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Abstract 

In this project report, the main features of the current NAPOM program code implementation 

and its execution performance on the Marine Biology Station (MBS) computing cluster are 

assessed. The FORTRAN source code is examined and analysed to determine the behaviour of 

the numerical implementation of the physical model, while the hardware architecture MBS 

cluster is tested to design the most effective optimization and parallelization action. Bottlenecks 

are identified on both ends. The improvements of the main program code as well as the redesign 

of the pre-process scripts are performed in order to achieve shorter execution time. Most 

modules of the NAPOM package are optimized to achieve maximal performance regarding the 

hardware architecture, specifically memory architecture. The pre-process modules are distributed 

on more computational nodes while all independent complex operations are parallelized with the 

shared memory principles. The optimized/parallelized implementation of a NAPOM package 

executes four times faster than the original one with only a minimal additional load to the MBS 

cluster, i.e. with the same consumption of energy.       
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1 Introduction 

The Princeton Ocean Model (POM) [1] is a 3D primitive formulation model. The model 

considers fluid flow through Navier Stokes momentum equation coupled with non-linear 

equations of state together with energy and salinity transport. POM uses two level Euler 

temporal discretization and Finite Differences Method (FDM) [2] for spatial discretization. The 

horizontal velocity components, heat, salinity and kinetic energy transport are solved explicitly 

(internal mode), while pressure, density and vertical velocity component are solved implicitly 

(external mode). The internal and external modes are solved at different temporal resolutions. 

The splitting rate is set based on the integration stability criteria (CFL conditions) [3]. The 

dynamics of the internal mode is much less intense and thus it uses longer time step in 

comparison with the external mode. The internal mode is computed on a 3D domain, while the 

external considers a 2D domain.   

The POM model stands for standard numerical tool for circulation forecast in several countries. 

The augmented variant of POM, referred as NAPOM (North Adriatic POM) is used for academic 

and operative forecast at Marine Biology Station in Piran as well as at the Slovenian 

Environment Agency (SEA). The NAPOM is derived from a variant of POM, which undergone 

last changes in 2006. The NAPOM incorporates local bathymetry, products form local 

meteorological models (boundary and initial conditions), and daily measurements of rivers 

discharge and temperature. The whole numerical package consists of two major parts; first, the 

pre-process where all the required data is gathered and adequately transformed, and second, the 

main code, where numerical simulation takes place. The original POM is written in FORTRAN 

77; however, the augmentations are written in a mixture of FORTRAN 77 and FORTRAN 90. 

The code uses single precision data type and is assembled mainly in a single source file. The 

current code is sequential. The main goal of the present work is to analyse the computational 

performance of the NAPOM, identify flaws and propose improvements. Besides the optimization 

of the code, the parallelization is to be considered, as well.  
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2 Current status  

The project starts with the analysis of the current run-time environment status. The work is 

performed directly on a copy of the operative code installed on the MBS cluster. The task is 

divided in three main parts  

 

 analysis of the pre-process procedures,  

 analysis of the main program code and  

 analysis of the cluster hardware that executes the main code.   

2.1. Pre-process procedures 

During the pre-process various scripts initiate automatic connections to the SEA and the INGV 

servers and download data required to set up the simulation environment. Few hundreds of Mb 

of data is transferred and processed before each simulation run. The whole pre-process procedure 

is executed sequentially on the head node, where the processed data is stored in several binary 

files. The main pre-process steps together with the current average execution time are presented 

in Table I.  

2.2. Main program code  

After the data preparation in the pre-process procedures, the main NAPOM code is executed. 

The code is compiled with the PGI FORTRAN compiler [4], which has been upgraded from 

version 7.2 to version 12.8 within the current optimization task.  The NAPOM runs with a time 

step of 90 s on an orthogonal cell grid of 600x600 m with 10 vertical layers. The simulation 

covers a period of three days (real time) in 2880 iterations. Maximal velocities are within the 

range of 1 m/s and, according to the POM manual [5], the stability criteria are satisfied. The 

modules of the main code, together with the average execution time, are presented in Table II 

and in the graphical form with a bar plot in Figure 1. 

 

Table I: The pre-process elements  

# script Description execution 

time [s] 

1 get.arso.data.sh Retrieve 140Mb of data from SEA.  14.20 
2 get.ingv.data.sh Retrieve 224 Mb of data from INGV server. 78.40 
3 extract.arso.data.sh Extracting the data from SEA. 88.05 
4 run.cmsj2napom.sh Preparation of SEA data for NAPOM. 398.20 
5 init_ingv_ts_obc.sh Preparation of INGV data for NAPOM. 144.10 
6 run.clima.sh  4.00 

cumulative pre-process time  726.95 

 

Table II: The NAPOM main code elements 
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# Description execution 

time 1 [s] 

7 program initialization 0.47 
8 initial outputs 0.09 
9 internal loop initialization 11.62 
10 computations of lateral viscosity 209.24 
11 external loop initialization 14.26 
12 boundary conditions(1) & advave 77.00 
13 compute ua, va 62.46 
14 boundary conditions (2) 16.91 
15 8000 final loops 20.97 
16 vertvl & boundary conditions  (5) 30.41 
17 advq called on T and S, profq & boundary conditions  (6) 313.86 
18 advt called on T and S 600.26 
19 proft called on T and S, & boundary conditions  (4) 128.40 
20 dens 57.87 
21 compute uf, vf & boundary conditions  (3) 144.06 
22 output routines at the 9000 end 7.72 

Cumulative execution time [s] 1695.60 

 

 

 
Figure 1: Execution time of different NAPOM modules 

 

2.3. Hardware setup 

In order to start an effective optimization, the computation resources have to be adequately 

analysed. Besides the CPU power, the memory architecture also plays an important role in 
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intense computations. From the distributed parallelization point of view, the network 

performance is equally important, as well. 

The MBS uses a computer cluster built from five computing nodes. Each node has a single 4-

core Intel(R) Xeon(R) CPU E5440 @ 2.83GHz with 64 kB of L1 cache per core. Two pairs of 

cores share 6 MB of L2 caches and all cores share 8 GB of the main memory. Two Gigabit 

Ethernet ports are bonded in a load balancing (round-robin) mode and connected to a switch. The 

nodes are running Linux Ubuntu 8.04.2 operating system.  

For better presentation, all measured results obtained from MBS computing cluster are compared 

against the reference test cluster, installed at IJS-E6, The reference cluster is built from 36 nodes, 

each with Intel(R) Xeon(R) CPU E5520 @ 2.27GHz with 64 kB of L1 and 256 kB of L2 cache 

per core, and a shared 8 MB L3 cache. Each node also comprises 6 GB of 1066 MHZ DDR3 

RAM, connected in a three channel configuration and 8 Gigabit Ethernet ports. All 288 Ethernet 

ports are connected to 8 40-port Gigabit Ethernet switches for a reconfigurable interconnection 

network of the cluster. The nodes are running Ubuntu 12.04 operating system. 

The first measurement is focused on the speed of floating point computations. The set of basic 

floating point operations, and several combined operations, are used in the benchmarking (Table 

III).  

 

Table III: Function list with 32 bit float variables a, b, c; 

# Function # Function # Function # Function 

1  a                 7  c=a-b           13  c=pow(a,b)         20  c=min(a,b)          

2  c=0              8  c=a*M_PI      14  c=exp(a)             21  c=exp(a)+exp(b)  

3  c=M_PI         9  c=a*b          15  c=log2(a)            22  c=sin(a)+cos(a)   

4  c=a              10  c=a/b           16  c=sin(a)              23  function(c,a,b)     

5  c=a+M_PI      11  c=a%b          17  c=atan2(a)          24  c=rand [0..1]       

6  c=a+b          12  c=(a+b)*(a-b)*(b-a)+b 18  c=sqrt(a)              

 

 

The results are stated in averaged time (over 10
4
 repetitions) needed to compute each operation. 

The comparison of results between the reference and MBS clusters is presented in Figure 2. Note 

that the performances of both CPUs are similar. More complex operations are computed faster 

on the reference machine, while some simpler operations are faster on the MBS machine; but, in 

general, the performances are within the same range.   
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Figure 2: Comparison of CPU performance on different operations (Table III) 

 

The performance of memory is tested with random reads and writes of data blocks. The size of 

data varies from a few kB to 64 MB. The results are presented in Figure 3. The cache effects are 

clearly visible; as long as the data size is small enough to fit into the cache memories, the 

performance of MBS nodes is sound; however, the MBS nodes suffer from the slow main 

memory access that is about four times slower in comparison to the reference machine.    

 

 

 
Figure 3: Comparison of memory performance.  

 

Finally, the performance of communication network is tested. The results are presented in 

Figure 4. Again, the results are compared against the reference cluster. It is evident that the 

communication latencies (rate by shorter messages) are within the same range on both systems, 
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however, the bandwidth of the MBS interconnect is approximately two times smaller in 

comparison to the reference cluster. 

 

 
Figure 4: Comparison of network performance.  

 

2.4. Behaviour of the numerical integration 

The NAPOM model consists of the highly coupled and non-linear problems (fluid flow coupled 

with energy and salinity transport, turbulence models, etc.) as well as hyperbolic nature from 

advective dominated salinity transport. Consequently, the numerical integration of the model 

might be unstable, i.e. small perturbations tend to cause large differences in the final fields. The 

problem could be even more pronounced as the code is implemented in a single precision mode. 

We noticed that even changing the compiler and/or compiler flags influences the results. Similar 

effects are noticeable when the code is vectorized or when minor changes without any 

mathematical meaning, e.g. various numerical operation sequences, are inserted. To confirm that 

the enumerated effects are a consequence of rounding errors, simple analysis is done. The input 

data is perturbed just on the last bit, where the rounding takes place. The results obtained from 

the perturbed input are compared against the results obtained from the non-perturbed input. The 

differences are expected to be minimal. The difference is calculated, for each velocity layer, as 

an absolute difference between the original and the perturbed fields, normalized with the 

maximum value within the considered layer. From Table IV one can see that the maximal 

differences are substantial (3 to 9 %) in all layers, which indicates that some ill-conditioned 

modules could be present within the current NAPOM code. In Figure 5 the results of the original 

and the perturbed case together with the difference for w velocity component on layer 4 are 

shown. 
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Table IV: Difference statistics for different w-layer. 

layer (z) max (difference) mean (difference)   std (difference) 

1 0.00e+00 0.00e+00 0.00e+00 

2 8.68e-02 5.18e-04 1.30e-03 

3 6.75e-02 3.85e-04 9.22e-04 

4 6.97e-02 3.24e-04 7.96e-04 

5 5.38e-02 2.74e-04 6.56e-04 

6 3.79e-02 2.48e-04 5.48e-04 

7 3.72e-02 2.45e-04 5.54e-04 

8 3.59e-02 2.50e-04 5.51e-04 

9 2.74e-02 2.55e-04 5.61e-04 

10 8.47e-02 2.76e-04 9.88e-04 

11 8.47e-02 2.76e-04 9.88e-04 

 

 

The behaviour with the respect to other actions, e.g. changing compiler, flags, coding approach, 

etc., have also been tested. All actions introduce a considerable change (difference) in the final 

result. The difference tolerance for further testing and comparisons of obtained results is set to 

the range obtained from the presented test in Table IV. Although the topic should be further 

investigated, the discussions about the stability, and other related topics are out of the scope of 

the current work.  
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Figure 5: Comparison of original and perturbed calculation and difference between them. 

3 Optimization strategy 

Based on the code and hardware analysis, actions for parallelization and optimization of the 

NAPOM are proposed.  

 In the first stage, the program code needs some corrections. There are some obvious 

flaws, e.g. accessing the non-existing elements of array. Fortunately, those accesses did 

not produce fatal errors as the further processing did not take in account values gathered 

from invalid addresses.   

 There are unnecessary operations, e.g.  
4

2 2x y or ...x y a a   ,… Such operations 

produce computational overheads as well as additional rounding errors.  

 There are multiple similar independent programming loops which could be implemented 

as a single loop.  
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 There are unnecessary initializations of large matrix variables as well as intermittent large 

matrix variables for storing intermediate results that could be replaced with scalar 

variables.    

 The main program code requires a substantial amount of memory; consequently most of 

the memory operations are performed in the main memory instead of in the cache 

memory. As shown in the memory performance measurements, the main memory 

performance is a bottleneck of MBS nodes. On the other hand, the MBS CPUs have 

relatively large caches at disposal that are not fully utilized in algorithms that only use a 

single core. Each CPU has two 6MB L2 caches, i.e. pair of cores share one L2 cache. 

Therefore, the most demanding parts of the code should be redesigned in order to 

minimize the penalties from accessing the main memory. One of the first steps is to use 

all available caches instead of just half as in current implementation.  

 The first step towards fully parallel code is the parallelization of all internal loops, in the 

sense that the highest possible number of cores that share the same memory will be 

engaged in the parallel program execution. In this way the computational resources 

increases with the number of cores, however with small penalties for non-intensive inter-

core communication. There are several independent executions of the almost identically 

complex modules (advt called on T and S, advq called on T and S) which can be executed 

in parallel, within a multi-thread program that will run on more computing cores, with 

minimal overheads for threads generation. All bigger independent spatial loops can be 

also executed on more cores to maximize efficiency.    

 Second possibility, based on the domain decomposition and a message passing paradigm 

is not optimal for the existing MBS architecture. Based on the previously presented 

results from the evaluation of hardware components, the obtained execution times and the 

characteristics of data structures used in the simulations, the distributed parallelization of 

the actual NAPOM code is not likely to be effective. The communication overheads 

would diminish the benefits obtained from concurrent execution of the program code on 

more computational nodes. There is simply not enough computational complexity in 

comparison to the required communication. Besides that, the domain decomposition 

would require severe interferences in the code. By our opinion, such an approach is not 

suitable for current task. However, the distributed parallelization would be interesting if 

the code would be executed on a cluster with more computational nodes and on more 

computationally demanding cases (finer grids, additional physical phenomena, etc.).  

 The pre-processing phase consumes about one third of the whole execution time and 

should be thoroughly optimized. The pre-processing phase can be, from the execution 

time point-of-view, severely improved.   

 The pre-process utilizes several independent loops that should be parallelized with the 

same principles as the main code.   
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 In the pre-process several independent actions are performed (downloading, 

decompressing, data processing, etc), which can be executed concurrently to maximize 

the efficiency of a computing node. The concurrent execution would considerably reduce 

the execution time of the pre-process scripts.    

 The data downloading and processing from SEA server could be divided in two parts and 

executed on two additional nodes.   

 Finally, the compiler is not optimally configured; the compiler flags should be set to 

speedup the program execution. 

 

With the above proposed actions the NAPOM package should execute much faster and, to some 

point, more accurate, since unnecessary rounding will be removed. The proposed 

optimization/parallelization strategy will minimally affect the MBS cluster CPU workload. One 

node will be, however, fully occupied most of the execution time and only two additional 

computational nodes will be occupied during the pre-process phase. Considering the execution 

time of the original sequential code, the resulting parallel code will effectively lower the power 

consumption of the MSB cluster, while computing the same amount of results.        

4 Implementation of proposed improvements 

4.1. Pre-process 

After the analysis and planning phase, the implementation of proposed improvements takes 

place. For the sake of readability only the major actions are presented.  

First, the pre-process is redesigned. The considerable amount of effort in the pre-process 

optimization has been put into synchronization of all modules. The downloading, decompressing 

and data processing are now concurrent, which considerably reduces the execution time. All the 

concurrent runs of the scripts have been tuned to maximize the efficiency. Three computational 

nodes are used in the pre-process phase. Besides the head node, where most of the work is done, 

the data from SEA is divided in two parts and distributed among additional two computers (host 

1 and host 2).  The workflow diagram of optimized pre-process phase is schematically presented 

in Figure 6. 
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Host 1 
download and process day 1 from SEA server

Host 2 
download and process day 2 from SEA server

START
On head node

Arso_extract.sh  
day 1

init

Ingv_downloa
d.sh

Run_clima.sh

Init_ingv_ts_o
bc.sh

Download
On the fly 

decompress

Csmj2napom.f Parallelized

Communication with head node

Arso_extract.sh 
day 2

Download
On the fly 

decompress

Csmj2napom.f Parallelized

Communication with head node
Heat flux

Wind stress
Pressure

Air density
Average tide

NAPOM 
prepare

Parallelized

Run NAPOM

 

Figure 6: Diagram of optimized pre-process phase 

 

 

Besides the improvements presented in Figure 6, several other improvements have been 

implemented, e.g. changing download protocol to achieve better performance, on the fly 

decompression, removing unnecessary numerical operations,  etc.  

4.2. Main code 

Next, the improvements in the main NAPOM code are shown in Figure 7. Most of the 

demanding operations with high memory usage have been decomposed over y coordinate in 

order to maximize the cache hit rate. Independent operations with small memory footprint have 

been parallelized to run concurrently with OpenMP API. Loops with larger memory footprints 

that shared a set of variables were combined and converted into the smallest possible number of 

parallel loops. The sequential code has been redesigned into multi-threaded code, which exploits 

full capabilities of a single computer. All the cores are involved in computations with an optimal 

reordering of computation regarding the cache architecture. The diagram presented in Figure 7 is 

based on the block diagram from POM manual. Please note that only changed modules are 

shown..  
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START

Set parameters
Init

LOOP 9000

advct
barop

Parallelized
two loops combined

decomposed

loops Parallelized

advave Parallelized

adx2D
ady2D

Parallelized
two loops combined

decomposed

loops Parallelized

LOOP 8000

compute_EL Parallelized

advave Parallelized

ua_T_va Parallelized

loops Parallelized

adj_integral Parallelized

8000

adj_integral Additional decompose
Advq(q2)
Advq(q2l)

Parallelized
two loops combined

decomposed

Set_g2b_g2lb Parallelized

Advt2(T)
Advt2(S)

Parallelized
two loops combined

decomposed

proft(T)
proft(S)

Parallelized
two loops combined

decomposed

loops Parallelized

9000

finalization

END

dens Parallelized

Adv_u_adv_... Parallelized

 

Figure 7: Diagram of optimized NAPOM main code 
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Besides the presented actions, there are several smaller improvements implemented, e.g  

removing unnecessary mathematical operations, removing unnecessary temporary matrices, 

reducing unnecessary memory copying, etc. 

 

Finally, the compiler and run time environment are set up as shown in Table V. 

 

 

Table V: Compiler and run-time setup. 

Compiler:  -Mextend -O4 -fast -mp=numa -Mquad -Mnofpmisalign -Mdse 

run time 

environment: 

 

ulimit -s unlimited 

export MP_BIND="yes" 

export MP_BLIST="0,1,2,3" 

 

5 Results 

5.1. Results of numerical integration 

In section 2.4 the stability of the NAPOM package has been discussed. It has been shown that 

even small interferences in the compiling procedure, e.g., using alternative compiler and/or 

setting compiler flag -mp, or in the input data cause measurable differences in the final computed 

results. During the optimization process the NAPOM code has undergone several changes (see 

section 3), therefore, before we start with the speedup measurements, integration results of 

original and optimized code are compared.  The results of a full 72 hours NAPOM simulation on 

23.11.2012 are used for the analysis of optimized code. In Figure 8 the qualitative comparison of 

the original and optimized calculations is presented for w velocity on layer 4. The differences are 

minimal. More detailed quantitative comparison is introduced in Figure 9, where six physically 

relevant fields are analysed (density, salinity, temperature and all three velocity components). 

Note that the variables are named according to the output file that represents the results of 

simulation. Figure 9 comprises two plots, the left one stands for the analysis of differences in 

results, which were observed after the perturbation of a single input file (see section 2.4) and the 

right one stands for the analysis of differences observed after the complete run of the final 

version of the fully optimized and parallelized NAPOM package. As expected, the differences 

are higher in the final version of NAPOM package, which includes multiple changes to the pre-

processing and the main NAPOM code that all influence rounding, compiler optimization 

switches, usage of advanced execution models (Streaming SIMD Extensions (SSE) or Advanced 

Vector Extensions (AVX)), etc. However, the differences are within the same ranges. A 

significant effort is needed, which is beyond the scope of this project, to exactly determine which 

results, original or optimized, are more accurate, as the optimized code performs significantly 

less rounding. It is also important to interpret the presented comparison in a proper way. The 
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subtraction of two fields is not necessarily a good measure for the accuracy of results. In the 

presented case we are dealing with highly non-linear and coupled system, which may result in 

highly unpredictable output. The results could be different if the same code with the same input 

would be executed on different computers with different hardware architectures. The goal of the 

presented comparison is to show that the optimized code provides the simulation results, which 

are within the same ranges as the original one and that during the optimization process we did 

not implement eventual bugs or inconsistencies that would corrupt the simulation results. The 

stability of the NAPOM code is interesting and should be further investigated.      

 

 
Figure 8: Comparison of results from original and optimized NAPOM code for w velocity on 

layer 4. 

 
Figure 9: Difference between original calculation with slightly perturbed data (left) and 

optimized calculation with all implemented optimization steps (right), for different fields. 
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5.2. Execution performance 

The results of implemented optimization process are presented in terms of the execution times of 

original and optimized code as well as the speedup. In Figure 10 comparison of execution times 

for main modules is represented. We use the same definitions for the pre-process modules as 

given in Table I and for the main code as given in Table II. Please note, that the execution times 

of several modules in the pre-process phase (e.g. first six modules) are reduced to zero as they 

are executed concurrently.  

 

 
Figure 10: Comparison of original against optimized execution times. 

 

From Figure 10 it is evident that most of the modules have been severely improved. The pre-

process phase execution time is reduced from roughly 12 minutes to a bit less than 2 minutes 

mostly on the account of well-tuned concurrent execution of the completely independent 

processes (Figure 6). Additional speedup is gained through the shared memory parallelization of 

local loops. The speedup of the pre-process is about 5.  

The execution time of the main code is reduced from the original half an hour run to about 8 

minutes run. The speedup of the main code is roughly 3.6. Besides several optimizations 

(described in Section 3) most beneficial action in the main code is the decomposition and 

parallelization of huge independent loops, e.g. the computations of lateral viscosity that are 

reduced from 210 s to 53 s. The exploration of full cache capabilities together with full multicore 

CPU power severely reduces the execution time. However, appropriate coding actions have to 
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been implemented for desired effect. Merely adding the OpenMP programming directives will, 

in most cases, even reduce CPU efficiency. If the processes are not binded appropriately and 

datasets are not chosen to maximize the multicore efficiency, the thread generation overheads 

and communication between cores (seen as additional cache misses, especially in L1 cache), 

might reduce the overall execution efficiency.  

 

To confirm the results, 23 runs with 23 different datasets have been tested. In another words, 

“operative runs” from 26.9.2012 to 9.11.2012 have been observed. Results are presented in 

Figure 11, where speedup of a whole NAPOM package regarding different runs together with the 

execution time is plotted. The speedup is within interval [3.70, 4.06] with an average value of 

3.89. In all test runs the difference in computed results, between the original and optimized code, 

is within the allowed margins (see section 2.4). The small variations in speedup, during the 

subsequent runs, are due to different factors where the most pronounced is the download time, 

however, in all tested runs the speedup was higher than 3.5.  

 

 

Figure 11: Speedup behaviour of NAPOM regarding different runs 

6 Conclusions 

Within the project the NAPOM package has been analysed and optimised regarding the MBS 

computational resources. The execution times of the optimized code are nearly four times shorter 
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than of supplied code. The introduced errors are within the rounding margins. The optimized 

package is ready for operative runs on the MBS cluster on the head node, in directory 

/home/gkosec/num/, organized as 

 NAPOM_orig_v1 – first version of the supplied code 

 NAPOM_orig_v2.tgz  – second version of the supplied code  

 NAPOM_orig_v2_patched –second version of teh supplied code with applied patches 

needed to execute the code (supplied code does not execute). In the file 

orig_v2_to_orig_v2_pached.diff all the applied changes can be found.   

 NAPOM_optimized – optimized package.      

The scripts for running NAPOM follow the naming convention of the original scripts, while the 

main script of the package is named run.all.parallel.sh. The user that wants to run the parallel 

NAPOM must have the same permissions as for the original version and must be able to use the 

newly installed PGI Fortran compiler 12.8 (both can be set up by the system administrator). 

To keep a reference and to aid future changes to the code, the parallel source code also includes 

two versions of all functions and subroutines that were parallelized – the original serial version 

and the new parallel version. 

 

To summarize, the main actions implemented during the project are: 

 The MBS cluster and supplied code has been analysed. 

 The optimization and parallelization strategy has been formulated regarding the 

limitations, goals, and available resources.  

 The pre-process has been synchronized, distributed over three computing nodes, 

parallelized and optimized.  

 The main code has been parallelized on all cores of a single head node, decomposed and 

optimized with a minimal additional cluster workload. 

 The whole execution time of NAPOM package has been reduced from 42 minutes to 11 

minutes. More precisely, the average speedup over 23 runs is 3.89.  

 The preliminary analysis of the NAPOM behaviour has been done to set the error 

tolerance. It has been confirmed that the single precision rounding error considerably 

affects the numerical integration.  

 Some fatal bugs regarding the addressing of non-existing elements in arrays were 

detected and fixed. 

 

There are several possibilities for further development on the topic: 
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 The main code should be redesigned. It seems that the most reasonable approach would 

be the installation of the newer version of POM and the implementation of NAPOM 

augmentation into the new environment. 

 The main code should be written in double precision (that would be automatically solved 

if a newer version of POM would be applied). 

 Regarding the stability issues it seems reasonable to use more computational points, 

which would introduce more computational complexity, and could justify the 

parallelization over more computing nodes.  

 

Further development regarding the computational performance depends on the development of 

the model. If the complexity will be increased (more points) it might be reasonable to implement 

hybrid OpenMP-MPI parallelization. There are also possibilities to employ Graphics Processing 

Units (GPUs) through CUDA or OpenCL APIs, but again, with the current complexity one 

should not expect severe speedups, as the communication overheads between the CPU and GPU 

will be prevailing.   

If MBS decides to upgrade only its existing computational resources we advise a multi CPU 

server with an improved memory performance. However, the details about eventual upgrades 

should be discussed regarding the strategy of further development, as well as the available 

computer technology at that time.  

This is the final report that summarizes the code optimization/parallelization of the NAPOM 

simulation package. The work has been done in Laboratory for Parallel and Distributed 

Computing - Department E6 at Jožef Stefan Institute. 
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