
On the global optimization of checking sequences for

finite state machine implementations

Monika Kapus-Kolar∗

Jožef Stefan Institute, Department of Communication Systems, Jamova 39, SI-1111 Ljubljana,

Slovenia

Abstract

A checking sequence for a given domain of deterministic finite state machine im-

plementations is an input sequence for which exactly the non-faulty members of

the domain produce a non-faulty response. In the paper, we reconsider a pop-

ular family of methods which construct a checking sequence by performing its

digraph-based global optimization. Recently, it was demonstrated that many of

the methods are unsafe. As a remedy, a simple, but sufficient set of additional

constraints on the structure of the employed digraph was introduced. In this pa-

per, we show that the constraints sometimes ban also some of those originally

considered checking sequence candidates which are sound. To safely restore the

original power of the checking sequence construction approach, we perform its

thorough re-engineering. This results in a very transparent and flexible generic

method from which various methods of practical interest, both new ones and ana-

logues of the traditional ones, can be derived simply by specialization.

Keywords: Conformance testing, Deterministic finite state machine, Checking

sequence construction, Optimization.

∗Tel.: +386 1 477 35 31

Email address: monika.kapus-kolar@ijs.si (Monika Kapus-Kolar)

Preprint submitted to Microprocessors and Microsystems February 19, 2014

1. Introduction

For a given deterministic finite state machine (DFSM), call it specification,

and a given domain of its implementations, a checking sequence is an input se-

quence to which exactly the non-faulty members of the domain respond as the

DFSM would. The advantage of complete test suites consisting of a small num-

ber of longer sequences is that their application requires less or no resets of the

implementation under test and that they tend to have a better performance on im-

plementations outside their target domain [1]. On the other hand, single-sequence

complete test suites are the most difficult to construct and optimize. Methods for

their construction, hence, tend to target very narrow domains.

In the paper, we reconsider a popular family of checking sequence construc-

tion methods [2–11] which assume that the specification and the target implemen-

tations are complete DFSMs defined over the same input alphabet, that the speci-

fication is strongly connected and possesses a distinguishing set and that each of

the target implementations has at most as many states as the specification. For

the checking sequence under construction, the methods perform digraph-based

global optimization. They start by constructing a digraph in which each of the

considered candidate checking sequences is represented as a specific walk whose

cost is the specified application cost of the sequence. In the digraph, the methods

then look for one of the cheapest such walks.

The reason why we believe that the method family deserves reconsideration

is the following: Recently, it was demonstrated that many of the methods are un-

safe [12]. As a remedy, a simple, but sufficient set of additional constraints on the

structure of the constructed digraph was introduced. We, however, discovered that

2

the solution is not satisfactory, for, as demonstrated in this paper, the constraints

sometimes ban also some of those originally considered checking sequence can-

didates which are sound. This indicates that the checking sequence construction

approach needs a thorough re-engineering. We accomplish it in the rest of the

paper, in a way fully restoring the original power of the approach.

The re-engineering results in a very transparent and flexible generic checking

sequence construction method from which various methods of practical interest,

both new ones and analogues of those of [2–11], can be derived simply by spe-

cialization. To make the method even more flexible, so that it can consider an

even larger class of candidate checking sequences, we make more flexible also

the employed templates for state recognizers and transition implementation tests.

In the Sections 2 to 11, the new generic method is developed and proven step-

by-step, in a highly formal and structured way, as to satisfy those diligent readers

who seek deep understanding of every detail of the method, for example for its

safe direct use or for the development of its new simple-to-use specializations.

Each of the Sections 4 to 11, however, starts with an informal summary, as to

provide an informal introduction for the detailed readers and to satisfy also prac-

titioners currently using the methods of [2–11] and seeking just a general idea of

the new method. The latter are advised to read the sections only up to the phrase

“Speaking formally” and to refer to the Sections 2 and 3 only when needing to

refresh their memory about a technical term. For the detailed readers, the two

sections are indispensable for a proper start, for they define the employed formal

notation. Section 12 comprises a discussion and conclusions.

In the following, let M denote the specification DFSM, N its implementation

under test, the term “input” a member of their common input alphabet, D the

3

distinguishing set of M selected as the basis of checking sequence construction,

and G the constructed digraph.

2. Sequences and directed (multi)graphs

Let ǫ denote an empty sequence. For a sequence ō = o1 . . . ok, let seg(ō)

denote the set of all its segments oi . . . o j with 1 ≤ i ≤ j ≤ k and set(ō) the set of

the objects present in the (multi)set {o1, . . . , ok}. For two sequences ō = o1 . . . ok

and ō′ = o′1 . . . o
′
k′

, let ō · ō′ denote their concatenation o1 . . . oko
′
1 . . . o

′
k′

. For a

sequence ō = ō′ · ō′′, let ō − ō′′ denote ō′.

A directed (multi)graph H consists of a set vr(H) of vertices and a set ed(H)

of directed edges which connect them. An edge e has an initial vertex init(e),

a final vertex f in(e), a label lab(e) and a cost cost(e). We will specify such an

edge as (init(e), f in(e), lab(e), cost(e)). A directed (multi)graph can have multi-

ple edges with the same specification. An edge having the same specification as

some other is its copy. A digraph is a directed (multi)graph in which no edge is a

copy of another. For a given directed (multi)graph vertex v, let in(v) denote the set

of its incoming edges and out(v) the set of its outgoing edges. A given directed

(multi)graph H is edge-induced if vr(H) = ∪e∈ed(H){init(e), f in(e)} and symmet-

ric if |in(v)| = |out(v)| for every vertex v in vr(H). The cost of a given directed

(multi)graph H is Σe∈ed(H)cost(e).

A walk of a given directed (multi)graph is a sequence of its consecutive edges.

For a walk w = e1 . . . ek, let init(w) denote its initial vertex init(e1), f in(w) its

final vertex f in(ek), vr(w) its vertex set ∪1≤i≤k{init(ei), f in(ei)} and cost(w) its cost

Σ1≤i≤kcost(ei). If k = 0, init(w) is supposed to be known from the context. If

(k > 0)∧(init(w) = f in(w))∧(|vr(w)| = k), w is a cycle. A copy of w is any directed

4

(multi)graph walk e′
1
. . . e′

k
with e′

i
for every 1 ≤ i ≤ k a copy of ei. A directed

(multi)graph H is acyclic if it has no cycle and strongly connected if for every two

vertices v and v′ in vr(H), it has a walk w with (init(w) = v) ∧ (f in(w) = v′).

A reduction of a directed (multi)graph H is an edge-induced directed (multi)graph

H′ with ed(H′) ⊆ ed(H). For a directed (multi)graph H and an edge set E ⊆

ed(H), let H[E] denote that reduction of H whose edge set is E. A given di-

rected (multi)graph is a component of a directed (multi)graph H if it is its strongly

connected reduction and a reduction of no larger strongly connected reduction of

H. A symmetric augmentation of an edge set E in an edge set E′ is a symmetric

edge-induced directed (multi)graph whose edge set is E enhanced with zero or

more copies of edges in E′.

3. The specification and its implementation under test

For an input x, let cost(x) denote the cost of its application, presumably a

non-zero positive real. The default cost(x) is 1. The cost cost(x̄) of a given input

sequence x̄ = x1 . . . xk is Σ1≤i≤kcost(xi).

A DFSM Q is a machine possessing a finite set st(Q) of states in which it might

reside, among them its initial state init(Q), and a finite set tr(Q) of transitions

which it is willing to execute. Every transition in tr(Q) is an (s, s′, x/y) with s the

state from which it is executed, x the input by which it is provoked, y the output

which it produces and s′ the state to which it leads, with no other transition defined

for x applied in s. If for every state in st(Q), every input has a corresponding

transition in tr(Q), Q is complete.

By executing a transition (s, s′, x/y), a DFSM executes from the state s the

input/output (I/O) x/y. The I/O sequences executable from a given DFSM state s

5

s 2 s 3s 4
a / 0

a / 0

a / 1

a / 2

a / 3b / 0

b / 0 b / 0

b / 0

b / 1

s 5

s 1

Figure 1: An example M

constitute its language lan(s). For a given DFSM Q, let lan(Q) denote lan(init(Q))

and ios(Q) the I/O-sequence set ∪s∈st(Q)lan(s). For an I/O sequence z̄, let is(z̄)

denote its input sequence.

A transition sequence of a given DFSM Q is a sequence of its consecutive

transitions. For such a τ, let init(τ) denote its initial state, f in(τ) its final state,

is(τ) its input sequence, ios(τ) its I/O sequence and cost(τ) its cost cost(is(τ)).

If init(τ) = init(Q), τ is rooted. If Q has no other transition sequence τ′ with

(ios(τ′) = ios(τ)) ∧ (f in(τ′) = f in(τ)), τ is invertible. For a zero-length transition

sequence, the initial state is assumed to be known from the context. A given

DFSM Q is strongly connected if for every two states s and s′ in st(Q), it has a

transition sequence τ with (init(τ) = s) ∧ (f in(τ) = s′).

In the following, we assume that st(M) is an {s1, . . . , sn} with n > 1 and

init(M) = s1. For a transition (si, s j, x/y) in tr(M), let ti
x be a shorter name.

Example 1. The M in Fig. 1 is a complete and strongly connected DFSM operat-

ing over the input alphabet {a, b}. Its state set is {s1, s2, s3, s4, s5}. Upon receiving a

in s1, it emits 0 and enters s5. The thereby executed transition t1
a, i.e. (s1, s5, a/0),

is invertible, whereas the transition sequence t1
b
t1
a is not.

An I/O sequence z̄ is a unique I/O sequence (UIO) of (a specific state s of) a

given DFSM Q if s is the only state s′ in st(Q) with z̄ ∈ lan(s′). An I/O sequence

6

z̄ is a backward UIO (BUIO) of (a specific state s of) a given DFSM Q if s is

the only state s′ in st(Q) for which Q has a transition sequence τ with (f in(τ) =

s′)∧ (ios(τ) = z̄). For a DFSM state s, let uio(s) denote its UIO set and buio(s) its

BUIO set. For a UIO z̄ of M, let ts(z̄) denote the only transition sequence τ of M

with ios(τ) = z̄.

If in two DFSM states, application of a given input sequence results in two

different output sequences, the input sequence separates the states. A distinguish-

ing set of a given DFSM Q is a set for every state s in st(Q) comprising exactly

one of its UIOs, a z̄s, with the property that for every two different states s and s′

in st(Q), there is a separating input sequence that is a common prefix of is(z̄s) and

is(z̄s′). For a state si in st(M), let Di denote the only member ofD∩ lan(si).

For a transition sequence τ of M, let nxt(τ) denote the set consisting of those

transitions t in tr(M) for which M has a transition sequence τ′ · t with ios(τ′) a

prefix of ios(τ) and is(τ′ · t) a prefix of is(τ).

Example 2. In the M in Fig. 1, ab separates s1 and s4, b/0a/1 is a UIO of s2, with

ts(b/0a/1) = t2
b
t3
a, a/0b/0 is a BUIO of s3 and {a/0b/1, a/3, a/1, a/0b/0, a/2} is

a distinguishing set. If D is the distinguishing set, then D1 = a/0b/1, D2 = a/3,

D3 = a/1, D4 = a/0b/0 and D5 = a/2. nxt(t1
at5

b
) = {t1

a, t
2
a, t

3
a, t

4
a, t

5
a, t

2
b
, t5

b
}.

A state si in st(M) is said to be properly implemented in N, denoted as ok(si), if

st(N) comprises a state, call it s′i , with Di ∈ uio(s′i). A transition t = (si, s j, x/y) in

tr(M) is said to be properly implemented in N, denoted as ok(t), if ok(si)∧ok(s j)∧

((s′i , s
′
j, x/y) ∈ tr(N)). For a subset ∆ of tr(M), let ok(∆) denote ∧t∈∆ok(t). M is

said to be properly implemented by N, denoted as ok(M), if ok(tr(M))∧(init(N) =

s′
1
).

7

For the input sequence which a checking sequence construction method gener-

ates, as the input sequence of some I/O sequence z̄ in lan(M), let σ denote seg(z̄).

4. Primary state recognizers

Recall thatD is such a set of I/O sequences, one for every state of M, that in the

case of their execution on N, one knows that each of them has been executed from

a different state, which brings the states of N into a one-to-one correspondence

with the states of M and confirms that the sequences are UIOs (i.e., I/O sequences

recognizing the state from which they are executed) also in the implementation.

Besides, one wants to confirm that the destination state of the sequences or their

selected extensions executable on M is the expected one, so that the (extensions

of) the sequences in D (call their set T) become confirmed BUIOs (i.e., I/O se-

quences recognizing the state to which they lead). One, hence, chooses such a set,

call itA, of I/O sequences executable on M that in the case of the sequences exe-

cuted on N, both the UIOs inD and the BUIOs in T are confirmed. The format of

A is not prescribed, just make sure that the set comprises also a UIO of the initial

state of M.

Speaking formally, the methods of [2–11] for every state si in st(M) besides

Di choose yet another special-purpose UIO, a Ti = Di · T
′
i , with {Ti|si ∈ st(M)} a

T . The default T is D. For every si in st(M), with f in(ts(Ti)) an s j, they secure

the checking of Di ∈ uio(s′
i
) and Ti ∈ buio(s′

j
). In general, the checks for D

and T would be secured by securing that among the subsets of σ, there is also a

specific subset of ios(M), in the following calledA, with ok′(∆) for a given subset

∆ of tr(M) denoting (A ⊆ ios(N)) ∧ ok(∆). In the methods, A = {Ti · T j|(si ∈

st(M)) ∧ (f in(ts(Ti)) = s j)}. We observe that the checks remain secured also ifA

8

is simplified into {Ti · D j|(si ∈ st(M)) ∧ (f in(ts(Ti)) = s j)}, the new default A. In

specific cases,A can be safely simplified even further.

Example 3. For a transition (si, si, x/y) in tr(M) with Di = Ti = x/yx/y, Ti ·Di in

the proposedA can be safely replaced with x/yx/yx/y.

An alternative option is to deliberately choose (for example because a power-

ful ad hoc checking sequence construction method suggests it) a richerA, so that

A ⊆ ios(N) can be of more help in the checking of transition implementations. In

any case, we assumeA∩ uio(s1) , ∅.

5. Conditionally safe state recognizers

In this section, we propose more flexible templates for conditionally safe state

recognizers. In the next two paragraphs, we informally describe the main precon-

dition relaxations proposed.

In the method of [8], one is allowed to employ also those UIOs of M which are

not inD, but only after implementation checking has already been secured for the

members ofA and for a specific set of transitions of M. The set comprises every

transition of M whose input is one of those in the UIO. We observe that a smaller,

but still sufficient set can be computed as follows: For every state of M, consider

application of the input sequence of the UIO up to and including the point when

the end of the sequence is reached or the resulting output sequence starts differing

from that of the UIO. The applications result in a set of transition sequences. The

transitions which one looks for are the members of the sequences.

In the method of [10], application of a UIO of M which is not inD is legal pro-

vided that the corresponding transition sequence of M is a sequence τ of invertible

9

transitions followed by a transition sequence τ′ corresponding to a member ofD,

but only if implementation checking has already been secured for the members of

A and for a specific set of transitions of M. According to a correction in [12],

the set comprises every transition of M whose input is one of those in the input

sequence of τ. We observe that a smaller, but still sufficient set can be computed

as follows: For every state of M, consider application of the input sequence of

τ up to and including the point when the end of the sequence is reached or the

resulting output sequence starts differing from that of τ. The applications result in

a set of transition sequences. The transitions which one looks for are the members

of the sequences, with the possibility that in the case of τ just a single transition,

the transition is exempted from the set. As another relaxation, we observe that

the transitions in τ need not be invertible, provided that τ as a whole is invertible.

Besides, the I/O sequence of τ′ need not be a member of D, provided that it is

some other UIO of M which can be trusted under the adopted assumptions.

Speaking formally, onceA ⊆ σ is secured, the UIOs inD and the BUIOs in T

become safe for state recognition in transition implementation tests. Additionally

employed UIOs and BUIOs of individual states si in st(M) are in the methods

of [2–11] trusted as UIOs or BUIOs of s′i , respectively, under the condition that

the checking of ok′(∆) is already secured for a specific subset ∆ of tr(M). We

call such conditionally safe UIOs and conditionally safe BUIOs (∆, i)-UIOs and

(∆, i)-BUIOs, respectively.

For a subset ∆ of tr(M) and a state si in st(M), a (∆, i)-UIO is any UIO z̄ of

si with (z̄ ∈ ios(N)) ∧ ok′(∆) a sufficient condition for z̄ ∈ uio(s′i). In particular,

every Di (and, hence, Ti) is an (∅, i)-UIO. We observe that the conditions under

which the methods virtually trust that for a transition sequence τ of M, a state si

10

in st(M) and a subset ∆ of tr(M), ios(τ) is a (∆, i)-UIO remain sufficient if they

are relaxed to the requirement that τ is a τ1 · τ2 · τ3, with init(τ2) an s j, satisfying

the following:

(1) ios(τ2) ∈ uio(s j).

(2) (ios(τ2) = D j) ∨ (nxt(τ2) ⊆ ∆).

(3) τ1 is invertible and init(τ1) = si.

(4) If τ1 is just a single transition, a t, then (nxt(τ1) \ {t}) ⊆ ∆ else nxt(τ1) ⊆ ∆.

Theorem 1. The above conditions are sufficient.

Proof. Suppose that ok′(∆) and N has a walk τ′
1
· τ′

2
· τ′

3
with ios(τ′

i
) = ios(τi)

for 1 ≤ i ≤ 3. If ios(τ2) = D j then, by A ⊆ ios(N), ios(τ2) ∈ uio(s′j) and,

hence, init(τ′
2
) = s′

j
. Otherwise, by (nxt(τ2) ⊆ ∆) ∧ ok′(∆) ∧ (ios(τ2) ∈ uio(s j)),

ios(τ2) ∈ uio(s′j) and, hence, init(τ′2) = s′j. By (3), (4) and (init(τ′2) = s′j) ∧ ok′(∆),

init(τ′
1
) = s′

i
and, hence, ios(τ) ∈ uio(s′

i
).

For a subset ∆ of tr(M) and a state si in st(M), a (∆, i)-BUIO is any BUIO z̄ of

si with (z̄ ∈ ios(N)) ∧ ok′(∆) a sufficient condition for z̄ ∈ buio(s′
i
). In particular,

every T j with f in(ts(T j)) = si is an (∅, i)-BUIO. We observe that the conditions

under which the methods virtually trust that for a transition sequence τ of M, a

state si in st(M) and a subset ∆ of tr(M), ios(τ) is a (∆, i)-BUIO remain sufficient

if they are relaxed to the requirement that τ is a τ1 · τ2 · τ3, with init(τ2) an s j and

f in(τ2) an sk, satisfying the following:

(1) ios(τ2) is a (∆, j)-UIO.

(2) (ios(τ2) = T j) ∨ (set(τ2) ⊆ ∆).

(3) (f in(τ3) = si) ∧ (set(τ3) ⊆ ∆).

11

Theorem 2. The above conditions are sufficient.

Proof. Suppose that ok′(∆) and N has a walk τ′
1
· τ′

2
· τ′

3
with ios(τ′

i
) = ios(τi) for

1 ≤ i ≤ 3. If ios(τ2) = T j then, by A ⊆ ios(N), ios(τ2) ∈ buio(s′
k
) and, hence,

f in(τ′
2
) = s′

k
. Otherwise, by ok′(∆) and ios(τ2) a (∆, j)-UIO, ios(τ2) ∈ uio(s′

j
) and,

hence, init(τ′2) = s′j and, hence, by (set(τ2) ⊆ ∆)∧ ok(∆), f in(τ′2) = s′
k
. By (3) and

(f in(τ′
2
) = s′

k
) ∧ ok(∆), f in(τ′

3
) = s′

i
and, hence, ios(τ) ∈ buio(s′

i
).

6. Candidate transition implementation tests

With the above defined primary and conditionally safe state recognizers, one

can construct (conditionally safe) transition implementation tests. In this section,

we propose for them a more flexible template. Its novelty is in (only slightly, to

keep it simple) more flexible combining of forward and backward state recogni-

tion.

Speaking formally, as we construct a checking sequence indirectly, by con-

structing the corresponding rooted transition sequence of M, we define (condition-

ally safe) transition implementation tests (TITs) as candidates for special-purpose

segments of the transition sequence. For a subset ∆ of tr(M) and a transition t in

tr(M), a (∆, t)-TIT is any transition sequence τ of M with (ios(τ) ∈ ios(N))∧ok′(∆)

a sufficient condition for ok(t). We observe that the conditions under which the

methods of [2–11] virtually trust that for a transition t in tr(M) and a subset ∆

of tr(M), a transition sequence τ of M is a (∆, t)-TIT remain sufficient if they are

relaxed to the requirement that τ is a τ1 · τ2 · t · τ3 · τ4, with init(τ2) an sh, init(t) an

si, init(τ3) an s j and init(τ4) an sk, satisfying the following:

(1) If ios(τ1 · τ2) is not a (∆, i)-BUIO, then ios(τ2 · t · τ3 · τ4) is a (∆, h)-UIO and

set(τ2) ⊆ ∆.

12

(2) If ios(τ3 · τ4) is not a (∆, j)-UIO, then ios(τ1 · τ2 · t · τ3) is a (∆, k)-BUIO and

ios(τ3) · Dk is a (∆, j)-UIO.

Theorem 3. The above conditions are sufficient.

Proof. Suppose that ok′(∆) and N has a walk τ′1 · τ
′
2 · t

′ · τ′3 · τ
′
4 with ios(τ′i) =

ios(τi) for 1 ≤ i ≤ 4 and ios(t′) = ios(t). If ios(τ1 · τ2) is a (∆, i)-BUIO then, by

ok′(∆), ios(τ1 · τ2) ∈ buio(s′i) and, hence, init(t′) = s′i . Otherwise, by ok′(∆) and

ios(τ2 · t · τ3 · τ4) a (∆, h)-UIO, ios(τ2 · t · τ3 · τ4) ∈ uio(s′
h
) and, hence, init(τ′2) = s′

h

and, hence, by (set(τ2) ⊆ ∆) ∧ ok(∆), init(t′) = s′
i
.

If ios(τ3 · τ4) is a (∆, j)-UIO then, by ok′(∆), ios(τ3 · τ4) ∈ uio(s′j) and, hence,

f in(t′) = s′
j
. Otherwise, by ok′(∆) and ios(τ1 · τ2 · t · τ3) a (∆, k)-BUIO, ios(τ1 · τ2 ·

t · τ3) ∈ buio(s′
k
) and, hence, init(τ′4) = s′

k
and, hence, N has a walk t′ · τ′3 · τ

′
5

with

ios(τ′
5
) = Dk and, hence, by ok′(∆) and ios(τ3) · Dk a (∆, j)-UIO, ios(τ3) · Dk ∈

uio(s′
j
) and, hence, f in(t′) = s′

j
.

Example 4. Suppose that st(M) = {s1, s2, s3} and τ · t1
a · t

2
b
· t3

c · τ
′ is a transition

sequence of M. If ios(τ · t1
a · t

2
b
· t3

c) ∈ T and ios(t1
a · t

2
b
· t3

c ·τ
′) ∈ D and t3

c is invertible,

the transition sequence is a ({t1
a, t

1
c , t

2
c}, t

2
b
)-TIT.

7. Candidate rooted transition sequences

If a transition sequence of M is to be trusted to correspond to a checking

sequence, it must correspond to a UIO of the initial state of M, it must cover

every member ofA and a sufficient set of transition implementation tests and the

dependency relation between the constituent tests must be acyclic.

Speaking formally, the conditions under which the methods of [2–11] trust that

the input sequence of a rooted transition sequence τ of M is a checking sequence

are virtually (a specialization of) the following:

13

(1) A ⊆ seg(ios(τ)) and ios(τ) ∈ uio(s1).

(2) There exist such a subset ∆ of tr(M) and permutation t1, . . . , t|tr(M)\∆| of the

transitions in tr(M) \ ∆ that A ⊆ ios(N) is a sufficient condition for ok(∆)

and for every 1 ≤ i ≤ |tr(M) \ ∆|, seg(τ) comprises a (∆i, ti)-TIT with ∆i ⊆

(∆ ∪ {t1, . . . , ti−1}).

Theorem 4. The above conditions are sufficient.

Proof. Suppose that ios(τ) ∈ lan(N) and, hence, ok′(∆). By (2), this by induction

on i secures ok(ti) for 1 ≤ i ≤ |tr(M) \ ∆|. N is, hence, isomorphic to M. Hence,

by ios(τ) ∈ (uio(s1) ∩ lan(N)), init(N) = s′
1

and, hence, ok(M).

In the following, a rooted transition sequence of M which satisfies the above

constraints is called a checking rooted transition sequence (CRTS).

8. An outline of the employed digraph

The recommended structure of the digraph G is exemplified in Fig. 2, for the

M in Fig. 1. Every vertex of the digraph corresponds to a specific state of M. In

the central part of the digraph, the one in the grey area, every walk starting in the

top row of vertices and ending in the bottom one represents some member of A

or a (conditionally safe) candidate implementation test for an individual transition

of M. In both cases, the concatenation of the labels of the consecutive edges of

the walk is the corresponding transition sequence of M.

The rest of G specifies the possibilities for the interconnection of the transition

sequences. On the left, we see a part isomorphic to M without its loop transitions.

From every vertex of the part, there is a link to every vertex in the top row of

vertices in the central part of G which corresponds to the same state. From every

14

vertex in the bottom row of vertices in the central part of G, there is a link to the

corresponding vertex of the left part. The left part of G, together with the two

kinds of links, specifies how the transition sequences specified in the central part

can be interconnected via auxiliary transition sequences.

The remaining edges, of which only an illustrative one is depicted in Fig. 2,

specify for the transition sequences specified in the central part of G the possi-

bilities for the interconnection with overlapping. The label of such an edge is a

transition sequence of M preceded by a minus. Whenever in a walk of G, the

edge links a pair of edges, the transition sequence is the presumed overlapping

of the transition sequence specified by the previous edge and that specified by

the following one. To the cost of the transition sequence specified by the walk,

such an edge, hence, contributes the negative cost of the transition sequence in its

label. For the other kinds of edges, whose label is a (possibly empty) transition

sequence, the cost is that of the sequence.

Speaking formally, a CRTS in general consists of (possibly overlapping) es-

sential segments and of segments serving for their interconnection, call them

transfer transition sequences. None of the advanced ones among the methods

of [2–11] takes care that in the constructed digraph, the walks representing can-

didate transfer transition sequences consist solely of edges not belonging to any

walk representing a candidate essential segment. In other words, it is possible that

in their digraph, the part specifying candidate transfer transition sequences inter-

sects with the part specifying candidate essential segments, which is a problem,

for the latter is currently supposed to respect rigorous constraints [12].

Example 5. Take the M in Fig. 1 withD = T = {a/0b/1, a/3, a/1, a/0b/0, a/2}.

According to the method of [7] enhanced with the redundant-TIT elimination of

15

v 2 v 3v 4

t 4 a t 2 b t 3 b

t 5 a
t 5 b t 1 a

t 3 b
ts(T

4)

t
4
a .ts(D

2)
ts(T

5)

t
4
b .ts(D

4)

t
3
b .ts(D

1)

t
1
b .ts(D

1)

t
1
a .ts(D

5)

ts(T
5 .D

4)

ts(T
4 .D

3)

ts(T
3 .D

3)

ts(T
2 .D

2)

ts(T
1 .D

2)

G [E +
E S]

- t s (D 5)
v 1

v 5

V f i n

V s t a r tV i n i t

Figure 2: An example G, with the edges in E−, except for an illustrative one, invisible

[4], a CRTS for the case is constructed as a specific kind of composition of the

transition sequences t1
at5

b
t2
a, t2

at2
a, t3

at3
a, t4

at2
b
t3
a, t5

at4
at2

b
, t1

at5
a, t1

b
t1
at5

b
, t3

b
t1
at5

b
, t4

at2
a and t4

b
t4
at2

b
,

with no TITs explicitly provided for the transitions t2
a, t3

a, t5
a, t2

b
and t5

b
. If, however,

the digraph originally constructed to implement the strategy is corrected as sug-

gested in [12], the five transitions are no longer available for the interconnection

of the transition sequences, but without employing t2
b

for the purpose, the inter-

connection is impossible. In the G partially depicted in Fig. 2, the central part

specifies, under the interpretation formalized below, exactly the relevant ones of

the candidate essential segments specified in the original digraph, whereas the rest

of G specifies all the originally specified options for their interconnection, thereby

solving the problem.

As evident from Fig. 2, we suggest that ed(G) consists of three disjoint sets of

edges, an E+
ES

with G[E+
ES

] specifying candidate essential segments, an E+
TTS

with

G[E+TTS] specifying candidate transfer transition sequences, and an E− specifying

the possible essential segments overlaps, with E+
ES
⊎ E+

TTS
an E+. Every edge e in

ed(G) is associated with a transition sequence ts(e) of M, with lab(e) = ts(e) and

cost(e) = cost(ts(e)) if in E+ and with lab(e) = −ts(e) and cost(e) = −cost(ts(e))

16

V s t a r t

V f i n

V E SV T T S

Figure 3: The recommended G sketched with the edges in E+
ES

bold, the edges in E− dotted and

the edges in E+
TTS

ordinary

if in E−. For a walk w = e1 . . . ek of G[E+], let lab(w) denote its label lab(e1) · . . . ·

lab(ek).

The vertices of G are the endpoints of its edges. According to their position in

G, we partition them into the sets Vstart, VES , V f in and VTTS , in a way evident from

Fig. 3. A walk w of G specifies a (conditionally safe) candidate essential segment

if it is a walk of G[E+
ES

] with init(w) in Vstart and f in(w) in V f in. A walk w of G

specifies a candidate transfer transition sequence if it is a walk of G[E+
TTS

] with

init(w) in V f in and f in(w) in Vstart. In both cases, the specified transition sequence

is lab(w).

For every vertex v in Vstart, it is assumed that ts(e) is the same for every edge

e in out(v). For every vertex v in V f in, it is assumed that ts(e) is the same for every

edge e in in(v). It is assumed that Vstart comprises a vertex v with ios(ts(e)) ∈

uio(s1) for the edges e in out(v), with Vinit denoting the set of all such vertices.

E+
TS T

comprises:

1. for every transition t = (si, s j, x/y) in tr(M) with si , s j, an edge (vi, v j, t, cost(t)),

2. for every vertex v in Vstart, with init(ts(e)) of the edges e in out(v) an si, an

edge (vi, v, ǫ, 0) and

17

3. for every vertex v in V f in, with f in(ts(e)) of the edges e in in(v) an si, an

edge (v, vi, ǫ, 0).

E− comprises every feasible edge (v, v′,−τ,−cost(τ)) satisfying the following:

(1) v ∈ V f in and v′ ∈ Vstart.

(2) For the edges e in in(v), τ is a non-empty suffix of lab(e).

(3) For the edges e in out(v′), τ is a prefix of lab(e).

(4) The length of τ is maximized.

For a walk w = w1e1 . . .wkekwk+1 of G with every wi a non-empty walk of

G[E+] and every ei an edge in E−, let lab(w) denote its label (lab(w1) − ts(e1)) ·

. . .·(lab(wk)−ts(ek))·lab(wk+1), with every ts(ei) the shared part of the consecutive

(partially) overlapping segments lab(wi) and lab(wi+1).

9. The central part of the digraph

The proposed structure of the central part of the digraph G is exemplified in

Fig. 5, for the M in Fig. 4. The undirected lines in Fig. 5 are not a part of the

depicted digraph and indicate which of the depicted vertices actually represent

the same vertex of the digraph. We see that the digraph consists of five parts.

They are depicted in the order in which they have been conceived. The leftmost

part specifies the members of A. Each of the remaining parts specifies candidate

implementation tests for some transitions of M not covered by any previously con-

ceived part, where some transitions are covered (it does not matter how) already

by the leftmost part.

In the general case, there can be any number of parts, provided that their col-

lection covers the entire transition set of M. The incremental approach to the

18

design of the central part of G is recommended because it allows that in the de-

sign of any part, one safely assumes correct implementation of A and of every

transition of M covered by a previously conceived part. Thanks to this, a part

can sometimes specify an efficient candidate transition implementation test which

otherwise could not be trusted.

The leftmost part consists of edges representing individual members ofA. The

structure recommended for the remaining parts is exemplified in the fourth part of

the digraph depicted in Fig. 5. The core of such a part (the dotted edges) consists

of edges individually representing the relevant ones among those non-loop tran-

sitions of M which are covered by a previously conceived part or are among the

target transitions of the part. Entering the core, there are one or more (dashed)

edges representing candidate BUIOs safe under the assumptions adopted for the

part. Leaving the core, there are (bold) edges representing individual target transi-

tions of the part. Emanating from the final vertex of every such edge, there are one

or more (ordinary) edges representing candidate UIOs safe under the assumptions

adopted for the part. If a bold edge is followed by a single ordinary edge, the two

edges can be merged into a bold one, as in the second part of the digraph depicted

in Fig. 5.

If a part has a single target transition and the transition is invertible and every

other transition with the same input is covered by a previously conceived part, its

core and its BUIO edges can be omitted, as in the rightmost part of the digraph

depicted in Fig. 5. If a part has a single target transition and specifies for it a

single candidate implementation test, the candidate can be of any desired kind and

represented by a single (bold) edge, as in the third part of the digraph depicted in

Fig. 5. The edges of the leftmost part of the central part of G are also assumed

19

s 1 s 2

s 3

a / 1 a / 0

a / 1

c / 0

c / 0

b / 0

b / 1

b / 0

c / 1

Figure 4: An example M

to be bold. Being bold gives an edge a special status in the final step of checking

sequence construction.

Speaking formally, in the methods of [2–11], one of the necessary conditions

for trusting that the label of a given walk w of G is a CRTS (call such walks

CRTS walks) is also that for a specific subset of ed(G), call it Eacyc, the digraph

G[set(w)∩Eacyc] is acyclic. Every edge in Eacyc represents an individual transition

in tr(M). According to [12], the transitions cannot be freely employed in the (con-

ditionally safe) candidate TITs specified in G, which is a problem, for it decreases

the chances that G has a cheap CRTS walk.

Example 6. Take the M in Fig. 4 with D = T = {a/1a/0, a/0, a/1a/1}. Ac-

cording to the method of [8], the UIO of s1 employed in a candidate TIT for the

transition t3
c can be either D1 or the shorter b/1. If, however, the G constructed

according to the strategy is corrected as suggested in [12], the latter is no longer

possible. The G[E+ES] in Fig. 5, constructed as suggested below, circumvents the

problem, simplifies A and candidate TITs for t2
c and eliminates more redundant

TITs than the method of [5]. Unlike the corrected version of the method of [8], it

also manages to employ b/1 as a short BUIO.

We suggest that one partitions tr(M) into a ∆0 ⊎ . . . ⊎ ∆p with A ⊆ ios(N)

a sufficient condition for ok(∆0), with ⊎0≤ j≤i∆ j a ∆′
i

for 0 ≤ i ≤ p. E+
ES

is then

20

ts(D
1)

t 2 c

t 1 b

G [E 4]

t 1 b

ts(T
2)

ts(T
1)

t 1 c

t 1 a t 2 b
t 3 b

ts(T
3)

t 1 b

t 3 c

t s (D 1)

t s (D 1)t 1 b
t 1 b

G [E 3]

t 3 c

G [E 0]

ts(T
2 .D

2)

ts(T
1 .D

2) t 3 b

ts(T
2)

ts(T
1)

t
2
b .ts(D

3)

t
3
b .ts(D

2)

t 2 b

ts(T
3)

G [E 1]

t
1
b .ts(D

2)

G [E 2]

V f i n

V s t a r t

ts(T
3).t

3
a

Figure 5: An example G[E+
ES

] for tr(M) = {t1
a, t

2
a, t

3
a} ⊎ {t

2
b
, t3

b
} ⊎ {t1

b
} ⊎ {t1

c , t
3
c } ⊎ {t

2
c }, with the edges

in Etrg bold, the edges in Eacyc dotted, the edges in Ebuio dashed, the edges in Euio ordinary and

the vertices in Vinit black. The undirected lines are not a part of the digraph and indicate which of

its depicted vertices are actually identical.

conceived as an E0 ∪ . . . ∪ Ep with G[E0] specifying A and every G[Ei] with

1 ≤ i ≤ p specifying candidate TITs for the transitions in ∆i. The default p for the

case of ∆0 , tr(M) is 1.

We suggest that for 1 ≤ i ≤ p, Ei is conceived as an Ebuio
i
⊎ Ecore

i
⊎ E

trg

i
⊎

Euio
i

, with ∪1≤ j≤pEbuio
j

an Ebuio, ∪1≤ j≤pEcore
j

our Eacyc, E0 ∪ (∪1≤ j≤pE
trg

j
) an Etrg and

∪1≤ j≤pEuio
j

an Euio.

In the following, if we call a vertex uτ or wτ (with τ a transition sequence of

M), it belongs to Vstart or V f in, respectively. Otherwise, it belongs to VES .

The edges in E0 represent individual members of A, where the edge corre-

sponding to a given z̄ in A is specified as (uτ,wτ, τ, cost(τ)) with τ a selected

transition sequence of M with ios(τ) = z̄.

For 1 ≤ i ≤ p, we define three alternative forms of G[Ei], sketched in Fig. 6.

The first option is that ∆i comprises a single transition, a t, and Ei comprises a

single edge, an e = (uτ,wτ, τ, cost(τ)) with τ a (∆′
i−1
, t)-TIT, with the singleton

walk set {e} a Wt. In Fig. 5, an example of such a G[Ei] is G[E2]. Preferably,

21

G [E i
c o r e]

Figure 6: The three alternative forms of G[Ei] for i > 0 sketched with the edges in E
trg

i
bold, the

edges in Ebuio
i

dashed and the edges in Euio
i

ordinary

select e among the members of E0 ∪ (∪1≤ j≤i−1E
trg

j
).

The second option is that ∆i comprises a single transition, an invertible t with

f in(t) an s j, (nxt(t) \ {t}) ⊆ ∆′
i−1

, Ebuio
i

and Ecore
i

are empty, E
trg

i
comprises a

single edge, an e = (ut, qt, t, cost(t)), Euio
i

is non-empty and every edge in Euio
i

is a (qt,wτ, τ, cost(τ)) with τ a selected transition sequence of M with ios(τ) a

(∆′
i−1, j)-UIO, with the walk set {e · e′|e′ ∈ Euio

i
} a Wt. In Fig, 5, an example of

such a G[Ei] is G[E4].

The third option (the default choice) is that G[Ei] is structured as sketched in

Fig. 6 on the right and defined in the following:

(1) Ebuio
i

is non-empty and every edge in it is a (uτ, v
i
j
, τ, cost(τ)) with τ a selected

transition sequence of M, s j = f in(τ) and ios(τ) a (∆′
i−1
, j)-BUIO. The default

candidates for ios(τ) are the members of T .

(2) Every edge in Ecore
i

is a (vi
j
, vi

k
, t, cost(t)) with t a selected transition in ∆′

i
,

s j = init(t), sk = f in(t) and s j , sk. The default candidates for t are all those

transitions in ∆′
i

which are not a loop.

(3) E
trg

i
consists of one edge per each individual transition t in ∆i, with init(t) an

s j and f in(t) an sk. The edge can be either (vi
j
, qt, t, cost(t)) with |out(qt)| > 1

22

or (the default option) a (vi
j
,wt·τ, t · τ, cost(t · τ)) with τ a selected transition

sequence of M with ios(τ) a (∆′
i−1, k)-UIO, where the default τ is ts(Dk).

(4) Euio
i

consists of two or more edges per each individual transition t in ∆i whose

edge in E
trg

i
ends in qt. Every edge for such a t, with f in(t) an s j, is a

(qt,wτ, τ, cost(τ)) with τ a selected transition sequence of M with ios(τ) a

(∆′
i−1, j)-UIO. The only default candidate for τ is ts(D j).

(5) For a transition t in ∆i, let Wt denote the set of those walks of G[Ei] which

start in Vstart, end in V f in and traverse the edge in E
trg

i
whose label begins with

t. It is assumed that every edge in Ei belongs to a walk in Wt of some t in ∆i.

This is trivial to achieve at least if ∆′
i
= tr(M).

Example 7. In Fig. 5, the third kind of structuring has been employed for G[E1]

and G[E3]. In Ecore
3

, the only useful edges are those labelled t2
b

and t3
c . If its useless

members are deleted, its t2
b

edge can be merged with each of the preceding edges

in Ebuio
3

.

10. Candidate walks

For an explanation of which walks in the digraph G are candidates for selec-

tion, because they are trusted to correspond to a checking sequence, let us recon-

sider the example G partially depicted in Fig. 2. In the top row of vertices in the

central part of G (the grey area), every vertex by construction has the property that

its outgoing edges all have the same label. Of special interest are those for which

the label corresponds to a UIO of the initial state of M, for these are the vertices

of G in which candidate walks are allowed to start. The vertices in which they are

allowed to end are those in the bottom row of vertices in the central part of G.

23

For an explanation of the remaining two conditions which a walk of G has to

satisfy to be a candidate walk, reconsider the example central part of G depicted in

Fig. 5. Recall that the central part of G has bold and non-bold edges. A candidate

walk traverses every bold edge at least once. Recall also that the central part of

G is a series of parts, of which all but the first one are allowed to have a core. In

the figure, the edges of the cores are the dotted ones and in the fourth part, we see

that cores can have cycles. It can happen that a walk of G comprises every edge

of such a cycle, but then it does not qualify for a candidate walk.

Speaking formally, we define that a walk w of G is a CRTS walk if (init(w) ∈

Vinit) ∧ (f in(w) ∈ V f in) ∧ (Etrg ⊆ set(w)) and the digraph G[set(w) ∩ Eacyc] is

acyclic.

Theorem 5. The above conditions are sufficient.

Proof. By (init(w) ∈ Vinit) ∧ (f in(w) ∈ V f in), lab(w) of such a w is a transition

sequence of M (recall the last paragraph of Section 8), a τ.

For every z̄ in A, set(w) by E0 ⊆ Etrg ⊆ set(w) comprises an edge e with

ios(lab(e)) = z̄. Hence,A ⊆ seg(ios(τ)).

By init(w) ∈ Vinit, w starts with an edge e satisfying ios(lab(e)) ∈ uio(s1).

Hence, ios(τ) ∈ uio(s1).

A ⊆ ios(N) is a sufficient condition for ok(∆0). For every 1 ≤ i ≤ p and

transition t in ∆i, take any walk wt in seg(w)∩Wt, with ∆′
i−1∪{t

′|(t′ ∈ tr(M))∧∃e ∈

(set(wt) ∩ Ecore
i

) : (ts(e) = t′)} a ∆′′t and lab(wt) a (∆′′t , t)-TIT. Its existence is

implied by (init(w) ∈ Vinit) ∧ (f in(w) ∈ V f in) ∧ (Etrg ⊆ set(w)).

For every 1 ≤ i ≤ p, by G[set(w)∩ Eacyc] acyclic, G[set(w)∩ Ecore
i

] is acyclic.

There, hence, exists such a permutation ti
1
, . . . , ti

|∆i |
of the transitions in ∆i that for

24

every 1 ≤ j ≤ |∆i|, ∆
′′

ti
j

⊆ (∆′
i−1
∪{ti

1
, . . . , ti

j−1
}). Hence, t1

1
, . . . , t1

|∆1|
, . . . , t

p

1
, . . . , t

p

|∆p|
is

such a permutation t1, . . . , t|tr(M)\∆0 | of the transitions in tr(M)\∆0 that for every 1 ≤

i ≤ |tr(M)\∆0|, seg(τ) comprises a (∆′′ti , ti)-TIT with ∆′′ti ⊆ (∆0∪{t1, . . . , ti−1}).

11. The search for a minimum-cost candidate walk

Following an idea of [6], we suggest that the search for a minimum-cost can-

didate walk of G proceeds as follows:

1. Construct a digraph which, as sketched in Fig. 7, consists of the edges of

G, of an additional bold edge, of edges connecting the final vertex of the

bold edge to those vertices of G in which a candidate walk can start, and of

edges connecting to the starting vertex of the bold edge those vertices of G

in which a candidate walk can end.

2. From copies of edges of the above digraph, construct one of the minimum-

cost symmetric digraphs comprising, among other edges, exactly one copy

of the additional bold edge and at least one copy of each individual bold

edge of G.

3. If the digraph consists of multiple components, connect them by adding

copies of adequate cycles of the digraph G.

4. In the resulting digraph, construct a walk starting and ending in the initial

vertex of the additional bold edge and traversing every edge exactly once.

By removing its first two edges and its last one, one obtains an optimized

candidate walk of G.

Speaking formally, in the first step, one constructs a digraph G′ defined as

follows:

25

v 0

v ' 0

V f i n

V i n i t

G

Figure 7: G′ sketched with e0 bold, the edges in E f in dotted and the edges in Einit ordinary

vr(G′) = vr(G) ⊎ {v0, v
′
0
}

ed(G′) = ed(G) ⊎ {e0} ⊎ Einit ⊎ E f in

e0 = (v0, v
′
0
, ǫ, 0)

Einit = {(v
′
0, v, ǫ, 0)|v ∈ Vinit}

E f in = {(v, v0, ǫ, 0)|v ∈ V f in}

For a given edge set E, let org(E) denote the set of those edges (originals) in

ed(G′) of which E comprises a copy. In the second step, one constructs a strongly

connected symmetric augmentation G′′ of Etrg ⊎ {e0} in ed(G′) \ {e0}, as follows:

1. Initialize G′′ to a minimum-cost symmetric augmentation of Etrg ⊎ {e0} in

ed(G′) \ {e0}. This is the most demanding step of the procedure, but can be

accomplished in polynomial time [13].

2. While G′′ has more than one component, merge two of its components, a

G1 and a G2, as follows:

a) In G, select a minimum-cost cycle wc with ((vr(wc) ∩ vr(G1)) , ∅) ∧

((vr(wc) ∩ vr(G2)) , ∅) and G[(org(ed(G′′)) ∪ set(wc)) ∩ Eacyc] acyclic.

b) Enhance G′′ with a new copy of every edge in wc.

In the last step, one constructs in G′′ a walk starting and ending in v0 and

traversing every edge in ed(G′′) exactly ones. Construction of such an Euler tour

26

is trivial. The tour is a copy of a walk e0 · e1 ·w · e2 of G′ with e1 in Einit, e2 in E f in

and w, as we now prove, a CRTS walk.

Theorem 6. The above procedure is sound.

Proof. The initial version of G′′ satisfies the following:

(1) Every edge is a copy of an edge in ed(G′).

(2) The directed (multi)graph is symmetric.

(3) Exactly one edge is a copy of e0. Hence, exactly one edge is a copy of an

edge in Einit and exactly one edge is a copy of an edge in E f in, for otherwise

the directed (multi)graph would not be symmetric.

(4) For every edge in Etrg, there is at least one copy.

(5) G[org(ed(G′′))∩Eacyc] is acyclic, because for any cycle in the digraph, of cost

more than zero, G′′ would have a copy whose edges could be removed from

ed(G′′) to contradictorily obtain an even cheaper symmetric augmentation of

Etrg ⊎ {e0} in ed(G′) \ {e0}.

In any subsequent merging of two components, with a copy of a cycle wc

of G, all the five properties of G′′ are preserved, because no edge is removed,

every new edge is a copy of an edge in ed(G), the new edges form a cycle and

G[(org(ed(G′′)) ∪ set(wc)) ∩ Eacyc] is acyclic. Hence, the final version of G′′ also

possesses the five properties, which makes w a CRTS walk.

12. Discussion and conclusions

In the paper, we re-engineered an established approach to checking sequence

construction with global optimization. By the re-engineering, we restored its orig-

inal power, which has recently been diminished by a non-optimal correction of

27

detected flaws. With the new method, one can, hence, exploit test overlapping and

alternative kinds of transition implementation tests at least as much as originally

in the methods of [2–11]. Experimental studies on how much this can contribute

to the length optimization of the checking sequence are available in [10, 14]. The

chances strongly depend on the choice of the candidate transition implementa-

tion tests, whose key part are the employed state recognizers. Each of the studies

targets a specific promising kind of state recognizers allowed by the methods of

[2–11].

The new method is a semantic generalization of the methods and, unlike them,

open to new kinds of transition implementation tests, possibly based on new kinds

of state recognition patterns [15]. It can readily consider as candidate checking

sequence segments also promising segments of checking sequences generated by

other methods, such as, for example, the so called incremental methods [16–19].

Efficient exploitation of the new options is for further study.

Another virtue of the new method is that in its every step, one is forced to

be fully aware of what one is doing and for what purpose. Most importantly,

it commands explicit consideration of any dependencies between the considered

candidate transition implementation tests. In the methods of [2–11], this is not

always the case, which is why the problematic ones, if uncorrected, sometimes

generate a sequence which combines tests in a cyclic dependency relation and,

hence, cannot be trusted [12].

Finally, the new method can be regarded as a template for new simple-to-use

more specific methods, for note that not everybody is skilled enough to employ

it directly. The identification of its specializations of practical interest other than

analogues of the methods of [2–11] is another task for the future.

28

References

[1] A.T. Endo, A. Simão, Evaluating test suite characteristics, cost and effec-

tiveness of DFSM-based testing methods, Inf. Soft. Tech. 55(6) (June 2013)

1045-1062.

[2] H. Ural, X. Wu, F. Zhang, On minimizing the length of checking sequences,

IEEE Trans. Comput. 46(1) (Jan. 1997) 93-99.

[3] R. M. Hierons, H. Ural, Reduced length checking sequences, IEEE Trans.

Comput. 51(9) (Sept. 2002) 1111-1117.

[4] J. Chen, R. M. Hierons, H. Ural, H. Yenigün, Eliminating redundant tests

in a checking sequence, Proc. IFIP Int’l Conf. Testing of Communicating

Systems, pp. 146-158, May-June 2005.

[5] K. T. Tekle, H. Ural, M. C. Yalcin, H. Yenigün, Generalizing redundancy

elimination in checking sequences, Proc. Int’l Symp. Computer and Infor-

mation Sciences, pp. 915-925, Oct. 2005.

[6] R. M. Hierons, H. Ural, Optimizing the length of checking sequences, IEEE

Trans. Comput. 55(5) (May 2006) 618-629.

[7] H. Ural, F. Zhang, Reducing the length of checking sequences by overlap-

ping, Proc. IFIP Int’l Conf. Testing of Communicating Systems, pp. 274-

288, May 2006.

[8] M. C. Yalcin, H. Yenigün, Using distinguishing and UIO sequences together

in a checking sequence, Proc. IFIP Int’l Conf. Testing of Communicating

Systems, pp. 259-273, May 2006.

29

[9] R. M. Hierons, G.-V. Jourdan, H. Ural, H. Yenigün, Using adaptive dis-

tinguishing sequences in checking sequences, Proc. ACM Symp. Applied

Computing, pp. 682-687, March 2008.

[10] L. Duan, J. Chen, Exploring alternatives for transition verification, J. Syst.

Soft. 82(9) (Sept. 2009) 1388-1402.

[11] R.M. Hierons, H. Ural, Generating a checking sequence with a minimum

number of reset transitions, Aut. Soft. Eng. 17(3) (Sept. 2010) 217-250.

[12] M. Kapus-Kolar, On “Exploring alternatives for transition verification”, J.

Syst. Soft. 85(8) (Aug. 2012) 1744-1748.

[13] A.V. Aho, A.T. Dahbura, D. Lee, M.U. Uyar, An optimization technique for

protocol conformance test generation based on UIO sequences and Rural

Chinese Postman Tours, IEEE Trans. Comm. 39(11) (1991) 1604-1615.

[14] G.-V. Jourdan, H.Ural, H. Yenigün, J.C. Zhang, Lower bounds on lengths of

checking sequences, Form. Asp. Comp. 12(6) (Nov. 2010) 667-679.

[15] M. Kapus-Kolar, New state-recognition patterns for conformance testing of

finite state machine implementations, Comput. Stand. Int. 34(4) (June 2012)

390-395.

[16] A. Simão, A. Petrenko, Generating checking sequences for partial reduced

finite state machines, Proc. IFIP Int’l Con. Testing of Software and Commu-

nicating Systems, pp. 153-168, June 2008.

[17] A. Simão, A. Petrenko, Checking sequence generation using state distin-

30

guishing subsequences, Proc. IEEE Int’l Workshops Software Testing, Veri-

fication, and Validation, pp. 48-56, April 2009.

[18] M. E. Dincturk, A Two Phase Approach for Checking Sequence Generation,

M.Sc. Thesis, Sabancı University, August 2009.

[19] A. Petrenko, A. Simão, N. Yevtushenko, Generating checking sequences for

nondeterministic finite state machines, Proc. IEEE Int’l Conf. Software Test-

ing, Verification and Validation, pp. 310-319, April 2012.

31

