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a b s t r a c t 

This paper considers a numerical solution of a linear elasticity problem, namely the Cauchy–Navier equation, 
using a strong form method based on a local Weighted Least Squares (WLS) approximation. The main advantage 
of the employed numerical approach, also referred to as a Meshless Local Strong Form method, is its generality in 
terms of approximation setup and positions of computational nodes. In this paper, flexibility regarding the nodal 
position is demonstrated through two numerical examples, i.e. a drilled cantilever beam, where an irregular 
domain is treated with a relatively simple nodal positioning algorithm, and a Hertzian contact problem, where 
again, a relatively simple h-refinement algorithm is used to extensively refine discretization under the contact 
area. The results are presented in terms of accuracy and convergence rates, using different approximations and 
refinement setups, namely Gaussian and monomial based approximations, and a comparison of execution time 
for each block of the solution procedure. 
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. Introduction 

Linear elasticity problems, governed by the Cauchy–Navier equation,
re typically addressed in their weak form with the Finite Elements
ethod (FEM) [1] . However, the problem has also been addressed in

ts strong form in the past, e.g. component-wise iterative solution with
he Finite Differences Method (FDM) [2] and with the Finite Volumes
ethod (FVM) [3] . Besides mesh based methods, meshless methods

ave also been employed for solving solid mechanics problems in strong
nd weak form [4,5] . The conceptual difference between meshless meth-
ds and mesh based methods is in the treatment of relations between
odes. In the mesh based methods the nodes need to be structured into
olygons (mesh) that cover the whole computational domain, while on
he other hand, meshless methods fully define relations between nodes
hrough the relative inter nodal positions [6] , with an immediate con-
equence of greater generality of the meshless methods. 

Strong form meshless methods can be understood as generalizations
f FDM, where instead of predetermined interpolation over a local sup-
ort, a more general approach with variable support and basis is used to
valuate partial differential operators [7] , e.g. collocation using Radial
asis Functions [5,8] or approximation with monomial basis [9] . There
re many other methods with more or less similar methodology intro-
ucing new variants of the strong form meshless principle [10] . On the
ther hand, weak form meshless methods are generalizations of FEM.
robably the most known method among weak form meshless methods
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s the Meshless Local Petrov Galerkin Method (MLPG) [11] , where for
ach integration point a local support is used to evaluate field values,
nd weight functions of a Moving Least Squares (MLS) approximation
re used as test functions. In last few decades there have been many
ariants of MLPG introduced to mitigate numerical instabilities and to
mprove accuracy and convergence rate, etc. [10] . 

In general, recent developments in meshless community are vivid,
anging from analyses of computer execution on different plat-
orms [6,12] , reducing computational cost by introducing a piecewise
pproximation [13] to implementation of more complex multi-phase
ow [14] , and many more. 

This paper extends the spectra of published papers with a generalized
ormulation of a local strong form meshless method, termed Meshless
ocal Strong Form Method (MLSM) enriched with h-refinement [15] and
bility to discretize arbitrary domains [7] . 

The introduced meshless approach is demonstrated on a solution of
 benchmark cantilever beam case [16] and a Hertzian contact prob-
em [17] . The results are presented in terms of displacement and stress
lots, comparison against closed form solutions, convergence analyses,
nd execution time analyses. 

The goal of this paper is to demonstrate generality of MLSM that
s driven by the fact that all the building blocks of the method de-
end only on the relative positions between the computational nodes.
his is a very useful feature, especially when dealing with prob-

ems in multidimensional spaces, complex geometries, and moving
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oundaries. This feature can be also exploited to write elegant generic
ode [18] . 

The rest of the paper is organized as follows: in Section 2 the MLSM
rinciple is explained, in Section 3 the governing problem is introduced,
ection 4 is focused on solution procedure, Section 5 focuses on dis-
ussing the results, and finally, the paper offers some conclusions and
uidelines for future work in the last section. 

. MLSM formulation 

The core of the spatial discretization used in this paper is a local
pproximation of a considered field over the overlapping local support
omains, i.e. in each node we use approximation over a small local sub-
et of neighboring n nodes. The trial function 𝑢̂ is thus introduced as

̂ ( ⃗𝑝 ) = 

𝑚 ∑
𝑖 =1 

𝛼𝑖 𝑏 𝑖 ( ⃗𝑝 ) = 𝒃 ( ⃗𝑝 ) 𝖳 𝜶, (1)

ith m , 𝜶, b and 𝑝 standing for the number of basis functions, approxi-
ation coefficients, basis functions and the position vector, respectively.

n cases when the number of basis functions and the number of nodes
n the support domain are the same, 𝑛 = 𝑚, the determination of coef-
cients 𝜶 simplifies to solving a system of n linear equations, resulting

rom evaluating Eq. (1) in each support node and setting it equal to a
rue value 𝑢 ( ⃗𝑝 𝑗 ) , for j from 1 to n : 

 𝑗 ∶= 𝑢 ( ⃗𝑝 𝑗 ) = 𝒃 ( ⃗𝑝 𝑗 ) 𝖳 𝜶, (2)

here 𝑝 𝑗 are positions of support nodes and u j is the actual value of
onsidered field in the support node ⃗𝑝 𝑗 . The above system can be written
n matrix form as 

 = 𝑩 𝜶, (3)

here B stands for coefficient matrix with elements 𝐵 𝑗𝑖 = 𝑏 𝑖 ( ⃗𝑝 𝑗 ) . The
ost known method that uses such an approach is the Local Radial Basis

unction Collocation Method (LRBFCM) that has been recently used in
arious problems [5,8] . 

In cases when the number of support nodes is higher than the number
f basis functions ( n > m ) a WLS approximation is chosen as a solution of
q. (3) , which becomes an overdetermined problem. An example of this
pproach is DAM [9] that was originally formulated to solve fluid flow
n porous media. DAM uses six monomials for basis and nine noded sup-
ort domains to evaluate first and second derivatives of physical fields
equired to solve the problem at hand, namely the Navier Stokes equa-
ion. To determine the approximation coefficients 𝜶, a norm 

 

2 = 

𝑛 ∑
𝑗 

𝑤 ( ⃗𝑝 𝑗 )( 𝑢 ( ⃗𝑝 𝑗 ) − ̂𝑢 ( ⃗𝑝 𝑗 )) 
2 = ( 𝑩𝜶 − 𝒖 ) 𝖳 𝑾 

2 ( 𝑩𝜶 − 𝒖 ) , (4)

s minimized, where W is a diagonal matrix with elements 𝑊 𝑗𝑗 = 
√

𝑤 ( ⃗𝑝 𝑗 )

ith 

 ( ⃗𝑝 ) = exp 

( 

− 

( ‖𝑝 0 − ⃗𝑝 ‖
𝜎𝑝 min 

) 2 ) 

, (5)

here 𝜎 stands for weight shape parameter, 𝑝 0 for center of support
omain and p min for the distance to the nearest support domain node.
here are different computational approaches to minimizing (4) . The
ost intuitive and also computationally effective approach is to simply

ompute the gradient of R 

2 with respect to 𝜶 and setting it to zero,
esulting in a positive definite system 

 

𝖳 𝑾 

2 𝑩 𝜶 = 𝑩 

𝖳 𝑾 

2 𝒖 . (6)

he problem of this approach is bad conditioning, as the condition num-
er of 𝑩 

𝖳 𝑾 

2 𝑩 is the square of the condition number of WB , unnecessar-
ly increasing numerical instability. A more stable and more expensive
pproach is QR decomposition. An even more stable approach is SVD
ecomposition, which is of course even more expensive. Nevertheless,
he solution of Eq. (6) can be written generally in matrix form as 

= ( 𝑾 𝑩 ) + 𝑾 𝒖 , (7)
2 
here 𝑨 

+ stands for a Moore–Penrose pseudo inverse of matrix A . By
xplicitly inserting Eq. (7) for 𝜶 into (1) , equation 

̂ ( ⃗𝑝 ) = 𝒃 ( ⃗𝑝 ) 𝖳 ( 𝑾 𝑩 ) + 𝑾 𝒖 = 𝝌( ⃗𝑝 ) 𝒖 , (8)

s obtained, where 𝝌 = 𝒃 ( ⃗𝑝 ) 𝖳 ( 𝑾 𝑩 ) + 𝑾 is called a shape function. Now,
e can apply a partial differential operator  to the trial function, and
et 

  ̂𝑢 )( ⃗𝑝 ) = (  𝝌)( ⃗𝑝 ) 𝒖 . (9)

In this paper we deal with a Cauchy–Navier equation and therefore
ollowing shape functions are needed, expressed explicitly as 

𝜕𝑥 ( ⃗𝑝 ) = 

𝜕 𝒃 

𝜕𝑥 
( ⃗𝑝 ) 𝖳 ( 𝑾 𝑩 ) + 𝑾 , (10)

𝜕𝑦 ( ⃗𝑝 ) = 

𝜕 𝒃 

𝜕𝑦 
( ⃗𝑝 ) 𝖳 ( 𝑾 𝑩 ) + 𝑾 , (11)

𝜕 𝑥𝜕 𝑥 ( ⃗𝑝 ) = 

𝜕 2 𝒃 

𝜕𝑥 2 
( ⃗𝑝 ) 𝖳 ( 𝑾 𝑩 ) + 𝑾 , (12)

𝜕 𝑥𝜕 𝑦 ( ⃗𝑝 ) = 

𝜕 2 𝒃 

𝜕 𝑥𝜕 𝑦 
( ⃗𝑝 ) 𝖳 ( 𝑾 𝑩 ) + 𝑾 , (13)

𝜕 𝑦𝜕 𝑦 ( ⃗𝑝 ) = 

𝜕 2 𝒃 

𝜕 2 𝑦 
( ⃗𝑝 ) 𝖳 ( 𝑾 𝑩 ) + 𝑾 . (14)

he shape functions depend only on the numerical setup, namely nodal
istribution, shape parameter, basis and support selection, and can as
uch be precomputed for a specific computation. 

. Governing problem 

The goal of this paper is to numerically determine the stress and dis-
lacement distributions in a solid body subjected to the applied external
orce. To obtain a displacement vector field 𝑢 throughout the domain,
 Cauchy–Navier equation is solved, which can expressed concisely in
ector form as 

 𝜆 + 𝜇)∇(∇ ⋅ 𝑢 ) + 𝜇∇ 

2 𝑢 = 0 , (15)

here 𝜇 and 𝜆 stand for Lamé constants. In two dimensions we express
⃗ = ( 𝑢, 𝑣 ) and the equation reads 

 𝜆 + 𝜇) 𝜕 
𝜕𝑥 

( 

𝜕𝑢 

𝜕𝑥 
+ 

𝜕𝑣 

𝜕𝑦 

) 

+ 𝜇

( 

𝜕 2 𝑢 

𝜕𝑥 2 
+ 

𝜕 2 𝑢 

𝜕𝑦 2 

) 

= 0 (16)

 𝜆 + 𝜇) 𝜕 
𝜕𝑦 

( 

𝜕𝑢 

𝜕𝑥 
+ 

𝜕𝑣 

𝜕𝑦 

) 

+ 𝜇

( 

𝜕 2 𝑣 

𝜕𝑥 2 
+ 

𝜕 2 𝑣 

𝜕𝑦 2 

) 

= 0 (17)

wo types of boundary conditions are commonly used when solving
hese types of problems, namely essential boundary conditions and trac-
ion (also called natural) boundary conditions. Essential boundary con-
itions specify displacements on some portion of the boundary of the
omain, i.e. 𝑢 = ⃗𝑢 0 , while traction boundary conditions specify surface
raction 𝜎𝑛 = ⃗𝑡 0 , where 𝑛 is an outside unit normal to the boundary of
he domain and 

= 

[ 
𝜎𝑥𝑥 𝜎𝑥𝑦 
𝜎𝑥𝑦 𝜎𝑦𝑦 

] 
(18)

s the stress tensor. In terms of displacement vector ⃗𝑢 the traction bound-
ry conditions read 

 0 1 = 𝜇𝑛 2 
𝜕𝑢 

𝜕𝑦 
+ 𝜆𝑛 1 

𝜕𝑣 

𝜕𝑦 
+ (2 𝜇 + 𝜆) 𝑛 1 

𝜕𝑢 

𝜕𝑥 
+ 𝜇𝑛 2 

𝜕𝑣 

𝜕𝑥 
(19)

 0 2 = 𝜇𝑛 1 
𝜕𝑢 

𝜕𝑦 
+ (2 𝜇 + 𝜆) 𝑛 2 

𝜕𝑣 

𝜕𝑦 
+ 𝜆𝑛 2 

𝜕𝑢 

𝜕𝑥 
+ 𝜇𝑛 1 

𝜕𝑣 

𝜕𝑥 
(20)

here t 0 i and n i denote the Cartesian components of ⃗𝑡 0 and 𝑛 . 
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Fig. 1. Matrix of the final system of equations in cantilever beam case with 𝑁 = 39 and 
22 % nonzero elements. 
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. Solution procedure 

.1. Discretization of the problem 

The elliptic boundary value problem at hand is discretized into a lin-
ar system of 2 N algebraic equations by approximating the differential
perations using MLSM, as described in Section 2 . A block system of
inear equations for two vectors u and v of unknowns representing val-
es 𝑢 ( ⃗𝑝 𝑖 ) and 𝑣 ( ⃗𝑝 𝑖 ) , respectively, is constructed. This system is a discrete
nalogy of PDE (15) and can symbolically be represented as 
 

𝑈1 𝑉 1 
𝑈2 𝑉 2 

] [ 
𝒖 

𝒗 

] 
= 

[ 
𝒃 𝟏 
𝒃 𝟐 

] 
, (21)

here u and v stand for unknown displacements, b 1 and b 2 for values
f boundary conditions and blocks U 1, V 1, U 2, V 2 contain precomputed
hape functions (10) –(14) . With  ( 𝑖 ) standing for a list of indices of
he chosen n neighbors of a point 𝑝 𝑖 , as introduced in the beginning of
ection 2 , we can, for all indices i of internal nodes, express 

𝑈1 𝑖,  ( 𝑖 ) 𝑗 = 

[
( 𝜆 + 2 𝜇) 𝝌𝜕 𝑥𝜕 𝑥 ( ⃗𝑝 𝑖 ) + 𝜇𝝌𝜕 𝑦𝜕 𝑦 ( ⃗𝑝 𝑖 ) 

]
𝑗 

𝑉 1 𝑖,  ( 𝑖 ) 𝑗 = 

[
( 𝜆 + 𝜇) 𝝌𝜕 𝑥𝜕 𝑦 ( ⃗𝑝 𝑖 ) 

]
𝑗 

𝒃 1 𝑖 = 0 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, (22) 

𝑈2 𝑖,  ( 𝑖 ) 𝑗 = 

[
( 𝜆 + 𝜇) 𝝌𝜕 𝑥𝜕 𝑦 ( ⃗𝑝 𝑖 ) 

]
𝑗 

𝑉 2 𝑖,  ( 𝑖 ) 𝑗 = 

[
𝜇𝝌𝜕 𝑥𝜕 𝑥 ( ⃗𝑝 𝑖 ) + ( 𝜆 + 2 𝜇) 𝝌𝜕 𝑦𝜕 𝑦 ( ⃗𝑝 𝑖 ) 

]
𝑗 

𝒃 2 𝑖 = 0 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, (23) 

or each 𝑗 = 1 , … , 𝑛 . Note that Eq. (22) represents direct discrete ana-
ogue of (16) and, likewise, (23) of (17) . 

Similarly, for all indices i of boundary nodes with traction boundary
onditions we express 

𝑈1 𝑖,  ( 𝑖 ) 𝑗 = 

[
𝜇𝑛 2 𝝌

𝜕 𝑦 ( ⃗𝑝 𝑖 ) + (2 𝜇 + 𝜆) 𝑛 1 𝝌𝜕𝑥 ( ⃗𝑝 𝑖 ) 
]
𝑗 

𝑉 1 𝑖,  ( 𝑖 ) 𝑗 = 

[
𝜆𝑛 1 𝝌

𝜕𝑦 ( ⃗𝑝 𝑖 ) + 𝜇𝑛 2 𝝌
𝜕 𝑥 ( ⃗𝑝 𝑖 ) 

]
𝑗 

𝒃 1 𝑖 = 𝑡 0 ( ⃗𝑝 𝑖 ) 1 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, (24) 

𝑈2 𝑖,  ( 𝑖 ) 𝑗 = 

[
𝜇𝑛 1 𝝌

𝜕 𝑦 ( ⃗𝑝 𝑖 ) + 𝜆𝑛 2 𝝌
𝜕𝑥 ( ⃗𝑝 𝑖 ) 

]
𝑗 

𝑉 2 𝑖,  ( 𝑖 ) 𝑗 = 

[
𝜇𝑛 1 𝝌

𝜕 𝑥 ( ⃗𝑝 𝑖 ) + (2 𝜇 + 𝜆) 𝑛 2 𝝌𝜕𝑦 ( ⃗𝑝 𝑖 ) 
]
𝑗 

𝒃 2 𝑖 = 𝑡 0 ( ⃗𝑝 𝑖 ) 2 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, (25) 

or each 𝑗 = 1 , … , 𝑛, where n i are the Cartesian components of the out-
ide unit normal to the boundary in node 𝑝 𝑖 . Again, Eq. (24) is a direct
nalogue of (19) and (25) of (20) . And finally, for indices i of nodes with
ssential boundary condition, we express 

𝑈1 𝑖,𝑖 = 1 

𝒃 1 𝑖 = 𝑢 0 ( ⃗𝑝 𝑖 ) 1 
and 

𝑈2 𝑖,𝑖 = 1 

𝒃 2 𝑖 = 𝑢 0 ( ⃗𝑝 𝑖 ) 2 
. (26) 

System (21) is sparse with nonzero ratio of less then 2 n / N . An ex-
mple of the matrix of this system for the cantilever beam problem de-
cribed in Section 5.1 is shown in Fig. 1 , where the block structure and
ifferent patterns for boundary and internal nodes are clearly visible. 

.2. Positioning of nodes in a complex domain 

Meshless methods are advertised as the methods that do not require
ny topological relations among nodes. That implies that even randomly
istributed nodes could be used [19] . However, it is well-known that
ith regularly distributed nodes one achieves much better results in

erms of accuracy and stability [20] . This has also been recently reported
3 
or MLSM in a solution of a Navier–Stokes problem [7] . The reason be-
ind the sensitivity regarding the distribution of nodes lies in the gen-
ration of shape functions. To construct a stable method well balanced
upport domains are needed, i.e. the nodes in support domain need to
e distributed evenly enough [7] . This condition is obviously fulfilled
n regular nodal distributions, but when working with more interest-
ng geometries, the positioning of nodes requires additional treatment.
n literature one can find several algorithms for distributing the nodes
ithin the domain of different shapes [21,22] . In this paper we will use
n extremely simple algorithm, introduced in [7] to minimize the varia-
ions in distances between nodes in the support domain. The basic idea
s to “relax ” the nodes based on a potential between them. Since a Gaus-
ian function is a suitable potential and already used as weight in the
hape functions, the nodes are translated simply as 

𝑝 ( ⃗𝑝 ) = − 𝜎𝑘 

𝑁 𝑆 ∑
𝑖 =1 

∇ 𝑤 ( ⃗𝑝 − 𝑝 𝑖 ) , (27)

here 𝛿𝑝 , ⃗𝑝 𝑖 , 𝜎k and N S stand for the translation step of the node, position
f i -th support node, relaxation parameter and number of support nodes,
espectively ( Fig. 2 a). After offsets in all nodes are computed, the nodes
re repositioned as 

⃗ ← 𝑝 + 𝛿𝑝 ( ⃗𝑝 ) . (28)

resented iterative process procedure begins by positioning the bound-
ry nodes, which are considered as the definition of the domain and are
ept fixed throughout the process. 

.3. h-Refinement 

Besides flexibility regarding the shape of the domain, nodal refine-
ent is often mandatory to achieve desired accuracy in cases with pro-
ounced differences in stress within the domain. A typical example of
uch situation is a contact problem [17] . To mitigate the error in areas
ith high stresses the h-refinement scheme is used., which has already
een introduced into different meshless solutions [23,24] . In context of
ocal RBF approximation the h-refinement has been used in the solu-
ion of the Burger ’s equation [15] , where a quad-tree based algorithm
as been used to add and remove child nodes symmetrically around the
arent node in transient solution of Burgers ’ equation. However, the al-
orithm presented in [15] supported only regular nodal distribution. In
his paper we generalize it also to irregular nodal distribution. 
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Fig. 2. Schemes of algorithms used to improve the quality of the discretization. 

Fig. 3. Four levels of the refinement algorithm applied around a hole in a domain after 
relaxation. 
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24 𝐸𝐼 
In each node to be refined, new nodes are added on the half distances
etween the node itself and its support nodes 

⃗ 𝑛𝑒𝑤 𝑗 = 

𝑝 + ⃗𝑝 𝑗 

2 
, (29)

here index j indicates j -th support node. When adding new nodes,
hecks are performed if the newly added node is too close to any of
he existing nodes; in that case the node is not added. Moreover, if the
efined node and support node are both boundary nodes, newly added
ode is positioned on the boundary ( Fig. 2 b). This procedure can be re-
eated several times if an even more refined domain is desired. These
ubsequent refinements will be called levels of refinement and will be
enoted as level i for the refinement that resulted from i applications of
he described algorithm. 

The described algorithm follows the concept of meshless methods
nd as such does not require any special topological relations between
odes to refine a certain part of the computation domain. It is also flexi-
le regarding the dimensionality of the domain, i.e. there is no difference
n implementation of 2D or 3D variant of the algorithm. 

An example on a non-trivial refinement is demonstrated in Fig. 3 ,
here a domain with a hole is considered. The vicinity of the hole is

our times refined and then, to mitigate possible irregularities during
efinement, relaxed. 
4 
.4. Asymptotic complexity of MLSM 

The asymptotic complexity analysis begins with an assumption that
valuations of basis functions, weights, linear operators and bound-
ry conditions take O (1) time. For simple domain discretization, such
s the uniform grid in a rectangle or random positioning, O ( N ) time
s required, where N stands for number of computational nodes. To
nd the neighbors of each point, a tree based data structure such as
d-tree [6] , taking O ( N log N ) time to construct and O ( n log N ) time to
uery n closest nodes, is used. The relaxation of nodal positions (see
ection 4.2 ) with I iterations costs additional O ( InN log 2 N ) time. Re-
nding the support nodes by rebuilding the tree and querying for sup-
ort nodes once again, requires another 𝑂(( 𝑁 + 𝑛 ) log 𝑁) time. Calcula-
ion of the shape functions requires N SVD decompositions, each tak-
ng O ( nm 

2 ) time, as well as some matrix and vector multiplication of
ower complexity. Assembling the matrix takes O ( nN ) time and assem-
ling the right hand side takes O ( N ) of time. Then, the system is solved
sing BiCGSTAB iterative algorithm. The final time complexity is thus
( 𝐼𝑛𝑁 log 2 𝑁 + ( 𝑁 + 𝑛 ) log 𝑁 + 𝑚 

2 𝑛𝑁) + 𝑇 , where T stands for the time
pent by BiCGSTAB. 

For comparison, the complexity of a well-known weak form Element
ree Galerking method (EFG) [25] differs from MLSM in construction
f the shape functions, whose computation requires O ( Nn q m 

2 n ) time
sing EFG method, with n q standing for the number of Gauss integration
oints per node. Additionally, the number of nonzero elements in the
nal system of EFG is of order n q times higher than that of MLSM, again

ncreasing the complexity of EFG. 

. Numerical examples 

.1. Cantilever beam 

First, the standard cantilever beam test is solved to assess accuracy
nd stability of the method. Consider an ideal thin cantilever beam
f length L and height D covering the area [0 , 𝐿 ] × [− 𝐷 ∕2 , 𝐷 ∕2] . Timo-
henko beam theory offers a closed form solution for displacements and
tresses in such a beam under plane stress conditions and a parabolic
oad on the left side. The solution is widely known and derived in
.g. [16] , giving stresses in the beam as 

𝑥𝑥 = 

𝑃 𝑥𝑦 

𝐼 
, 𝜎𝑦𝑦 = 0 , 𝜎𝑥𝑦 = 

𝑃 

2 𝐼 

( 

𝐷 

2 

4 
− 𝑦 2 

) 

, (30)

nd displacements as 

𝑢 = 

𝑃 𝑦 
(
3 𝐷 

2 ( 𝜈 + 1) − 4 
(
3 𝐿 

2 + ( 𝜈 + 2) 𝑦 2 − 3 𝑥 2 
))

, 
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Fig. 4. Numerical solution of cantilever beam case. Note that for the sake of visibility the displacements are multiplied by factor 10 5 . 
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t  
 = − 

𝑃 
(
3 𝐷 

2 ( 𝜈 + 1)( 𝐿 − 𝑥 ) + 4( 𝐿 − 𝑥 ) 2 (2 𝐿 + 𝑥 ) + 12 𝜈𝑥𝑦 2 
)

24 𝐸𝐼 
, (31) 

here 𝐼 = 

1 
12 𝐷 

3 is the moment of inertia around the horizontal axis, E
s Young ’s modulus, 𝜈 is the Poisson ’s ratio and P is the total load force.

In the numerical solution, traction free boundary conditions are used
n the top and bottom of the domain, essential boundary conditions
iven by (31) are used on the right and traction boundary conditions
iven by (30) on the left 

 ( 𝐿, 𝑦 ) = 

𝑃 𝑦 (2 𝐷 

2 (1 + 𝜈) − 4(2 + 𝜈) 𝑦 2 ) 
24 𝐸𝐼 

(32)

 ( 𝐿, 𝑦 ) = − 

𝐿𝜈𝑃 𝑦 2 

2 𝐸𝐼 
(33)

𝜕𝑢 

𝜕𝑦 
( 𝑥, 𝐷∕2) + 𝜇

𝜕𝑣 

𝜕𝑥 
( 𝑥, 𝐷∕2)) = 0 (34)

𝜕𝑢 

𝜕𝑥 
( 𝑥, 𝐷∕2) + ( 𝜆 + 2 𝜇) 𝜕𝑣 

𝜕𝑦 
( 𝑥, 𝐷∕2) = 0 (35)

 𝜇
𝜕𝑢 

𝜕𝑦 
( 𝑥, − 𝐷∕2) − 𝜇

𝜕𝑣 

𝜕𝑥 
( 𝑥, − 𝐷∕2)) = 0 (36)

 𝜆
𝜕𝑢 

𝜕𝑥 
( 𝑥, − 𝐷∕2) − ( 𝜆 + 2 𝜇) 𝜕𝑣 

𝜕𝑦 
( 𝑥, − 𝐷∕2) = 0 (37)

 𝜆
𝜕𝑣 

𝜕𝑦 
(0 , 𝑦 ) − ( 𝜆 + 2 𝜇) 𝜕𝑢 

𝜕𝑥 
(0 , 𝑦 ) = 0 (38)

 𝜇
𝜕𝑢 

𝜕𝑦 
(0 , 𝑦 ) − 𝜇

𝜕𝑣 

𝜕𝑥 
(0 , 𝑦 ) = 

𝑃 

2 𝐼 
(( 𝐷∕2) 2 − 𝑦 2 ) . (39)

he problem is solved using MLSM method with 𝑛 = 9 or 𝑛 = 13 sup-
ort nodes and Gaussian weight with 𝜎 = 1 (see (5) ). Two sets of basis
unctions are considered, 9 monomials 

 = {1 , 𝑥, 𝑦, 𝑥 2 , 𝑦 2 , 𝑥𝑦, 𝑥 2 𝑦, 𝑥𝑦 2 , 𝑥 2 𝑦 2 } (40)

nd 9 Gaussian basis functions (see (5) for definition) centerd in support
odes. In the following discussions these two choices of basis functions
ill be referred to as M9 and G9, respectively. 

System (21) is solved with BiCGSTAB iterative algorithm [26] with
LUT preconditioning [27] . Values of 𝐿 = 30 𝑚, 𝐷 = 5 𝑚, 𝐸 = 72 . 1 𝐺𝑃 𝑎,

= 0 . 33 and 𝑃 = 1000 𝑁∕ 𝑚 were chosen as physical parameters of the
roblem. 

The acquired numerical solution of the cantilever beam problem is
hown in Fig. 4 . 
5 
The error of the numerical approximation of stresses and displace-
ents is measured in relative discrete L ∞ norm, using 

 ∞( ⃗𝑢 ) = 

max 𝑥 ∈𝑋 { max { |𝑢 ( 𝑥 ) − ̂𝑢 ( 𝑥 ) |, |𝑣 ( 𝑥 ) − 𝑣̂ ( 𝑥 ) |}} 
max 𝑥 ∈𝑋 { max { |𝑢 ( 𝑥 ) |, |𝑣 ( 𝑥 ) |}} and (41)

 ∞( 𝜎)= 

max 𝑥 ∈𝑋 { max { |𝜎𝑥𝑥 ( 𝑥 ) − ̂𝜎𝑥𝑥 ( 𝑥 ) |, |𝜎𝑦𝑦 ( 𝑥 ) − ̂𝜎𝑦𝑦 ( 𝑥 ) |, |𝜎𝑥𝑦 ( 𝑥 ) − ̂𝜎𝑥𝑦 ( 𝑥 ) |}} 
max 𝑥 ∈𝑋 { max { |𝜎𝑥𝑥 ( 𝑥 ) |, |𝜎𝑦𝑦 ( 𝑥 ) |, |𝜎𝑥𝑦 ( 𝑥 ) |}} ,

(42) 

s error measures, with X representing the set of all nodes. Convergence
ith respect to the number of computational nodes is shown in Fig. 5 .
he numerical approximations converge towards the correct solution in
tress ( e ∞( 𝜎)) norm as well, with approximately the same convergence
ate. 

It can be seen that monomials converge very regularly with order
 as expected, while Gaussian functions exhibit slightly worse conver-
ence. Such behavior has already been reported in solution of diffusion
quation, where MLSM with Gaussian basis failed to obtain accurate so-
ution with a high number of computational nodes. More details about
he phenomenon and further reading can be found in [28] . 

The method was compared to the standard Element Free Galerkin
EFG) method [29] . The EFG method used circular domains of influence
ith radius d I equal to 3.5 times internodal distance, a cubic spline 

 ( ⃗𝑝 ) = 𝑤̃ 

( ‖𝑝 − ⃗𝑝 𝑖 ‖
𝑑 𝐼 

) 

, 𝑤̃ ( 𝑟 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

2 
3 
− 4 𝑟 2 + 4 𝑟 3 0 ≤ 𝑟 < 

1 
2 

4 
3 
− 4 𝑟 + 4 𝑟 2 − 

4 
3 
𝑟 3 

1 
2 
≤ 𝑟 < 1 

0 1 ≤ 𝑟 

(43)

or a weight function, 𝑛 𝑞 = 4 Gaussian points for approximation of line
ntegrals and 𝑛 𝑞 = 16 points for approximating area integrals. Lagrange
ultipliers were used to impose essential boundary conditions. 

The performance of EFG with respect to the number of nodes is much
etter than MLSM. However, a more fair comparison would also take
nto account also the higher complexity of EFG. This can be achieved by
omparing error with respect to the number of MLS evaluations, which
s the most time consuming part of the solution procedure. In Fig. 5 it is
emonstrated that although EFG provides much better results in com-
arison to MLSM at a given number of nodes, its accuracy becomes com-
arable to MLSM, when compared per number of MLS evaluations. 

To asses the stability of the method regarding the nodal distribution,
he following analysis was performed. A regular distribution of points
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Fig. 5. Accuracy of different MLSM setups compared to EFG per number of computational nodes (left) and number of MLS evaluations (right). 

Fig. 6. Regular and perturbed node positions, as used in stability analysis. 
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s used in the solution in Fig. 4 was distorted by adding a random per-
urbation to each internal node. Its position is altered by 

̂⃗
 ← 𝑝 + 𝜎𝑈⃗ , 𝑈⃗ ∼ Uniform ([0 , 𝛿] 2 ) , (44)

here 𝛿 is the distance to the closest node, and measuring the accuracy
f the solution with respect to 𝜎, representing magnitude of the per-
urbation. An example of original and perturbed node distributions are
hown in Fig. 6 . 

Accuracy of the solution with respect to the perturbation magnitude
s presented in Fig. 7 . It is demonstrated that using monomials as a ba-
is with 9 support nodes results in an unstable setup. On the other hand
onomials with 13 support nodes are much more stable and equally ac-

urate, while using Gaussian basis with high shape parameter is the most
nstable setup. To mitigate the stability issue, a lower shape parameter
an be chosen, however, at the cost of accuracy. Regardless of the setup
ne can expect the solution to be stable at least up to 𝜎 ≈0.1. Note that
sing more nodes in support domain can also increase stability. Refer to
7] for more details. 

Time spent on each part of the solution procedure is shown in
ig. 8 . All measurements were performed on a laptop computer with an
ntel(R) Core(TM) i7-4700MQ @2.40 GHz CPU and with
6 GiB of DDR3 RAM. MLSM is implemented in C++ [18] and
ompiled using g++ 7.1.7 for Linux with -std = c++14 -O3
DNDEBUG flags. It can be seen that solving the system (21) makes
p for more than 50 % of total time spent. Around 70 % of that time
s spent on computing the preconditioner. The only other significant
6 
actor is computing the shape functions taking approximately 40 % of
otal time. Domain construction and matrix assembly take negligible
mounts of time, matching the predictions made by complexity analysis
n Section 4.4 . 

To emphasize the generality of MLSM method, a “drilled ” domain
s considered in the next step. Arbitrarily positioned holes are added
o the rectangular domain. The positioning algorithm described in
ection 4.2 and h-refinement algorithm described in Section 4.3 are used
o distribute the nodes inside the domain and refine the areas around the
oles. The boundary conditions in this example are 𝑢 = 0 on the right,
raction free on the inside of the holes and on top and bottom and uni-
orm load of P / D on the left. The computed solution is shown in Fig. 9
long with the ordinary cantilever beam example. Both solutions are
olored using von Mises stress 𝜎v , computed for the plane stress case as

𝑣 = 

√ 

𝜎2 𝑥𝑥 − 𝜎𝑥𝑥 𝜎𝑦𝑦 + 𝜎2 𝑦𝑦 + 3 𝜎2 𝑥𝑦 . (45)

To further illustrate the generality of the method, an even more de-
ormed domain is considered ( Fig. 10 ). 

.2. Hertzian contact 

Another more interesting case arises from basic theory of contact
echanics, called Hertzian contact theory [30] . Consider two cylinders
ith radii R 1 and R 2 and parallel axes pressed together by a force per
nit length of magnitude P . The theory predicts they form a small con-
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Fig. 7. Stability of MLSM with respect to nodal perturbations. 

Fig. 8. Execution time for different parts of the solution procedure with respect to the number of computational nodes. 

Fig. 9. Numerical solution of a drilled cantilever beam case using 𝑁 = 177 , 618 nodes. Note that for the sake of visibility the displacements are multiplied by factor 10 5 . 

7 
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Fig. 10. Numerical solution of a irregular cantilever beam using 𝑁 = 67 , 887 nodes. Note that for the sake of visibility the displacements are multiplied by factor 10 5 . 
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Fig. 11. Domain and boundary conditions of considered contact problem. 
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act surface of width 2 b , where 

 = 2 
√ 

𝑃 𝑅 

𝜋𝐸 

∗ (46)

nd 

1 
𝑅 

= 

1 
𝑅 1 

+ 

1 
𝑅 2 

, (47)

1 
𝐸 

∗ = 

1 − 𝜈1 
2 

𝐸 1 
+ 

1 − 𝜈2 
2 

𝐸 2 
. (48)

lastic modulus and Poisson ’s ratio for the first material are denoted
ith E 1 and 𝜈1 , and with E 2 and 𝜈2 for the second material. The pres-

ure distribution between the bodies along the contact surface is semi-
lliptical, i.e. of the form 

 ( 𝑥 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑝 0 

√ 

1 − 

𝑥 2 

𝑏 2 
; |𝑥 | ≤ 𝑏 

0; otherwise 
, 𝑝 0 = 

√ 

𝑃 𝐸 

∗ 

𝜋𝑅 

. (49)

 problem can be reduced to two dimensions using plane stress assump-
ion. A special case of this problem is when 𝐸 1 = 𝐸 2 , 𝜈1 = 𝜈2 and R 2 →∞,
escribing a contact of a cylinder and a half plane. This is the second
umerical example tackled in this paper. The setup is ideal for testing
he refinement, since a pronounced difference in behavior of numeri-
al solution near the contact in comparison to the rest of the domain is
xpected. 

A displacement field 𝑢 satisfying (15) on (−∞, ∞) × (−∞, 0) with
oundary conditions 

 ( 𝑥, 0) = − 𝑝 ( 𝑥 ) ⃗𝚥 (50)

lim 

,𝑦 →∞
𝑢 ( 𝑥, 𝑦 ) = 0 . (51)

s sought. Vector ⃗𝑡 represents traction force on the surface and ⃗𝚥 = (0 , 1)
he upwards direction. Analytical solution for internal stresses in the
lane in general point ( x, y ) is calculated using the method of complex
otentials [31] and the stresses are given in terms of m and n , defined
s 

 

2 = 

1 
2 

( √ (
𝑏 2 − 𝑥 2 + 𝑦 2 

)2 + 4 𝑥 2 𝑦 2 + 𝑏 2 − 𝑥 2 + 𝑦 2 
) 

, (52)

 

2 = 

1 
2 

( √ (
𝑏 2 − 𝑥 2 + 𝑦 2 

)2 + 4 𝑥 2 𝑦 2 − ( 𝑏 2 − 𝑥 2 + 𝑦 2 ) 
) 

, (53)

here 𝑚 = 

√
𝑚 

2 in 𝑛 = sgn ( 𝑥 ) 
√
𝑛 2 . The stresses are then expressed as 

𝑥𝑥 = − 

𝑝 0 
𝑏 

[ 
𝑚 

( 

1 + 

𝑦 2 + 𝑛 2 

𝑚 

2 + 𝑛 2 

) 

+ 2 𝑦 
] 

(54)
i  

8 
𝑦𝑦 = − 

𝑝 0 
𝑏 
𝑚 

( 

1 − 

𝑦 2 + 𝑛 2 

𝑚 

2 + 𝑛 2 

) 

(55)

𝑥𝑦 = 𝜎𝑦𝑥 = 

𝑝 0 
𝑏 
𝑛 

( 

𝑚 

2 − 𝑦 2 

𝑚 

2 + 𝑛 2 

) 

. (56)

Numerically the problem is solved by truncating the infinite domain
o a rectangle [− 𝐻 , 𝐻 ] × [− 𝐻, 0] for large enough H and setting the es-
ential boundary conditions 𝑢 = 0 everywhere but on the top bound-
ry. The top boundary has a traction boundary condition with normal
raction given by p ( x ) and no tangential traction. An illustration of the
roblem domain along with the boundary conditions is given in Fig. 11 .

The described contact problem is solved numerically and the error
s measured between calculated and given stresses in relative L ∞ norm
s before, using 

 ∞ = max 
𝑥 ∈𝑋 

{ max { |𝜎𝑥𝑥 ( 𝑥 ) − 𝜎̂𝑥𝑥 ( 𝑥 ) |, |𝜎𝑦𝑦 ( 𝑥 ) − 𝜎̂𝑦𝑦 ( 𝑥 ) |, |𝜎𝑥𝑦 ( 𝑥 ) − 𝜎̂𝑥𝑦 ( 𝑥 ) |}}∕ 𝑝 0 
s an error measure. Values 𝑃 = 543 𝑁∕ 𝑚, 𝐸 1 = 𝐸 2 = 72 . 1 𝐺𝑃 𝑎, 𝜈1 = 𝜈2 =
 . 33 , 𝑅 1 = 𝑅 = 1 𝑚 were chosen for the physical parameters of the prob-
em. These values yield contact half-width 𝑏 = 0 . 13 𝑚𝑚 and peak pres-
ure 𝑝 0 = 2 . 6 𝑀𝑃 𝑎 . A value of 𝐻 = 10 𝑚𝑚 for domain height is chosen,
pproximately 38 times greater than width of the contact surface. Con-
ergence of the method is shown in Fig. 12 . 

It is clear that the convergence of the method is very irregular and
low. This is to be expected, as 𝑁 = 10 6 means only approximately 30
odes positioned within the contact surface, and that naturally leads
o large changes as a change of a single node bears a relatively high
nfluence. Another problem is that the boundary conditions are only
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Fig. 12. Convergence of MLSM when solving the described Hertzian contact problem. 

Fig. 13. Total error with respect to domain size at different discretization densities. 

Fig. 14. An example of 17-times refined domain used in solution of the described Hertzian contact problem. 
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ontinuous, and exhibit no higher regularity, not even Lipschitz conti-
uity. The accuracy of the approximation may seem bad, but is in fact
omparable to the cantilever beam case. Using the comparable value
f 𝑁 = 30 ⋅ 15 = 450 nodes in the contact area [− 𝑏, 𝑏 ] × [− 𝑏, 0] it can be
een from Fig. 5 that the approximation using this number of nodes in
antilever beam case achieved very similar results. 
9 
The total error of the approximation is composed of two main parts,
he truncation error due to the non-exact boundary conditions and the
iscretization error, due to solving a discrete problem instead of the
ontinuous one. First, we analyse the total error in terms of domain
eight H . A graph showing the total error with respect to domain height
 is shown in Fig. 13 . 
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Fig. 15. Convergence of MLSM at different refine levels. 

Fig. 16. Numerical solution of the described Hertzian contact problem. Note that for the sake of visibility the displacements are multiplied by factor of 5 · 10 3 . 
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The total error decreases as domain height increases, regardless of
he discretization density used. However, as soon as truncation error
ecomes lower than discretization error, increasing the height further
ields little to no gain in total error. The higher the discretization den-
ity is, the later this happens. When convergence of a method stops or
ignificantly decreases in order, an error limit imposed by the truncation
rror was reached. 

It soon becomes impossible to uniformly increase discretization den-
ity due to limited resources, and the immediate solution is to refine
he discretization in the contact area with the h-refinement algorithm
ntroduced in Section 4.3 . A domain of height 𝐻 = 1 𝑚 ≈ 75 , 000 𝑏 is cho-
en. Primary refinement is done in rectangle areas of the form 

− ℎ𝑏, ℎ𝑏 ] × [0 , ℎ𝑏 ] , for ℎ ∈ {1000 , 500 , 200 , 100 , 50 , 20 , 10 , 5 , 4 , 3 , 2} , 

nd secondary refinement around points ± b on the surface is done in
ectangle areas 

 𝑐 − ℎ𝑏, 𝑐 + ℎ𝑏 ] × [− ℎ𝑏, 0] , for 𝑐 = ± 𝑏 and 

ℎ ∈ {0 . 4 , 0 . 3 , 0 . 2 , 0 . 1 , 0 . 05 , 0 . 0025} . 

The refined domain as described above is shown in Fig. 14 . This do-
ain was used to solve the considered contact problem. Different levels

f secondary refinement were tested to prove that refinement helps with
ccuracy. Convergence of the method on the refined domain is shown
n Fig. 15 . 
10 
Comparing Fig. 15 to Fig. 12 , it can be seen that refinement greatly
mproves the accuracy of the method. Using 𝑁 = 10 6 nodes without
efinement yields worse results than 𝑁 = 10 4 nodes with only pri-
ary refinement. Each additional level of secondary refinement helps

o decrease the error even further while keeping the same order of
onvergence. A solution of the problem on the final mesh is shown in
ig. 16 . 

. Conclusions 

A MLSM solution of a linear elasticity problem on regular and irregu-
ar domains with a refined nodal distribution of two different numerical
xamples is presented in this paper. The method is analysed in terms
f accuracy by comparison against available closed form solutions and
y comparison against weak form EFG method. The convergence of the
ethod is evaluated with respect to the number of computational nodes,

election of different basis functions, different refinement strategies and
ifferent boundary conditions. MLSM is also analysed from complex-
ty point of view, first, theoretically, and then also experimentally by
iming the computer execution time of all main blocks of the method.
t is clearly demonstrated that the method is accurate and stable. Fur-
hermore, it is demonstrated that nodal adaptivity is mandatory when
olving contact problems in order to obtain accurate results and that
he proposed MLSM method can handle extensive refinement with the
mallest internodal distance being 2 17 times smaller than the initial one.
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t is also demonstrated that proposed MLSM configuration can handle
omputations in complex domains. 

In our opinion the presented meshless setup can be used, not only to
olve academic cases with the sole goal to show excellent convergences,
ut also in more complex engineering problems. The C++ implemen-
ation of presented MLSM is freely available at [18] . 

In future work we will continue to develop a meshless solution of a
ontact problem with a final goal to simulate a crack propagation due to
he fretting fatigue [17] in a general 3D domain with added p-adaptivity
o treat singularities near the crack tip. 
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