω, only evaluates h for points in Ω and the number of

nodes actually scales proportionally to |Ω|. A demonstration and further discussion of

this fact is included in [SK19d].

Compatibility with boundary discretizations

Many algorithm for interior discretization do not take into account the existence of the

boundary discretization. In fact, the recommended procedure is often [FF15b; SKF18] to

generate interior nodes in the bounding box, superimpose the boundary discretization

and remove any interior nodes outside the domain or too close to boundary nodes. This

can cause gaps in spacing near the boundary, which can be additionally smoothed out by

some post-processing step, such as local movement of nodes based on charged particle

simulation.

The proposed algorithm has the option of supplying the boundary discretization as

seed nodes, and thus the nodes near the boundary fit well next to the boundary nodes.

When the advancing fronts from different sides meet, gaps can form, but they form in

the middle of the domain and not on the boundary.

Free parameters

It is desirable that the algorithms do not have too many free or tuning parameters, but

instead work “out of the box” for many domain shapes and spacing functions. The only

remaining free parameter in the presented fill algorithms is k, which controls the number

of candidates and consequently how densely the neighborhood is searched for possible

positions for new nodes. This has a direct effect on the running time, and some effect

on the quality of the node distribution. Values of k from around 10 to 20 give node

distributions of sufficient quality. Anything larger unnecessarily increases the running

time, and values lower than 6 can adversely affect the quality of the generated node sets.

Parallelization

The algorithm is not immediately parallelizable, but parallel variants of the interior node

placing algorithm for multiple CPU cores are an ongoing effort. Some initial results

have been presented at the ParNum 2019 and Mirpo 2020 conferences [DKS19; Duh+20].

Additionally, any parallel version of the interior fill algorithm will probably generalize

to the boundary fill algorithm as well, even though that is not as important, since the

number of interior nodes (and consequently the time needed to generate them) is usually

orders of magnitude higher than the number of boundary nodes.

86 Chapter 3. Domain discretization

3.4.5 Behavior of RBF-FD on generated nodes
One of the most important aspects of the node generation algorithms is that meshless

methods can successfully and accurately solve PDEs on the generated nodes.

Sensitivity to node positioning

To explore the sensitivity of the methods with respect to node positioning, the node

set with the same constant spacing h was generated R times, each time starting from a

random seed node on the boundary. The boundary set was generated first, followed by

the interior nodes, where the boundary nodes were used as seeds.

This was repeated for 20 values of h chosen equidistantly in logarithmic space so that

the total number of generated nodes ranged from a few thousand to over 105 in both 2D

and 3D. Our problem of choice was a Poisson boundary value problem

∇u = f in Ω, (3.4.12)

u = g on ∂Ω, (3.4.13)

where the solution u(x) =
∏︁d

i=1 sin(πxi) was used as the closed form solution and g
and f were computed from u. The Ω was chosen to be the test domain Ω2 in 2D and Ω3

in 3D. Stencils of closest n = 13 nodes were used in 2D and n = 25was used in 3D. RBF-
FD with Polyharmonic splines ϕ(r) = r3 with 2nd order monomial augmentation was

used to construct the stencil weights and obtain the numerical solution uh as described
in Section 2.3.2.

The error between the analytical solution u and the numerical solution uh was mea-

sured as relative discrete p-norm errors:

e1 = ∥uh − u∥X,1/∥u∥X,1, ∥y∥X,1 =
∑︂
xi∈X

|y(xi)|, (3.4.14)

e2 = ∥uh − u∥X,2/∥u∥X,2, ∥y∥X,2 =

√︄∑︂
xi∈X

|y(xi)|2, (3.4.15)

e∞ = ∥uh − u∥X,∞/∥u∥X,∞, ∥y∥X,∞ = max
xi∈X

|y(xi)|. (3.4.16)

As the solution procedure was repeated R times for each spacing hi each time with a

randomized node set and consequently random errors, it makes sense to compute statis-

tics of various quantities. For a quantity y which resulted in R realizations y1, . . . , yR,
we will usemed(y) to denote the median, and we will measure the absolute and relative

deviation about the median using

∆(y) = max
i=1,...,R

|yi −med(y)|, ∆r(y) = ∆(y)/med(y). (3.4.17)

The whole procedure was run 100 times and the obtained node countsNi and errors

(e∞)i are shown in Figure 3.14 as gray dots. The computed statistics for every second

run are recorded in Table 3.2. The median, maximal and minimal error are also shown

in Figure 3.14 for each batch of runs. We can observe that the deviation in the number

of generated nodes in much smaller than the deviation of errors. While the individual

error curves can be quite ragged, the median convergence is very smooth and obeys

O(h2) = O(N−2/d) convergence rate.

3.4. Analysis of node generation algorithms 87

Figure 3.14: Sensitivity of RBF-FD to node positioning. Grey dots show the actual num-

ber of nodes and the error of the numerical solution on those nodes. The lines show

average, minimal and maximal errors, and the expected convergence order.

Table 3.2: Medians and deviations of the number of nodes and errors obtained on ran-

domized node sets used to solve (3.4.12).

d = 2, n = 13

med(N) ∆r(N) med(e1) ∆r(e1) med(e2) ∆r(e2) med(e∞) ∆r(e∞)

4188 7.9 · 10−3 8.7 · 10−4
0.44 9.8 · 10−4

0.42 1.4 · 10−3
0.59

6404 4.4 · 10−3 5.8 · 10−4
0.46 6.6 · 10−4

0.42 9.2 · 10−4
0.72

9583 3.9 · 10−3 3.9 · 10−4
0.45 4.3 · 10−4

0.44 6.2 · 10−4
0.50

14294 2.9 · 10−3 2.6 · 10−4
0.37 2.9 · 10−4

0.38 4.1 · 10−4
0.42

21796 3.3 · 10−3 1.7 · 10−4
0.45 1.9 · 10−4

0.45 2.7 · 10−4
0.52

32677 2.1 · 10−3 1.2 · 10−4
0.38 1.3 · 10−4

0.38 1.8 · 10−4
0.43

49106 2.4 · 10−3 7.9 · 10−5
0.35 8.6 · 10−5

0.37 1.2 · 10−4
0.53

74320 1.8 · 10−3 5.2 · 10−5
0.37 5.7 · 10−5

0.33 7.7 · 10−5
0.65

112279 1.5 · 10−3 3.4 · 10−5
0.36 3.7 · 10−5

0.31 5.1 · 10−5
0.42

d = 3, n = 25

med(N) ∆r(N) med(e1) ∆r(e1) med(e2) ∆r(e2) med(e∞) ∆r(e∞)

2972 9.6 · 10−3 3.1 · 10−2
0.19 3.7 · 10−2

0.19 6.1 · 10−2
0.34

5598 9.1 · 10−3 2.3 · 10−2
0.14 2.7 · 10−2

0.15 4.2 · 10−2
0.30

9432 7.9 · 10−3 1.7 · 10−2
0.12 2.0 · 10−2

0.11 3.1 · 10−2
0.16

14718 6.9 · 10−3 1.3 · 10−2
0.09 1.5 · 10−2

0.10 2.3 · 10−2
0.18

21686 6.5 · 10−3 1.0 · 10−2
0.10 1.2 · 10−2

0.10 1.8 · 10−2
0.14

30539 5.5 · 10−3 8.4 · 10−3
0.09 9.5 · 10−3

0.09 1.4 · 10−2
0.12

41526 5.6 · 10−3 6.9 · 10−3
0.08 7.8 · 10−3

0.08 1.2 · 10−2
0.13

54880 5.5 · 10−3 5.7 · 10−3
0.08 6.5 · 10−3

0.08 9.7 · 10−3
0.11

79886 5.3 · 10−3 4.5 · 10−3
0.06 5.1 · 10−3

0.07 7.5 · 10−3
0.10

100119 6.0 · 10−3 3.9 · 10−3
0.06 4.4 · 10−3

0.07 6.5 · 10−3
0.10

The variability of the errors is largest in e∞ error and decreases on denser node sets.

This can be observed both for the number of nodes and the error. In 2D, it can be well

observed in e1 and e2 errors, but in 3D the decrease is also nicely visible on the e∞ error

88 Chapter 3. Domain discretization

plot. The magnitude of this variability also varies with the stencil size n. Stencils of size
9 in 2D and 15 in 3D gave similar results, but with larger deviations.

Spectra of the discretized Laplacian

Another way to test the quality of the node set and the method used is to observe the

spectrum of the differentiation matrix for the Laplace operator [Bay+17; SKF18; SK19d].

We used the same setup as before when testing sensitivity to node positioning. The

differentiation matrix as constructed in Section 2.3.2 was restricted to only the indices

corresponding to internal nodes. The structure of the 2D and 3D matrices is shown

in the top row of Figure 3.15. The spectra of these matrices are expected to resemble

the spectrum of the continuous Laplacian, i.e. the eigenvalues should have negative real

parts and small imaginary parts. The bottom row of Figure 3.15 shows the spectra of the

differentiation matrices obtained in our case, which also posses the desired properties.
2

Figure 3.15: Differentiation matrices for Laplacian operator and their spectra in the com-

plex plane. Five eigenvalues with the largest real parts are written out on the spectral

plot. Note the different units on the real and imaginary axes.

2
A similar picture of a differentiation matrix its lemon-shaped spectrum to the one shown in the right

part of Figure 3.15 was selected as a part of a public photo exhibition commemorating University of Ljubl-

jana’s centennial, where researchers and artists from the Faculty of Mathematics and Physics showed

visually interesting parts of their research work.

3.5. Stencil selection 89

3.5 Stencil selection
The final step of constructing the discretization is the stencil selection. Choosing the

stencils is sometimes analogized to meshing, as both involve “connecting” the nodes

with their neighbors. However, this is not a good analogy for at least two reasons: firstly,

the structure of a mesh is much more restrictive, as neighboring cells must not overlap,

while the stencils can and usually do, and secondly, high quality meshes cannot always

be constructed automatically, while stencil construction is considered an automatic part

of the solution procedure, without the need for manual intervention.

There are several options for stencil construction. The first one is to choose all

the nodes in a given radius. Especially for spatially variable node sets, this is usually

expressed as a factor of the local spacing. Formally, the radial stencils for a node set

X = {x1, . . . ,xN} are defined as

Ir,h(i) = {j; ∥xi − xj∥ ≤ rh(xi)}. (3.5.1)

One downside of these types of stencils is that they vary in size. If the node set is quasi-

uniform with respect to h, the variation is bounded, but we still need to ensure a mini-

mum number of nodes in each stencil for local approximations to work. Another even

simpler option is to use stencils of n closest nodes. This naturally adapts to the local

spacing and ensures that stencils are of uniform size. However, the radii of the stencils

can vary, and we have to somehow break potential ties for the n-th closest node. Both of
these approaches are efficient to compute with a static spatial search structure such as

a k-d tree or a search grid. Stencils of n closest nodes can be computed in O(nN logN)
time.

A common addition to both stencil selection methods is to only consider nodes that

are visible from the center node. Node xj is (straight-line-)visible from xi if the line

segment from xi to xj needs to be fully contained in Ω [BLG94]. This is often impor-

tant for correctness of the PDE solution, as many physical quantities can only transfer

through the domain, and having unrelated nodes in the stencils is equivalent to allowing

the transfer of quantities.

More sophisticated stencil selection algorithms have also been developed [DO11].

One notable method is to use so called balanced stencils. Closest node stencils can be-

come heavily one-sided especially in adaptive applications, where nodes can be denser

on one side of the central node that the other [Mil12]. Balanced stencils ensure a cer-

tain number of nodes is present in all main direction, which helps with stability of the

method. Symmetrization of stencils is also sometimes used, i.e. to update the stencils so

that xj ∈ S(xi) implies xi ∈ S(xj) for all i, j, or at least for all interior nodes [PLP08].
As defined in the domain discretization, stencil indices need to be ordered. They can

be ordered arbitrarily, although it is common to sort the nodes according to the distance

from the central node – this also ensures that the central node itself is first. In this work,

we will use stencils of n closest nodes, and we will assume that the indices are ordered

according to the distance of stencil nodes from the central node. In particular, this means

that the first stencil node is the center node itself.

Chapter 4

Adaptivity

Adaptive PDE solution procedures are indispensable in problems where the solution

greatly varies within the computational domain, where only a particular region is of

special interest or where varying precision in different parts of the domain is desired,

and where using uniform discretization through the domain would be computationally

wasteful or even completely unfeasible. A typical example is following a shock wave,

where finer discretization is required to accurately model the more violent parts and

coarser discretization can be used everywhere else. In time-depended problems, the dis-

cretization usually evolves in time, but adaptivity is very useful for steady-state prob-

lems as well, e.g. in presence of large solution gradients, singularities, or when modeling

phenomena concentrated on a small part on the domain. These situations appear often

in linear elastostatics, with a primer example being a contact of two bodies, where ex-

tremely high stress concentrations are present around the contact area.

Solving such problems using uniform discretization is intractable due to the amount

of time and computational resources required to obtain a numerical solution with satis-

factory precision. Instead, many different refinement techniques were developed to help

solve such problems. When the problematic areas are known beforehand, the discretiza-

tion can be constructed accordingly before solving the PDE. However, this is often not

the case, and the refinement needs to be a part of the solution procedure, along with an

indicator of solution quality to guide the refinement. A typical adaptive procedure for el-

liptic problems proceeds in iterations. The problem is solved on an initial discretization,

the quality of the solution is evaluated and the discretization is refined where necessary,

with the ultimate goal to ensure sufficient quality of the solution throughout the do-

main. The best version of this approach is known as fully automatic adaptivity, where
the goal is to solve the problem without any human intervention. Research in this area

has been ongoing for decades for more established methods, such as FEM [RPD06]. Fully

automatic adaptivity is difficult to achieve and it requires a robust numerical method for

solving PDE, good error indicators, algorithms for generating refined discretizations and

is also difficult to implement and analyze. Strong form meshless methods have matured

enough over the years and enough tools in the related research areas have been devel-

oped to make first attempts at fully automatic adaptivity possible.

The rest of this chapter is structured as follows: in Section 4.1 we discuss possible

refinement techniques. Following that, in Section 4.2 we review previous work on error

indicators. These two sections will serve as a basis to decide on the type of refinement

91

92 Chapter 4. Adaptivity

and the error indicator. Our adaptive procedure for elliptic problems will be discussed in

Section 4.3. Using the described adaptive procedure, we will solve two classical problems

for testing adaptive methods, the L-shaped domain in 2D and the Fichera corner in 3D.

Finally, various 2D and 3D contact problems will also be solved in 4.5.

4.1 Types of refinement

Two conceptually different types of refinement are primarily in use when solving PDEs

with classical methods, namely h-refinement and p-refinement, which are named ac-

cordingly to the variables used to represent the quantity they refine: h-refinement mod-

ifies the nodal spacing h and p-refinement modifies the approximation order p. When

used together, they give rise to a popular method, called hp-FEM [BG92]. Isogeometric

analysis supports both h-refinement via knot insertion and p-refinement via degree el-

evation, but also introduced a new type of refinement specific to isogeometric analysis,

called k-refinement that combines knot insertion and degree elevation in one opera-

tion [HCB05].

In general, the solution accuracy is influenced by either the order of approxima-

tion or by modifying the underlying discretization. Varying the approximation order,

i.e. p-refinement, can be performed in different ways. The two most common are to in-

crease the stencil size [Ste+09] or to increase the number of basis function [Mil12], which

gives rise to high order methods. For RBF-FD, high orders of accuracy are obtained rel-

atively easily by increasing both the stencil size and the order of monomial augmenta-

tion [Bay+17]. As a demonstration of this, the Poisson problem (3.4.12) was solved on

test domainsΩ2 andΩ3 under uniform refinement with RBF-FDwith ϕ(r) = r3 and with
different orders of monomial augmentation m, similarly to [SSK19a]. Stencil sizes for

m = 2 coincided with the case presented in 3.4.5 and the sizes for higher augmentation

orders are listed in 4.1.

Table 4.1: Stencil sizes for higher order augmentation used to obtain results in Figure 4.1.

d = 2 d = 3
m n m n
2 13 2 25

4 32 4 78

6 60 6 173

8 185 8 345

The errors were measured in the same way as described in Section 3.4.5, as relative

point-wise errors. The e1, e2 and e∞ errors had the same general behavior so only the

worst e∞ error is shown in Figure 4.1. The order of convergence matches the augmen-

tation order m. In 2D, m = 6 and m = 8 curves level off due to numerical precision,

consistent with observations in [Fly+16]. The trade-off of high accuracy vs. computation

efficiency is investigated in [JSK19]. The idea to use different orders locally to perform

p-refinement in RBF-FD has been realized in a pre-print by Mishra et al. [Mis+20]. A

related type of adaptivity for RBF-based method is also shape-based adaptivity, where

the shape parameter of RBFs is varied [JDX14].

4.1. Types of refinement 93

Figure 4.1: Errors with different orders of monomials augmentation.

The second approach is to modify the discretization of the domain. This includes

h-refinement, where parts of the domain discretization are coarsened or made finer,

or other approaches, such as r-refinement, which changes the nodal positions without

changing the total number of nodes. This is often useful for evolutionary PDEs [Zeg98],

but can also be used with other types. Successful r-refinement has been demonstrated in

a meshless solution of elasticity problems with discrete least square method [ANA11].

Contrary to r-refinement, h-refinement in general changes the total number of nodes

by either adding/removing nodes from the areas where so required or by creating an en-

tirely new distribution of nodes. These techniques are known in mesh-based methods

as mesh enrichment and mesh regeneration (or re-meshing), respectively [ZHZ93]. The

enrichment h-refinement scheme is the most popular and has been successfully used

in meshless solutions of linear elasticity problems with the meshless finite volume me-

thod [EFK15], the global RBF collocation method [Lib+08], RBF-FD method [SK19c], the

point interpolation method [Tan+11]. It has also been successfully applied to transient

problems [Ben+03; KŠ11; Jac+16].

Even though h-refinement is widely popular, its usage for scattered meshless node

sets is rare, especially in 3D, as care needs to be taken when adding or removing nodes

to avoid degrading the node set. This becomes even more apparent with fully automatic

adaptivity, and can lead to typical complications associated with irregular nodal distri-

butions [FZ07b; DH07]. Many authors opt for simpler refinement techniques, such as

quad-tree based [KŠ11; Jac+16], or adding new nodes at midpoints between center and

stencil nodes [Ben+03], or they revert back to mesh-based algorithms, using e.g. Voronoi

diagrams [APP09; EFK15] or local Delaunay triangulations [PLP08].

In the context of RBF-FD, Davydov and Oanh [DO11] proposed a pure meshless h-
refinement enrichment scheme and tested it on a 2D Poisson equation. The new nodes

were added at the midpoints between a node and its stencil nodes (if appropriate), but

the distributions degraded over time. The issues were addressed in a later paper, where

a special stencil selection algorithm was introduced to improve stability [ODP17]. A

similar h-refinement algorithmwas used in [SK19b] to test the behavior of RBF-FD under

extreme refinement with a ratio of more than 105 between the densest and coarsest parts
of the discretization. Li et al. [Li+17] presented three-dimensional adaptive h-refinement

examples using RBF-FD, but they used graded grids of regular nodes.

94 Chapter 4. Adaptivity

To avoid the problems caused by enrichment and to still be able to test the method

on scattered data sets, we opted to use h-refinement with regeneration. This way, the

generated node set is always of sufficient quality and fully automatic adaptivity can be

achieved even in 3D [SK19c]. The algorithms for local enrichment can be developed

after feasibility is demonstrated, and can be used to lower the computational costs.

4.2 Error indicators
An important part of the adaptive procedure is an indicator of solution quality, called an

error indicator, that gives information about the regions where refinement or derefine-

ment is needed, with the idea to refine where error is high and derefine where error is

low. If the regions of high errors are known a priori, such as in the presence of known

singularities, an appropriately spaced nodal distribution can be generated. However, this

is not the case in general, and a posteriori error indicators that estimate the error of an

already obtain solution are of interest. As a test, the difference between a closed form so-

lution and the computed solution can be used, but an a posteriori error indicator should

not rely on other knowledge, apart from the computed solution and the discretization

that was used. A substitute for the closed form solution is to compute a higher order

approximation, if possible, and compare the obtained solution to this higher order ap-

proximation instead [Ben+03]. However, these methods can be quite expensive. More

primitive error indicators are the gradient-based indicators, which use the idea that high

variations in the solution are good candidates for refinement. These indicators can be

very simple and effective, but are not necessarily robust enough for practical applica-

tions. They can still be very useful for research purposes, when error indicators are not

the main focus, such as in [DO11], which used the indicator based on the difference of

solution values between the center and support node:

ê(xi,xj) = |uh(xi)− uh(xj)|, (4.2.1)

where uh is the numerical solution and xj ∈ S(xi). An edge xixj was refined if

ê(xi,xj) ≥ ηemax, where emax = maxxi∈X maxxj∈S(xi) ê(xi,xj) for some η ∈ (0, 1].
Other error indicators with the same idea have also been used to compute errors in

nodes instead of in edges, such as

ê(xi) =

⎛⎝ ∑︂
xj∈S(xi)

|uh(xj)− ū(xi)|2
⎞⎠ 1

2

, ū(xi) =
1

ni

∑︂
xj∈S(xi)

uh(xj), (4.2.2)

used in [KŠ11], that we will also use unless specified otherwise. This indicator can also

be appropriately scaled or weighted so that stencil size and the magnitude of uh do not

have immediate influence on its values. In general, indicators that refine based on the

magnitude of the solution gradient can produce undesirable results, such as over-refining

relatively flat regions and under-refining the regions of high curvature [ODP17].

A posteriori error indicators are well developed for FEM and the most popular error

indicator is the recovery-based Zienkiewicz and Zhu error indicator [ZZ87], also known

as a ZZ indicator. The idea of a recovery based indicator is to “recover” a more accurate

solution from the already computed one using appropriate post-processing, and then

4.3. Adaptive solution procedure for elliptic problems 95

use the difference between the obtained and the recovered solution as an indicator of

an error between the obtained and the true solution. This approach has been extended

especially to weak form meshless methods [RB05; Tan+11; EFK15], but also to some

strong form methods [APP09; Hu+19], as well as to RBF-FD [ODP17]. The indicator

presented in [Hu+19] can be directly generalized to RBF-FD, as it is based on the same

phenomenon that causes discontinuities in k-nearest neighbors scattered interpolation,

as shown e.g. in Figure 1.6. The error indicator is based on the solution gradient ∇uh
and is computed as

ê(xi) =

⎛⎝ ∑︂
xj∈S(xi)\{xi}

(R[∇uh](xj)−∇uh(xj;xi))

⎞⎠ 1
2

, (4.2.3)

R[∇uh](xj) =
1

nj

∑︂
xk∈S(xj)\{xj}

∇uh(xk;xj), (4.2.4)

where ∇uh(xj;xi) is the value of the gradient of the RBF interpolant constructed over

points S(xi) evaluated at xj . The recovered gradient at xj is the average of all the gra-

dients as seen from the stencil nodes of xj . The error at xi is the norm of all differences

between the recovered gradient at xj and the value as seen from xi. Contrary to indica-

tors (4.2.1) and (4.2.2) which have time complexityO(1) andO(n), this indicator has time

complexity O(n5) per node if computed naively or O(n4), if all values of ∇uh(xk;xj)
are precomputed. Instead of node-based indicators, Oahn et al. [ODP17] use RBF-FD

with edge based indicator based on the directional derivatives:

ê(xi,xj) = |(uh(xi)− uh(xj))− (ℓ(xi;xi)− ℓ(xj;xi))| , (4.2.5)

where ℓ(·,xi) is a linear polynomial of the form ℓ(x,xi) = a+bT(x−xi) that minimizes∑︂
xj∈S(xi)

|uh(xj)− ℓ(xj,xi)|2 (4.2.6)

in the least squares sense. The time complexity of this indicator is O(n) per node or

O(1) per edge.
A different type of error indicators are the residual-based error indicators, also used

in FEM [BR78], which are more commonly generalized to a meshless setting in the con-

text of least squares-based methods. This type of indicators is based on the residual

of weighted least square computation, as given by (2.2.27). An estimator of this type

is described by Sang-Hoon et al. [SKS03] for first order PDEs, and also by Afshar et

al. [ANA11] for use in linear elasticity.

4.3 Adaptive solution procedure for elliptic problems
Our adaptive procedurewill rely heavily on the node discretization algorithms developed

in Chapter 3 that have the option to discretize domains according to an arbitrary spac-

ing function h. This means that instead of directly adapting the domain discretization,

the spacing function h will be adapted and a new domain discretization can be gener-

ated from it with. The usual procedure of directly modifying the domain discretization

96 Chapter 4. Adaptivity

essentially does the same thing, except that the spacing function h is never changed ex-

plicitly, but is instead implicitly changed when the domain is modified. This decoupling

of adaptation and modification of domain discretizations allows us to test adaptivity

strategies easier and without the need to develop algorithms for modification of domain

discretizations.

As the adaptive procedure is iterative, the quantities will be denoted with an added

superscript (j) corresponding to the iteration number j. Quantities with iteration num-

ber (0) are given as initial data or computed from the initial data before the first adap-

tive modification. It is possible that the initial solution is already of sufficient quality,

in which case we will say that 0 adaptive iteration were needed. The adaptive solution

procedure with this notation is described in pseudo-code as Algorithm 4.1.

Algorithm 4.1 Adaptive solution procedure.

Input: A boundary value problem P .
Input: Computation domain Ω ⊆ Rd

.

Input: Initial density function h(0) : Ω→ (0,∞).
Input: Global error tolerance τ ≥ 0.
Input: Maximal number of iterations Jmax.

Output: The numerical solution of the problem.

1: function adaptive_solve(P ,Ω, h(0), Jmax, τ)
2: for j ← 0 to Jmax do
3: D(j) ← discretise(Ω, h(j)) ▷ Discretizes domain Ω (see Chapter 3).

4: u(j) ← solve(P ,D(j)) ▷ Solves the problem (see Chapter 2).

5: ê(j) ← estimate_error(D(j), u(j)) ▷ Error indicator computation (see 4.2).

6: if norm(ê(j)) < τ then ▷ Other quality measures can be used.

7: return u(j)
8: end if
9: h(i+1) ← adapt(h(j),D(j), ê(j)) ▷ Adapt the nodal spacing (see sec. 4.3.1).
10: end for
11: warning “Maximal number of iterations reached.”

12: return u(Jmax)

13: end function

The procedure is not the most efficient, as the whole domain discretization, solution

and error indicator are computed anew each time. If modifications to h are restricted

to some local regions (as is usually the case), nodes in those areas could be removed

from the discretization and the empty space could be filled with the same fill algorithms,

using the neighboring existing nodes as seed nodes. Then, the stencils of all new node

should be computed, and the stencils of nearby nodes should be updated. New stencil

weights should be computed for nodes whose stencils changed and a new solution must

be computed, where the solution from the previous iteration may be used as an initial

guess.

All these modification mainly affect the running time and not the final result. That is

why we first decided to test the feasibility and behavior of adaptivity in RBF-FD before

implementing any of the aforementioned improvements.

4.3. Adaptive solution procedure for elliptic problems 97

4.3.1 Spacing function modification

The spacing function h(j) is adapted based on the error indicator values ê(j) for the solu-
tion u(j) computed on discretization D(j)

with the node setX(j)
. The adaptation will be

subject to additional parameters that limit the rate and amount that nodal spacing can

change in each iteration:

• hr, hd : Ω→ (0,∞): the lower and upper bounds on nodal spacing h,

• εr, εd: nonnegative real numbers that represent upper and lower bounds for local

error thresholds,

• αr, αd: real numbers greater than one that represent bounds for density increase

factors.

All quantities with subscript ‘r’ are related to refinement and quantities with subscript

‘d’ are related to derefinement.

The nodal spacing function is adapted by locally increasing or decreasing the spacing

by a certain factor. Define h
(j)
i := h(j)(x

(j)
i) as the local nodal spacing around node x

(j)
i .

This spacing is modified by defining new local nodal spacing values as

h
(j+1)
i := max{min{h(j)i /f

(j)
i , hd(x

(j)
i)}, hr(x(j)

i)}, (4.3.1)

where the density increase factor f
(j)
i is defined as

f
(j)
i =

⎧⎪⎪⎨⎪⎪⎩
1 +

εd−ê
(j)
i

εd−m(j) (
1
αd

− 1), ê
(j)
i ≤ εd, i.e. decrease the density

1, εd < ê
(j)
i < εr, i.e. no change in density

1 +
ê
(j)
i −εr

M(j)−εr
(αr − 1), ê

(j)
i ≥ εr, i.e. increase the density

. (4.3.2)

The values ê
(j)
i are indicator values at nodesx

(j)
i andM (j)

andm(j)
represent the extrema

of the error indicator values:

M (j) = max
x
(j)
i ∈X(j)

ê
(j)
i , m(j) = min

x
(j)
i ∈X(j)

ê
(j)
i . (4.3.3)

The values f
(j)
i are defined so that

1
αd

≤ f
(j)
i ≤ αr always holds, as

ê
(j)
i −εr

M(j)−εr
∈ [0, 1]

and αr ≥ 1. If the node is on the upper error threshold, i.e. ê
(j)
i = εr, then the factor

f
(j)
i equals 1 and the density will stay the same, ensuring compatibility with the case

when ê
(j)
i < εr. Additionally, if the node has the highest indicated error, i.e. ê

(j)
i =M (j)

,

the density increase factor will be maximal, i.e. αr. Symmetric observations hold for the

derefine case. Settingαr = 1 orαd = 1 disables refinement or derefinement, respectively.

The same can also be achieved by setting εd = 0 or εr =∞.

The value αr limits that the spacing at a given node can be reduced for at most a

factor of αr, and symmetrically for αd. The factors αr and αd are called refinement and

derefinement aggressiveness. They limit the rate of change of spacing h between two

iterations, but still allow for exponential decrease of the form h
(j)
i = h

(0)
i /αj

r
if needed

in certain areas. The impact and role of the adaptivity parameters introduced in this

section is further investigated later, in Section 4.4.3.

98 Chapter 4. Adaptivity

Figure 4.2 shows the plot of the density increase factor fi, and the behavior of the

adaptive procedure on sample value of the error indicator. The nodes in the discretiza-

tion are split into three categories: where the density should be increased due to high

indicated error, where the density should stay the same, because error is in the accept-

able range, and where the nodes should be sparser, because the error is unnecessarily

low.

Figure 4.2: Construction of the new spacing function.

Besides limits on the rates of change of h during iterations, global refinement and

derefinement limits hr and hd are also enforced in (4.3.1). The initial spacing h(0) is often
chosen as the derefinement limit, i.e. hd = h(0), while the refinement limit is often just

a small constant spacing, 100 or 1000 times smaller than the minimal initial spacing. It

can also be set to 0 to impose no limit on refinement.

Until now, we only defined the new values h
(j+1)
i , not the whole function h(j+1)

,

which is needed to run the node positioning algorithms. However, obtaining h(j+1)
is a

matter of scattered data interpolation. We opted to use k-Sheppard’s interpolation (see

Section 1.3.1 on page 12) as a simple and computationally efficient method. The number

of nearest neighbors k was equal to the number of nodes included in the stencils.

The domain discretization was constructed by first discretizing the boundary and

then the interior, using the boundary nodes as seed nodes. Additionally, the algorithm

was first run with spacing 10h and then with spacing h to achieve a more uniform nodal

distribution on a local level.

4.3.2 Minimal adaptive example
Wewill first demonstrate the adaptive procedure described in Algorithm 4.1 on a simpler

problem of function approximation. The function

g(x) = 3(1− x)2 exp(−x2) + 3 exp(−4(x− 1)2) (4.3.4)

is approximated on Ω1 = [−3, 3] using 12-MLS (see Section 1.3.2 on page 13) with ba-

sis {1, x}, 12 neighboring nodes and a Gaussian weight exp(−r2/d2), where d is the

distance to the farthest support node. The resulting approximation on j-th iteration is

denoted by ĝ(j).

4.3. Adaptive solution procedure for elliptic problems 99

The initial spacing function is

h(0)(x) = h0(1 + 25|3 + x|), h0 = 0.005, (4.3.5)

which results in a dense distribution of nodes on the negative part of the x-axis and a

sparse distribution on the positive part, as shown in 4.3, iteration 0.

To demonstrate the effect of refinement and derefinement limits, we set hr = 0.02
and hd = 0.05. Values αr = αd = 5 will be used for refine and derefine aggressiveness.

For scattered interpolation of the new spacing values, 12-Sheppard’s interpolation was

used.

The aim of the adaptive procedure is to adaptively refine the distribution to reduce

the true error e(j) = ∥g − g(j)∥1 below a certain threshold τ . During the iteration, the

error e(j) will be approximated using

e(j) =

∫︂
Ω1

|g(x)− g(j)(x)|dx ≈
∑︂

x
(j)
i ∈X(j)

|g(x(j)i)− g(j)(x(j)i)|h(j)(x(j)i) (4.3.6)

To make sure that error is below the threshold τ , we can require that |g(x(j)i) −
g(j)(x

(j)
i)|h(x(j)i) < τ/N (j)

. This means that we can use

ê
(j)
i = N (j)|g(x(j)i)− g(j)(x(j)i)|h(x(j)i) (4.3.7)

as the error indicator and the condition
1

N(j)

∑︁N(j)

i=1 ê
(j)
i < τ on line 6 of Algorithm 4.1 as

the threshold check. The error indicator (4.3.7) is only used for demonstration purposes,

as it includes the analytical solution g and would be unfeasible in practice.

We will use τ = 10−1
, εr = τ and εd = 10−2

. If error indicators in all nodes are below

εr, then the total error must be below τ as well. However, as the error used in the exit

condition is an approximation itself, the true error might be different. It is also common

to set εr lower than τ , as keeping it the same might cause the procedure to converge

towards it rather slowly, but this was not a problem in this simple case.

Figure 4.3 shows the progress of the adaptive iteration. During the progress of the

iteration, the number of total nodes N (j)
was tracked, along with the action taken for

each node. We will use N
(j)
r , N

(j)
r,lim, N

(j)
s , N

(j)
d and N

(j)
d,lim to denote the number of nodes

that were successfully refined; refined, but hit limit hr; kept the same; derefined; and

derefined, but hit limit hd, respectively. This categorizes all the nodes, so that N (j) =

N
(j)
r + N

(j)
r,lim + N

(j)
s + N

(j)
d + N

(j)
d,lim must hold. Additionally, we also kept track of the

current approximation for the error e(j), as well as the true error, computed on a much

denser independent node set. The recorded data is shown in Table 4.2.

The initial node distribution is constructed in such a way, that it is too dense on the

negative part of the x-axis and too sparse on the positive part. Consequently, the nodes

on the left are derefined, and the nodes on the right are refined, with the density factor

proportional to the local error. In the first iteration, 20 nodes are derefined, of which

14 hit the lower bound hd, and 17 nodes were refined. In the next iteration, more nodes

were refined and less derefined, and in the final iteration some nodes even hit the refine-

ment limit hr. Throughout the iteration, both the estimate of the error and the error itself

decrease. Figure 4.4 shows the final nodal spacing and how it adapted to the absolute

100 Chapter 4. Adaptivity

Figure 4.3: Adaptive function approximation. The left axis shows the approximated func-

tion and the approximant, and the right axis shows the density increase factors fi. Values
above the dashed line represent refinement and values below represent derefinement.

value of the second derivative. This is due to the fact that the approximation was linear,

and the second derivative is the leading term in local truncation error. Besides the sec-

ond derivative, nodal spacing is also increased near the boundary, where approximation

errors are also usually larger due to one-sided stencils.

4.4 Classical problems

Wewill first solve two classical Poisson problems designed to test adaptivity, theL-shape
problem and the Fichera corner. Different variations of these problems can be found in

the literature, all using the same domain shape, but with different boundary conditions.

We will use the versions where the solution is known in closed form and both Dirichlet

and Neumann boundary conditions will be used. Some preliminary results on the RBF-

FD adaptivity and the L-shape problem were presented at the international conference

on Boundary Elements and other Mesh Reduction Methods (BEM/MRM 42) [SK19b]. A

similar problem was solved recently using local strong form methods with MLS-based

stencils by Hu, Trask, Hu and Pan [Hu+19].

4.4. Classical problems 101

Table 4.2: Number of nodes and errors during the course of adaptive iteration shown in

Figure 4.3.

j N (j) 1
N(j)

∑︁N(j)

i=1 ê
(j)
i e(j) N

(j)
r N

(j)
r,lim N

(j)
s N

(j)
d N

(j)
d,lim

0 41 3.2700 0.5454 17 0 4 6 14

1 54 1.6352 0.2576 42 0 7 1 4

2 78 0.6090 0.1010 46 18 12 0 2

3 190 0.0862 0.0141 / / / / /

Figure 4.4: Final nodal spacing values and adaptation to the second derivative of the

approximated function. The imposed refinement limit of 50 = 1/hr is also clearly visible.

4.4.1 L-shape domain

The 2D test problem is the L-shape problem, described in e.g. [Dem06, p. 234]. Formally,

the problem reads

∇u = 0 in ΩL,

u = uL on Γd, (4.4.1)

∂u

∂n⃗
= n⃗ · ∇uL on Γn,

where ΩL = ([−1, 1] × [−1,−1]) \ ([0, 1] × [−1, 0]), the boundaries Γd and Γn are

shown in Figure 4.5 and uL is given in polar coordinates as uL(r, θ) = r
2
3 sin(2

3
θ), where

θ ∈ [0, 2π). It can be easily verified that∇2uL = 0 and uL is indeed the solution of prob-

lem (4.4.1). This problem is interesting for adaptivity, because despite the solution being

relatively tame, its gradient has a singularity at the origin, which can cause problems

with convergence. The solution and its gradient are shown in Figure 4.5.

Initially, we try to solve the problem with uniform refinement, using RBF-FD with

polyharmonic RBFs ϕ(r) = r3 and monomials augmentation of order 2. Stencils of 13

closest nodes were used.

The error between the analytical solution u and the numerical solution uh was mea-

sured on an independent grid of points G, denser than the densest spacing used. The

102 Chapter 4. Adaptivity

Figure 4.5: The solution of the L-shape problem (4.4.1) and the norm of its gradient.

same error norms as in Section 3.4.5 were used:

e1 = ∥uh − u∥G,1/∥u∥G,1, ∥y∥G,1 =
∑︂
pi∈G

|y(pi)|, (4.4.2)

e2 = ∥uh − u∥G,2/∥u∥G,2, ∥y∥G,2 =

√︄∑︂
pi∈G

|y(pi)|2, (4.4.3)

e∞ = ∥uh − u∥G,∞/∥u∥G,∞, ∥y∥G,∞ = max
pi∈G
|y(pi)|. (4.4.4)

As the solution uh is known only in computational nodes, RBF interpolation is used to

get intermediate values at p ∈ G. At p ∈ G, a RBF interpolant with cubic polyharmonics

and linear augmentation was constructed over a stencil of 13 closest nodes and its value

at p was used as uh(p).
Figure 4.6 shows errors of numerical solution to the L-shape problem under uniform

refinement. The convergence order is not the expected O(h2) but instead looks more

like O(h).

Figure 4.6: Errors of numerical solution to the L-shape problem (4.4.1) under uniform

and adaptive refinement.

The problem was also solved adaptively with the same setup, starting with the same

uniform density as in the uniform case, h(0)(x) = 0.09. We used εr = 10−2, αr =

4.4. Classical problems 103

3, hr = 0, εd = 0, hd = 0.05 to adapt the nodal density and the global tolerance was set

to τ = 10−2
. The gradient based error indicator (4.2.2) was used. The errors during the

course of adaptive iteration are shown in Figure 4.6, and the results are decidedly better

than under uniform refinement. The iteration stopped after 5 iterations.

Figure 4.7: Values of the error indicator ê
(j)
i , true error values e

(j)
i and nodal density ρ

(j)
i

during the course of adaptive iteration while solving the L-shape problem (4.4.1). Rows

from top to bottom are for iterations j = 0, 2, 4, 6.

Besides the overall error, the errors e
(j)
i = |u(x(j)

i)−u(j)(x(j)
i)| and the values of the

error indicator ê
(j)
i were also recorded. Additionally, local nodal density ρ(j) was also

recorded, defined as

ρ(j)(x) = − log10
h(j)(x)

maxy∈ΩL
h(j)(y)

. (4.4.5)

This helps us visualize the variability in nodal spacing. Value ρ(x) = 0 represents that

104 Chapter 4. Adaptivity

spacing around x is the coarsest in the domain, and value of ρ(x) = 1 means that

spacing at x is 10 times as dense as in the coarsest part. Plots of ê
(j)
i , e

(j)
i and ρ(j) for

even iterations are shown in Figure 4.7. Each row corresponds to one iteration, for j =
0, 2, 4, 6 with the first row showing the results on the initial uniform nodal distribution.

We can see that the nodal spacing adapts to the error distribution and the nodal

density is highest near (0, 0). As the nodal spacing adapts, both the error indicator and

the error becomes more and more uniform throughout the domain.

4.4.2 Fichera’s corner
The classical 3D domain is the Fichera’s corner, described in e.g. [Kur+08, p. 112]. For-

mally, the problem is defined as

∇u = 0 in ΩF ,

u = uF on Γd, (4.4.6)

∂u

∂n⃗
= n⃗ · ∇uF on Γn,

where ΩF = [−1, 1]3 \ [0, 1]3, the boundaries Γd and Γn are shown in Figure 4.8 and

uF is given in spherical coordinates as uL(r, θ, φ) = r
1
2 . It can be easily verified that

∇2uL = −3
4
r−

3
2 and n⃗·∇uL = 1

2
r−

3
2 r⃗ ·n⃗. Similarly to theL-shape problem, this problem

is interesting for adaptivity due to high gradients around the origin. The solution and

its gradient are shown in Figure 4.8.

Figure 4.8: Geometry of the Fichera’s corner with marked Dirichlet and Neumann

boundaries. The hidden boundaries are also Neumann. The left plot shows the solu-

tion and the right the norm of the gradient.

The problem is initially solved with uniform node distributions using PHS RBF-FD

with ϕ(r) = r3 and augmentation of order 2 with stencils of 25 closest nodes. The

errors were measured similarly to those in the L-shape problem, but to ensure high

enough density of sample evaluation points, they were only sampled around the origin

on [− 1
20
, 1
20
]3 ∩ ΩF . Figure 4.9 shows errors under uniform refinement. The e∞ error

converges even slower thanO(h) and the other errors show convergence of order around

O(h).

4.4. Classical problems 105

Figure 4.9: Errors of numerical solution to the Fichera problem (4.4.6) under uniform and

adaptive refinement.

The problem was then solved adaptively with the same numerical setup, with initial

uniform spacing h(0)(x) = 0.16. We used εr = 0.05, αr = 1.5, hr = 0, εd = 0, hd =
0.16 to adapt the nodal density and the global tolerance was set to τ = 0.075. The

errors during the course of adaptive iteration are shown in Figure 4.9. The iteration

stopped after 10 iterations. The results initially agree with uniform refinement, but start

to improve as the number of nodes increases.

4.4.3 Analysis of adaptivity parameters

The adaptive procedure as described in Section 4.3 has free parameters hr, hd, αr, αd, εr,
and εd. The upper and lower limits on local spacing hr and hd serve mostly practical

purposes, similar to the iteration limit Jmax. Setting hd > 0 is important to not derefine

regions near Dirichlet conditions indefinitely, where the error is usually small, and h(0)

is often a good choice. Parameter hr can often be set to 0, if there are no problems with

internodal distances getting too small. In fact, setting it to a nonzero value without a

good reason can in fact harm the adaptive procedure, as shown in the model example in

Figure 4.4, where it would be beneficial to have a denser distribution of nodes in high-

error areas, and the nodal density hit the bound hr.

Choosing the values of εr and εd is related to the specific error indicator and the

problem at hand. It is recommended to not set the values too close together, as this may

cause the adaptive procedure to oscillate between refinement and derefinement. It is

also advised to set the value of εr in such a way, that the chosen norm of the indicator

would tend towards a value lower than τ . Setting it in so that it goes to τ specifically

might unnecessarily increase the number of iterations required as the solution will try

to asymptotically approach τ instead just going past it quickly.

The most interesting are the roles of αr and αd, which are symmetric in nature. To

analyze the role of αr, we solve the L-shape problem from Section 4.4.1 with the same

parameters as before, and only vary αr from just above 1 to 20. This allows us to observe
the effect of the aggressiveness on the adaptive procedure. The maximal number of

iterations was set to Jmax = 500 and was never reached. Figure 4.10 shows errors, node
counts, maximal density, execution time and number of iterations for each analyzed αr.

106 Chapter 4. Adaptivity

Figure 4.10: Behavior of the adaptive procedure with respect to αr. The plot in the top

left corner shows the errors of the final solutions obtained with adaptive iterations for

different αr. Similarly, the plot in the top right shows the final number of nodes and

maximal density, as well as the upper and lower boundsNℓ andNu, as defined in further

analysis. The bottom right plot shows the number od adaptive iterations required and

the total computational time. The bottom left plot shows the errors during the course of

the adaptive iterations for two different values of αr.

The errors and nodal densities of the obtained solutions remain roughly constant as

αr is varied, meaning that different choices of αr only affect the path we choose to get

to the solution of high enough quality, and does not impact the final quality in general.

This is further illustrated by showing two adaptive iterations with αr very close to 1

and another with larger αr. They both obtain sequences of solutions with similar errors,

but the first one needs 158 iterations and the second one needs 6. We can see that the

number of necessary iterations decreases with increasing αr (note that the both axes

are logarithmic). The execution time follows the same general pattern, especially for

smaller αr, where the number of nodes does not change that rapidly and the total time

is dominated by the number of iterations. However, it is not advisable to keep αr too

large, as indicated by the plot showing the final number of nodes. Large αr can cause a

significant increase on the number of nodes generated. Depending on the specific values

of εr and αr this increase may be just enough to pass the error threshold τ , making the

iteration successful with almost minimal number of nodes. However, if the number of

nodes falls just short of reaching the threshold, the next iteration overshoots the number

4.5. Contact problems 107

of nodes significantly. The chances and the magnitude of such overshoots increase with

large αr, as evidenced by higher spikes in the plot.

The expected number of nodes can be estimated after this analysis. With very small

αr we come very close to the number of nodes required to achieve the desired toler-

ance, and this is taken as the lower bound Nℓ. The upper bound is dependent on αr,

and considering the unlucky case, where the second-to-last iteration is just below the

required number of nodesNℓ, the next iteration can generate up to αrNℓ nodes. In prac-

tice however, not all nodes get refined with factor αr, but this instead depends on the

distribution of the error. The upper bound in Figure 4.10 is obtained by assuming that

the number of nodes increases as if only one fourth of the nodes was fully refined, plot-

ting Nu = Nℓ(1 + (αr − 1)/4). Both bounds are also plotted with slight offset to not

overlap the original data points. The spikes in the number of nodes also affect the run-

ning time and cause larger deviations in nodal density, which is otherwise around 1.25,

similar to the final iteration in Figure 4.7, meaning that the densest region is around 17

times denser than the maximal internodal distance.

Based on this analysis the recommendation is to choose the initial αr somewhere

around 3 and then adjust it to the specific problem. A more important guideline is that

smaller αr can be used to test the behavior more reliably, and the αr can be increased

to improve computational time. Increasing αr too much can lead to unnecessary large

nodal distributions, and can even cause the adaptive procedure to fail by too eagerly

refining the wrong regions [SK19c].

4.5 Contact problems
As the focus of this section is not contact modeling, but testing adaptivity, the contact

will not be simulated with a full iterative simulation of two deforming bodies, but instead

as a suitable analytically computed traction distribution, concentrated on a small portion

of the boundary.

This will allow us to compare our results to the closed form solutions when available,

but also to model some cases of practical interest. The results presented in this section

are based on our paper [SK19c], but are computed with a different numerical setup.

4.5.1 Linear elasticity

The linear theory of elasticity describes the deformation of bodies under stress [Sla12;

Sad14]. Themain quantities of interest are the displacement u⃗ and the stress σ. The body
is described as a set Ω and a displacement is a vector field u⃗ : Ω → R3

, describing that

the point xmoves to x+ u⃗(x) under load. The stress is represented by a symmetric 2nd

order tensor, so that σ(x)n⃗(x) represents the traction on the (possibly virtual) surface

with normal n⃗ at a point x.
The equations of motion are derived from the Cauchy momentum equation

ρ
∂2u⃗

∂t2
= ∇ · σ + f⃗ , (4.5.1)

where ρ is the material density and f⃗ is the body loading force. The first linearization

108 Chapter 4. Adaptivity

used by the theory comes from the expression used to compute strains ε from displace-

ments, namely

ε(u) =
1

2
(∇u⃗+ (∇u⃗)T), (4.5.2)

which is only valid for small u⃗. What remains is to connect σ and ε using a constitutive
relation, on this case the Hooke’s law, which reads

σ = C : ε (4.5.3)

in its general form, where C is a fourth order tensor. This is also a linearization, and is

only valid for small strains.

The materials under question are often homogeneous and isotropic, in which case ρ
is constant and the Hooke’s law simplifies to

σ = λ tr(ε)I + 2µε, (4.5.4)

where λ and µ are the Lamé parameters and I is the identity tensor.

Substituting (4.5.2) into (4.5.4) and then (4.5.4) into (4.5.1), we can derive the Navier-

Cauchy equations of linear elasticity

ρ
∂2u⃗

∂t2
= (λ+ µ)∇(∇ · u⃗) + µ∇2u⃗+ f⃗ . (4.5.5)

When solving steady-state problems of elastostatics, we assume the left hand side

of (4.5.5) to be equal to zero. This gives an elliptic problem, where two types of boundary

conditions are most often used. The first are Dirichlet, geometric or essential boundary
conditions,

u⃗(x) = u⃗0(x), (4.5.6)

where the displacement u⃗ is specified along a portion of the boundary. Setting u⃗0 = 0
means that a certain part of the body is kept fixed.

The second kind are the traction, force or natural boundary conditions,

σ(x)n⃗(x) = t⃗0(x), (4.5.7)

where the surface traction is specified along a portion of the boundarywith normal n⃗(x).
Setting t⃗0 = 0 means that the movement on that surface is unrestricted.

Another option for boundary conditions are the boundary conditions on u⃗ or ∇u
which can sometimes be derived from geometrical symmetry of the body and the forces

acting on it.

Simplification to two dimensions

A three-dimensional problem from linear elasticity can sometimes be reduced to two

dimensions using one of the two most common methods: plane stress or plane strain. In

the plane strain formulation we assume that the strain ε has no nonzero components in

one of the cardinal directions, and similarly in the plane stress formulation we assume

that the stress tensor σ has no nonzero components in one of the cardinal directions.

In both cases, the original equation can be reduced to only two variables, with further

4.5. Contact problems 109

details found in e.g. [Sla12, pp. 260–278] In plane strain case, the values of the Lamé

parameters remain unchanged, but in plane stress formulation a reduced first Lamé pa-

rameter λ̂ needs to be used instead of λ in (4.5.4) and (4.5.5), defined as

λ̂ =
2µλ

λ+ 2µ
. (4.5.8)

We will use u⃗ = (u, v) and σ =

[︃
σxx σxy
σxy σyy

]︃
when referring to the individual compo-

nents.

Other quantities of interest

Often, instead of the Lamé parameters λ and µ, the elastic properties are expressed in

terms of other elastic moduli, such as the Young’s modulus E and the Poisson ratio ν.
Conversions between various moduli are given in e.g. [Sla12, p. 215], and we will use

the relations

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
, (4.5.9)

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(4.5.10)

to define the problem either in terms of λ and µ and later use E and ν, or vice versa.
Another quantity of interest is the von Mises stress [Sad14, ch. 3.5], which is related

to yielding [Mis13], and is defined as

σv =

√︃
2

3
∥σdev∥F , σdev = σ − 1

3
tr(σ)I, (4.5.11)

where ∥ · ∥F is the Frobenius norm and I is the identity tensor.

4.5.2 Disk under stress

Point contact is a first contact example, and a case of disk under under stress from two

opposing point forces is used to test adaptive approaches [ANA11]. The case consid-

ers a disk of radius R compressed by two diametrical point forces of magnitude P , as
illustrated in Fig. 4.11.

Assuming plane stress conditions, the closed form solution for stresses is given by

e.g. Sadd [Sad14, p. 197] as:

σxx = −2P

π

(︃
x2(R− y)

r41
+
x2(R + y)

r42
− 1

2R

)︃
(4.5.12)

σyy = −
2P

π

(︃
(R− y)3

r41
+

(R + y)3

r42
− 1

2R

)︃
(4.5.13)

σxy =
2P

π

(︃
x(R− y)2

r41
− x(R + y)2

r42

)︃
, (4.5.14)

110 Chapter 4. Adaptivity

Figure 4.11: Disk under diametrical compression.

where r1,2 =
√︁
x2 + (R∓ y)2 are the distances to the points of contact. The stress

distribution is singular under the contact points.

Numerically, we will consider only a quarter of the disk due to symmetry and we

will move away from the boundary by γ to avoid the stress singularity. Formally, the

problem is defined as follows:

(λ+ µ)∇(∇ · u⃗) + µ∇2u⃗ = 0 in Ω, (4.5.15)

where

Ω = {(x, y) ∈ R2; x ≥ 0, y ≥ 0, x2 + y2 ≤ (R− γ)2} (4.5.16)

is a quarter of a circle with radius R − γ, shown in Figure 4.11. The curved part of

the boundary is part of the original circle and traction boundary conditions are im-

posed there, as defined by equations (4.5.12–4.5.14). Symmetry boundary conditions

v = 0, ∂u
∂y

= 0 and u = 0, ∂v
∂x

= 0 are imposed on the bottom and left boundary, respec-

tively.

The stress concentration is located around the point (0, R − γ) and the parameter

γ determines the peak stress magnitude, which is of order
P
2πγ

. This in turn controls

the difficulty of the problem. The problem was solved for two different values of γ.
The first was γ = 0.01 which represents a case of medium difficulty, where uniform

refinement still obtains a solution, but has very erratic error behavior. The second case

is γ = 0.001 where uniform refinement completely fails. Values P = 1, R = 0.5 and

material parameters E = 1 and ν = 0.33 were used for the physical and geometric

parameters.

RBF-FD method with ϕ(r) = r3 and augmentation of order 2 with stencils of 13 clos-

est nodes was used. Three different error measures were used to measure the difference

between the closed form stress field σ and the numerically computed σh:

e1 = ∥σh − σ∥X,1/∥σ∥X,1, ∥y∥X,1 =
∑︂
xi∈X

∑︂
1≤j≤k≤d

|σxjxk
(xi)|, (4.5.17)

e∞ = ∥σh − σ∥X,∞/∥σ∥X,∞, ∥y∥X,∞ = max
xi∈X

max
1≤j≤k≤d

|σxjxk
(xi)|, (4.5.18)

eE = ∥σh − σ∥X,E/∥σ∥X,E, ∥y∥X,E =

√︄∑︂
xi∈X

y(xi) : C−1 : y(xi). (4.5.19)

4.5. Contact problems 111

The final expression computes the energy error, and C is the stiffness tensor from the

Hooke’s law (4.5.3). For a given solution u, the expression σ(u(xi)) : C−1 : σ(u(xi))
can also be written as σ(u(xi)) : ε(u(xi)), where colon : denotes the double contraction,
a : b =

∑︁
i,j aijbij .

Adaptive refinement was used with εr = 0.05, αr = 3, εd = 0, hr = 0, hd = h(0). The
initial distribution was h(0) = 0.02 in γ = 0.01 case with error tolerance τ = 1. For the
γ = 0.001 a denser initial distribution was required and we used h(0) = 0.005, with a

higher global tolerance τ = 10. The gradient-based error indicator given by (4.2.2) was

adapted for a vector-valued u by adding the indicator values for each component of u⃗.
This adaptation was made for all the following cases as well.

The errors under uniform adaptive refinement are shown in Figure 4.12. Uniform

refinement is not sufficient in any of the cases. In the γ = 0.01 case, the error does

not follow a smooth downwards pattern, and is very sensitive and jagged, but still with

a general downwards trend. In the γ = 0.001 case, uniform refinement is unable to

produce a solution of desirable quality.

Adaptive solutions behave better. The initial distributions is still uniform and must

be dense enough to put a few nodes in the high stress area near the contact. Initially, the

error declines sharply, as the nodes are positioned near the contact area to accommodate

the high gradients present there. After that, the error decreases at a slower rate, but still

regularly, compared to the uniform case.

Figure 4.12: Errors under uniform and adaptive refinement while solving the compressed

disk problem (4.5.15).

Figure 4.13 shows the stress components σxy on the anti-diagonal from (R − γ, 0)
to (0, R− γ). The analytical solution is shown in black in the background. The top row

of plots shows the solutions on a normal scale, to get a sense of how sharp the stress

peaks are and how bad the initial approximations are. The bottom row of plots show

the approximations of the stress peak and represent a very zoomed-in version of the top

plots. It can be seen how subsequent iterations improve and refine the solution, getting

closer to the analytical values.

The number of nodes and errors during the adaptive iterations are shown in Fig-

ure 4.14. It is interesting to note, that initially, the number of nodes does not increase

much, with quite a significant decrease in error, as nodes are only added in the high

112 Chapter 4. Adaptivity

Figure 4.13: Computed stress profiles during adaptive solving of the compressed disk

problem (4.5.15).

stress areas. This is the main mechanism responsible for the sharp drop in error shown

in Figure 4.12 when error is plotted against the number of nodes. After the nodes are

distributed so that the error indicator is distributed more uniformly, the refinement is

more uniform as well, leading to a larger increase in the number of nodes, which in turn

slows down the convergence curve in Figure 4.12. This effect is more pronounced in the

γ = 0.001 case, which has sharper peaks.

Figure 4.15 shows the error and node density plots in first (0-th) and last (J-th) iter-
ation of the adaptive procedure in the γ = 0.01 case. The top row shows the value of

the energy error kernel eE,i = σ(xi) : ε(xi) at note xi in first and last iterations. The

error distribution in the first iteration is uneven and it becomes much more uniform in

the last iterations. Note that the scales on the color axes are different on the plots to

accommodate the decrease in error, but show a similar span of orders of magnitude.

The middle row shows the nodal density ρi = − log10(di/maxj(dj)), where di is
the distance from xi to its nearest neighbor. The nodal density values are shown on

the actual nodal distributions to also show what the node distributions look like. Once

again, note the different limits on the color axes. The initial distribution is uniform and

very coarse with N = 449 nodes. The final distribution is quite strongly refined with

a maximal density of approximately 3.14, meaning that the minimal closest distance is

4.5. Contact problems 113

Figure 4.14: Errors and number of nodes during the adaptive iteration while solving the

compressed disk problem (4.5.15).

about 1300 times smaller than the largest distance to the closest neighbor. The plots in

the bottom row show 10 and 100 times zoomed versions of the final distribution (note

the different x, y and color axes) to better visualize how the nodal distribution looks.

The node markers are kept the same size in all four plots of density to further illustrate

the nodal density.

4.5.3 3D point contact

A classical contact problem in three dimensionswith a closed form solution is the Boussi-

nesq’s problem of a point force acting on a half-space. The problem is described by

Slaughter [Sla12, p. 352] and illustrated in Figure 4.16. The closed form solution for a

concentrated force of magnitude P pressing on a material with Poisson’s ratio ν and

second Lamé parameter µ is given in cylindrical coordinates r, θ and z as

ur =
Pr

4πµ

(︃
z

R3
− 1− 2ν

R(z +R)

)︃
, uθ = 0, uz =

P

4πµ

(︃
2(1− ν)

R
+
z2

R3

)︃
,

σrr =
P

2π

(︃
1− 2ν

R(z +R)
− 3r2z

R5

)︃
, σθθ =

P (1− 2ν)

2π

(︃
z

R3
− 1

R(z +R)

)︃
, (4.5.20)

σzz = −
3Pz3

2πR5
, σrz = −

3Prz2

2πR5
, σrθ = 0, σθz = 0,

where R =
√
r2 + z2 is the distance of a point (x, y, z) from the origin. This solution

has a singularity at the origin and similarly to how it was done in the compressed disk

problem in Section 4.5.2, we will consider behavior some distance γ away from the sin-

gularity. Numerically, we will solve the Navier-Cauchy equations on Ω = [−1,−γ]3
with Dirichlet boundary conditions given by (4.5.20).

The 3D point contact problem is solved numerically for γ = 10−3
in Cartesian co-

ordinates using RBF-FD with ϕ(r) = r3 and augmentation of order 2 on stencils of 30

closest nodes. The domain was initially filled with spacing h(0) = 0.05 and the adap-

tivity parameters were εr = 100, αr = 3, hr = 0, εd = 10, αd = 2, hd = 0.05. Values
P = −1, E = 1 and ν = 0.33 were used for the physical parameters.

114 Chapter 4. Adaptivity

Figure 4.15: Error field and nodal distributions in the initial and final iteration while

solving the compressed disk problem (4.5.15) with γ = 0.01. The top two plots show

the initial and final energy error distribution, the middle row shows plots of initial and

final nodal distribution, colored by nodal density, and the bottom row shows 10 and 100

times zoom of the final nodal distribution near the top corner.

The errors e1, e∞ and eE were computed as in the compressed disk case using (4.5.17–

4.5.19). Since displacements are also known in closed form, we also computed e1 and e∞
errors for displacements. To achieve a high enough density of sample nodes, the errors

are only measured in the area [−3γ, γ]3. These errors are shown in Figure 4.17.

Initially, the discretization is not dense enough to recognize the large stresses in

the contact area and the error rises after the contact is first populated with a decent

number of nodes. After that, the behavior is very similar as seen in Figure 4.12 in the

compressed disk case: the error first sharply declines and then slowly decreases further.

This is further illustrated in Figure 4.18 which shows the von Mises stress profiles along

4.5. Contact problems 115

Figure 4.16: Illustration of the 3D point contact problem and the numerical domain Ω.

Figure 4.17: Errors during solving the 3D point contact problem (left) and the solution

around the corner (−γ,−γ,−γ) in the final iteration colored by vonMises stress (right).

the body diagonal of Ω from (−2.5γ,−2.5γ,−2.5γ) to (−γ,−γ,−γ).

Figure 4.18: VonMises stress along the body diagonal during the adaptive iteration while

solving the 3D point contact problem.

The non-enlarged stress profiles are even sharper than the ones in top right plot

116 Chapter 4. Adaptivity

of Figure 4.13 and only the enlarged versions are shown. In the first three iterations

the profiles are effectively flat. Then, the solutions starts to behave correctly, but with

large deviations from the correct profile, which corresponds to the rise and subsequent

sharp drop in error in Figure 4.17. The final 5 iterations which are overlapping in this

picture correspond to the final 5 iterations, where error slowly improves and further

enlargement of Figure 4.13 would show the trend consistent with the reported errors.

Values of e1(σ) errors, detailed node counts andmaximal nodal densities are reported

in Table 4.3, using the same notation as in Table 4.2.

Table 4.3: Errors and detailed node counts during the adaptive iteration for the solution

of the 3D point contact problem.

j e
(j)
1 (σ) N (j) N

(j)
r N

(j)
r,lim N

(j)
s N

(j)
d N

(j)
d,lim max

i
ρ
(j)
i

0 1.0001 7524 219 0 398 0 6907 0.04

1 0.9994 8283 880 0 654 0 6749 0.47

2 0.9819 10829 3044 0 913 54 6818 0.93

3 1.3985 13521 5620 0 1057 24 6820 1.24

4 1.1114 15735 9111 0 3128 0 3496 1.63

5 0.8105 17012 8205 0 2000 16 6791 1.72

6 1.5566 20052 11151 0 2128 25 6748 2.19

7 0.1754 21379 12165 0 2393 41 6780 2.64

8 0.0377 24136 14788 0 2621 39 6688 3.32

9 0.0142 39349 29572 0 2798 89 6890 3.28

10 0.0110 51094 41384 0 2838 77 6795 3.29

11 0.0134 53256 43299 0 3996 61 5900 3.27

12 0.0086 108476 98388 0 3609 121 6358 3.57

The solution near corner (−γ,−γ,−γ), colored by von Mises stress, is shown in

Figure 4.17 on the obtained nodal distribution.

4.5.4 Hertzian contact

Hertzian contact theory is a classical theory of non-adhesive contact which began with

Hertz in 1882 [Her82]. In some cases, the contact forces can be computed analytically,

such as in the case of contact between two infinitely long cylinders, shown in Figure 4.19.

The elastic contact and the analytical expressions for the pressure distribution are

described in [WD00, p. 122]. We will assume that the cylinders have radii R1 and R2,

Young’s moduli E1 and E2 and Poisson’s ratios ν1 and ν2. The contact is predicted to be
of width 2a, with

a = 2

√︃
FR∗

πE∗ , (4.5.21)

where F is force per unit length, R∗
is the combined radius, and E∗

the combined

Young’s module, which are given by

1

R
=

1

R1

+
1

R2

,
1

E∗ =
1− ν21
E1

+
1− ν22
E2

. (4.5.22)

4.5. Contact problems 117

Figure 4.19: Hertzian contact between two cylinders (left) and the numerical setup for

computing the contact between a cylinder and a plane adaptively.

The normal traction in the area of contact is given as

p(x) = p0

√︃
1− x2

a2
, p0 =

√︃
FE∗

R∗π
(4.5.23)

and there is no tangential traction.

We will solve the limit case when R1 tends to infinity, resulting in a contact be-

tween a cylinder and a half-space, which can be reduced to 2D using plane strain con-

ditions [WD00]. The prescribed traction conditions hold in the contact area, with zero

traction conditions outside the contact area on the top boundary. The remaining bound-

ary conditions are the zero-displacement boundary conditions at infinity.

Closed form solutions for stresses in this (and more general) case have been con-

structed using the method of complex potentials by McEwen [McE49]. Stresses in the

half-plane at a point (x, y) are expressed with expressionsm and n,

σxx = −p0
b

[︃
m

(︃
1 +

y2 + n2

m2 + n2

)︃
+ 2y

]︃
, (4.5.24)

σyy = −
p0
b
m

(︃
1− y2 + n2

m2 + n2

)︃
, (4.5.25)

σxy = σyx =
p0
b
n

(︃
m2 − y2

m2 + n2

)︃
, (4.5.26)

where

m2 =
1

2

(︃√︂
(b2 − x2 + y2)2 + 4x2y2 + b2 − x2 + y2

)︃
, (4.5.27)

n2 =
1

2

(︃√︂
(b2 − x2 + y2)2 + 4x2y2 − (b2 − x2 + y2)

)︃
, (4.5.28)

and m =
√
m2

and n = sgn(x)
√
n2
. One can verify (using a computer algebra system)

that∇ · σ = 0 holds on the lower half plane and that the traction conditions on the top

boundary are satisfied.

118 Chapter 4. Adaptivity

To solve this problem numerically, the infinite half-plane is substituted for a finite

computational domainΩ = (−H,H)×(−H, 0) on the basis of Saint-Venant’s principle,

as shown in Figure 4.19. The specific problem we are solving is

(λ+ µ)∇(∇ · u⃗) + µ∇2u⃗ = 0 in Ω,

u⃗(−H, y) = u⃗(H, y) = u⃗(x,−H) = 0, (4.5.29)

σ(x, 0)n⃗ = n⃗

{︄
p(x), |x| ≤ a

0, |x| > a
.

Wewill chooseR1 = 1m,F = 500 N/m,E1 = E2 = 72.1GPa and ν1 = ν2 = 0.33 for the
physical parameters. This means that the contact width a is approximately 0.13mm. We

choose the domain size H to be H = 0.25m, which is approximately 1923 times larger

than the contact area. Based on the analysis done in [Sla17; SK19b] this is (well in the

range of being) large enough so that the truncation error does not present a significant

contribution to the overall error.

We used RBF-FDwith ϕ(r) = r3 andmonomial augmentation of order 2 with stencils

of n = 19 nearest neighbors. Larger stencils were needed for increased stability due to

more aggressive refinement. The problem was solved adaptively with εr = 105, αr = 5,
εd = 104, αd = 2, hr = 0, hd = 50(0). The initial distribution was h(0) = 0.001 with

error tolerance based on the maximal value of the error indicator equal to τ = 50 000.
The large ratio between the domain size and the contact area in combination with

initial uniform discretization means that a large number of nodes is needed initially to

cover the contact, even though the initial discretization is only h(0) ≈ 7.7a, i.e. one node
per 7.7 contact widths. The error was measured the same way as in the compressed disk

case using (4.5.17–4.5.19), computed in the area [−10a, 10a] × [−10a, 0]. Figure 4.20

shows the errors and node counts during the adaptive iteration. Detailed node counts

and errors are reported in Table 4.4, using the same notation as in Table 4.2.

Figure 4.20: Errors and node counts during the adaptive iteration for the solution of the

Hertzian contact problem (4.5.29).

4.5. Contact problems 119

Figure 4.21: Normal stress profiles in contact area during adaptive iteration for the solu-

tion of Hertzian contact problem (4.5.29). Last 4 plots show enlargements of the bound-

ary of the contact area.

120 Chapter 4. Adaptivity

Table 4.4: Errors and detailed node counts during the adaptive iteration for the solution

of the Hertzian contact problem (4.5.29).

j e
(j)
∞ N (j) N

(j)
r N

(j)
r,lim N

(j)
s N

(j)
d N

(j)
d,lim max

i
ρ
(j)
i

0 0.8720 106858 218 0 1837 104803 0 0.00

1 0.4132 33397 288 0 583 32526 0 1.00

2 0.2755 10571 731 0 576 9264 0 2.00

3 0.0672 5207 1543 0 658 3006 0 3.00

4 0.0190 6424 4477 0 603 1344 0 3.99

5 0.0068 17150 15785 0 715 613 37 4.96

6 0.0031 58790 57571 0 847 314 58 5.81

7 0.0017 178475 174047 0 4100 272 56 6.48

Initially, derefinement is substantial in most of the domain, but refinement is present

in the contact area, which causes the number of nodes to decrease while also increasing

the accuracy. This trend continues and less and less nodes are derefined in each iteration,

while refinement around the contact area is increased. The same trend can be observed

also in Figure 4.21 where profiles of σxx on the top boundary are shown. The strength of

the refinement and the solution accuracy under contact and on its edge can be observed

in more detail. The density growth is limited by j log(αr/αd) and is initially closely

followed, but then deviates slightly from this upper bound as derefinement slows down.

Figure 4.22: Comparison between the manual and adaptively obtained density (left) and

the histogram of local densities in the adaptive case (right).

It is also interesting to observe the final nodal density. A histogram of densities ρi
for all nodes i in the final iteration is shown in Figure 4.22. The maximal density is

ρ = 6.48, which means that the ration between the smallest and the largest local nodal

spacing is around 3 million. We can see that most nodes in fact have density between

3 and 6. However, these nodes cover a very small proportion of the whole domain.

The nodes included with 0 ≤ ρi < 1 cover 97.12% of the whole domain, the nodes

4.5. Contact problems 121

with 1 ≤ ρ < 2 cover around 2.85% and all the other nodes are concentrated on an

area representing around 0.03% of the domain. In fact, 95% percent of all nodes are

located in [−3a, 3a] × [−3a, 0] rectangle, which represents 0.000027% of the domain

area. It is also interesting to compare adaptively obtained density to the density of the

manually refined nodal distribution used in [SK19b]. Both nodal distributions are dense

in the contact area, specifically near the contact edges, but the adaptive density is much

smoother.

4.5.5 Fretting fatigue contact
A contact problem from the study of fretting fatigue, described by Pereira et al. [Per+16]

is chosen as the next example. The choice of this example is motivated by collaboration

in the international project “Multi-analysis of fretting fatigue using physical and vir-

tual experiments” (G018916N) between the University of Luxembourg, the University

of Ghent and the Jožef Stefan Institute, where some results presented here were also

used. The example is a part of a standard laboratory test in the study of fretting fatigue

of materials [Hoj+14], where a small rectangular specimen of width W , length L and

thickness t is compressed width-wise by two oscillating pads with radius of curvature

R and axially stretched with tension σax. The pads compress with force F and cause

maximal tangential traction Q. The test is schematically shown in Figure 4.23.

Figure 4.23: Schema of a fretting fatigue laboratory test.

The goal is to compute the stresses in the specimen. The traction induced by the

pads will be approximated analytically, derived from an extension of Hertzian contact

theory and used before in [Per+16; Kos+19]. The problem is reduced to two dimensions

using plane strain. The contact width and the normal traction remain the same as in

the Hertzian theory, except that the force per unit length F in (4.5.21) and (4.5.23) is

computed as F/t, giving the contact half-width a as

a = 2

√︃
FR

tπE∗ (4.5.30)

and the normal traction as

p(x) = p0

√︃
1− x2

a2
, p0 =

√︃
FE∗

tπR
. (4.5.31)

Tangential traction additionally depends on the coefficient of friction µf and divides the
contact area into stick and slip zones. The half width of the stick zone is expressed as

c = a
√︂

1− Q
µfF

(under the assumption that Q ≤ µfF). Furthermore, the axial traction

122 Chapter 4. Adaptivity

σax causes that the stick zone is not in the center of the contact area, but is instead offset

by eccentricity e = sgn(Q) aσax

4µfp0
. This is only valid if σax ≤ 4

(︂
1−

√︂
1− Q

µfF

)︂
, which

will hold in our case.

The tangential traction in the contact area is then defined piece-wise for stick and

slip zones separately:

q(x) = −µfp0

⎧⎪⎨⎪⎩
(︃√︂

1− x2

a2
− c

a

√︂
1− (x−e)2

c2

)︃
, |x− e| < c√︂

1− x2

a2
, c ≤ |x− e| and |x| ≤ a

, (4.5.32)

but it can be easily checked for continuity when |x− e| = c. Sample stick and slip zone

division and the tractions p and q are shown in Figure 4.24.

Figure 4.24: Computational domain with boundary conditions and surface tractions with

stick and slip zones shown. Computational domain is not to scale.

The problem is further reduced by exploiting the symmetry along the horizontal axis.

The computational domain is thus a rectangle Ω = [−L/2, L/2]× [−W/2, 0], where the
coordinate system has been positioned in such a way that (0, 0) is the center point of

the contact. The problem is formally given by

(λ+ µ)∇(∇ · u⃗) + µ∇2u⃗ = 0 in Ω,

u⃗(−L/2, y) = 0⃗,

σ(x, 0)n⃗ =

{︄
(p(x), q(x)), |x| ≤ a

(0, 0), |x| > a

σ(L/2, y)n⃗ = σaxn⃗ (4.5.33)

v(x,−W/2) = 0

∂u

∂y
(x,−W/2) = 0,

and the domain with boundary conditions is shown also in Figure 4.24 using notation

u⃗ = (ux, uy), σn⃗ = t⃗ = (tx, ty).
The stresses in the specimen will be computed in the state of oscillation maximum.

The specimen dimensions are L = 40mm, W = 10mm and t = 4mm, and material

parameters used are E1 = E2 = 72.1GPa, ν1 = ν2 = 0.33, coinciding with aluminum

2420-T3. Values F = 543N, Q = 155N, σax = 100MPa, R = 10mm and µf = 0.3
were chosen for the model parameters. The half-contact width a in this case equals

0.2067mm, which is approximately 200 times smaller than the domain length L, and
adaptivity is needed.

4.5. Contact problems 123

Similarly to Hertzian contact case, we use RBF-FD with ϕ(r) = r3 and augmentation

of second order on stencils of 19 closest nodes. The initial spacing was selected as h(0) =
0.5mm and adaptivity parameters were hr = 0, hd = 1mm, αr = 10, αd = 1.5, εr =
105, εd = 104. The adaptive procedure was run for 4 iterations. Table 4.5 shows node

counts during the adaptive iteration as well as maximal nodal density. We see that no

derefinement occurs and thus density growth is limited by j log10(αr), which is closely

followed, i.e. the refinement is the maximal possible.

Table 4.5: Detailed node counts during the adaptive iteration for the solution of the

fretting fatigue contact problem (4.5.33).

j N (j) N
(j)
r N

(j)
r,lim N

(j)
s N

(j)
d N

(j)
d,lim max

i
ρ
(j)
i

0 772 716 0 56 0 0 0.00

1 2423 2340 0 83 0 0 1.00

2 5856 5778 0 78 0 0 2.00

3 31271 31193 0 78 0 0 2.95

The adaptive solution is compared to a solution obtained with the Finite Element

Method (FEM) using the freely available FreeFem++ [Hec12] and its built-in adaptivity

via adaptmesh, as well as to another FEM solution, on denser manually refined mesh

with more than 105 DOFs, using commercial ABAQUS
®
software for finite element anal-

ysis [Per+16].

The obtained surface traction σxx is shown in Figure 4.25. This traction is of partic-

ular interest, because the location and value of the σxx peak can be used to determine

the location of crack initiation [Per+16]. A paper by Kosec et al. [Kos+19] specifically

compares strong and weak form methods when computing such peaks. The adaptive

solution initially only has one node in the contact area, but it gets aggressively refined.

The error of surface σxx is measured against both FEM solutions as

e1 = ∥σ̂xx − σxx∥1/∥σxx∥1, ∥σxx∥1 =
∑︂
x∈G

|σxx(x)|, (4.5.34)

where G is a set of 105 independent equidistant points on [−2a, 2a]. The error is shown
in Figure 4.26, as well as the error between the reference solutions themselves. We can

see the adaptive error decrease with every iteration and achieving satisfactory accuracy

in the end, agreeing with ABAQUS more than FreeFem++.

The total computational time of the adaptivity procedure was around 2.5 s and varies

from 2 s to 10 s depending on the choice of adaptivity parameters.

124 Chapter 4. Adaptivity

Figure 4.25: Surface traction σxx obtained during the adaptive iteration compared with

two other FEM solutions.

Figure 4.26: Error of the surface traction σxx obtained adaptively compared to both ref-

erence solutions.

Chapter 5

Implementation

Implementations of numerical methods for solving PDEs are often long, complex and

poorly readable. The solution procedure is usually intertwined with the discretization

technique, which makes the code hard to debug and very error prone and unmaintain-

able. This issue is pronounced enough that is has been studied on its own, along with the

identification of design patterns that help avoid it [HMÅ02; RAX10; Ara+14]. Another

common issue that PDE solvers suffer from is that the code for solving 2D problems

and 3D problems is often completely separate. The idea to use proper (dimension inde-

pendent) abstractions and think in terms of vector fields and operators instead of only

arrays and indices was called “Coordinate free numerics” [MH96] and the main idea is

illustrated in Figure 5.1.

Abstract PDE

description

fields, operators →→

manual

discretization

↓↓

coordinate free

↓↓

conventional

→→

Abstract

program

automatic

discretization

(library)

↓↓
Discrete

description
arrays, indexes

→→ Discrete
program

Figure 5.1: The idea of coordinate free numerics.

While this naming never got wider recognition, the same idea is still relevant. The

importance that well-designed software projects have on increasingly complex physical

simulations was outlined also in the “Physics today” article by Post and Votta titled

“Computational science demands a new paradigm” [PV05] as well as in “Nature” by

Meralli in the paper titled “Computational science: ...Error: why scientific programming

does not compute” [Mer10].

The usefulness of proper abstraction can be seen in the fact that many such li-

braries were developed for FEM, including deal.II [BHK07], DOLFIN (part of the FEniCS

Project [Aln+15]) [LW10] and FreeFem++ [Hec12]. Sadly, in the field of strong form

meshless methods there are no open source general purpose libraries available. Many

125

126 Chapter 5. Implementation

papers come with their own set of scripts, such as MFDMtool [Mil13], GEC_RBFFD

[Bay+15], MFree2D [Liu02], and even the review paper [Ngu+08]. For specific estab-

lished methods, such as SPH, there are software packages available, e.g. DualSPHyiscs

[Cre+15]. A notable newer implementation is theMESHFREE software [KMM17], which

implements the Finite Pointset, but it focuses on applications and not on the develop-

ment of methods themselves and is not open source. Another package to note is the RBF

python package [Hin15] (although not present in the standard Python Package Index),

which implements basic RBF interpolation and RBF-based PDE solution techniques.

DOLFIN, deal.II and DualSPHyiscs use the C++ programming language, and Free-

Fem++ implements its own extended language on top of a C++-based core. The language

is popular due to a combination of its speed and the abstractions it offers, mainly the

template system, which allows for writing efficient generic code. As no general purpose

open-source libraries for strong-form meshless methods were available, we decided to

implement our own, to support our research in the field. The development began in 2015

and the library, called Medusa, is available at http://e6.ijs.si/medusa. The library has
been a good investment and is one of the reasons we can attempt more challenging tasks,

such as automatic adaptivity.

The main design goals of the library were to have reusable and reliable building

blocks that can be used to quickly testmany differentmeshlessmethods, without tedious,

error-prone and unmaintainable repetition of implementation. The general workflow of

solving a problem was divided into: preparing the domain discretization, defining the

discretization, computing the stencil weights, and finally, solving the PDE. We wanted

the design to be modular, so that underlying algorithms can easily be swapped, and

extensible, so that new can be added when needed. Together with the desire for reason-

able efficiency and readability, C++ was the language of choice. Additionally, it offers a

good way to achieve dimension independence through non-type template parameters.

The library has no dependencies, apart from the C++ standard library and the HDF5 C

library [Fol+11] for reading and writing binary HDF5 files. As stated in the introduc-

tion, Medusa includes the Eigen, nanoflann, tinyformat and RapidXML libraries. The

source code of the library is available on Gitlab
1
. Reliability is ensured using continuous

integration running over 300 tests and the documentation of the library, generated with

Doxygen, is also available
2
.

To achieve dimension independence, nearly all core classes have a template parame-

ter vec_t, which contains the spatial dimension and the floating point type. This means

that the same implementation is used when solving a 2D problem with single precision

or a 3D problemwith complex numbers in double precision. The remainder of this chap-

ter presents the more interesting parts of the library. We start with a minimal working

dimension independent example in Section 5.1, followed by a description of the main

modules in Section 5.2. Finally, some execution time benchmarks are presented in Sec-

tion 5.3.

1https://gitlab.com/e62Lab/medusa
2http://e6.ijs.si/medusa/docs

http://e6.ijs.si/medusa
https://gitlab.com/e62Lab/medusa
http://e6.ijs.si/medusa/docs

5.1. Minimal working example 127

5.1 Minimal working example
We will borrow an example from the Medusa library test suite to show a minimal work-

ing example. Consider a steady state advection-diffusion problem

8(−1 · ∇u) + 2∇2u = −1 in Ω (5.1.1)

u = 0 on ∂Ω, (5.1.2)

where Ω = B(0, 1) \B(0.1, 0.3) ⊆ Rd
is a ball with a hole. The implementation of the

numerical solution of this problem is shown as listing 5.1. The dimension of the problem

was never specified, neither in the mathematical formulation nor in the implementation,

but was instead kept an arbitrary d or as a template parameter.

Figure 5.2: Solutions of a steady state advection-diffusion equation in 1D, 2D (top row)

and 3D (bottom row), showing slices along the coordinate planes and isosurfaces on a

half of the domain.

The steps taken in the code follow the general procedure described above. First, we

construct the domain shape, which is then discretized to produce the domain discretiza-

tion, stored in the variable domain.

128 Chapter 5. Implementation

1 template <int dim>
2 void solve() {
3 typedef Vec<double, dim> vec; // Define the point type.
4 BallShape<vec> c(0.0, 1.0), hole(0.1, 0.3); // Define the domain shape.
5

6 // Discretize the domain. The nodal spacing is increased in higher dimensions
7 // to keep the number of nodes small enough.
8 double dx = 0.001*dim*dim*dim;
9 DomainDiscretization<vec> domain = (c-hole).discretizeBoundaryWithStep(dx);
10 GeneralFill<vec> fill; fill(domain, dx);
11 int N = domain.size(); prn(N);
12 Monomials<vec> mon(2); // Monomial basis.
13 domain.findSupport(FindClosest(2*mon.size())); // Stencil size = 2*(number of mon.)
14

15 // Construct the approximation.
16 RBFFD<Polyharmonic<double, 3>, vec, ScaleToClosest> approx({}, mon);
17 auto storage = domain.template computeShapes<sh::lap|sh::d1>(approx);
18

19 // Define matrices and construct the operators interface.
20 Eigen::SparseMatrix<double, Eigen::RowMajor> M(N, N);
21 Eigen::VectorXd rhs(N); rhs.setZero();
22 auto op = storage.implicitOperators(M, rhs);
23 M.reserve(storage.supportSizes());
24

25 // Write the discretized equations into M and rhs.
26 for (int i : domain.interior()) {
27 8.0*op.grad(i, -1) + 2.0*op.lap(i) = -1.0;
28 }
29 for (int i : domain.boundary()) {
30 op.value(i) = 0.0;
31 }
32

33 // Solve the system.
34 Eigen::BiCGSTAB<decltype(M), Eigen::IncompleteLUT<double>> solver;
35 solver.preconditioner().setDroptol(1e-4);
36 solver.preconditioner().setFillfactor(20);
37 solver.compute(M);
38 ScalarFieldd u = solver.solve(rhs); // The solution as a scalar field of doubles.
39

40 // Save the solution.
41 std::ofstream out_file(format("example_%dd_data.m", dim));
42 out_file << "positions = " << domain.positions() << ";" << std::endl;
43 out_file << "solution = " << u << ";" << std::endl;
44 out_file.close();

Listing 5.1: Solving the advection-diffusion equation.

5.2. Library modules 129

As we will be using RBF-FD with polyharmonic RBFs and monomial augmentation,

we prepare the monomial basis. The stencil size was twice the number of monomials

in the basis and closest neighbor stencils were used. RBF-FD approximation is declared

with ϕ(r) = r3 and monomials of second order. The stencil weights are computed for

1st order derivatives and for the Laplacian operator.

Then the sparse matrix and the right hand side are constructed with appropriate re-

served space, and the implicit operators interface. The discretized equations are written

in the matrix and the right hand side. It is worthwhile to compare the lines 25–30 to

equations (5.1.1) and (5.1.2) and observe the expressiveness. The sparse system is then

solved and the solution is saved. The solutions produced by calling solve<d>() as de-

fined in listing 5.1, for d = 1, 2, 3 are shown in Figure 5.2. The domain in 1D case is in

fact disconnected, i.e. Ω = (−1,−0.2) ∪ (0.4, 1), which is not a problem.

5.2 Library modules

We give a brief overview of the most important library modules. The full list is available

in the documentation
3
and includes modules for I/O, integrators for time stepping, types

for vectors, scalar fields and vector fields, and other utilities.

5.2.1 Domains

The implementation of domain discretization closely follows the Definition 3.1.1. We

store nodal positions, types and stencil indices for all nodes, as well as unit normals for

boundary nodes. This discrete description of the domain is all that is needed for further

computation, as such it can be pre-computed and stored (e.g. in a file) and then loaded

without knowing the actual analytical shape.

The library also includes tools to generate domain discretizations. A rudimentary

system of basic analytical shapes, such as balls, boxes and polygons is supported as

well as affine transformations of the shapes and Boolean operations between them. The

surface and interior fill algorithms described in Section 3.2 and 3.3 are implemented,

as well as grid-based fill algorithms and the algorithm described in [SF19]. There are

also different methods for stencil searching, currently only stencils of closest nodes and

balanced stencils are supported.

This design enables modularity, as the user can choose from any supported shape,

node generation algorithm or stencil selection algorithm, as well as extensibility, as it

is simple to define custom classes that can be plugged in indistinguishably from the

existing ones.

5.2.2 Approximations

Computing stencil weights is one of the core functionalities of the library. This is done

by an approximation engine, which represents a technique for operator approximation as

described in Chapter 2. The operator approximation is performed in two steps: first, the

3http://e6.ijs.si/medusa/docs/html/modules.html

http://e6.ijs.si/medusa/docs/html/modules.html

130 Chapter 5. Implementation

engine is set up at a point c with its stencil nodes. This involves computing and decom-

posing the approximation matrix, which is a relatively costly operation, taking cubic

time. Then, stencil weights are computed for each of the operators, taking quadratic

time for each operator. The procedure is described as Algorithm 5.1. The two-step com-

putation allows us to only do the costly setup once. Furthermore, the for loop on line 3

of Algorithm 5.1 has independent iterations, and can thus be trivially parallelized.

Algorithm 5.1 Computation of stencil weights.

Input: A domain discretization D.
Input: An approximation engine A.
Input: A list of nodes I .
Input: A list of operators O.
Output: Stencil weights as defined byA for all operators inO for all node indices in I .
1: function compute_weights(D, A, I , O)
2: R← storage

3: for each i in I do
4: c← get_node(D, i) ▷ Get the i-th node.

5: s← get_stencil_nodes(D, i) ▷ Get the stencil nodes of the i-th node.

6: store_indices(R, i,L, get_stencil_indices(D, i))
7: S ← setup(A, c, s) ▷ Setup the approximation only once.

8: for each L in O do
9: w ← compute(S,L) ▷ Compute stencil weights.

10: store_weights(R, i,L,w) ▷ And store them.

11: end for
12: end for
13: return R
14: end function

The approximation engines included in Medusa include RBFFD and WLS methods.

The WLS engine is constructed from a basis, a weight function, a scaling function and

a solver. Similarly, the RBFFD engine is constructed from an RBF, possible monomials

augmentation, a scaling function and a solver. The scaling function and the solver are

useful for computational purposes as described in Section 2.2.6.

The infrastructure was once again designed to be modular and extensible, which

was achieved with C++’s template engine. Users can define their own approximation

engines, their own bases, weights, RBF’s and operators, as long as they conform to the

prescribed concepts, which define what properties such objects should implement and

how they should behave
4
. For example, to define a custom operator, the user needs to

specify how the operator is applied to any of the functions in the basis and evaluated at

the origin, by implementing a method applyAt0(basis, index, stencil, scale). The require-
ments will be able to become more explicit with the introduction of Concepts in C++20

and their wider use. The ability to freely swap whole approximation engines or their

parts is one of the strongest features of the library that allows for quick testing of many

different combinations.

4http://e6.ijs.si/medusa/docs/html/concepts.html

http://e6.ijs.si/medusa/docs/html/concepts.html

5.2. Library modules 131

5.2.3 Operators
This module implements an interface layer on top of the computed stencil weights that

enables the user to write discretized PDE equations without interfacing with the dis-

cretization too much. This is extremely helpful when solving more complex PDEs where

the physical model or the general solution procedure is the main focus instead of the ap-

proximation methods itself. It is not obligatory to use this interface, as stencil weights

can be accessed directly, but it is recommended in order to reduce the likelihood of errors

and improve readability. This interface is called operators as it implements the common

operators found in PDEs, such as gradients, Laplacian, divergence, curl, etc. both for

explicit evaluation and for use in implicit solving.

The explicit evaluation closely follows the procedure described in Section 2.3.1. Sam-

ple code taken from the Medusa test suite using vector and scalar explicit operators

solving the lid-driven cavity problem with artificial compressibility method [Kos18] is

shown in listing 5.2.

1 auto op_v = storage.explicitVectorOperators();
2 auto op_s = storage.explicitOperators();
3 for (int time_step = 0; time_step < max_steps; ++time_step) {
4 for (int i : interior) {
5 u2[i] = u1[i] + dt * (-1 / rho * op_s.grad(p, i) + mu / rho * op_v.lap(u1, i) -

op_v.grad(u1, i) * u1[i]);↪→

6 }
7 for (int i : all) {
8 p[i] = p[i] - dt * dl*dl*rho*op_v.div(u2, i);
9 }
10 u1.swap(u2);
11 }

Listing 5.2: Explicitly solving the lid-driven cavity problemwith artificial compressibility

method in Medusa using the explicit operators interface.

The code implements a solution of the Navier-Stokes equations

∂v⃗

∂t
+ (v⃗ · ∇) v⃗ = −1

ρ
∇p+ ν∇2v⃗ + f⃗ , (5.2.1)

∇ · v⃗ = 0, (5.2.2)

and it only focuses on the implementation of the solution procedure, while hiding most

of the (currently irrelevant) discretization. Themethod for divergence implements a sum

(∇ · v⃗)(xk) =
d∑︂

i=1

∂vi
∂xi
≈

d∑︂
i=1

nk∑︂
j∈I(xk)

(w
∂

∂xi
,S(xk)(xk))jvi(xj), (5.2.3)

and others are similar. This is not difficult to implement, but is really error prone and

being able to think and look at the operators as operators instead of summation loops is

very helpful.

The implicit equations follow a similar philosophy, as seen in the minimal working

example. Like the explicit version, implicit operators store a reference to the stencil

132 Chapter 5. Implementation

weights, but additionally also store a reference to a prepared sparse matrix and a vector

representing the right hand side. When called, the combination of weights approximat-

ing the desired operator is written in the appropriate place in the matrix and the right

hand side, as described in 2.3.2. This has already been used in the minimal working ex-

ample. Another example is the cantilever beam from linear elasticity, once again taken

from the Medusa test suite. The problem is governed by the Navier-Cauchy equation

(λ+ µ)∇(∇ · u⃗) + µ∇2u⃗ = 0 (5.2.4)

with the boundary conditions

u⃗|right =
(︃
Py(3D2(1 + ν)− 4(2 + ν)y2)

24EI
,−LνPy

2

2EI

)︃
, (5.2.5)

σ|top = σ|bottom = 0, (5.2.6)

σ|left =
(︃
0,
P

2I

(︁
D2/4− y2

)︁)︃
. (5.2.7)

The Medusa implementation is shown in listing 5.3.

1 Eigen::SparseMatrix<double, Eigen::RowMajor> M(2*N, 2*N);
2 Eigen::VectorXd rhs(2*N); rhs.setZero();
3 M.reserve(shapes.supportSizesVec());
4

5 auto op = shapes.implicitVectorOperators(M, rhs);
6

7 for (int i : domain.interior()) {
8 (lam+mu)*op.graddiv(i) + mu*op.lap(i) = 0.0;
9 }
10 for (int i : domain.types() == RIGHT) {
11 double y = domain.pos(i, 1);
12 op.value(i) = {(P*y*(3*D*D*(1+nu) - 4*(2+nu)*y*y)) / (24.*E*I), -(L*nu*P*y*y) /

(2.*E*I)};↪→

13 }
14 for (int i : domain.types() == LEFT) {
15 double y = domain.pos(i, 1);
16 op.traction(i, lam, mu, {-1, 0}) = {0, -P*(D*D - 4*y*y) / (8.*I)};
17 }
18 for (int i : domain.types() == TOP) {
19 op.traction(i, lam, mu, {0, 1}) = 0.0;
20 }
21 for (int i : domain.types() == BOTTOM) {
22 op.traction(i, lam, mu, {0, -1}) = 0.0;
23 }

Listing 5.3: Implicitly solving the cantilever beam problem in Medusa using the implicit

operators interface.

The implementation of the implicit interface is not so straightforward and it uses a

limited version of expression templates [Vel95], supporting the syntax

∑︁n
j=1 αjLj = r

with n ≤ 1 and some αj potentially omitted. The call to an operator returns a lazy object

5.3. Benchmarks 133

that is written to the matrix only when multiplied with a scalar, summed with another

object or assigned a right hand side. Moreover, the addition and assignment serve as a

safeguard that checks that all terms refer to the same row. It also forces the user to write

the right hand side, so that it is not forgotten. The interface is again optional, parts of the

matrix can be filledmanually, and thematrix is usable in the usual ways, it has been filled

with or without using the implicit operators. Custom explicit and implicit operators can

be (for now) implemented as a standalone functions that either wrap other operators or

directly apply the stencil weights.

5.3 Benchmarks
The design of the library is mainly focused on modularity and usability, but we still aim

for reasonable efficiency of the final solution procedure. The cost of abstractions in per-

formance critical sectionswas comparedwith a “bare-bones” implementation in [SK18c],

to ensure that their cost is negligible. To get some sense of how Medusa compares to

other libraries for solving PDEs, we give a comparison with the FreeFEM++ library.

The aim of this experiment is to give a comparable answer to “How long does it take

to solve this problem if I use Medusa?” The following already familiar boundary value

problem will be solved:

−∇u = f in Ω, u = u0 on ∂Ω, (5.3.1)

for u0(x) =
∏︁d

i=1 sin(πxi) and f = −∇2u0 on Ω = B(0, 1) \B(0, 1/2) in 2D and 3D.

Note that both libraries implement different methods for solving PDEs and we will

be using them in their canonical setup. We used RBF-FD with ϕ(r) = r3 with stencils of

n = 9 and n = 35 closest nodes in 2D and 3D, respectively. The problemwas solved with

quasi-uniform discretizationwith spacing h produces by the algorithms presented in this

work. The FreeFem++ implementation solved the corresponding weak formulation with

P1 elements. In fact, the sample domain Ω, the code for its discretization and the code

for the solution of a Poisson problem was taken directly from the FreeFem++ website.

Both FreeFem++ with its dependencies and Medusa were compiled from source and

run in a single-threaded context, repeating each measurement 9 times. The results are

shown in Figure 5.3

The accuracy and convergence rates of both methods are comparable, with the ex-

pected convergence rate of O(h2) = O(N−2/d). RBF-FD had slightly worse accuracy

and slightly better execution time. The times of the various parts of the solution pro-

cedure showed that the execution time difference is almost entirely due to the cost of

meshing vs. node placing. Many other factors also influence the execution time, such

as the stencil size and the choice of the linear solver. In the presented measurement we

used the Conjugate Gradient solver in FreeFem++, and BiCGStab with ILUT(5, 10−2)
preconditioner for Medusa, as they worked best of the built-in solvers. The solvers took

approximately the same amount of time to solve the final system in both cases.

Parts of the Medusa implementation used for just presented measurements were also

timed separately. We will take a closer look at the 3D timings of specific parts. The

solution procedure was split into 6 parts:

• domain, which includes the creation of the domain shape and the node positioning,

134 Chapter 5. Implementation

Figure 5.3: Execution time and accuracy of FreeFem++ and Medusa solving the prob-

lem (5.3.1). Each time measurement was repeated 9 times with the median value shown

as the plot point and the error bars representing the standard deviation. Values of k in

the legend represent the slope of the best fit line.

• stencils, which includes finding stencils for all nodes,

• weights, which includes the definition of the approximation and the computation

of stencil weights,

• assemble, which includes the sparse matrix and right hand side construction,

• decompose, which includes the incomplete LU decomposition used for the precon-

ditioner,

• solve, which includes the run time of the iterative solver.

The absolute timings are shown in Figure 5.4, along with the plots showing how execu-

tion time is distributed among the parts for different values of N .

In this case, we can see that roughly 30% of the time is spent on constructing the

domain discretization (node positioning and stencils), 40% on computing stencil weights

and 30% on solving the system. However, at largerN , the solver percentage decreases in

favor of domain discretization. Another important thing is that execution time ratio can

5.3. Benchmarks 135

Figure 5.4: Execution times of different stages of computation when solving (5.3.1) with

Medusa. Values k represent the slopes of the best fit lines.

vary significantly with different approximation types, stencils sizes, linear solvers, and

dimensions. If high-order methods are used, around 80% of the time can easily be spent

computing the approximations, but for stencils of 5 nodes in 2D withN around 105, the
domain discretization can take up to 50%. Furthermore, in some linear elasticity cases,

with Gaussian RBF-FD, the linear solver took around 95% of the total time. Separate

timemeasurements are useful to determine which parts are most worthy of optimization

and parallelization, and the conclusion is that each (except matrix assembly) is the most

important in some cases. Some parallelization efforts are described in [KS19b].

Conclusions and future work

The main goal of the thesis was to develop a fully automatic meshless solution proce-

dure using RBF-FD. To achieve that, a node placing algorithmwas developed first, which

supports placing nodes in domain interiors and on domain boundaries, when given as

parametric surfaces. The algorithm is dimension independent and has provable minimal

spacing requirement. It can produce locally regular nodal distributions with variable

density in arbitrary-shaped domains and takes O(N logN) time in general to produce

N nodes. The node placing algorithm was combined with the RBF-FD approximation

using polyharmonic RBFs ϕ(r) = r3 augmented with monomials to achieve stable ap-

proximations with local monomial reproduction and to avoid dealing with RBF shape

parameters. The approximations were further combined with a gradient-based error in-

dicator and an h-refinement scheme to form an automatic h-adaptive procedure. All

parts of the procedure are meshless and dimension independent. The automatic adap-

tivity was demonstrated on classical 2D and 3D Poisson problems as well as 2D and

3D problems from elastostatics. Both derefinement and refinement were successfully

demonstrated, achieving the refinement ratio of 3 · 106 between the coarsest and finest

parts of the discretization.

Additionally, reusable implementations of the main building block for strong-form

meshless methods were developed along with the adaptive procedure, and published as

the Medusa library, an open-source library for solving PDEs with strong-form methods.

The library is written in C++ and allows for easy testing of various meshless methods

that are also simply generalizable to 3D or higher dimensions.

Many directions are open for future research. Better andmore robust error indicators

for meshless methods have to be developed, to increase usability in practical cases. For

interpolation based methods, such as RBF-FD, the ZZ-type indicators seem most likely.

In tandemwith that, better refinement strategies have to be developed. Ideally, the nodal

distributions should support adding Nnew nodes and removing Nold nodes in O(Nnew +
Nold) time, without changing the rest of the domain. Midpoint strategies and their effect

on the quality of the nodal distribution should be further investigated to find possible

h-refinement strategies without regeneration.

Further improvements to the node generation algorithm include generalizations to

CADmodels and analyzing the behavior on multi-patched domains and surfaces. Efforts

to parallelize the node placing algorithm should also be made, as node generation can

represent a significant portion of the total execution time.

Further research into approximation types is also needed, notably to compare the

WLS-based methods to RBF-FD. This includes the behavior on non-uniform node dis-

tributions, the effect of stencil size and stability with respect to nodal positioning. The

137

138 Conclusions and future work

effects of one-sided stencils that often cause trouble with Neumann boundary conditions

should be well understood. Approximations based on k nearest neighbor stencils should
be compared with approximation of radius based stencils, where the radius is scaled

spatially according to the spacing function h. Judging by the MLS error analysis, such

stencil selection could, along with h-quasi-uniformity, lead to better theoretical foun-

dations for approximation errors. Additionally, higher-order monomials augmentation

and its relationship with stencil selection should be investigated. The answers to such

questions help with the development of p-adaptivity, and can eventually lead to effective
hp-adaptivity.

Bibliography

[ANA11] M. H. Afshar, M. Naisipour, and J. Amani, Node moving adaptive refinement
strategy for planar elasticity problems using discrete least squaresmeshless me-
thod, Finite Elements in Analysis and Design 47 (12) : 1315–1325, Dec. 2011,
doi: 10.1016/j.finel.2011.07.003 (cited on pp. 93, 95, 109).

[Aln+15] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,

J. Ring, M. E. Rognes, and G. N. Wells, The FEniCS Project Version 1.5, eng,
Archive of Numerical Software 3, 2015, doi: 10 .11588/ans .2015 .100 .
20553 (cited on p. 125).

[Alt20] Y. Altman, export_fig: A MATLAB toolbox for exporting publication quality
figures, v3.05, commit a83b4077, May 2020, url: https ://github.com/
altmany/export_fig (cited on pp. 4, 160).

[Alu00] N. R. Aluru, A point collocation method based on reproducing kernel approxi-
mations, International Journal for NumericalMethods in Engineering 47 (6) :
1083–1121, 2000, doi: 10.1002/(sici)1097-0207(20000228)47:6<1083::
aid-nme816>3.0.co;2-n (cited on p. 36).

[APP09] A. Angulo, L. P. Pozo, and F. Perazzo, A posteriori error estimator and an
adaptive technique in meshless finite points method, Engineering Analysis

with Boundary Elements 33 (11) : 1322–1338, 2009, doi: 10.1016/j.engana
bound.2009.06.004 (cited on pp. 93, 95).

[Ara+14] S. Arabas, D. Jarecka, A. Jaruga, and M. Fijałkowski, Formula translation
in Blitz++, NumPy and modern Fortran: A case study of the language choice
tradeoffs, Scientific Programming 22 (3) : 201–222, 2014, doi: 10.3233/SPR-
140379 (cited on p. 125).

[AZ98] S. N. Atluri and T. Zhu, A new meshless local Petrov-Galerkin (MLPG) ap-
proach in computational mechanics, Computational Mechanics 22 (2) : 117–
127, 1998, doi: 10.1007/s004660050346 (cited on pp. 36, 55).

[BG92] I. Babuška and B. Q. Guo, The h, p and hp version of the finite element method;
basis theory and applications, Advances in Engineering Software 15 (3-4) :
159–174, 1992, doi: 10.1016/0965-9978(92)90097-y (cited on p. 92).

[BM97] I. Babuška and J. M. Melenk, The partition of unity method, International
Journal for Numerical Methods in Engineering 40 (4) : 727–758, 1997, doi:
10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.0.co;2-n
(cited on p. 36).

139

https://doi.org/10.1016/j.finel.2011.07.003
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://github.com/altmany/export_fig
https://github.com/altmany/export_fig
https://doi.org/10.1002/(sici)1097-0207(20000228)47:6<1083::aid-nme816>3.0.co;2-n
https://doi.org/10.1002/(sici)1097-0207(20000228)47:6<1083::aid-nme816>3.0.co;2-n
https://doi.org/10.1016/j.enganabound.2009.06.004
https://doi.org/10.1016/j.enganabound.2009.06.004
https://doi.org/10.3233/SPR-140379
https://doi.org/10.3233/SPR-140379
https://doi.org/10.1007/s004660050346
https://doi.org/10.1016/0965-9978(92)90097-y
https://doi.org/10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.0.co;2-n

140 Bibliography

[BR78] I. Babuška and W. C. Rheinboldt, A-posteriori error estimates for the finite el-
ement method, International Journal for Numerical Methods in Engineering

12 (10) : 1597–1615, 1978, doi: 10.1002/nme.1620121010 (cited on p. 95).

[BSD09] M. Balzer, T. Schlömer, and O. Deussen, Capacity-constrained point distri-
butions: a variant of Lloyd’s method, ACM Transactions on Graphics (TOG)

28 (3), July 2009, doi: 10.1145/1531326.1531392 (cited on p. 58).

[BHK07] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a General Purpose Ob-
ject Oriented Finite Element Library, ACM Trans. Math. Softw. 33 (4) : 24/1–
24/27, 2007, doi: 10.1145/1268776.1268779 (cited on p. 125).

[Bar15] G. Barnett, A robust RBF-FD formulation based on polyharmonic splines and
polynomials, PhD thesis, University of Colorado, 2015, url: https://sch
olar . colorado .edu/concern/graduate_ thesis_ or_ dissertations/
8623hx72q (cited on p. 48).

[Bay+15] V. Bayona, N. Flyer, G. M. Lucas, and A. J. G. Baumgaertner, A 3-D RBF-
FD solver for modeling the atmospheric global electric circuit with topography
(GEC-RBFFD v1. 0), Geoscientific Model Development 8 (10) : 3007, 2015, doi:
10.5194/gmd-8-3007-2015, url: https://bitbucket.org/vbayona/
gec_rbffd/ (cited on p. 126).

[Bay19] V. Bayona, Comparison of moving least squares and RBF + poly for interpo-
lation and derivative approximation, Journal of Scientific Computing 81 (1) :
486–512, 2019, doi: 10.1007/s10915-019-01028-8 (cited on p. 37).

[BFF19] V. Bayona, N. Flyer, and B. Fornberg, On the role of polynomials in RBF-FD
approximations: III. Behavior near domain boundaries, Journal of Computa-

tional Physics 380 : 378–399, 2019, doi: 10.1016/j.jcp.2018.12.013 (cited

on p. 37).

[Bay+17] V. Bayona, N. Flyer, B. Fornberg, and G. A. Barnett,On the role of polynomials
in RBF-FD approximations: II. Numerical solution of elliptic PDEs, Journal of
Computational Physics 332 : 257–273, 2017, doi: 10.1016/j.jcp.2016.12.
008 (cited on pp. 37, 88, 92).

[Bay+10] V. Bayona, M.Moscoso, M. Carretero, andM. Kindelan, RBF-FD formulas and
convergence properties, Journal of Computational Physics 229 (22) : 8281–8295,
2010, doi: 10.1016/j.jcp.2010.07.008 (cited on pp. 37, 46).

[BMK11] V. Bayona, M. Moscoso, and M. Kindelan, Optimal constant shape parameter
for multiquadric based RBF-FD method, Journal of Computational Physics

230 (19) : 7384–7399, 2011, doi: 10.1016/j.jcp.2011.06.005 (cited on p. 37).

[BMK12] V. Bayona, M. Moscoso, and M. Kindelan, Optimal variable shape parameter
for multiquadric based RBF-FD method, Journal of Computational Physics

231 (6) : 2466–2481, 2012, doi: 10.1016/j.jcp.2011.11.036 (cited on pp. 27,

37).

[Bel+96] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless
methods: an overview and recent developments, Computer Methods in Ap-

plied Mechanics and Engineering 139 (1) : 3–47, 1996, doi: 10.1016/s0045-
7825(96)01078-x (cited on pp. 35, 36).

https://doi.org/10.1002/nme.1620121010
https://doi.org/10.1145/1531326.1531392
https://doi.org/10.1145/1268776.1268779
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/8623hx72q
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/8623hx72q
https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/8623hx72q
https://doi.org/10.5194/gmd-8-3007-2015
https://bitbucket.org/vbayona/gec_rbffd/
https://bitbucket.org/vbayona/gec_rbffd/
https://doi.org/10.1007/s10915-019-01028-8
https://doi.org/10.1016/j.jcp.2018.12.013
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.1016/j.jcp.2010.07.008
https://doi.org/10.1016/j.jcp.2011.06.005
https://doi.org/10.1016/j.jcp.2011.11.036
https://doi.org/10.1016/s0045-7825(96)01078-x
https://doi.org/10.1016/s0045-7825(96)01078-x

Bibliography 141

[BLG94] T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin methods, Interna-
tional Journal for Numerical Methods in Engineering 37 (2) : 229–256, 1994,
doi: 10.1002/nme.1620370205 (cited on pp. 35, 89).

[Ben+03] J. J. Benito, F. Urena, L. Gavete, and R. Alvarez, An h-adaptive method in
the generalized finite differences, Computer Methods in Applied Mechanics

and Engineering 192 (5-6) : 735–759, 2003, doi: 10.1016/s0045-7825(02)
00594-7 (cited on pp. 93, 94).

[BKL06] A. Beygelzimer, S. Kakade, and J. Langford, Cover trees for nearest neighbor,
in: Proceedings of the 23rd international conference on machine learning,

ACM, 2006, pp. 97–104, doi: 10.1145/1143844.1143857 (cited on p. 66).

[BR14] J. L. Blanco and P. K. Rai, nanoflann: a C++ header-only fork of FLANN, a
library for nearest neighbor (NN) with KD-trees, 2014, url: https://github.
com/jlblancoc/nanoflann (cited on pp. 4, 77, 160).

[Boc33] S. Bochner,Monotone Funktionen, Stieltjessche Integrale und harmonische Ana-
lyse, Mathematische Annalen 108 (1) : 378–410, 1933, doi: 10.1007/bf0145
2844 (cited on p. 19).

[BFE12] E. F. Bollig, N. Flyer, and G. Erlebacher, Solution to PDEs using radial basis
function finite-differences (RBF-FD) on multiple GPUs, Journal of Computa-

tional Physics 231 (21) : 7133–7151, 2012, doi: 10.1016/j.jcp.2012.06.030
(cited on p. 37).

[BS07] S. Brenner and R. Scott, The mathematical theory of finite element methods,
Texts in applied mathematics 15, Springer, 2007, doi: 10.1007/978-0-387-
75934-0 (cited on p. 27).

[Bri07] R. Bridson, Fast Poisson disk sampling in arbitrary dimensions, in: SIGGRAPH
sketches, 2007, p. 22, doi: 10.1145/1278780.1278807 (cited on pp. 58, 61,

66, 76).

[BNT19] P. D. Brubeck, Y. Nakatsukasa, and L. N. Trefethen, Vandermonde with Ar-
noldi, arXiv:1911.09988, 2019 (cited on p. 46).

[Buh03] M. D. Buhmann, Radial basis functions: theory and implementations, Cam-

bridge Monographs on Applied and Computational Mathematics 12, Cam-

bridge University Press, July 2003, doi: 10.1017/cbo9780511543241 (cited

on p. 6).

[Car+03] J. C. Carr, R. K. Beatson, B. C. McCallum, W. R. Fright, T. J. McLennan, and

T. J. Mitchell, Smooth surface reconstruction from noisy range data, in: Pro-
ceedings of the 1st international conference on Computer graphics and in-

teractive techniques in Australasia and South East Asia, ACM, 2003, 119–ff,

doi: 10.1145/604471.604495 (cited on p. 69).

[CS07] G. Chandhini and Y. V. S. S. Sanyasiraju, Local RBF-FD solutions for steady
convection–diffusion problems, International Journal for Numerical Methods

in Engineering 72 (3) : 352–378, 2007, doi: 10 .1002/nme.2024 (cited on

p. 37).

https://doi.org/10.1002/nme.1620370205
https://doi.org/10.1016/s0045-7825(02)00594-7
https://doi.org/10.1016/s0045-7825(02)00594-7
https://doi.org/10.1145/1143844.1143857
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://doi.org/10.1007/bf01452844
https://doi.org/10.1007/bf01452844
https://doi.org/10.1016/j.jcp.2012.06.030
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1017/cbo9780511543241
https://doi.org/10.1145/604471.604495
https://doi.org/10.1002/nme.2024

142 Bibliography

[CB15] J.-S. Chen and T. Belytschko,Meshless and meshfree methods, in: Encyclope-
dia of Applied and Computational Mathematics, ed. by B. Engquist, Springer

Berlin Heidelberg, 2015, pp. 886–894, doi: 10.1007/978-3-540-70529-
1_531 (cited on p. 36).

[Che+03] A. H.-D. Cheng, M. A. Golberg, E. J. Kansa, and G. Zammito, Exponential
convergence and H-c multiquadric collocation method for partial differential
equations, Numerical Methods for Partial Differential Equations: An Inter-

national Journal 19 (5) : 571–594, 2003, doi: 10.1002/num.10062 (cited on

p. 36).

[CK99] Y. Choi and S. Kim, Node generation scheme for meshfree method by Voronoi
diagram and weighted bubble packing, in: Fifth US national congress on com-

putational mechanics, Boulder, CO, 1999 (cited on p. 58).

[CR73] P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence
for the finite element method, Computer Methods in Applied Mechanics and

Engineering 2 (1) : 17–31, 1973, doi: 10 . 1016 / 0045 - 7825(73) 90019 - 4
(cited on p. 1).

[Coo86] R. L. Cook, Stochastic sampling in computer graphics, ACM Transactions on

Graphics (TOG) 5 (1) : 51–72, 1986, doi: 10.1145/7529.8927 (cited on pp. 58,

61).

[Cou43] R. Courant, Variational methods for the solution of problems of equilibrium
and vibrations, Bulletin of the American Mathematical Society 49 (1) : 1–24,
Jan. 1943, doi: 10.1090/s0002-9904-1943-07818-4 (cited on pp. 1, 157).

[Cre+15] A. J. C. Crespo, J. M. Domínguez, B. D. Rogers, M. Gómez-Gesteira, S. Long-

shaw, R. Canelas, R. Vacondio, A. Barreiro, and O. García-Feal,DualSPHysics:
Open-source parallel CFD solver based on Smoothed Particle Hydrodynam-
ics (SPH), Computer Physics Communications 187 : 204–216, 2015, doi: 10.
1016/j.cpc.2014.10.004 (cited on p. 126).

[DO11] O. Davydov and D. T. Oanh, Adaptive meshless centres and RBF stencils for
Poisson equation, Journal of Computational Physics 230 (2) : 287–304, 2011,
doi: 10.1016/j.jcp.2010.09.005 (cited on pp. 89, 93, 94).

[Dem06] L. Demkowicz, Computing with hp-adaptive finite elements: volume I: One
and two dimensional elliptic and Maxwell problems, Chapman & Hall/CRC

Applied Mathematics & Nonlinear Science, CRC Press, 2006, doi: 10.1201/
9781420011685 (cited on p. 101).

[DKS19] M. Depolli, G. Kosec, and J. Slak, Parallelizing a node positioning algorithm
formeshlessmethod, in: Book of abstracts: ParNum 2019, Dubrovnik, Croatia,

October 28–30, 2019, url: https://www.fsb.unizg.hr/parnum2019/
abs_book_web.pdf (cited on pp. 4, 85, 159).

[DHS13] P. Diaconis, S. Holmes, and M. Shahshahani, Sampling from a manifold, in:
Advances in modern statistical theory and applications: a Festschrift in ho-

nor of Morris L. Eaton, Institute of Mathematical Statistics Collections 10,
Institute of Mathematical Statistics, 2013, pp. 102–125, doi: 10.1214/12-
imscoll1006 (cited on p. 69).

https://doi.org/10.1007/978-3-540-70529-1_531
https://doi.org/10.1007/978-3-540-70529-1_531
https://doi.org/10.1002/num.10062
https://doi.org/10.1016/0045-7825(73)90019-4
https://doi.org/10.1145/7529.8927
https://doi.org/10.1090/s0002-9904-1943-07818-4
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1016/j.jcp.2010.09.005
https://doi.org/10.1201/9781420011685
https://doi.org/10.1201/9781420011685
https://www.fsb.unizg.hr/parnum2019/abs_book_web.pdf
https://www.fsb.unizg.hr/parnum2019/abs_book_web.pdf
https://doi.org/10.1214/12-imscoll1006
https://doi.org/10.1214/12-imscoll1006

Bibliography 143

[DH07] T. A. Driscoll and A. R. H. Heryudono, Adaptive residual subsampling meth-
ods for radial basis function interpolation and collocation problems, Comput-

ers & Mathematics with Applications 53 (6) : 927–939, 2007, doi: 10.1016/
j.camwa.2006.06.005 (cited on p. 93).

[Dru+08] C. Drumm, S. Tiwari, J. Kuhnert, and H.-J. Bart, Finite pointset method for
simulation of the liquid–liquid flow field in an extractor, Computers & Chem-

ical Engineering 32 (12) : 2946–2957, 2008, doi: 10.1016/j.compchemeng.
2008.03.009 (cited on p. 58).

[DGJ02] Q. Du, M. Gunzburger, and L. Ju, Meshfree, probabilistic determination of
point sets and support regions for meshless computing, Computer Methods

in Applied Mechanics and Engineering 191 (13-14) : 1349–1366, 2002, doi:
10.1016/s0045-7825(01)00327-9 (cited on p. 58).

[Duh+20] U. Duh,M. Depolli, J. Slak, andG. Kosec, Parallel point sampling for 3D bodies,
in: MIPRO 2020: 43rd International Convention on Information and Com-

munication Technology, Electronics and Microelectronics, Opatija, Croatia,

2020 (cited on pp. 4, 85, 159).

[DKS20] U. Duh, G. Kosec, and J. Slak, Fast variable density node generation on para-
metric surfaces with application to mesh-free methods, arXiv:2005.08767, May

2020, url: https://arxiv.org/abs/2005.08767 (cited on p. 70).

[EFK15] M. Ebrahimnejad, N. Fallah, and A. R. Khoei, Adaptive refinement in the
meshless finite volume method for elasticity problems, Computers & Mathe-

matics with Applications 69 (12) : 1420–1443, 2015, doi: 10.1016/j.camwa.
2015.03.023 (cited on pp. 93, 95).

[FP09] A. Fabri and S. Pion, CGAL: The computational geometry algorithms library,
in: Proceedings of the 17th ACM SIGSPATIAL international conference on

advances in geographic information systems, 2009, pp. 538–539, doi: 10 .
1145/1653771.1653865 (cited on p. 57).

[Fas07] G. E. Fasshauer, Meshfree approximation methods with MATLAB, Interdisci-
plinary Mathematical Sciences 6, World Scientific, 2007, doi: 10.1142/6437
(cited on pp. 22, 36).

[Fas11] G. E. Fasshauer, Positive definite kernels: past, present and future, Dolomite

ResearchNotes onApproximation 4 : 21–63, 2011, url: http://www.math.
iit.edu/~fass/PDKernels.pdf (cited on p. 8).

[FZ07a] G. E. Fasshauer and J. G. Zhang, On choosing “optimal” shape parameters
for RBF approximation, Numerical Algorithms 45 (1-4) : 345–368, 2007, doi:
10.1007/s11075-007-9072-8 (cited on p. 27).

[Fly+16] N. Flyer, B. Fornberg, V. Bayona, and G. A. Barnett,On the role of polynomials
in RBF-FD approximations: I. Interpolation and accuracy, Journal of Compu-

tational Physics 321 : 21–38, Sept. 2016, doi: 10.1016/j.jcp.2016.05.026
(cited on pp. 37, 40, 47, 49, 92).

https://doi.org/10.1016/j.camwa.2006.06.005
https://doi.org/10.1016/j.camwa.2006.06.005
https://doi.org/10.1016/j.compchemeng.2008.03.009
https://doi.org/10.1016/j.compchemeng.2008.03.009
https://doi.org/10.1016/s0045-7825(01)00327-9
https://arxiv.org/abs/2005.08767
https://doi.org/10.1016/j.camwa.2015.03.023
https://doi.org/10.1016/j.camwa.2015.03.023
https://doi.org/10.1145/1653771.1653865
https://doi.org/10.1145/1653771.1653865
https://doi.org/10.1142/6437
http://www.math.iit.edu/~fass/PDKernels.pdf
http://www.math.iit.edu/~fass/PDKernels.pdf
https://doi.org/10.1007/s11075-007-9072-8
https://doi.org/10.1016/j.jcp.2016.05.026

144 Bibliography

[Fly+12] N. Flyer, E. Lehto, S. Blaise, G. B. Wright, and A. St-Cyr, A guide to RBF-
generated finite differences for nonlinear transport: Shallow water simulations
on a sphere, Journal of Computational Physics 231 (11) : 4078–4095, 2012,
doi: 10.1016/j.jcp.2012.01.028 (cited on p. 37).

[Fol+11] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson,An overview of the
HDF5 technology suite and its applications, in: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, ACM, 2011, pp. 36–47, doi: 10.1145/
1966895.1966900 (cited on pp. 4, 126, 160).

[FF15a] B. Fornberg and N. Flyer, A primer on radial basis functions with applications
to the geosciences, CBMS-NSF Regional Conference Series in Applied Math-

ematics, SIAM, Sept. 2015, doi: 10.1137/1.9781611974041 (cited on pp. 2,

158).

[FF15b] B. Fornberg and N. Flyer, Fast generation of 2-D node distributions for mesh-
free PDE discretizations, Computers &MathematicswithApplications 69 (7) :
531–544, 2015, doi: 10.1016/j.camwa.2015.01.009 (cited on pp. 2, 58, 59,

64, 69, 85, 158).

[FF15c] B. Fornberg and N. Flyer, Solving PDEs with radial basis functions, Acta Nu-
merica 24 : 215–258, 2015, doi: 10 . 1017 / s0962492914000130 (cited on

pp. 2, 37, 158).

[FLF11] B. Fornberg, E. Larsson, and N. Flyer, Stable computations with Gaussian ra-
dial basis functions, SIAM Journal on Scientific Computing 33 (2) : 869–892,
2011, doi: 10.1137/09076756x (cited on p. 36).

[FP08] B. Fornberg and C. Piret, A stable algorithm for flat radial basis functions
on a sphere, SIAM Journal on Scientific Computing 30 (1) : 60–80, 2008, doi:
10.1137/060671991 (cited on p. 27).

[FW04] B. Fornberg and G. Wright, Stable computation of multiquadric interpolants
for all values of the shape parameter, Computers & Mathematics with Appli-

cations 48 (5-6) : 853–867, 2004, doi: 10.1016/j.camwa.2003.08.010 (cited

on p. 27).

[FZ07b] B. Fornberg and J. Zuev, The Runge phenomenon and spatially variable shape
parameters in RBF interpolation, Computers & Mathematics with Applica-

tions 54 (3) : 379–398, 2007, doi: 10.1016/j.camwa.2007.01.028 (cited on

pp. 27, 93).

[Fos+11] C. Foster et al., tinyformat: Minimal, type safe printf replacement library for
C++, 2011, url: http://rapidxml.sourceforge.net (cited on pp. 4, 160).

[FS98] C. Franke and R. Schaback, Solving partial differential equations by collo-
cation using radial basis functions, Applied Mathematics and Computation

93 (1) : 73–82, 1998, doi: 10.1016/s0096-3003(97)10104-7 (cited on p. 36).

[FG08] P. J. Frey and P.-L. George, Quadtree-octree based methods, in: Mesh Gener-

ation: Application to Finite Elements, 2nd ed., Wiley, 2008, chap. 5, pp. 163–

199, doi: 10.1002/9780470611166.ch5 (cited on p. 58).

https://doi.org/10.1016/j.jcp.2012.01.028
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1137/1.9781611974041
https://doi.org/10.1016/j.camwa.2015.01.009
https://doi.org/10.1017/s0962492914000130
https://doi.org/10.1137/09076756x
https://doi.org/10.1137/060671991
https://doi.org/10.1016/j.camwa.2003.08.010
https://doi.org/10.1016/j.camwa.2007.01.028
http://rapidxml.sourceforge.net
https://doi.org/10.1016/s0096-3003(97)10104-7
https://doi.org/10.1002/9780470611166.ch5

Bibliography 145

[GM77] R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics: theory
and application to non-spherical stars, Monthly Notices of the Royal Astro-

nomical Society 181 (3) : 375–389, 1977, doi: 10.1093/mnras/181.3.375
(cited on p. 35).

[GW78] W. J. Gordon and J. A. Wixom, Shepard’s method of “metric interpolation” to
bivariate andmultivariate interpolation, Mathematics of Computation 32 (141) :
253–264, 1978, doi: 10.2307/2006273 (cited on p. 12).

[Gu+12] X. D. Gu, W. Zeng, F. Luo, and S.-T. Yau, Numerical computation of surface
conformal mappings, Computational Methods and Function Theory 11 (2) :
747–787, 2012, doi: 10.1007/BF03321885 (cited on p. 69).

[GJ+10] G. Guennebaud, B. Jacob, et al., Eigen v3, 2010, url: http://eigen.tuxfam
ily.org (cited on pp. 4, 160).

[HS04] D. P. Hardin and E. B. Saff,Discretizingmanifolds viaminimum energy points,
Notices of the AMS 51 (10) : 1186–1194, 2004 (cited on pp. 58, 69).

[HMS16] D. P. Hardin, T. Michaels, and E. B. Saff, A comparison of popular point con-
figurations on S2

, Dolomites Research Notes on Approximation 9 (1), 2016
(cited on p. 69).

[HSW12] D. P. Hardin, E. B. Saff, and J. T. Whitehouse, Quasi-uniformity of mini-
mal weighted energy points on compact metric spaces, Journal of Complexity

28 (2) : 177–191, 2012, doi: 10.1016/j.jco.2011.10.009 (cited on pp. 27, 28).

[Har71] R. L. Hardy, Multiquadric equations of topography and other irregular sur-
faces, Journal of Geophysical Research 76 (8) : 1905–1915, 1971, doi: 10.102
9/jb076i008p01905 (cited on pp. 5, 26).

[HMÅ02] M. Haveraaen, H. Mnthe-Kaas, and K. Åhlander, On object-oriented frame-
works and coordinate free formulations of PDEs, Engineering with Computers

18 (4) : 286–294, 2002, doi: 10.1007/s003660200026 (cited on p. 125).

[Hec12] F. Hecht, New development in FreeFem++, Journal of numerical mathematics

20 (3-4) : 251–265, 2012, doi: 10.1515/jnum- 2012- 0013, url: https://
freefem.org/ (cited on pp. 123, 125).

[Her82] H. Hertz, Über die Berührung fester elastischer Körper., Journal für die reine
und angewandte Mathematik 92 : 156–171, 1882 (cited on p. 116).

[Hin15] T. Hines, RBF: Python package containing the tools necessary for radial basis
function (RBF) applications, 2015, url: https://github.com/treverhines/
RBF (cited on p. 126).

[Hoj+14] R. Hojjati-Talemi, M. A. Wahab, J. De Pauw, and P. De Baets, Prediction of
fretting fatigue crack initiation and propagation lifetime for cylindrical contact
configuration, Tribology International 76 : 73–91, 2014, doi: 10.1016/j.trib
oint.2014.02.017 (cited on p. 121).

[Hre41] A. Hrennikoff, Solution of problems of elasticity by the framework method,
Journal of Applied Mechanics 8 (4) : 169–175, 1941 (cited on pp. 1, 157).

https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.2307/2006273
https://doi.org/10.1007/BF03321885
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1016/j.jco.2011.10.009
https://doi.org/10.1029/jb076i008p01905
https://doi.org/10.1029/jb076i008p01905
https://doi.org/10.1007/s003660200026
https://doi.org/10.1515/jnum-2012-0013
https://freefem.org/
https://freefem.org/
https://github.com/treverhines/RBF
https://github.com/treverhines/RBF
https://doi.org/10.1016/j.triboint.2014.02.017
https://doi.org/10.1016/j.triboint.2014.02.017

146 Bibliography

[Hu+19] W. Hu, N. Trask, X. Hu, andW. Pan, A spatially adaptive high-order meshless
method for fluid–structure interactions, Computer Methods in Applied Me-

chanics and Engineering 355 : 67–93, 2019, doi: 10.1016/j.cma.2019.06.
009 (cited on pp. 95, 100).

[HCB05] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement, Computer Me-

thods in Applied Mechanics and Engineering 194 (39-41) : 4135–4195, 2005,
doi: 10.1016/j.cma.2004.10.008 (cited on p. 92).

[Ink20] Inkscape Developers, Inkscape: open source scalable vector graphics editor.
Draw freely. 1.0 (4035a4fb49, 2020-05-01), May 2020, url: https://inkscap
e.org/ (cited on pp. 4, 160).

[Int18] Intel developers, Intel Math Kernel Library, version 2018.1.63, 2018, url: ht
tp://software.intel.com/en-us/intel-mkl (cited on pp. 4, 160).

[ISO17] ISO, ISO/IEC 14882:2017 Information technology — Programming languages —
C++, Fifth, Geneva, Switzerland: International Organization for Standardiza-
tion, Dec. 2017, p. 1605, url: https://www.iso.org/standard/68564.
html (cited on p. 4).

[Jac+16] S. J. Jackson, D. Stevens, D. Giddings, and H. Power, An adaptive RBF fi-
nite collocation approach to track transport processes across moving fronts,
Computers & Mathematics with Applications 71 (1) : 278–300, 2016, doi: 10.
1016/j.camwa.2015.11.015 (cited on p. 93).

[JSK19] M. Jančič, J. Slak, and G. Kosec, Analysis of high order dimension independent
RBF-FD solution of Poisson’s equation, arXiv:1909.01126, Sept. 2019, url: htt
ps://arxiv.org/abs/1909.01126 (cited on p. 92).

[JSK20] M. Jančič, J. Slak, and G. Kosec, GPU accelerated RBF-FD solution of Poisson’s
equation, in: MIPRO 2020: 43rd International Convention on Information

and Communication Technology, Electronics and Microelectronics, Opatija,

Croatia, 2020 (cited on pp. 4, 159).

[JDX14] A. Javed, K. Djijdeli, and J. T. Xing, Shape adaptive RBF-FD implicit scheme
for incompressible viscous Navier–Stokes equations, Computers & Fluids 89 :
38–52, 2014, doi: 10.1016/j.compfluid.2013.10.028 (cited on p. 92).

[Jav+19] A. Javed, F. Mazhar, T. A. Shams, M. Ayaz, and N. Hussain, A stabilized RBF
finite difference method for convection dominated flows over meshfree nodes,
Engineering Analysis with Boundary Elements 107 : 159–167, 2019, doi: 10.
1016/j.enganabound.2019.07.008 (cited on p. 37).

[Jef+15] A. Jefferies, J. Kuhnert, L. Aschenbrenner, and U. Giffhorn, Finite pointset
method for the simulation of a vehicle travelling through a body of water, in:
Meshfree methods for partial differential equations VII, ed. by M. Griebel

and M. A. Schweitzer, Lecture Notes in Computational Science and Engi-

neering 100, Springer, Nov. 2015, pp. 205–221, doi: 10.1007/978-3-319-
06898-5_11 (cited on p. 36).

[Kal11] M. Kalicinski, RapidXml, 2011, url: https://github.com/c42f/tinyform
at (cited on pp. 4, 160).

https://doi.org/10.1016/j.cma.2019.06.009
https://doi.org/10.1016/j.cma.2019.06.009
https://doi.org/10.1016/j.cma.2004.10.008
https://inkscape.org/
https://inkscape.org/
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://doi.org/10.1016/j.camwa.2015.11.015
https://doi.org/10.1016/j.camwa.2015.11.015
https://arxiv.org/abs/1909.01126
https://arxiv.org/abs/1909.01126
https://doi.org/10.1016/j.compfluid.2013.10.028
https://doi.org/10.1016/j.enganabound.2019.07.008
https://doi.org/10.1016/j.enganabound.2019.07.008
https://doi.org/10.1007/978-3-319-06898-5_11
https://doi.org/10.1007/978-3-319-06898-5_11
https://github.com/c42f/tinyformat
https://github.com/c42f/tinyformat

Bibliography 147

[KH17] E. J. Kansa and P. Holoborodko, On the ill-conditioned nature of C∞ RBF
strong collocation, Engineering Analysis with Boundary Elements 78 : 26–
30, 2017, doi: 10.1016/j.enganabound.2017.02.006 (cited on p. 37).

[Kan90a] E. J. Kansa,Multiquadrics—A scattered data approximation schemewith appli-
cations to computational fluid-dynamics—I surface approximations and partial
derivative estimates, Computers & Mathematics with applications 19 (8-9) :
127–145, 1990, doi: 10.1016/0898-1221(90)90270-t (cited on p. 36).

[Kan90b] E. J. Kansa,Multiquadrics—A scattered data approximation schemewith appli-
cations to computational fluid-dynamics—II solutions to parabolic, hyperbolic
and elliptic partial differential equations, Computers &mathematics with ap-

plications 19 (8-9) : 147–161, 1990, doi: 10.1016/0898-1221(90)90271-k
(cited on pp. 36, 53).

[KF07] A. M. Kibriya and E. Frank, An empirical comparison of exact nearest neigh-
bour algorithms, in: European Conference on Principles of Data Mining and

Knowledge Discovery, Springer, 2007, pp. 140–151, doi: 10.1007/978-3-
540-74976-9_16 (cited on p. 66).

[KB13] M. Kindelan and V. Bayona, Application of the RBF meshless method to lami-
nar flame propagation, EngineeringAnalysiswith Boundary Elements 37 (12) :
1617–1624, 2013, doi: 10.1016/j.enganabound.2013.09.004 (cited on

p. 37).

[KM15] N. P. Kopytov and E. A. Mityushov, Uniform distribution of points on hyper-
surfaces: simulation of random equiprobable rotations, Vestnik Udmurtskogo

Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki 25 (1) : 29–35,
Mar. 2015, doi: 10.20537/vm150104 (cited on p. 69).

[Kos18] G. Kosec, A local numerical solution of a fluid-flow problem on an irregular
domain, Advances in engineering software 120 : 36–44, June 2018, doi: 10.
1016/j.advengsoft.2016.05.010 (cited on p. 131).

[KŠ08] G. Kosec and B. Šarler, Local RBF collocation method for Darcy flow, Com-

puter Modeling in Engineering and Sciences 25 (3) : 197, 2008, doi: 10.3970/
cmes.2008.025.197 (cited on p. 37).

[KŠ11] G. Kosec and B. Šarler, h-adaptive local radial basis function collocation mesh-
less method, Computers, Materials & Continua 26 (3) : 227–254, 2011, doi:
10.3970/cmc.2011.026.227 (cited on pp. 93, 94).

[KS18a] G. Kosec and J. Slak, Numerical simulation of natural convection from a hea-
ted cylinder, in: Proceedings of the International Conference on Computa-

tional Methods, ICCM2018, Rome, Italy, August 6–10, ed. by G.-R. Liu and

P. Trovalusci, Proceedings of the international conference on computational

methods 5, Scientech Publisher, 2018, pp. 887–896 (cited on pp. 4, 159).

[KS18b] G. Kosec and J. Slak, Numerical simulation of overhead power line cooling
in natural convection regime, in: ECT2018, The Tenth International Confer-

ence on Engineering Computational Technology, Stiges, Barcelona, Spain,

August 21–25, Civil-comp proceedings, Elsevier, 2018 (cited on pp. 4, 159).

https://doi.org/10.1016/j.enganabound.2017.02.006
https://doi.org/10.1016/0898-1221(90)90270-t
https://doi.org/10.1016/0898-1221(90)90271-k
https://doi.org/10.1007/978-3-540-74976-9_16
https://doi.org/10.1007/978-3-540-74976-9_16
https://doi.org/10.1016/j.enganabound.2013.09.004
https://doi.org/10.20537/vm150104
https://doi.org/10.1016/j.advengsoft.2016.05.010
https://doi.org/10.1016/j.advengsoft.2016.05.010
https://doi.org/10.3970/cmes.2008.025.197
https://doi.org/10.3970/cmes.2008.025.197
https://doi.org/10.3970/cmc.2011.026.227

148 Bibliography

[KS18c] G. Kosec and J. Slak, RBF-FD based dynamic thermal rating of overhead power
lines, in: Advances in fluid mechanics XII, ed. by S. Hernández, L. Škerget,

and J. Ravnik, WIT Transactions on Engineering Sciences 120, Wessex in-

stitute, WIT press, 2018, pp. 255–262, doi: 10.2495/afm180261 (cited on

pp. 4, 37, 159).

[KS19a] G. Kosec and J. Slak, Modular implementation of local meshless numerical
method, in: Book of abstracts: ParNum 2019, Dubrovnik, Croatia, October

28–30, 2019, url: https : / / www . fsb . unizg . hr / parnum2019 / abs _
book_web.pdf (cited on pp. 4, 159).

[KS19b] G. Kosec and J. Slak, Parallel RBF-FD solution of the Boussinesq’s problem, in:

Proceedings of the Sixth International Conference on Parallel, Distributed,

GPU and Cloud Computing for Engineering, Pécs, Hungary, June 5–6, ed. by

P. Iványi and B. H. V. Topping, Civil-comp proceedings, Stirlingshire: Civil-

Comp Press, 2019, doi: 10.4203/ccp.112.7 (cited on pp. 4, 135, 159).

[Kos+19] G. Kosec, J. Slak, M. Depolli, R. Trobec, K. Pereira, S. Tomar, T. Jacquemin,

S. P. A. Bordas, and M. A. Wahab, Weak and strong from meshless methods
for linear elastic problem under fretting contact conditions, Tribology Inter-

national 138 : 392–402, Oct. 2019, doi: 10.1016/j.triboint.2019.05.041
(cited on pp. 121, 123).

[KMM17] J. Kuhnert, I. Michel, and R. Mack, Fluid structure interaction (FSI) in the
MESHFREE Finite Pointset Method (FPM): theory and applications, in: Inter-
national Workshop on Meshfree Methods for Partial Differential Equations,

ed. by M. Griebel and M. A. Schweitzer, Lecture Notes in Computational

Science and Engineering 129, Springer, Springer, 2017, pp. 73–92, doi: 10.
1007/978-3-030-15119-5_5 (cited on p. 126).

[Kur+08] J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, and A. Zdunek, Computing
with hp-adaptive finite elements: volume II, Frontiers: three dimensional ellip-
tic and Maxwell problems with applications. Chapman & Hall/CRC Applied

Mathematics & Nonlinear Science, CRC Press, 2008 (cited on p. 104).

[Lan79] P. Lancaster,Moving weighted least-squares methods, in: Polynomial and spl-

ine approximation, ed. by B. N. Sahney, NATO Advanced Study Institute Se-

ries C 49, Reidel, Dordrecht: Springer, 1979, pp. 103–120, doi: 10.1007/978-
94-009-9443-0_7 (cited on p. 13).

[LF05] E. Larsson and B. Fornberg, Theoretical and computational aspects of multi-
variate interpolation with increasingly flat radial basis functions, Computers

& Mathematics with Applications 49 (1) : 103–130, 2005, doi: 10 .1016/j .
camwa.2005.01.010 (cited on p. 27).

[Li+17] J. Li, S. Zhai, Z. Weng, and X. Feng, h-adaptive RBF-FD method for the high-
dimensional convection-diffusion equation, International Communications in

Heat and Mass Transfer 89 : 139–146, 2017, doi: 10.1016/j.icheatmasstra
nsfer.2017.06.001 (cited on p. 93).

[LTU00a] X. Y. Li, S. H. Teng, and A. Ungor, Generating a good quality point set for
the mesh-less methods, Computer Modeling in Engineering Sciences (CMES)

1 (1) : 10–17, 2000 (cited on p. 60).

https://doi.org/10.2495/afm180261
https://www.fsb.unizg.hr/parnum2019/abs_book_web.pdf
https://www.fsb.unizg.hr/parnum2019/abs_book_web.pdf
https://doi.org/10.4203/ccp.112.7
https://doi.org/10.1016/j.triboint.2019.05.041
https://doi.org/10.1007/978-3-030-15119-5_5
https://doi.org/10.1007/978-3-030-15119-5_5
https://doi.org/10.1007/978-94-009-9443-0_7
https://doi.org/10.1007/978-94-009-9443-0_7
https://doi.org/10.1016/j.camwa.2005.01.010
https://doi.org/10.1016/j.camwa.2005.01.010
https://doi.org/10.1016/j.icheatmasstransfer.2017.06.001
https://doi.org/10.1016/j.icheatmasstransfer.2017.06.001

Bibliography 149

[LTU00b] X.-Y. Li, S.-H. Teng, andA. Ungor, Point placement formeshless methods using
sphere packing and advancing front methods, in: ICCES’00, Los Angeles, CA,
2000 (cited on p. 58).

[Lib+08] N. A. Libre, A. Emdadi, E. J. Kansa, M. Rahimian, and M. Shekarchi, A sta-
bilized RBF collocation scheme for Neumann type boundary value problems,
Computer Modeling in Engineering & Sciences 24 (1) : 61–80, 2008, doi: 10.
3970/cmes.2008.024.061 (cited on p. 93).

[LO80] T. Liszka and J. Orkisz, The finite difference method at arbitrary irregular grids
and its application in applied mechanics, Computers & Structures 11 (1-2) :
83–95, 1980, doi: 10.1016/0045-7949(80)90149-2 (cited on pp. 36, 56).

[LLS01] N. Litke, A. Levin, and P. Schröder, Fitting subdivision surfaces, in: Proceed-
ings of the conference on Visualization’01, IEEE Computer Society, 2001,

pp. 319–324, doi: 10.1109/visual.2001.964527 (cited on p. 69).

[Liu02] G.-R. Liu, Mesh free methods: moving beyond the finite element method, CRC
Press, 2002, doi: 10.1201/9781420040586 (cited on pp. 36, 57, 126).

[Liu+95] W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, Reproducing kernel particle
methods for structural dynamics, International Journal for Numerical Meth-

ods in Engineering 38 (10) : 1655–1679, 1995, doi: 10.1002/nme.16203810
05 (cited on p. 36).

[Liu+10] Y. Liu, Y. Nie, W. Zhang, and L. Wang, Node placement method by bubble
simulation and its application, Computer Modeling in Engineering and Sci-

ences(CMES) 55 (1) : 89, 2010, doi: 10.3970/cmes.2010.055.089 (cited on

p. 58).

[LW10] A. Logg and G. N. Wells, DOLFIN: Automated finite element computing, ACM
Transactions on Mathematical Software (TOMS) 37 (2) : 20, 2010, doi: 10 .
1145/1731022.1731030 (cited on p. 125).

[LO98] R. Löhner and E. Onate,An advancing front point generation technique, Com-

munications in Numerical Methods in Engineering 14 (12) : 1097–1108, 1998,
doi: 10.1002/(sici)1099-0887(199812)14:12<1097::aid-cnm183>3.0.
co;2-7 (cited on p. 58).

[LP88] R. Löhner and P. Parikh, Generation of three-dimensional unstructured grids
by the advancing-front method, International Journal for Numerical Methods

in Fluids 8 (10) : 1135–1149, 1988, doi: 10.1002/fld.1650081003 (cited on

p. 58).

[MKX07] J. Ma, P. Krishnaswami, and X. J. Xin,A truly meshless pre- and post-processor
for meshless analysis methods, Advances in Engineering Software 38 (1) : 9–
30, Jan. 2007, doi: 10.1016/j.advengsoft.2006.07.001 (cited on p. 35).

[Mak+19] M. Maksić, V. Djurica, A. Souvent, J. Slak, M. Depolli, and G. Kosec, Cooling
of overhead power lines due to the natural convection, International Journal of
Electrical Power & Energy Systems 113 : 333–343, Dec. 2019, doi: 10.1016/
j.ijepes.2019.05.005.

[Mat17] Matlab Developers,MATLAB version 9.2.0.538062 (R2017a), The Mathworks,

Inc., Natick, Massachusetts, 2017 (cited on pp. 4, 160).

https://doi.org/10.3970/cmes.2008.024.061
https://doi.org/10.3970/cmes.2008.024.061
https://doi.org/10.1016/0045-7949(80)90149-2
https://doi.org/10.1109/visual.2001.964527
https://doi.org/10.1201/9781420040586
https://doi.org/10.1002/nme.1620381005
https://doi.org/10.1002/nme.1620381005
https://doi.org/10.3970/cmes.2010.055.089
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1002/(sici)1099-0887(199812)14:12<1097::aid-cnm183>3.0.co;2-7
https://doi.org/10.1002/(sici)1099-0887(199812)14:12<1097::aid-cnm183>3.0.co;2-7
https://doi.org/10.1002/fld.1650081003
https://doi.org/10.1016/j.advengsoft.2006.07.001
https://doi.org/10.1016/j.ijepes.2019.05.005
https://doi.org/10.1016/j.ijepes.2019.05.005

150 Bibliography

[McE49] E.McEwen, Stresses in elastic cylinders in contact along a generatrix (including
the effect of tangential friction), The London, Edinburgh, and Dublin Philo-

sophical Magazine and Journal of Science 40 (303) : 454–459, 1949, doi: 10.
1080/14786444908521733 (cited on p. 117).

[MB96] J. M. Melenk and I. Babuška, The partition of unity finite element method:
Basic theory and applications, Computer Methods in Applied Mechanics and

Engineering 139 (1-4) : 289–314, Dec. 1996, doi: 10.1016/s0045-7825(96)
01087-0 (cited on p. 36).

[Mer10] Z. Merali, Computational science: ...Error: why scientific programming does
not compute, Nature 467 (7317) : 775–777, Oct. 2010, doi: 10.1038/467775a
(cited on p. 125).

[Mil12] S. Milewski, Meshless finite difference method with higher order approxima-
tion—applications in mechanics, Archives of Computational Methods in En-

gineering 19 (1) : 1–49, 2012, doi: 10.1007/s11831-012-9068-y (cited on

pp. 89, 92).

[Mil13] S. Milewski, Selected computational aspects of the meshless finite difference
method, Numerical Algorithms 63 (1) : 107–126, 2013, doi: 10.1007/s11075-
012-9614-6 (cited on p. 126).

[MS18] S. Milovanović and L. von Sydow, Radial basis function generated finite dif-
ferences for option pricing problems, Computers & Mathematics with Appli-

cations 75 (4) : 1462–1481, 2018, doi: 10.1016/j.camwa.2017.11.015 (cited

on p. 37).

[Mis13] R. von Mises, Mechanik der festen Körper im plastisch-deformablen Zustand,
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathe-

matisch-Physikalische Klasse 1913 : 582–592, 1913 (cited on p. 109).

[Mis+20] P. K. Mishra, L. Ling, X. Liu, and M. K. Sen, Adaptive radial basis function
generated finite-difference (RBF-FD) on non-uniform nodes using p-refinement,
arXiv:2004.06319, 2020, url: https://arxiv.org/abs/2004.06319 (cited

on p. 92).

[Mit+12] S. A. Mitchell, A. Rand, M. S. Ebeida, and C. Bajaj, Variable radii Poisson-disk
sampling, extended version, in: Proceedings of the 24th Canadian conference

on Computational geometry (CCCG’12), 2012, url: https://www.sandia.
gov / ~samitch / _assets / documents / pdfs / VarRadiusPoissonDisk
CCCG-bw2.pdf (cited on p. 68).

[Moč+20] J. Močnik Berljavac, P. K. Mishra, J. Slak, and G. Kosec, RBF-FD analysis of 2D
time-domain acoustic wave propagation in heterogeneous Earth’s subsurface,
arXiv:2001.01597, Jan. 2020, url: https://arxiv.org/abs/2001.01597.

[MSK19] J. Močnik Berljavac, J. Slak, and G. Kosec, Parallel simulation of time-domain
acoustic wave propagation, in: MIPRO 2019: 42nd International Convention

on Information and Communication Technology, Electronics andMicroelec-

tronics, Opatija, Croatia, May 20–24, ed. by K. Skala, MIPRO proceedings,

IEEE, Croatian Society for Information, Communication Technology, Elec-

https://doi.org/10.1080/14786444908521733
https://doi.org/10.1080/14786444908521733
https://doi.org/10.1016/s0045-7825(96)01087-0
https://doi.org/10.1016/s0045-7825(96)01087-0
https://doi.org/10.1038/467775a
https://doi.org/10.1007/s11831-012-9068-y
https://doi.org/10.1007/s11075-012-9614-6
https://doi.org/10.1007/s11075-012-9614-6
https://doi.org/10.1016/j.camwa.2017.11.015
https://arxiv.org/abs/2004.06319
https://www.sandia.gov/~samitch/_assets/documents/pdfs/VarRadiusPoissonDiskCCCG-bw2.pdf
https://www.sandia.gov/~samitch/_assets/documents/pdfs/VarRadiusPoissonDiskCCCG-bw2.pdf
https://www.sandia.gov/~samitch/_assets/documents/pdfs/VarRadiusPoissonDiskCCCG-bw2.pdf
https://arxiv.org/abs/2001.01597

Bibliography 151

tronics, and Microelectronics, 2019, doi: 10.23919/mipro.2019.8756946
(cited on pp. 4, 159).

[Moo91] A. W. Moore, An introductory tutorial on kd-trees, PhD thesis 209, Computer

Laboratory, University of Cambridge, 1991, url: https://www.ri.cmu.
edu/pub_files/pub1/moore_andrew_1991_1/moore_andrew_
1991_1.pdf (cited on p. 66).

[MM97] Y. U. X. Mukherjee and S. Mukherjee, The boundary node method for po-
tential problems, International Journal for Numerical Methods in Engineer-

ing 40 (5) : 797–815, 1997, doi: 10.1002/(sici)1097-0207(19970315)40:
5<797::aid-nme89>3.0.co;2-# (cited on p. 36).

[MH96] H. Munthe-Kaas and M. Haveraaen, Coordinate free numerics — closing the
gap between ‘pure’ and ‘applied’ mathematics?, Zeitschrift für Angewandte
Mathematik und Mechanik 76 (suppl. 1) : 487–488, 1996 (cited on p. 125).

[NTV92] B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite element method:
diffuse approximation and diffuse elements, ComputationalMechanics 10 (5) :
307–318, 1992, doi: 10.1007/bf00364252 (cited on p. 35).

[Ngu+08] V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, Meshless methods: a re-
view and computer implementation aspects, Mathematics and Computers in

Simulation 79 (3) : 763–813, 2008, doi: 10.1016/j.matcom.2008.01.003
(cited on pp. 2, 36, 45, 55, 126, 158).

[ODP17] D. T. Oanh, O. Davydov, and H. X. Phu, Adaptive RBF-FD method for elliptic
problems with point singularities in 2D, Applied Mathematics and Compu-

tation 313 : 474–497, 2017, doi: 10.1016/j .amc.2017.06 .006 (cited on

pp. 93–95).

[Omo89] S. M. Omohundro, Five balltree construction algorithms, tech. rep., Berkeley:
International Computer Science Institute, 1989 (cited on p. 66).

[Oña+96] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, and R. L. Taylor, A finite point me-
thod in computational mechanics. Applications to convective transport and
fluid flow, International Journal for NumericalMethods in Engineering 39 (22) :
3839–3866, 1996, doi: 10.1002/(sici)1097-0207(19961130)39:22<3839::
aid-nme27>3.0.co;2-r (cited on pp. 36, 56).

[OOI07] E. Ortega, E. Oñate, and S. Idelsohn,An improved finite point method for tridi-
mensional potential flows, Computational Mechanics 40 (6) : 949–963, 2007,
doi: 10.1007/s00466-006-0154-6 (cited on p. 36).

[PLP08] F. Perazzo, R. Löhner, and L. Perez-Pozo, Adaptive methodology for meshless
finite point method, Advances in Engineering Software 39 (3) : 156–166, 2008,
doi: 10.1016/j.advengsoft.2007.02.007 (cited on pp. 89, 93).

[Per+16] K. Pereira, S. Bordas, S. Tomar, R. Trobec, M. Depolli, G. Kosec, andM. Abdel

Wahab, On the convergence of stresses in fretting fatigue, Materials 9 (8) : 639,
July 2016, doi: 10.3390/ma9080639 (cited on pp. 121, 123).

[PK75] N. Perrone and R. Kao,A general finite difference method for arbitrarymeshes,
Computers & Structures 5 (1) : 45–57, 1975, doi: 10.1016/0045-7949(75)
90018-8 (cited on p. 36).

https://doi.org/10.23919/mipro.2019.8756946
https://www.ri.cmu.edu/pub_files/pub1/moore_andrew_1991_1/moore_andrew_1991_1.pdf
https://www.ri.cmu.edu/pub_files/pub1/moore_andrew_1991_1/moore_andrew_1991_1.pdf
https://www.ri.cmu.edu/pub_files/pub1/moore_andrew_1991_1/moore_andrew_1991_1.pdf
https://doi.org/10.1002/(sici)1097-0207(19970315)40:5<797::aid-nme89>3.0.co;2-
https://doi.org/10.1002/(sici)1097-0207(19970315)40:5<797::aid-nme89>3.0.co;2-
https://doi.org/10.1007/bf00364252
https://doi.org/10.1016/j.matcom.2008.01.003
https://doi.org/10.1016/j.amc.2017.06.006
https://doi.org/10.1002/(sici)1097-0207(19961130)39:22<3839::aid-nme27>3.0.co;2-r
https://doi.org/10.1002/(sici)1097-0207(19961130)39:22<3839::aid-nme27>3.0.co;2-r
https://doi.org/10.1007/s00466-006-0154-6
https://doi.org/10.1016/j.advengsoft.2007.02.007
https://doi.org/10.3390/ma9080639
https://doi.org/10.1016/0045-7949(75)90018-8
https://doi.org/10.1016/0045-7949(75)90018-8

152 Bibliography

[PS04] P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM
Review 46 (2) : 329–345, 2004, doi: 10.1137/s0036144503429121 (cited on

p. 58).

[Pet+19] A. Petras, L. Ling, C. Piret, and S. J. Ruuth, A least-squares implicit RBF-FD
closest point method and applications to PDEs on moving surfaces, Journal of
Computational Physics 381 : 146–161, 2019, doi: 10.1016/j.jcp.2018.12.
031 (cited on p. 37).

[PT12] L. Piegl and W. Tiller, The NURBS book, Monographs in Visual Communica-

tion, Springer, 2012 (cited on p. 69).

[PV05] D. E. Post and L. G. Votta, Computational science demands a new paradigm,

Physics today 58 (1) : 35–41, 2005, doi: 10.1063/1.1881898 (cited on p. 125).

[RB05] T. Rabczuk and T. Belytschko, Adaptivity for structured meshfree particle me-
thods in 2D and 3D, International Journal for Numerical Methods in Engi-

neering 63 (11) : 1559–1582, 2005, doi: 10.1002/nme.1326 (cited on p. 95).

[RPD06] W. Rachowicz, D. Pardo, and L. Demkowicz, Fully automatic hp-adaptivity in
three dimensions, ComputerMethods in AppliedMechanics and Engineering

195 (37-40) : 4816–4842, July 2006, doi: 10.1016/j.cma.2005.08.022 (cited

on p. 91).

[Ric11] L. F. Richardson, The approximate arithmetical solution by finite differences of
physical problems involving differential equations, with an application to the
stresses in a masonry dam, Philosophical Transactions of the Royal Society

A 210 (459-470) : 307–357, Jan. 1911, doi: 10.1098/rsta.1911.0009 (cited

on pp. 1, 157).

[RAX10] D.W. I. Rouson, H. Adalsteinsson, and J. Xia,Design patterns for multiphysics
modeling in Fortran 2003 and C++, ACM Transactions on Mathematical Soft-

ware (TOMS) 37 (1) : 1–30, 2010, doi: 10.1145/1644001.1644004 (cited on

p. 125).

[Rup95] J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh
generation, Journal of Algorithms 18 (3) : 548–585, 1995, doi: 10.1006/jagm.
1995.1021 (cited on p. 58).

[Sad14] M.H. Sadd, Elasticity: theory, applications, and numerics, 3rd, Academic Press,

2014 (cited on pp. 3, 107, 109, 158).

[SF19] K. van der Sande and B. Fornberg, Fast variable density 3-D node generation,
arXiv:1906.00636, 2019, url: https://arxiv.org/abs/1906.00636 (cited

on pp. 59, 76, 129).

[SKS03] P. Sang-Hoon, K. Kie-Chan, and Y. Sung-Kie, A posteriori error estimates and
an adaptive scheme of least-squares meshfree method, International Journal
for Numerical Methods in Engineering 58 (8) : 1213–1250, 2003, doi: 10.100
2/nme.817 (cited on p. 95).

[ŠV06] B. Šarler and R. Vertnik, Meshfree local radial basis function collocation me-
thod for diffusion problems, Computers & Mathematics with Applications

51 (8) : 1269–1282, Apr. 2006, doi: 10.1016/j.camwa.2006.04.013 (cited

on p. 37).

https://doi.org/10.1137/s0036144503429121
https://doi.org/10.1016/j.jcp.2018.12.031
https://doi.org/10.1016/j.jcp.2018.12.031
https://doi.org/10.1063/1.1881898
https://doi.org/10.1002/nme.1326
https://doi.org/10.1016/j.cma.2005.08.022
https://doi.org/10.1098/rsta.1911.0009
https://doi.org/10.1145/1644001.1644004
https://doi.org/10.1006/jagm.1995.1021
https://doi.org/10.1006/jagm.1995.1021
https://arxiv.org/abs/1906.00636
https://doi.org/10.1002/nme.817
https://doi.org/10.1002/nme.817
https://doi.org/10.1016/j.camwa.2006.04.013

Bibliography 153

[Sch95a] R. Schaback,Creating surfaces from scattered data using radial basis functions,
Mathematical methods for curves and surfaces 477, 1995 (cited on p. 23).

[Sch95b] R. Schaback, Error estimates and condition numbers for radial basis function
interpolation, Advances in Computational Mathematics 3 (3) : 251–264, 1995,
doi: 10.1007/bf02432002 (cited on pp. 33, 34).

[SKF18] V. Shankar, R. M. Kirby, and A. L. Fogelson, Robust node generation for mesh-
free discretizations on irregular domains and surfaces, SIAM Journal on Scien-

tific Computing 40 (4) : 2584–2608, 2018, doi: 10.1137/17m114090x (cited

on pp. 2, 57, 58, 60, 62, 64, 69, 76, 85, 88, 158).

[SNK18] V. Shankar, A. Narayan, and R. M. Kirby, RBF-LOI: Augmenting radial basis
functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs
on surfaces, Journal of Computational Physics 373 : 722–735, 2018, doi: 10.
1016/j.jcp.2018.07.015 (cited on p. 37).

[She68] D. Shepard, A two-dimensional interpolation function for irregularly-spaced
data, in: Proceedings of the 1968 23rdACMnational conference, 1968, pp. 517–

524, doi: 10.1145/800186.810616 (cited on p. 12).

[She98] J. R. Shewchuk, Tetrahedral mesh generation by Delaunay refinement, in: Pro-
ceedings of the fourteenth annual symposium on Computational geometry,

1998, pp. 86–95, doi: 10.1145/276884.276894 (cited on p. 58).

[SDY03] C. Shu, H. Ding, and K. S. Yeo, Local radial basis function-based differen-
tial quadrature method and its application to solve two-dimensional incom-
pressible Navier–Stokes equations, Computer Methods in Applied Mechanics

and Engineering 192 (7-8) : 941–954, 2003, doi: 10.1016/s0045-7825(02)
00618-7 (cited on p. 37).

[Sla17] J. Slak, Solving linear elastostatic problems with meshless methods, (in slove-

nian), MA thesis, University of Ljubljana, 2017 (cited on p. 118).

[SK16] J. Slak and G. Kosec, Detection of heart rate variability from a wearable differ-
ential ECG device, in: MIPRO 2016: 39th International Convention on Infor-

mation and Communication Technology, Electronics and Microelectronics,

May 30–June 3, 2016, Opatija, Croatia, ed. by P. Biljanović, MIPRO proceed-

ings, IEEE, Croatian Society for Information, Communication Technology,

Electronics, and Microelectronics, 2016, pp. 430–435, doi: 10.1109/mipro.
2016.7522182 (cited on pp. 4, 159).

[SK18a] J. Slak and G. Kosec, Fast generation of variable density node distributions for
mesh-free methods, in: Boundary elements and other mesh reduction meth-

ods XXXXI, ed. by A. H.-D. Cheng and S. Syngellakis, WIT transactions on

engineering sciences 122, Wessex institute, WIT press, 2018, pp. 163–173,

doi: 10.2495/BE410151 (cited on pp. 4, 59, 159).

[SK18b] J. Slak and G. Kosec, Generic implementation of meshless local strong form
method, in: ECT2018, The Tenth International Conference on Engineering

Computational Technology, Stiges, Barcelona, Spain, September 4–8, Civil-

comp proceedings, Elsevier, 2018 (cited on pp. 4, 159).

https://doi.org/10.1007/bf02432002
https://doi.org/10.1137/17m114090x
https://doi.org/10.1016/j.jcp.2018.07.015
https://doi.org/10.1016/j.jcp.2018.07.015
https://doi.org/10.1145/800186.810616
https://doi.org/10.1145/276884.276894
https://doi.org/10.1016/s0045-7825(02)00618-7
https://doi.org/10.1016/s0045-7825(02)00618-7
https://doi.org/10.1109/mipro.2016.7522182
https://doi.org/10.1109/mipro.2016.7522182
https://doi.org/10.2495/BE410151

154 Bibliography

[SK18c] J. Slak and G. Kosec, Parallel coordinate free implementation of local meshless
method, in: MIPRO 2018: 41st International Convention on Information and

Communication Technology, Electronics and Microelectronics, May 21–25,

2018, Opatija, Croatia, ed. by K. Skala, MIPRO proceedings, IEEE, Croatian

Society for Information, Communication Technology, Electronics, and Mi-

croelectronics, 2018, pp. 194–200, doi: 10.23919/mipro.2018.8400034
(cited on pp. 4, 133, 159).

[SK18d] J. Slak and G. Kosec, Refined RBF-FD solution of linear elasticity problem, in:

Proceedings of the 3rd International Conference on Smart and Sustainable

Technologies (SpliTech), Split, Croatia, June 26–29, ed. by T. Perković, FESB,

University of Split, 2018, pp. 393–398, url: https://ieeexplore.ieee.org/
abstract/document/8448351 (cited on pp. 4, 159).

[SK19a] J. Slak andG. Kosec,Adaptive radial basis function-generated finite differences
method for contact problems, International Journal for Numerical Methods in

Engineering 119 (7) : 661–686, Aug. 2019, doi: 10.1002/nme.6067 (cited on

pp. 93, 94, 107).

[SK19b] J. Slak and G. Kosec, Adaptive RBF-FD method for Poisson’s equation, in:
Boundary elements and other mesh reduction methods XXXXII, ed. by A.

Cheng and A. Tadeu, WIT transactions on engineering sciences 126, Wes-

sex institute, WIT Press, 2019, pp. 149–157, doi: 10.2495/be420131 (cited

on pp. 4, 100, 159).

[SK19c] J. Slak and G. Kosec, Medusa: A C++ library for solving PDEs using strong
form mesh-free methods, arXiv:1912.13282, Dec. 2019, url: https://arxiv.
org/abs/1912.13282 (cited on pp. 3, 158).

[SK19d] J. Slak and G. Kosec, On generation of node distributions for meshless PDE
discretizations, SIAM Journal on Scientific Computing 41 (5) :A3202–A3229,
Oct. 2019, doi: 10.1137/18M1231456 (cited on pp. 59, 61, 62, 85, 88).

[SK19e] J. Slak and G. Kosec, Refined meshless local strong form solution of Cauchy–
Navier equation on an irregular domain, Engineering Analysis with Bound-

ary Elements 100 : 3–13, Mar. 2019, doi: 10.1016/j.enganabound.2018.
01.001 (cited on pp. 93, 118, 121).

[SK20] J. Slak and G. Kosec, Dynamic thermal rating in icing conditions, in: 10th In-

ternational Conference on Power, Energy and Electrical Engineering (CPEEE

2020), virtual, 2020 (cited on pp. 4, 159).

[SSK19a] J. Slak, B. Stojanovič, and G. Kosec, High order RBF-FD approximations with
application to a scattering problem, in: Proceedings of the 4th International

Conference on Smart and Sustainable Technologies (SpliTech), Bol, island of

Brač and Split, Croatia, June 18–21, ed. by T. Perković, FESB, University of

Split, 2019, doi: 10.23919/splitech.2019.8782918 (cited on pp. 4, 92, 159).

[Sla12] W. S. Slaughter, The linearized theory of elasticity, New York: Springer, 2012

(cited on pp. 3, 107, 109, 113, 158).

https://doi.org/10.23919/mipro.2018.8400034
https://ieeexplore.ieee.org/abstract/document/8448351
https://ieeexplore.ieee.org/abstract/document/8448351
https://doi.org/10.1002/nme.6067
https://doi.org/10.2495/be420131
https://arxiv.org/abs/1912.13282
https://arxiv.org/abs/1912.13282
https://doi.org/10.1137/18M1231456
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.23919/splitech.2019.8782918

Bibliography 155

[Sok+19] A. Sokolov, O. Davydov, D. Kuzmin, A. Westermann, and S. Turek, A flux-
corrected RBF-FD method for convection dominated problems in domains and
on manifolds, Journal of Numerical Mathematics 27 (4) : 253–269, 2019, doi:
10.1515/jnma-2018-0097 (cited on p. 37).

[Ste+09] D. Stevens, H. Power, M. Lees, and H. Morvan, The use of PDE centres in the
local RBF Hermitian method for 3D convective-diffusion problems, Journal of
Computational Physics 228 : 4606–4624, 2009, doi: 10.1016/j.jcp.2009.03.
025 (cited on p. 92).

[SSK19b] B. Stojanovič, J. Slak, and G. Kosec, RBF-FD solution of electromagnetic scat-
tering problem, in: MIPRO 2019: 42nd International Convention on Infor-

mation and Communication Technology, Electronics and Microelectronics,

Opatija, Croatia, May 20–24, ed. by K. Skala, MIPRO proceedings, IEEE,

Croatian Society for Information, Communication Technology, Electronics,

and Microelectronics, 2019, doi: 10.23919/mipro.2019.8756943 (cited on

pp. 4, 159).

[SF73] G. Strang and G. J. Fix,An analysis of the finite element method, Prentice-Hall
series in automatic computation, Englewood Cliffs, NJ: Prentice-Hall, 1973

(cited on p. 1).

[Str06] I. Stroud, Boundary representationmodelling techniques, Springer, 2006 (cited
on p. 69).

[Suc18] P. Suchde, Conservation and accuracy in meshfree generalizedfinite difference
method, PhD thesis, University of Kaiserslautern, 2018 (cited on pp. 36, 37).

[Tan+11] Q. Tang, G. Y. Zhang, G. R. Liu, Z. H. Zhong, and Z. C. He,A three-dimensional
adaptive analysis using the meshfree node-based smoothed point interpolation
method (NS-PIM), Engineering Analysis with Boundary Elements 35 (10) :
1123–1135, 2011, doi: 10.1016/j.enganabound.2010.05.019 (cited on

pp. 93, 95).

[TS03] A. I. Tolstykh and D. A. Shirobokov, On using radial basis functions in a “fi-
nite difference mode” with applications to elasticity problems, Computational

Mechanics 33 (1) : 68–79, 2003, doi: 10.1007/s00466-003-0501-9 (cited on

p. 37).

[Tol00] A. I. Tolstykh, On using RBF-based differencing formulas for unstructured
and mixed structured-unstructured grid calculations, in: 16th IMACS World

Congress on Scientific Computation, Applied Mathematics and Simulation:

Lausanne, Switzerland, August 21–25, ed. byM. Deville, 2000, pp. 4606–4624

(cited on p. 37).

[TK15] R. Trobec and G. Kosec, Parallel scientific computing: theory, algorithms, and
applications ofmesh based andmeshlessmethods, SpringerBriefs in Computer

Science, Springer, 2015, doi: 10.1007/978-3-319-17073-2 (cited on p. 55).

[Vel95] T. Veldhuizen, Expression templates, C++ Report 7 (5) : 26–31, 1995 (cited on

p. 132).

[VRL07] S. A. Viana, D. Rodger, and H. C. Lai, Overview of meshless methods, ICS
Newsletter 14 (2), July 2007 (cited on p. 36).

https://doi.org/10.1515/jnma-2018-0097
https://doi.org/10.1016/j.jcp.2009.03.025
https://doi.org/10.1016/j.jcp.2009.03.025
https://doi.org/10.23919/mipro.2019.8756943
https://doi.org/10.1016/j.enganabound.2010.05.019
https://doi.org/10.1007/s00466-003-0501-9
https://doi.org/10.1007/978-3-319-17073-2

156 Bibliography

[WL02] J. G. Wang and G. R. Liu, A point interpolation meshless method based on
radial basis functions, International Journal for Numerical Methods in Engi-

neering 54 (11) : 1623–1648, 2002, doi: 10.1002/nme.489 (cited on p. 37).

[Wen04] H. Wendland, Scattered data approximation, Cambridge Monographs on Ap-

plied andComputationalMathematics 17, CambridgeUniversity Press, 2004,

doi: 10.1017/cbo9780511617539 (cited on pp. 2, 6, 11, 19, 20, 23, 26–28,

33, 34, 37, 158).

[WD00] J. A. Williams and R. S. Dwyer-Joyce, Modern tribology handbook, in: ed.
by B. Bhushan, Mechanics & Materials Science 1, Boca Raton: CRC Press,

2000, chap. Contact between solid surfaces, pp. 121–162, doi: 10 . 1201 /
9780849377877.ch3 (cited on pp. 3, 116, 117, 158).

[Wri03] G. B.Wright, Radial basis function interpolation: numerical and analytical de-
velopments, PhD thesis, College of Engineering Boulder, CO, United States:

University of Colorado at Boulder, 2003 (cited on p. 37).

[ZN18] R. Zamolo and E. Nobile, Two algorithms for fast 2D node generation: Applica-
tion to RBF meshless discretization of diffusion problems and image halftoning,
Computers & Mathematics with Applications 75 (12) : 4305–4321, June 2018,
doi: 10.1016/j.camwa.2018.03.031 (cited on pp. 58, 59).

[Zeg98] P. A. Zegeling, r-refinement for evolutionary PDEs with finite elements or finite
differences, Applied Numerical Mathematics 26 (1-2) : 97–104, 1998, doi: 10.
1016/s0168-9274(97)00086-x (cited on p. 93).

[ZOF01] H.-K. Zhao, S. Osher, and R. Fedkiw, Fast surface reconstruction using the
level set method, in: Proceedings IEEE Workshop on Variational and Level

Set Methods in Computer Vision, IEEE, IEEE Computer Soc, 2001, pp. 194–

201, doi: 10.1109/vlsm.2001.938900 (cited on p. 69).

[ZHZ93] J. Z. Zhu, E. Hinton, and O. C. Zienkiewicz,Mesh enrichment against mesh re-
generation using quadrilateral elements, Communications in Numerical Me-

thods in Engineering 9 (7) : 547–554, 1993, doi: 10.1002/cnm.1640090702
(cited on p. 93).

[ZZA98] T. Zhu, J.-D. Zhang, and S. N. Atluri, A local boundary integral equation
(LBIE) method in computational mechanics, and a meshless discretization ap-
proach, Computational Mechanics 21 (3) : 223–235, 1998, doi: 10.1007/s00
4660050297 (cited on p. 36).

[ZZ87] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive pro-
cedure for practical engineering analysis, International Journal for Numer-

ical Methods in Engineering 24 (2) : 337–357, 1987, doi: 10 . 1002 / nme .
1620240206 (cited on p. 94).

https://doi.org/10.1002/nme.489
https://doi.org/10.1017/cbo9780511617539
https://doi.org/10.1201/9780849377877.ch3
https://doi.org/10.1201/9780849377877.ch3
https://doi.org/10.1016/j.camwa.2018.03.031
https://doi.org/10.1016/s0168-9274(97)00086-x
https://doi.org/10.1016/s0168-9274(97)00086-x
https://doi.org/10.1109/vlsm.2001.938900
https://doi.org/10.1002/cnm.1640090702
https://doi.org/10.1007/s004660050297
https://doi.org/10.1007/s004660050297
https://doi.org/10.1002/nme.1620240206
https://doi.org/10.1002/nme.1620240206

Razširjeni povzetek v slovenščini

Uvod
Enega prvih člankov o numeričnem reševanju parcialnih diferencialnih enačb (PDE) je

objavil Richardson leta 1911 [Ric11], kjer je uporabil sedaj klasično aproksimacijo konč-

nih diferenc za opis izračuna napetosti v jezovih. Geometrijske omejitve regularnihmrež

so bile prehude in v 40ih letih 20. stoletja je bila razvita metoda končnih elementov

(FEM) [Cou43; Hre41], ki s pomočjo konstrukcije mreže v domeni rešuje robne pro-

bleme v šibki obliki. FEM je postala popularna in komercialno uspešna metoda zaradi

njene robustnosti in geometrijske fleksibilnosti, ki ji je omogočila reševanje problemov iz

prakse. Slaba stran FEM je, da za reševanje potrebuje mrežo, ki lahko nenatančno opiše

geometrijo problema, poleg tega pa je kvalitetno mrežo tudi težko konstruirati, sploh v

treh ali več dimenzijah. Druge popularne metode, kot npr. metoda končnih volumnov,

prav tako pogosto potrebujejo mrežo. Konstrukcija kvalitetnih mrež je od nekdaj težak

problem, sploh v treh dimenzijah, kjer so pogosto potrebni ročni popravki. Dodatne te-

žave povzročajo želje po dinamičnem prilagajanju mreže problemu, ki ga rešujemo, za

kar je potrebno imeti dobre algoritme za avtomatsko konstrukcijo.

Metode, ki uporabljajo mreže, imajo poleg problemov, povezanih s konstrukcijo mrež

samih, tudi težave pri simulaciji materialov, ki se lahko gibljejo prosto ali kako drugače

močno deformirajo. Poleg tega so lahko začetni podatki ali druge izmerjene vrednosti

znane v razpršenih točkah brez vnaprej znane strukture, in metode, ki znajo take po-

datke obravnavati neposredno, imajo prednost. Zgoraj navedeni razlogi so bili povod

za razvoj metod, ki uporabljajo reducirano mrežo, kot npr. metoda robnih elementov

(BEM), ali pa je sploh ne. Slednje se imenujejo brezmrežne metode. Namesto povezova-

nja točk v mrežo, brezmrežne metode hranijo pri vsaki točki le seznam njenih sosedov.

Kljub enostavnejši diskretizaciji pa točke še vedno ne smejo biti razporejene poljubno; ne

smejo namreč biti preblizu skupaj, saj to lahko povzroči težave pri stabilnosti, niti ne sme

obstajati večji del domene, kjer ni nobene točke, saj to lahko povzroči težave pri konver-

genci. Eden izmed ciljev te disertacije je razvoj algoritma za konstrukcijo brezmrežnih

diskretizacij s spremenljivo gostoto v neregularnih domenah v poljubni dimenziji.

Ena izmed zadnje čase bolj obetavnih brezmrežnih metod je metoda končnih dife-

renc, generiranih z radialnimi baznimi funkcijami (RBF-FD). Ta metoda je posplošitev

klasične metode končnih diferenc na razpršene točke in izkazuje dobro konvergenčno

in stabilnostno obnašanje. Slabost te metode, kot tudi veliko drugih brezmrežnih metod,

je šibko matematično ozadje, saj globalne ocene napak ali teoretične stabilnostne ana-

lize niso poznane ali izdelane. Kljub temu se uporaba RBF-FD v praktičnih problemih

povečuje, kar pospešuje tudi bolj temeljne raziskave o metodi. Drugi cilj te disertacije

je raziskati potencial metode v področju izboljševanja diskretizacije in jo razviti v polno

157

158 Razširjeni povzetek v slovenščini

avtomatsko adaptivno metodo, ki diskretizacijo prilagaja zahtevam problema.

Organizacija dela
Disertacija po vrsti predstavi potrebna orodja za razvoj avtomatske adaptivnosti.

• Poglavje 1 je posvečeno aproksimaciji funkcij na razpršenih podatkih, kar je pred-

pogoj za razvoj in analizo vseh brezmrežnih metod, obravnavanih v tem delu.

• V poglavju 2 predstavimo RBF-FD metodo za reševanje PDE. Primerjamo jo z dru-

gimi podobnimi metodami na nekaj ilustrativnih primerih, kar nam pomaga pri

odločitvi za uporabo poliharmoničnih baznih funkcij, obogatenih z monomi.

• Poglavje 3 se ukvarja z brezmrežnimi diskretizacijami domen. Natančno defini-

ramo pojem diskretizacije in zahteve, ki jih narekuje uporaba v RBF-FD. Za kon-

strukcijo diskretizacij razvijemo potrebne algoritme, ki generirajo točke v notra-

njosti in na robovih domen, in dokažemo več ugodnih lastnosti teh algoritmov. To

nam bo služilo kot osnova za razvoj adaptivnosti.

• V poglavju 4 je predstavljen polno avtomatski adaptiven postopek za reševanje

eliptičnih problemov. Njegovo obnašanje je analizirano na klasičnih problemih, z

njim pa rešimo tudi več kontaktnih problemov iz linearne elastostatike.

• V poglavju 5 je podan kratek opis knjižnice Medusa in idej, ki so bile potrebne za

njen razvoj.

Literatura
Najpomembnejši viri za glavne teme v delu so sledeči.

• Teme iz aproksimacije na razpršenih podatkih so povzete po knjigi [Wen04].

• RBF-FD in druge brezmrežne metode so opisane v knjigi [FF15a] in preglednih

člankih [Ngu+08] ter [FF15c].

• Algoritmi za diskretizacijo domen, s katerimi primerjamo naše algoritme, so obja-

vljeni v člankih [FF15b] in [SKF18].

• Teme iz linearne elastostatike so v glavnem povzete po [Sla12], z dodatnim mate-

rialom iz [Sad14].

• Pri kontaktnih problemih je bila v veliko pomoč knjiga [WD00].

Doprinos
Poglavji 3 in 4 predstavljata izvirno delo avtorja, Jureta Slaka. Knjižnica Medusa, pred-

stavljena v poglavju 5, je rezultat dela Gregorja Kosca in Jureta Slaka, skupaj z drugimi

sodelavci, ki so prispevali h kodi in sorodnim materialom, kot navedeno v [SK19c].

Določen del vsebine tega dela je bil objavljen v naslednjih znanstvenih člankih, ali

pa je vsebovan v verzijah člankov pred objavo:

Uvod 159

[SK19b] J. Slak in G. Kosec, Refined meshless local strong form solution of Cauchy–
Navier equation on an irregular domain, Engineering Analysis with Boun-

dary Elements 100 : 3–13, mar. 2019, doi: 10.1016/j.enganabound.2018.
01.001 (cit. na str. 93, 118, 121).

[SK19c] J. Slak in G. Kosec, Adaptive radial basis function-generated finite differences
method for contact problems, International Journal for Numerical Methods

in Engineering 119 (7) : 661–686, avg. 2019, doi: 10.1002/nme.6067 (cit. na

str. 93, 94, 107).

[SK19d] J. Slak in G. Kosec, On generation of node distributions for meshless PDE di-
scretizations, SIAM Journal on Scientific Computing 41 (5) :A3202–A3229,
okt. 2019, doi: 10.1137/18M1231456 (cit. na str. 59, 61, 62, 85, 88).

[SK19e] J. Slak in G. Kosec,Medusa: A C++ library for solving PDEs using strong form
mesh-free methods, arXiv:1912.13282, dec. 2019, url: https://arxiv.org/
abs/1912.13282 (cit. na str. 3, 158).

[DKS20] U. Duh, G. Kosec in J. Slak, Fast variable density node generation on para-
metric surfaces with application to mesh-free methods, arXiv:2005.08767, maj

2020, url: https://arxiv.org/abs/2005.08767 (cit. na str. 70).

Poleg prej naštetih, sem soavtor tudi v naslednjih člankih, od katerih so nekateri še

pred objavo.

[JSK19] M. Jančič, J. Slak in G. Kosec, Analysis of high order dimension independent
RBF-FD solution of Poisson’s equation, arXiv:1909.01126, sep. 2019, url: htt
ps://arxiv.org/abs/1909.01126 (cit. na str. 92).

[Kos+19] G. Kosec, J. Slak, M. Depolli, R. Trobec, K. Pereira, S. Tomar, T. Jacquemin,

S. P. A. Bordas in M. A. Wahab, Weak and strong from meshless methods for
linear elastic problem under fretting contact conditions, Tribology Internatio-
nal 138 : 392–402, okt. 2019, doi: 10.1016/j.triboint.2019.05.041 (cit. na

str. 121, 123).

[Mak+19] M. Maksić, V. Djurica, A. Souvent, J. Slak, M. Depolli in G. Kosec, Cooling of
overhead power lines due to the natural convection, International Journal of
Electrical Power & Energy Systems 113 : 333–343, dec. 2019, doi: 10.1016/
j.ijepes.2019.05.005.

[Moč+20] J. Močnik Berljavac, P. K. Mishra, J. Slak in G. Kosec, RBF-FD analysis of 2D
time-domain acoustic wave propagation in heterogeneous Earth’s subsurface,
arXiv:2001.01597, jan. 2020, url: https://arxiv.org/abs/2001.01597.

Poleg tega sem svoje delo predstavil v sledečih konferenčnih člankih namednarodnih

konferencah [SK16], [SK18b], [SK18a], [SK18d], [KS18c], [KS18b], [SK19b], [SSK19a],

[KS19b], [KS19a], [SK20] in bil soavtor pri sledečih konferenčnih člankih: [KS18a],

[MSK19], [SK18c], [SSK19b], [DKS19], [Duh+20], [JSK20].

Programska in strojna oprema
Vsi numerični izračuni so bili opravljeni na prenosnem računalniku s procesorjem In-
tel® Core™ i7-7700HQ CPU @ 2.80GHz in z 16GB DDR4 SODIMM delovnega

pomnilnika s hitrostjo 2400MT/s.

https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1002/nme.6067
https://doi.org/10.1137/18M1231456
https://arxiv.org/abs/1912.13282
https://arxiv.org/abs/1912.13282
https://arxiv.org/abs/2005.08767
https://arxiv.org/abs/1909.01126
https://arxiv.org/abs/1909.01126
https://doi.org/10.1016/j.triboint.2019.05.041
https://doi.org/10.1016/j.ijepes.2019.05.005
https://doi.org/10.1016/j.ijepes.2019.05.005
https://arxiv.org/abs/2001.01597

160 Razširjeni povzetek v slovenščini

Opisani algoritmi so bili implementirani v programskem jeziku C++ in prevedeni s

prevajalnikom g++ (verzija Arch Linux 9.3.0-1) na Linux jedru verzije 4.19.121-1-
MANJARO. Privzeto so bile uporabljene zastavice

-std=c++17 -fopenmp -O3 -Wall -Wextra -Wfloat-conversion
-Wno-deprecated-copy -Wno-maybe-uninitialized -pedantic -DNDEBUG

Pri izdelavi programov je bila uporabljena knjižnica Eigen skupaj z Intel®Math Kernel

library (MKL) [Int18] in knjižnico Pardiso za reševanje sistemov linearnih enačb. Sistem

cmake (v. 3.17.2) je bil uporabljen za organizirano grajenje izvršnih datotek. Vsa pro-

gramska oprema, uporabljena v tem delu, vključujoč vse skripte za risanje slik in .tex
izvorne datoteke za to besedilo, je na voljo na https://gitlab.com/jureslak/phd.

Izvorna koda uporablja knjižnico Medusa (v. 3e7409f64), ki je na voljo na https:
//gitlab.com/e62Lab/medusa. Medusa vključuje knjižnico Eigen za delo z matri-

kami (verzija 3.3.7 z ročno dodano podporo za multi-indeksiranje) [GJ+10], knjižnico na-
noflann za k-d drevesa [BR14], knjižnico RapidXml [Kal11] za delo z XML datotekami,

paket HDF5 za delo s HDF5 datotekami [Fol+11] in knjižnico tinyformat [Fos+11] za
enostavno oblikovanje izpisov na standardni izhod.

Večina analize izračunov je bilo opravljene z Matlabom [Mat17]. To vključuje pri-

pravo vseh slik, razen tistih, izrecno omenjenih spodaj. Pri izvozu visokokvalitetnih slik

je bil v veliko pomoč dodaten paket export_fig [Alt20]. Risbe na slikah 1.3, 3.1, 3.4, 4.11,

4.16, 4.19, 4.23 in 4.24 so bile ustvarjene z grafičnim urejevalnikom Inkscape [Ink20].

S.1 Aproksimacija funkcij na razpršenih podatkih

V tem poglavju se posvetimo problemu aproksimacije funkcij na razpršenih podatkih.

Za dane točke X = {x1, . . . ,xn} ⊂ Rd
in funkcijske vrednosti ui = u(xi) želimo najti

funkcijo û, tako da velja û(xi) ≈ ui. Za točke X predpostavljamo, da so razpršene, brez
regularne strukture. Primer vhodnih podatkov za problem je prikazan na sliki S.1.

Slika S.1: Množica razpršenih točk X = {xi = (xi, yi)}45i=1 (levo) skupaj s pripadajo-

čimi funkcijskimi vrednostmi ui (desno). Vrednosti so dobljene iz funkcije uex(x, y) =
cos(5x(1− y)) exp(−6 ((x− 0.5)2 + (y − 0.6)2)) + 0.5.

https://gitlab.com/jureslak/phd
https://gitlab.com/e62Lab/medusa
https://gitlab.com/e62Lab/medusa

S.1. Aproksimacija funkcij na razpršenih podatkih 161

Za reševanje problema obstaja več načinov. Pomanjkanje regularne strukture lahko

rešimo tako, da sami na točkah ustvarimo umetno strukturo, npr. triangulacijo, in upo-

rabimo standardne metode za aproksimacijo v teh primerih. Druga možnost je, da na

višje dimenzije posplošimo aproksimacijske sheme iz ene dimenzije, vendar tu velikokrat

naletimo na težave. V primeru polinomske interpolacije nam na poti stoji Mairhuber-

Curtisov izrek, ki pravi, da bo vedno obstajala singularna konfiguracija točk. Alternativo

predstavljajo radialne bazne funkcije (RBF), ki ne potrebujejo nobene dodatne strukture

in za katere obstajajo izreki, ki zagotavljajo rešljivost problema pri zelo šibkih predpo-

stavkah. Cilj poglavja 1 je razložiti obnašanje RBF interpolacije. V ta namen najprej

dokažemo Mairhuber-Curtisov izrek v razdelku 1.1 in si nato kot možno rešitev pogle-

damo osnove teorije Hilbertovih prostorov z reproducirajočim jedrom v razdelku 1.2, ki

bodo tudi osnova za analizo obnašanja RBF. V razdelku 1.3 si ogledamo obstoječe me-

tode za aproksimacijo razpršenih podatkov, in sicer Shepardovo interpolacijo, metodo

premičnih najmanjših kvadratov in interpolacijo z RBF, ki je osnova tudi za RBF-FD me-

todo.

Definicija S.1.1 (Radialne bazne funkcije). Naj bo dana funkcija ϕ : [0,∞)→ R. Radi-
alna bazna funkcija s centrom v c ∈ Rd

je funkcija

ϕc : Rd → R, ϕc(x) = ϕ(∥x− c∥). (S.1.1)

Za dane točke X = {x1, . . . ,xn} ⊂ Rd
je množica radialnih baznih funkcij na X gene-

riranih s funkcijo ϕ enaka

{ϕx;x ∈ X}. (S.1.2)

Ime bazne funkcije ni vedno utemeljeno, saj elementi množice {ϕx;x ∈ X} niso
vedno linearno neodvisni. Toda v razdelku 1.3.3 dokažemo, da za pogosto uporabljene

funkcije ϕ imamo zagotovila o regularnosti.

Pogoste uporabljene funkcije ϕ so naslednje:

• Gaussove: ϕ(r) = exp(−(εr)2),

• Multikvadrične: ϕ(r) =
√︁

1 + (εr)2),

• Inverzne multikvadrične: ϕ(r) = (1 + (εr)2)−
1
2 ,

• Poliharmonične: ϕ(r) =

{︄
rk, k lih

rk log r, k sod

.

Parametru ε pravimo parameter oblike in je pozitivno realno število, ki določa obliko

grafa funkcije.

RBF interpolant za točke X je funkcija oblike

û(x) =
n∑︂

j=1

αjϕ(∥x− xj∥) (S.1.3)

in interpolacijski pogoji û(xi) = fi tvorijo sistem linearnih enačb⎡⎢⎣ϕ(∥x1 − x1∥) · · · ϕ(∥x1 − xn∥)
.
.
.

.
.
.

.

.

.

ϕ(∥xn − x1∥) · · · ϕ(∥xn − xn∥)

⎤⎥⎦
⎡⎢⎣α1

.

.

.

αn

⎤⎥⎦ =

⎡⎢⎣f1...
fn

⎤⎥⎦ , (S.1.4)

162 Razširjeni povzetek v slovenščini

ki ga lahko na kratko zapišemo kot Aϕα = f . V delu dokažemo, da je matrika Aϕ za

Gaussove in multikvadrične RBF pozitivno definitna (in da je posledično sistem rešljiv),

čim so točke X paroma različne. Dokažemo tudi znan Shoenbergov izrek, ki povezuje

popolnoma monotone funkcije s pozitivno definitnimi funkcijami.

Da bi dobili zagotovila o rešljivosti interpolacijskega problema v primeru inverznih

multikvadričnih in poliharmoničnih RBF, je potrebno interpolant obogatiti z monomi.

Tako ga iščemo v obliki

û(x) =
n∑︂

j=1

αjϕ(∥x− xj∥) +
q∑︂

ℓ=1

βℓpℓ(x), (S.1.5)

kjer so pℓ polinomi, ki tvorijo bazo prostora polinomov skupne stopnje manj ali enakom.

Teh polinomov je q =
(︁
n+d
d

)︁
. V tem primeru interpolacijski pogoji û(xi) = fi postavijo

n enačb za n+ q neznank. Da bi zagotovili rešljivost, postavimo dodatnih q vezi oblike

n∑︂
j=1

αjpℓ(xj) = 0, ∀ℓ = 1, . . . , q, (S.1.6)

kar nam da končni sistem (n+ q) enačb z (n+ q) neznankami[︃
Aϕ P
PT 0

]︃ [︃
α
β

]︃
=

[︃
f
0

]︃
, (S.1.7)

kjer je P matrika velikosti n× q z vrednostmi polinomov,

P =

⎡⎢⎣p1(x1) · · · pq(x1)
.
.
.

.
.
.

.

.

.

p1(xn) · · · pq(xn)

⎤⎥⎦ . (S.1.8)

Dodane vezi ohranijo simetrijo matrike in so uporabne tudi pri dokazovanju rešljivo-

sti sistema. V nadaljevanju poglavja 1 dokažemo rešljivost za inverzne multikvadrične

in poliharmonične funkcije, ter dokažemo tudi Micchellijev izrek, ki povezuje pogojno

popolnoma monotone funkcije s pogojno pozitivno semi-definitnimi funkcijami.

V poglavju 1.4 se posvetimo analizi stabilnosti in napak pri interpolaciji z radialnimi

baznimi funkcijami. Pomembni količini, ki vplivata na stabilnost in konvergenco, sta

ločitvena razdalja in krovna razdalja, ki ju izračunamo iz množice točk.

Definicija S.1.2 (Krovna razdalja). Naj boΩ ⊆ Rd
omejena in naj bo dana množica točk

X = {x1, . . . ,xn} ⊆ Ω. Krovna razdalja hX,Ω množice X znotraj Ω je

hX,Ω = 2 sup
x∈Ω

min
j=1,...,n

∥x− xj∥. (S.1.9)

Razdalja je dobro definirana, saj supremum obstaja zaradi omejenosti Ω. Krovna

razdalja meri, kako dobro točkeX pokrivajo množico Ω, saj ima največja prazna krogla,

ki jo lahko najdemo znotraj Ω, premer manjši ali enak hX,Ω.

Komplementarna razdalja h krovni razdalji je ločitvena razdalja množice X .

S.2. RBF-FD in podobne metode 163

Slika S.2: Krovna in ločitvena razdalja množice točk ter njuno razmerje γX,Ω.

Definicija S.1.3 (Ločitvena razdalja). Naj bo X = {x1, . . . ,xn} ⊆ Rd
množica točk.

Ločitvena razdalja sX množice X je

sX = min
1≤ i< j≤n

∥xi − xj∥. (S.1.10)

Ločitvena razdalja meri, kako dobro so točke v X med seboj ločene – vsak par točk

je namreč vsaj sX narazen. Krovna in ločitvena razdalja sta prikazani na sliki S.2.

Pri konstrukciji diskretizacij je pomembno gledati razmerje med krovno in ločitveno

razdaljo. Kljub goščenju diskretizacije vseeno pogosto želimo, da razmerje med njima

ostaja približno enako. Zaporedju množic točk, kjer je to razmerje za vse množice ome-

jeno, bomo rekli zaporedje kvazi-enakomernih množic točk.

S.2 RBF-FD in podobne metode
Poglavje 2 opisuje RBF-FD in podobne numerične metode. V razdelku 2.1 je podan zgo-

dovinski opis razvoja in umestitev RBF-FD metode v širše področje brezmrežnih metod.

Nato v razdelku 2.2 izpeljemo nekaj aproksimacij, med drugim tudi RBF-FD.

Večina brezmrežnih metod, ki rešujejo PDE v močni obliki, aproksimira parcialne

diferencialne operatorje z uteženo vsoto vrednosti funkcije v sosednjih točkah. Natanč-

neje, vrednost operatorja L, apliciranega na funkcijo u v točki p, aproksimiramo kot

(Lu)(p) ≈
n∑︂
i=i

wiu(xi) = wTu, (S.2.1)

kjer soX = x1, . . . ,xn točke v okolici p, ki jih imenujemo soseščina,wi pa so še neznane

uteži. Uteži wi so odvisne le od operatorja L in točke p, ne pa tudi od funkcije u; to
odvisnost bomo eksplicitno pisali kot wL,X

.

Splošna tehnika za izračun uteži wi je, da jih izračunamo s pomočjo interpolacije.

Konstruiramo funkcijo û, ki v točkah xi interpolira vrednosti ui, in namesto točne vre-

164 Razširjeni povzetek v slovenščini

dnosti (Lu)(p) vzamemo (Lû)(p). Denimo, da je interpolant û oblike

û(x) =
n∑︂

i=1

αibi(x) = b(x)Tα, (S.2.2)

za neznane koeficiente α in neko bazo = (b1, . . . , bn), bi : Ω → R. Koeficiente α lahko

izračunamo s pomočjo linearnega sistema enačb, ki izhaja iz interpolacijskih pogojev

Bα = u, (S.2.3)

kjer je u vektor funkcijskih vrednosti u = [u(xi)]
n
i=1 in B interpolacijska matrika B =

[bj(xi)]
n
i,j=1.

Koeficiente α lahko izrazimo kot α = B−1u in zapišemo û kot

û(x) = b(x)Tα = b(x)TB−1u. (S.2.4)

S tem lahko izračunamo aproksimacijo za L v točki p kot

(Lu)(p) ≈ (Lû)(p) = (Lb)(p)TB−1u =: wL,X(p)Tu. (S.2.5)

Izraz za (Lû)(p) lahko gledamo na dva načina:

(Lû)(p) = (Lb)(p)Tα =

wL,X(p)T⏟ ⏞⏞ ⏟
(Lb)(p)TB−1u⏞ ⏟⏟ ⏞

α

= wL,X(p)Tu. (S.2.6)

Prvi izraz (Lû)(p) = (Lb)(p)Tα nam omogoča, da izračunamo koeficiente α iz zna-

nih funkcijskih vrednosti u, in tako dobimo vrednosti û za poljubno točko p ali po-

ljuben operator L. Drugi izraz (Lû)(p) = wL,X(p)Tu pa nam omogoča, da izraču-

namo wL,X(p)T za določeno točko p in operator L, ampak neodvisno od funkcijskih

vrednosti u, ki so lahko tudi neznane. Tako lahko enako vrednosti wL,X(p)T upora-

bimo za aproksimacijo L|p za različne funkcije u. Za izračun w lahko uporabimo izraz

wL,X(p)T = (Lb)(p)TB−1
, vendar je bolje reševati ekvivalenten sistem

BTwL,X(p) = (Lb)(p). (S.2.7)

Na izračun uteži w lahko pogledamo tudi z drugega zornega kota, z vidika metode

nedoločenih koeficientov. Ponovno iščemo aproksimacijo v obliki

(Lu)(p) ≈
n∑︂
i=i

wiu(xi) = wTu, (S.2.8)

toda namesto, da u zamenjamo z û, le zahtevajmo, da naj bo aproksimacija točna za neko

bazo {bi}. Tako dobimo sistem linearnih enačb

(Lbj)(p) =
n∑︂
i=i

wibj(xi), (S.2.9)

ki ga lahko zapišemo kot

BTw = (Lb)(p), (S.2.10)

S.2. RBF-FD in podobne metode 165

kar je enak sistem kot prej.

Osnovna RBF-FD metoda je enaka zgoraj opisani, le da za bazo {bi} uporabimo ra-

dialne bazne funkcije, {ϕx;x ∈ X}. V tem primeru je matrika linearnega sistema enačb

enaka matriki, uporabljeni pri interpolaciji, in zanjo veljajo že dokazane lastnosti. Po-

dobno kot pri interpolaciji lahko tudi RBF-FD metodo obogatimo z monomi, da zagoto-

vimo rešljivost sistema pod ustreznimi predpostavkami in konsistentnost aproksimacije

do predpisanega reda monomov. V preostanku razdelka 2.2 pokažemo nekaj lastnosti

izpeljanih aproksimacij in analiziramo njihovo obnašanje na preprostih primerih, ki jih

je možno izračunati v zaprti obliki.

V razdelku 2.3 opišemo, kako izračunane aproksimacije uporabimo za numerično

reševanje problemov. Vzemimo standarden robni problem

Lu = f in Ω, (S.2.11)

u = gd on Γd, (S.2.12)

∂u

∂n⃗
= gn on Γn, (S.2.13)

kjer Γd predstavlja rob, kjer veljajo Dirichletovi robni pogoji, Γn rob z Neumannovimi

robnimi pogoji, f , gd in gn pa so poznane funkcije. Domeno diskretiziramo zN točkami

X = {x1, . . . , xN}, od katerih jih je Ni v notranjosti, Nn na robu Γn, Nd pa na robu Γd.

Točke tudi oštevilčimo in vsaki točki xi pripišemo njeno soseščino Si, sestavljeno iz ni

sosednjih točk. Indekse točk v soseščini točke xi označimo z {Ii,j}ni
j=1.

Neznano funkcijo u bomo aproksimirali v točkah xi in neznane vrednosti ui := u(xi)
obravnavali kot neznanke. Enačbe iz robnega problema lahko aproksimiramo z enač-

bami

ni∑︂
j=1

(wL,Si(xi))juIi,j = f(xi) za xi v notranjosti, (S.2.14)

ui = gd(xi) za xi na Γd, (S.2.15)

d∑︂
ℓ=1

(n⃗)ℓ

ni∑︂
j=1

(w∂ℓ,Si(xi))juIi,j = gn(xi) za xi na Γn. (S.2.16)

Enačbe zložimo v sistem N linearnih enačb z N neznankami, ki ga lahko zapišemo kot

Mu = r, kjer i-ta vrstica sistema vsebuje enačbo, ki velja v točki xi. MatrikaM in desna

stran r imata elemente

Mi,Ii,j = (wL,xi
)j, ri = f(xi), za xi v notranjosti, (S.2.17)

Mi,i = 1, ri = gd(xi), za xi na Γd, (S.2.18)

Mi,Ii,j =
d∑︂

ℓ=1

(n⃗)ℓ(w
∂ℓ,Si(xi))j, ri = gn(xi), za xi na Γn, (S.2.19)

kjer indeks j teče od 1 do ni. Matrika M je razpršena z največ

∑︁N
i=1 ni neničelnimi

elementi. Rešitev sistema enačbMu = r nam da numerično aproksimacijo za vrednosti

funkcije u.

166 Razširjeni povzetek v slovenščini

S.3 Diskretizacija domene

V poglavju 3 definiramo diskretizacijo domene in razvijemo algoritme za generiranje

točk v notranjosti in na robu domene. Diskretizacija domene vključuje postavitev točk v

notranjosti in na robu domene in določanje soseščin vsem tem točkam, točkam na robu

pa je dodatno treba določiti še zunanje enotske normale. V razdelku 3.1 se seznanimo

z obstoječimi raziskavami na področju konstrukcije diskretizacij in o pričakovanjih, ki

jih o algoritmih imamo. Te med drugim vključujejo generiranje diskretizacij s poljubno

gostoto točk, sledenje predpisani medsebojni razdalji, učinkovitost, neodvisnost od di-

menzije in orientacije domene, kompatibilnost med diskretizacijami roba in notranjosti

in dobro delovanje na neregularnih domenah.

Razviti algoritem za generiranje točk v notranjosti kot vhod prejme domeno Ω, po-
dano z njeno karakteristično funkcijo χΩ : Ω→ {0, 1}, funkcijo razmika h : Ω→ (0,∞)
in seznam začetnih semenskih točkX . Te točke vstavimo v vrsto in jih uporabimo za ge-

neriranje novih točk. Potrebovali bomo tudi iskalno strukturo S, ki podpira vstavljanje
točk in iskanje najbližjega soseda. Točkam, ki so v vrsti bomo rekli aktivne, točkam, ki

smo jih že vzeli iz vrste, pa bomo rekli razširjene. Algoritem obravnava točke podobno

kot iskanje v širino. V i-ti iteraciji algoritma iz vrste odstranimo točko pi in jo dodamo

na seznam sprejetih točk. Okoli pi generiramo množico kandidatov {ci,j}j , tako da so

kandidati razporejeni približno enakomerno na sferi z radijem h(pi) in središčem v pi.

Kandidate obravnavamo po vrsti. Če kandidat ci,j leži izven domeneΩ, ga zavržemo. Če

leži znotraj Ω, s pomočjo S poiščemo njegovega najbližjega soseda ni,j . Če je razdalja

med ni,j in ci,j manjša od h(pi), kandidata zavrnemo, sicer pa ga sprejmemo. Sprejeti

kandidat je vstavljen v vrsto in v strukturo S. Algoritem se konča, ko je vrsta prazna.

Potek algoritma je prikazan na sliki S.3.

Algoritem je bolj podrobno predstavljen in zapisan tudi v psevdokodi v razdelku 3.2,

kjer pokažemo, da je časovna zahtevnost generiranja N točk v primeru uporabe k-d
dreves za strukturo S enaka O(N logN). Poleg tega dokažemo tudi izrek o spoštovanju

minimalne predpisane razdalje med točkami.

Algoritem za generiranje točk na robovih domen, podanih z regularno parametriza-

cijo, deluje podobno. V tem primeru izvajamo postavljanje točk v parametričnem pro-

storu, razdalje pamerimo v ciljnem prostoru. Pri tem za ustreznomerjenje razdalj v para-

metričnem prostoru aproksimiramo povlek lokalne metrike ciljnega prostora v parame-

trični prostor. Napako, storjeno pri tej aproksimaciji, tudi ocenimo in oceno uporabimo

pri dokazovanju izreka o spoštovanju minimalne razdalje. Algoritem je bolj podrobno

opisan v razdelku 3.3.

Oba algoritma sta podrobno analizirana z vidika kvalitete točk, kvazi-enakomernosti,

hitrosti izvajanja, možnosti generiranja diskretizacij s spremenljivo gostoto, prostih pa-

rametrov in možnosti za vzporedno izvajanje v razdelku 3.4. Algoritma sta, ko je možno,

tudi primerjana z dvema obstoječima algoritmoma za generiranje točk in končni rezul-

tat analiz je, da je kombinacija algoritmov za generiranje točk na robu in v notranjosti

primerna za brezmrežne diskretizacije.

Primer, ki to dobro ilustrira, je sledeč. Na diskretizacijah, dobljenih z razvitima al-

goritmoma, s pomočjo RBF-FD metode rešimo Poissonov robni problem in opazujemo

obnašanje napake pri čedalje gostejših diskretizacijah. Postopek ponovimo stokrat, da

dobimo večji vzorec, in napake narišemo na graf, prikazan na sliki S.4. Metoda se obnaša

S.3. Diskretizacija domene 167

Slika S.3: Delovanje algoritma za generiranje točk na domeni, definirani s polarno kri-

vuljo r(ϑ) = 1
4
(3 + cos(3ϑ)). Semenske točke ležijo na robu pri vrednostih ϑ enakih

0, 2π/3 in 4π/3. Funkcija razmika je enaka h(x) = 0.05(1 + ∥x∥1).

pričakovano, kar nam daje dobro podlago za adaptivnost.

Slika S.4: Občutljivost RBF-FD metode na postavitev točk, dobljenih z razvitimi algo-

ritmi. Sive pike prikazujejo numerične napake, dobljene pri določenem številu točk. Črte

prikazujejo povprečne, najmanjše in največje napake, ter pričakovan red konvergence.

168 Razširjeni povzetek v slovenščini

S.4 Adaptivnost
V poglavju 4 razvijemo adaptivno RBF-FD metodo. Najprej si ogledamo možne vrste

adaptivnosti v razdelku 4.1 in obstoječe raziskave na področju indikatorjev napake v

razdelku 4.2. Na podlagi pregleda literature se odločimo za h-adaptivnost s ponovnim
generiranjem diskretizacije in za indikator napake na osnovi velikosti gradienta kot za

najbolj smotrni možnosti.

Razviti h-adaptivni rešitveni postopek se močno zanaša na algoritme, opisane v po-

glavju 3, ki ponujajo možnost konstrukcije diskretizacije s poljubno gostoto, predpisano

s pomočjo funkcije razmika h. To pomeni, da lahko namesto diskretizacije prilagajamo

funkcijo h, in jo uporabimo za konstrukcijo nove, bolje prilagojene diskretizacije.

Adaptivni rešitveni postopek je iterativen. V prvi iteraciji diskretiziramo domeno z

začetno funkcijo razmika h(0), dobimo diskretizacijo D(0)
z diskretizacijskimi točkami

X(0) = {x(0)
1 , . . . ,x

(0)

N(0)}, in s pomočjo RBF-FD metode tudi rešitev u(0)
. S pomočjo

indikatorja napake nato izračunamo vrednosti napak v posameznih točkah, tako da vre-

dnost ê
(0)
i predstavlja oceno napake v točki x

(0)
i . Če je norma vektorja vseh napak ê(0)

manjša od neke vnaprej izbrane tolerance τ , pravimo, da je rešitev dovolj kvalitetna in

nehamo. Sicer glede na ocenjene vrednosti napak ê(0) prilagodimo h(0) v novo funkcijo

razmika h(1) in postopek ponovimo. V praksi je smiselno dodati tudi zgornjo mejo na

število iteracij J , tako da je postopek vedno končen. V primeru, da v J iteracijah ne

najdemo dovolj kvalitetne rešitve, to tudi sporočimo.

Prilagajanje funkcije h(j) v h(j+1)
je odvisno od več parametrov, ki jih nastavimo na

začetku postopka:

• hr, hd : Ω→ (0,∞): spodnja in zgornja meja za h,

• εr, εd: pozitivni realni števili, ki predstavljata praga za goščenje in redčenje,

• αr, αd: realni števili, večji od 1, ki predstavljata mejo za faktorje spremembe go-

stote.

Količine z indeksom ‘r’ so povezane z goščenjem (angl. refinement), količine z indeksom
‘d’ pa z redčenjem (angl. derefinement).

Funkcijo razmika prilagodimo lokalno, tako da pri vsaki točkixi prilagodimo lokalno

razdaljo h
(j)
i := h(j)(xi) za nek faktor f

(j)
i . Tako definiramo nove vrednosti

h
(j+1)
i := max{min{h(j)i /f

(j)
i , hd(xi)}, hr(xi)}, (S.4.1)

kjer je faktor spremembe gostote f
(j)
i definiran kot

f
(j)
i =

⎧⎪⎪⎨⎪⎪⎩
1 +

εd−ê
(j)
i

εd−m(j) (
1
αd

− 1), ê
(j)
i ≤ εd, povečana gostota

1, εd < ê
(j)
i < εr, brez spremembe gostote

1 +
ê
(j)
i −εr

M(j)−εr
(αr − 1), ê

(j)
i ≥ εr, zmanjšana gostota

. (S.4.2)

Pri temM (j)
inm(j)

predstavljata ekstrema ocen napak ê(j):

M (j) = max
x
(j)
i ∈X(j)

ê
(j)
i , m(j) = min

x
(j)
i ∈X(j)

ê
(j)
i . (S.4.3)

S.4. Adaptivnost 169

Faktorji f
(j)
i so omejeni z

1
αd

≤ fi ≤ αr, saj velja
ê
(j)
i −εr

M(j)−εr
∈ [0, 1] in αr ≥ 1. Če je

ocenjena napaka točke ravno na pragu goščenja, tj. ê
(j)
i = εr, potem bo faktor f

(j)
i enak

1 in se gostota ne bo spremenila, kar je kompatibilno s primerom, ko je ê
(j)
i < εr. Če pa

je ocenjena napaka točke najvišja možna, tj. ê
(j)
i = M (j)

, potem bo faktor spremembe

gostote največji možen, αr. Globalna meja hr na vrednost h(j+1)
pa nam zagotavlja,

da diskretizacija ne more postati pregosta. Simetrične lastnosti veljajo tudi v primeru

redčenja. Če nastavimo αr = 1 ali αd = 1, potem onemogočimo goščenje in redčenje.

Primer obnašanja postopka prilagajanja funkcije h(j) je prikazan na sliki S.5.

Slika S.5: Konstrukcija nove funkcije razmika.

Do sedaj smo definirali le nove vrednosti h
(j+1)
i , ne pa še cele funkcije h(j+1)

. Kon-

strukcija h(j+1)
je le vaja iz interpolacije razpršenih podatkov, za kar lahko uporabimo

enostavno Sheppardovo interpolacijo na nekaj najbližjih sosedih.

V razdelku 4.4 preizkusimo opisani rešitveni postopek na klasičnih 2D in 3D Poisso-

novih robnih problemih, kot sta L-domena in Ficherov vogal, in jih tudi uspešno rešimo.

Na teh problemih tudi analiziramo obnašanje prostih parametrov postopka. Nato se s

postopkom v razdelku 4.5 lotimo kontaktnih problemov iz linearne elastostatike, kot so

disk pod napetostjo, točkovni kontakt v 3D, Hertzov kontakt in kontaktni problem, ki

izvira iz mehanike utrujanja materialov. Izmed teh problemov zmožnosti adaptivnosti

najlepše demonstrira Hertzov kontakt, ki rešuje problem kontakta polprostora z valjem,

kot prikazano na sliki S.6.

Numerično problem reduciramo na dve dimenziji in polprostor omejimo na pravo-

kotnik Ω = (−H,H)× (−H, 0) za dovolj velik H . Problem, ki ga rešujemo, je

(λ+ µ)∇(∇ · u⃗) + µ∇2u⃗ = 0 in Ω,

u⃗(−H, y) = u⃗(H, y) = u⃗(x,−H) = 0, (S.4.4)

σ(x, 0)n⃗ = n⃗

{︄
p(x), |x| ≤ a

0, |x| > a
,

kjer sta λ in µ Laméjeva parametra, p je napetost na površini, a pa je širina kontakta.

Vrednost H je bila približno H ≈ 1923a. Domeno na začetku napolnimo s točkami s

funkcijo razmika h(0) ≈ 7.7a, kar pomeni, da imamo približno eno točko na 7.7 širin

170 Razširjeni povzetek v slovenščini

Slika S.6: Hertzov kontaktni problem med dvema valjema (levo) in domena za adaptivno

numerično simulacijo kontakta med valjem in polprostorom.

kontakta. Nato zaženemo adaptiven rešitveni postopek, s parametri, opisanimi v raz-

delku 4.5.4. Tekom postopka se diskretizacija pod kontaktom gosti, drugod po domeni

pa se redči. Napake in število točk tekom iteracije so prikazane na sliki S.7.

Slika S.7: Napake in število točk med adaptivnim reševanjem Hertzevega kontaktnega

problema.

Na začetku se število točk zmanjšuje, saj po večini domene diskretizacijo redčimo

in gostimo le pod kontaktom, sčasoma pa se to redčenje ustavi, pod kontaktom pa se

goščenje povečuje, in število točk ponovno naraste. Na koncu je razmerjemed najmanjšo

in največjo medsebojno razdaljo enako približno 3 ·106 in 95% vseh točk je vsebovanih v

pravokotniku [−3a, 3a]× [−3a, 0], ki predstavlja le 0.000027% površine domene. Dobro

ilustracijo o poteku iteracije dajo profili napetosti, prikazani na sliki S.8.

S.4. Adaptivnost 171

Slika S.8: Profili normalne napetosti v okolici kontakta med adaptivnim reševanjemHer-

tzovega kontaktnega problema.

172 Razširjeni povzetek v slovenščini

S.5 Implementacija
V poglavju 5 je predstavljena knjižnica Medusa za reševanje parcialnih diferencialnih

enačb vmočni obliki z brezmrežnimimetodami. V razdelku 5.1 je predstavljenminimalni

delujoči primer reševanja problema, ki ga lahko rešimo v eni, dveh ali treh dimenzijah

s popolnoma enako programsko kodo. Nato v razdelku 5.2 sledi predstavitev glavnih

modulov knjižnice s poudarkom na razlogih za tako obliko programskega vmesnika, ki

omogoča modularnost, berljivost in učinkovitost kode. Na koncu v razdelku 5.3 poka-

žemo še časovne meritve, kjer primerjamo implementacijo RBF-FD metode v Medusi z

metodo končnih elementov implementirano v FreeFem++.

Zaključki in nadaljnje delo
Glavni rezultat naloge je razvoj avtomatskega postopka za reševanje eliptičnih robnih

problemov s pomočjo RBF-FD metode. Za dosego tega smo v delu najprej razvili algo-

ritem za konstrukcijo brezmrežnih diskretizacij, ki omogočajo generiranje točk v notra-

njosti in na robu domene, ko so robovi podani kot parametrizirane ploskve. Algoritem

je neodvisen od dimenzije prostora in dokazano spoštuje minimalno razdaljo med toč-

kami. Generira lokalno regularne množice točk s spremenljivo gostoto in za generiranje

N točk potrebujeO(N logN) časa. Za aproksimacijo linearnih parcialnih diferencialnih

operatorjev smo uporabili RBF-FD aproksimacijo, s poliharmoničnimi baznimi funkci-

jami ϕ(r) = r3, obogatenimi z monomi, ter se tako izognili klasičnim težavam RBF-FD

metode. Ta aproksimacija je bila združena še z ustrezno shemo za goščenje diskretiza-

cij in indikatorjem napake v končni postopek za polno adaptivnost. Vsi deli razvitega

postopka so brezmrežni in posplošljivi na poljubno število dimenzij. Uspešno delova-

nje postopka je bilo prikazano na klasičnih 2D in 3D Poissonovih robnih problemih ter

na 2D in 3D kontaktnih problemih iz linearne elastostatike. Demonstrirali smo tako

goščenje kot redčenje in uspešno rešili tudi problem z razmerjem med najredkejšim in

najgostejšim delom diskretizacije, večjim od 3 · 106.
Programska koda, napisana med reševanjem zgornjih problemov, je bila razvita z

mislijo na ponovno uporabo. Glavni deli postopka so bili izolirani in ločeno objavljeni

kot knjižnica za delo z brezmrežnimi metodami. Knjižnica je napisana v C++ in omo-

goča hitro testiranje različnih idej, povezanih z brezmrežnimi metodami, ki pa jih, če je

potrebno, lahko pogosto enostavno posplošimo na tri ali več dimenzij.

Za nadaljnje delo je odprtih več smeri. Razviti je potrebno boljše in robustnejše in-

dikatorje napak, ter boljše strategije goščenja. To zahteva tudi posplošitev algoritmov,

da omogočajo dinamično dodajanje ali odvzemanje točk v času, sorazmernim le s števi-

lom dodanih in odvzetih točk, ne da bi spremenili preostanek domene. Nadaljnje izbolj-

šave algoritmov za generiranje točk vključujejo posplošitev na ploskve, opisane z zlepki

(npr. NURBS) in analizo obnašanja na ploskvah iz več krp.

Potrebne so tudi nadaljnje raziskave na področju brezmrežnih aproksimacij. Pri-

merjava RBF-FD s konkurenčnimi aproksimacijami, npr. aproksimacijami, dobljenimi z

uteženimi najmanjšimi kvadrati, bi omogočila jasnejši pogled na množico vseh metod.

Za razvoj p-adaptivnosti bi bilo dobro razumeti tudi medsebojni vpliv izbire sosedov na

red obogatitve z monomi. Odgovor na to vprašanje bi bil dober korak na poti k razvoju

avtomatske hp-adaptivnosti za brezmrežne metode.

	Front page
	Naslovnica
	Acknowledgments
	Zahvala
	Abstract
	Povzetek
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Thesis outline
	Literature
	Contributions
	Hardware and software

	Function approximation on scattered data
	Mairhuber-Curtis theorem
	Positive definite kernels and reproducing kernel Hilbert spaces
	Methods for scattered data approximation
	Sheppard's interpolation
	Modified Sheppard's interpolation

	Moving least squares
	Special case when ℓ=1
	Special case when ℓ=n

	Radial basis functions
	Augmentation with monomials
	The shape parameter

	Error estimates and condition numbers for kernel based interpolation
	Basic quality measures for a node set
	Error estimates
	Stability

	RBF-FD and similar methods
	A brief review of the history of meshless methods
	Meshless methods and radial basis functions

	Approximation of partial differential operators
	Using scattered data interpolation
	Using the method of undefined coefficients
	RBF-FD with augmentation
	Augmentation with monomials

	Least-squares based methods
	Properties of stencil weights
	Computational aspects
	Examples

	PDE discretization
	Explicit evaluation
	Implicit solution
	Ghost nodes
	Special cases
	Finite difference method
	Kansa method

	Domain discretization
	Basic definitions and state of the art
	Existing algorithms for interior node generation
	Requirements for node generation algorithms

	Node generation in domain interiors
	Algorithm
	Time and space complexity
	Remarks on the finiteness

	Minimal spacing requirements

	Node generation on parametric surfaces
	Algorithm
	Possible generalizations
	Time and space complexity
	Minimal spacing requirements

	Analysis of node generation algorithms
	Implementation considerations
	Quasi-uniformity
	Variable density and local regularity
	Time complexity and execution time
	Miscellaneous aspects
	Dimension and direction independence
	Irregular domains
	Compatibility with boundary discretizations
	Free parameters
	Parallelization

	Behavior of RBF-FD on generated nodes
	Sensitivity to node positioning
	Spectra of the discretized Laplacian

	Stencil selection

	Adaptivity
	Types of refinement
	Error indicators
	Adaptive solution procedure for elliptic problems
	Spacing function modification
	Minimal adaptive example

	Classical problems
	L-shape domain
	Fichera's corner
	Analysis of adaptivity parameters

	Contact problems
	Linear elasticity
	Simplification to two dimensions
	Other quantities of interest

	Disk under stress
	3D point contact
	Hertzian contact
	Fretting fatigue contact

	Implementation
	Minimal working example
	Library modules
	Domains
	Approximations
	Operators

	Benchmarks

	Conclusions and future work
	Bibliography
	Razširjeni povzetek v slovenščini
	Uvod
	Organizacija dela
	Literatura
	Doprinos
	Programska in strojna oprema

	Aproksimacija funkcij na razpršenih podatkih
	RBF-FD in podobne metode
	Diskretizacija domene
	Adaptivnost
	Implementacija
	Zaključki in nadaljnje delo

